
Politecnico di Torino

Porto Institutional Repository

[Proceeding] CLUE: Clustering for Mining Web URLs

Original Citation:
Morichetta, Andrea; Bocchi, Enrico; Metwalley, Hassan; Mellia, Marco (2016). CLUE: Clustering
for Mining Web URLs. In: 28th International Teletraffic Congress (ITC 28), 2016, Wurzburg, DE,
September 2016. pp. 286-294

Availability:
This version is available at : http://porto.polito.it/2665105/ since: February 2017

Publisher:
IEEE

Published version:
DOI:10.1109/ITC-28.2016.146

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/84250919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/2665105/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1109/ITC-28.2016.146
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2665105

1

CLUE: Clustering for Mining Web URLs
Andrea Morichetta, Enrico Bocchi, Hassan Metwalley, Marco Mellia

Politecnico di Torino
name.surname@polito.it

Abstract—The Internet has witnessed the proliferation of
applications and services that rely on HTTP as application
protocol. Users play games, read emails, watch videos, chat and
access web pages using their PC, which in turn downloads tens
or hundreds of URLs to fetch all the objects needed to display
the requested content. As result, billions of URLs are observed
in the network. When monitoring the traffic, thus, it is becoming
more and more important to have methodologies and tools that
allow one to dig into this data and extract useful information.

In this paper, we present CLUE, Clustering for URL Explo-
ration, a methodology that leverages clustering algorithms, i.e.,
unsupervised techniques developed in the data mining field to
extract knowledge from passive observation of URLs carried by
the network. This is a challenging problem given the unstruc-
tured format of URLs, which, being strings, call for specialized
approaches. Inspired by text-mining algorithms, we introduce the
concept of URL-distance and use it to compose clusters of URLs
using the well-known DBSCAN algorithm.

Experiments on actual datasets show encouraging results.
Well-separated and consistent clusters emerge and allow us to
identify, e.g., malicious traffic, advertising services, and third-
party tracking systems. In a nutshell, our clustering algorithm
offers the means to get insights on the data carried by the
network, with applications in the security or privacy protection
fields.

I. INTRODUCTION

The web has become the most popular application of the
modern Internet. Originally born to access hypertext, nowa-
days it is used to watch videos, play games, read emails, chat
online, etc. Web pages have become much more complex,
with dynamic elements offering personalized views, and are
now rich of multimedia contents and web applications that run
inside the browser. HTTP is the de-facto standard application-
layer protocol [1], allowing the browser to retrieve the hun-
dreds of objects composing a page with a simple request-
response mechanism. Billions of objects are available on the
web, each of them being identified by a Uniform Resource
Locator (URL). Static URLs directly point to an object, e.g.,
portions of text or an image file like http://acme.com/index.
html, but more and more frequently URLs encode queries
that servers process to return a dynamic result. For instance, a
Google search, a click on “like” buttons, or the images served
by an advertisement platform are typical examples of dynamic
URLs, e.g., http://acme.com/s?key=like.

Given the amount of URLs that are retrieved to fulfil
ordinary browsing activities, monitoring and understanding
the dynamics of the network is not an easy task. Due to the
volumes of today’s Internet and the complexity of its architec-
ture, where resources are retrieved from remote servers, cloud

This work has been funded by the WWTF Agency through the BigDAMA
project.

data-centers or Content Delivery Networks (CDN), the work
of network and security analysts requires advanced tools to
effectively dig into such huge amount of raw data. Moreover,
in many scenarios it is required to extract knowledge from it,
e.g., for investigating an incident, or to extract signatures for
Intrusion Detection Systems (IDS).

In this paper, we focus on the problem of automatically
analyzing web traffic leveraging URLs. We design an unsu-
pervised methodology that groups URLs in clusters according
to a similarity metric. We call it CLUE, Clustering for URL
Exploration. The goal is twofold. First, we reduce the number
of items the analyst has to visualize and process, from hundred
thousands of single URLs to few hundreds of clusters. Second,
we target the identification of automatically generated URLs,
e.g., URLs generated by advertisement platforms, polymorphic
malware, or wiki-like systems.

Previous studies faced the analysis of URLs or entire web
pages typically with a specific goal in mind, e.g., detecting
duplicated pages, improving page rank, or pinpointing phish-
ing websites – see Sec. II for a thorough discussion of related
work. Our work differs from previous approaches as we aim at
offering data exploration tools not tailored to a specific goal.
We assume the system is fed by a set of URLs collected by
passively observing HTTP requests produced by hosts in a
live network. We specifically do not want to identify clients
or keep track of their past navigation history, thus preserving
users’ privacy. In addition, we want to avoid the overhead
introduced by web crawling techniques.

Ingenuity is required to design such a system. Unsupervised
machine learning approaches like clustering algorithms have
gained popularity. Clustering [2], [3] is defined as the task of
grouping samples according to their similarity. Close samples
are placed in the same cluster, while samples belonging to
two clusters are far apart. Similarity is classically measured
as the distance between two samples in a metric space, where
the triangular inequality holds. The definition of a distance is
unfortunately not trivial for URLs, which are indeed textual
strings. We solve this problem proposing the URL-distance,
a modification of the Levenshtein distance, which specifically
takes into account key URL characteristics, i.e., string length
and character frequencies which are different than in regular
text strings. Next, we use DBSCAN, a well-known density-
based clustering algorithm. As result, URLs are grouped into
well-separated and cohesive clusters.

We assess CLUE performance considering a dataset of
URLs accessed by ordinary users through PCs, tablets and
smartphones. Half of the users are infected by a well-known
polymorphic malicious software called TidServ [4], whose
traffic is identified by an IDS. We use this labeled dataset as

2

Network
Probe Batch of

collected URLs

Compute
 𝐷𝑈𝑅𝐿

URLs
Distance Matrix

Compute
DBSCAN

Parameter E

…for every E…

URL Extraction Distance Evaluation Clustering

Clusters
Statistics Statistics

Clusters

Fig. 1: CLUE system architecture overview.
Left to right, the three processing stages allowing us to group URLs in clusters: (i) URLs are extracted from a live network
by means of a passive probe and collected in batch; (ii) the distance between each pair of URLs is computed through dURL

metric; (iii) DBSCAN clustering algorithm is applied. Additional statistics are complementary provided for the analyst.

ground-truth to tune parameters so that clusters of malicious
URLs emerge. We then run the clustering algorithm on a larger
dataset where no infected hosts are considered to show the
potential of the approach. Results are encouraging: CLUE
is able to pinpoint clusters of URLs generated by video
streaming or advertisement services, and by malware families
or third party tracking systems. A simple manual investigation
is sufficient for the analyst to tie clusters to their category
and augment the understanding of some phenomena. This
strengthens the potential of CLUE to support the mining of
URLs and of web traffic with applications to security and
privacy protection fields. In a nutshell CLUE offers the analyst
the chance to mine web traffic presenting clues about traffic
and services.

This paper is organized as follows. We first discuss related
works in Sec. II. Methodology is presented in Sec. III, where
the CLUE is detailed. The dataset used for the experiments
is described in Sec. IV, while results are discussed in Sec. V.
At last, Sec. VI summarizes findings and comments on further
potential improvements.

II. RELATED WORK

Several papers in the literature aim at identifying similar
web pages or URLs. Each work is targeting different problems
or is tied to a specific application, with custom techniques
being designed. The large majority of works look for structural
features that help in distinguishing different classes of websites
to consequently group or classify them. Such features can
be referred (i) to the URL of a web page, here intended as
sequence of characters; or (ii) to the payload of the page,
consisting of its layout, formatting, and syntactical properties.

A group of previous works aims at clustering web pages
directly using the text they contain. Such approach requires
the complete retrieval of the page, and typically expensive
text-processing algorithms. A notable example of clustering
applied to web content is [5]. Authors propose a methodology
to quantify the syntactic similarity between generic text files
through the computation of resemblance and containment
features. They apply such technique to 30 M documents

retrieved from the web and run clustering algorithms on top.
A similar and more recent approach is presented in [6], while
[7] stresses the importance of algorithmic design to achieve
high scalability of clustering algorithms.

In the context of web page clustering for specific appli-
cations, the authors of [8] apply clustering algorithms to
disambiguate between people’s name on the Web. They use
a set of features coming both from the page content and from
the URL. They split the URL into multiple components (e.g.,
domain name, path, parameters) and extract properties that
have to be recombined together, making the whole process a
thorough but expensive technique.

Authors of [9] give more importance to URLs rather than
page content in the process of clustering websites. They pro-
pose a technique based on Minimum Description Length [10],
which is applied to URLs. Additional features derived from
content and structural properties are used only at a later,
more fine-grained, clustering stage. [11] and [12] present rule-
mining techniques applied on URLs only. The former is aimed
at detecting web pages duplicates, while the latter presents an
automated tool to explicitly detect malicious connections to
Command and Control (C&C) servers through URL patterns.
Only the detection of C&C is targeted.

Cantina [13] targets the automatic identification of phishing
websites by analyzing URLs with text mining approaches.
Authors of [14] target the same problem leveraging the Leven-
shtein distance to detect spelling mistakes that lead to phishing
sites, while [15] applies clustering algorithms to identify spam
campaigns from URLs posted on Facebook walls. Considering
page ranking, [16] proposes a URL-based methodology to
automatically spot “qualified” links, i.e., those implying merit
of the targeted page, and noisy ones, e.g., advertisement and
promotional links, that do not confer authority to a page.

Finally, authors of [17] and [18] propose web pages classifi-
cation techniques solely based on websites URLs. Despite the
goal of “classifying” a web resource goes beyond the scope
of our work, both papers bring readers’ attention to scalability
issues and time requirements in case the actual content of a
page has to be fetched, and to the feasibility of content analysis

3

when the semantics of a web page lie into images or graphical
works and thus textual analysis is not applicable.

All previous proposals leverage some particular features in
the structure of URLs they target and devise specific solutions
to reach the goal. Our goal is instead to employ general-
purpose data mining approaches to investigate URL structures
and group together those URLs that look similar. In this
respect, we aim at helping the analyst by sensibly reducing
the amount of elements to analyze. We offer her the chance
to check few hundreds of consistent URL groups, instead of
several thousands of single URLs. CLUE is an exploration
tool to dig inside the web.

III. CLUE SYSTEM DESCRIPTION

We aim at designing a completely unsupervised method-
ology that can support the work of a network or security
analyst in extracting knowledge from the URLs the network
carries. In this section, we first provide a description of the
tools needed to identify and extract URLs from the network
traffic. As second, we highlight the need to summarize the
distance between URLs in a numeric fashion, considering
several distance measures and their behavior in our field of
application. Lastly, we guide readers through DBSCAN, a
density-based clustering algorithm. Fig. 1 shows the overview
of the CLUE architecture. It depicts the three macro processing
stages and the components belonging to each of them. A
detailed description of each step is proposed in the following.

A. URL Extraction

An URL is a reference to a resource which embeds two
essential pieces of information: (i) The mechanism to retrieve
the resource, i.e., the network protocol, and (ii) the location
of the resource, i.e., the hosting server and the path to obtain
it. In the web scenario, URLs point to hypertext, i.e., pages
with text, images, and multimedia content. Being HTTP the
de-facto standard application protocol [1], URLs now are used
as identifiers to retrieve any type of content, from simple self-
contained pages to rich personalized websites full of resources
served by third party platforms, e.g., advertisements, video,
social network plugins, etc.

The network carries billions of URLs and the understanding
of the content being served through them is a complex task.
URL parsing is nowadays much more complicated than in
the past: the same resource can be retrieved from multiple
nodes, e.g., any server replica in a CDN. Moreover, additional
parameters are commonly used to fetch a specific object when
multiple options are available, e.g., google.com/logo.png?xy=
640x480 or google.co.uk/logo.png?xy=1024x768 may refer to
the same resource. At last, automatic URLs are commonly
found in Content Management Systems such as WiKi pages,
in polymorphic malware, or in advertisement platforms. How
to find similarities and offer the network or security analyst a
scalable means to understand how the network is used is thus
a challenging problem.

In the path from raw network traffic to URL clusters, the
first step performed by CLUE is the extraction of URLs as they
are requested by users. This can be done using logs readily

available from proxy or firewall systems, or by extracting
URLs directly from packets. In this work, we assume the latter
case: a passive network probe is located on a link where it
processes packets in real time. The probe extracts URLs and
dumps them in batches for later post-processing. To do so,
network flows carrying HTTP traffic have to be detected. Deep
packet inspection techniques are employed for such purpose,
i.e., to identify strings that match the syntax of HTTP GET
or POST requests. When a HTTP request is found, the URL
there contained is logged in a plain text file. When a batch of
URLs is formed, it is finally possible to step ahead towards
the computation of the distance among URLs. This task does
not have real-time constraints and can be scheduled when the
data collection from the network is complete or on demand
too.

B. URL Distance Evaluation

The concept of distance refers to a specific class of dis-
similarity measures that aim at quantifying numerically the
degree to which two points are far away [19]. A dissimilarity
measure can be called distance if it meets three key properties
that characterize a measure as metric: positivity, symmetry,
and triangle inequality, respectively defined as

• d(x1, x2) ≥ 0, d(x1, x2) = 0 ⇐⇒ x1 = x2.
• d(x1, x2) = d(x2, x1).
• d(x1, x3) ≤ d(x1, x2) + d(x2, x3) ∀x1, x2, x3.

The fulfillment of these properties is mandatory when
dissimilarity measures are used on top of which data-mining
techniques, clustering included, run. In our case, we look
for a distance metric to compute the dissimilarity of strings.
Distance measures suitable for application to textual strings
take the name of “string metrics” or “string distance func-
tions”. The adoption of such metrics is popular in the field
of text-mining but also in all the problems where it is re-
quired to compare groups elements for which one has no a-
priori knowledge or understanding. Textual distance metrics
therefore represent a convenient and viable way to compactly
represent in numbers the dissimilarity among strings.

We focus on a particular class of distance metrics, the
edit-distance based functions [20]. As the name suggests, the
distance between two given strings s1 and s2 is intended as
the minimum number of steps required to convert the string
s1 into s2. Edit-distance functions have been used to target
the analysis of free text where strings are well-formed words
from a dictionary, with a defined grammatical syntax and with
well-understood constraints.

The most popular technique is the Levenshtein distance [21]
dLV S(s1, s2) that assigns a unitary cost for all editing opera-
tions, i.e., insert, remove, or replace one character. It computes
an absolute distance between pairs of strings that is at most
equal to the length of the longer string. This makes the
Levenshtein distance inconvenient when comparing a short
URL against a long one, as URL length possibly spans from
few to hundreds of characters.

4

0 25 50 75 100 125 150 175 200 225 250
dLV S

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) dLV S

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
dJRO

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) dJRO

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
dURL

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) dURL

Fig. 2: CDFs of distances on the TidServ URLs.
To facilitate the consequent clustering of URLs, we aim at having distances concentrated in ranges. From the plot, it emerges
that (i) dLV S is potentially a good candidate but the outputted distance value is not weighted by the length of the strings
being compared; (ii) dJRO does not show any significant step in the distribution, posing serious issues in thresholds decision;
(iii) dURL appears to be the best candidate, showing three modes in its CDF.

The Levenshtein distance dLV S(s1, s2) is defined as

dLV S(i, j) =

max(i, j) if min(i, j) = 0.

min

dLV S(i− 1, j) + 1

dLV S(i, j − 1) + 1 otherwise.
dLV S(i− 1, j − 1)+I(s1i 6= s2j)

where dLV S(i, j) is the distance between the first i characters
of si and the first j characters of s2. I is the indicator function,
namely equal to 0 when s1i = s2j .

A different approach is taken by the Jaro distance. In this
case, the distance function considers the number and the order
of common characters between two strings. Let m be the
number of matching characters, and t be half the number of
transpositions. The Jaro distance dJRO(s1, s2) is defined as

dJRO =

{
1 if m = 0.

1− 1
3 (

m
|s1| +

m
|s2| +

m−t
m) otherwise.

Given the peculiarity of URLs, whose length may vary
widely and which may include random substrings, we propose
a custom modification of the Levenshtein distance, dLV S2.
Specifically, we count the total number of insertions and
deletions, but we weight replacement by a factor of two. The
rationale is that a replacement corresponds to one combined
operation of deletion and insertion. We also explicitly consider
the string length, and normalize the results in a [0, 1] range as
follows:

dURL(s1, s2) = 1− |s1|+ |s2| − dLV S2(s1, s2)

|s1|+ |s2|
This leads to a bounded distance metric, and specifically
dURL = 0 if s1 = s2, while dURL = 1 if the two strings
are completely different.

To give the intuition of the different results achievable,
consider a simple example. Let s1 be “google.com” and s2
be “1goggle.com”. We now compute the numerical value
provided by each of the considered distance functions. The

Levenshtein distance dLV S(s1, s2) = 2, accounting for one
insertion (“1”) and one replacement operation (“o” → “g”).
For dJRO, the number of matches m is 9 (g,o,g,l,e,.,c,o,m),
and the number of transpositions t is 0. Thus dJRO = 0.094.
Finally, dURL = 0.143 since we have one insertion, weighted
1, and one replacement, weighted 2.

We now run a simple experiment to raise awareness on
the importance of choosing an adequate distance function. We
consider all the URLs found in our dataset (see Sec. IV for
details) that have been generated by TidServ, a polymorphic
malware. We then compute the distance between any pair
of URLs (u1, u2) according to the different definitions of
d(u1, u2) reported above. Fig. 2 shows the Cumulative Distri-
bution Function (CDF) of the measured distances for dLV S ,
dJRO, and dURL, respectively.

Given our goal is to cluster elements that are “close” one to
the other, we prefer to have distances concentrated in ranges.
A pair of similar elements should exhibit a small distance,
while a pair of different elements should exhibit a very large
distance. dLV S shows three groups in its CDF, suggesting for
potential clusters. However, dLV S support is not bounded in a
given range (in our experiments, it spans in the [0:250] range),
since no normalization is entailed. This makes the comparison
mostly driven by string lengths, i.e., any two short strings
will be much more similar than any two long strings. dJRO

instead results in a nearly-continuous shape, showing no clear
steps that would help in separating close from far away pairs.
dURL satisfies the intuition of having distance ranges, as it
clearly shows three modes in the CDF. Moreover, its support
is bounded in the [0:1] range, normalizing the distance with
respect to the length of the two considered strings.

In our methodology, we compute the distance by submitting
the entire URL as a single string made by hostname and path.
We reached this decision after performing some experiments,
not reported here for brevity, where we tested several defini-
tions of dURL by considering hostname and path separately,
and then by composing a single metric via linear combinations.
However, blending hostname and path distance values resulted
not straight forward and did not lead to better results.

5

C. Clustering
Clustering algorithms are unsupervised machine learning

approaches that aim at grouping together points according to
similarity metrics [2], [3]. They offer exploratory means to
analyze raw data, sensibly reducing the number of elements
to be analyzed from hundred thousand individual points to
few hundreds clusters. Elements that are grouped in the same
cluster share common features and, as such, can be analyzed
a single entity. The homogeneity of items in a cluster allows
the analyst to naturally extract knowledge about the elements
themselves. Clustering algorithms are thus good candidates to
process URL distances and group together those URLs that
show a low distance value.

Among clustering algorithms, density-based approaches de-
fine clusters as the set of elements that form areas of higher
density than the remainder of the data set. Such techniques
have several notable and useful advantages: (i) They do not
require any knowledge on the final number of clusters in
advance (one of the major weaknesses of centroid based
clustering approaches, as k-means); (ii) they can find arbitrarily
shaped clusters; (iii) they include the notion of outliers, which
are left unclustered as noise. We rely on DBSCAN [2], one
of the most popular density-based algorithms.

To better illustrate how density-based clustering algorithms
work, consider a set of points in a sample space to be clustered.
Let d(x1, x2) be the distance between two points x1 and x2.
Consider now the sphere of radius E centered in x1. If at
least minPoints are within distance E from x1, the point x1

is classified as “core point”. Formally, a given point x1 is a
core point if at least minPoints are within distance E from
it. These points are defined as “directly reachable” from x1.
A generic point xk is “reachable” from x1 if there exists a
path x1, x2, . . . , xk so that xi+1 is directly reachable from xi.
Reachable points from x1 form a cluster, i.e., a dense region.
Points that are not reachable from x1 are called “outliers”, and
may either form a separate cluster if they belong to another
dense region, or fall in the “noise” region if it is not the case.
minPoints and E are two tunable parameters that can be

set by a domain expert if the data to be processed is well
understood. minPoints defines the minimum size of a cluster
and has little impact on the final results. E instead is a key
parameter. If set too small, it leads to a high number of small
clusters and lots of unclustered points. If set too large, it leads
to few clusters with lots of (heterogeneous) points. Sensitivity
analysis is thus essential to properly choose E. We better detail
parameter choice impacts in Sec. V-B.

IV. SCENARIO AND DATASET

In this section we provide an overview of the technologies
used to record network traffic and of the tools used to extract
useful information. We consider a scenario in which a sniffer
passively monitors the traffic generated by a group of hosts,
e.g., hosts in a LAN network, or households connected to a
Point-of-Presence (PoP) of an Internet Service Provider (ISP).
The sniffer is capable of identifying HTTP requests, and log
them to a file for later postprocessing.

In our case, we capture traffic at the PoP of an European ISP
where approximately 20,000 customers are connected. Most

TABLE I: Dataset characteristics.

All hosts TidServ infected hosts
HTTP Flows 267,393 171,863
HTTP Volume 89.99 GB 44.16 GB
Total URL 411,727 255,304
Unique URL 78,421 43,479
Unique Tidserv URL 228 228

of them are residential customers accessing the Internet via
ADSL modems. We instrument the PoP with a passive probe
to monitor the traffic generated by residential users. The probe
runs Tstat [22], a passive monitoring tool that rebuilds each
TCP flow, tracks it, and, when the connection is closed, logs a
record reporting statistics in a simple textual format. When the
application protocol is HTTP, Tstat extracts the URL and logs
it in file. In case multiple HTTP transactions are present due
to the usage of HTTP-persistent option, multiple records are
logged. We let Tstat collect URLs for an entire day, generating
more than 100GB of data.

We have also access to a commercial Intrusion Detection
System (IDS) that we use to label URLs as possibly malicious.
The IDS has at its disposal an internal database of rules
modeling network threats. If some URL matches one (or more)
of these rules, the IDS raises an alert and flags the URL with
a Threat-ID, i.e., a numeric code identifying a specific threat.
For our purposes, we enabled signatures for a specific malware
called TidServ (see Sec. V for a description of the malware)
that is known to use polymorphic strings in the URLs to evade
detection techniques. We identified 14 hosts to be infected by
the malware in our dataset.

In the following, we consider one dataset. Table I provides
some statistics about characteristics in terms of volume, num-
ber of URLs, etc. Our dataset considers traffic generated by the
14 hosts infected by the TidServ malware, i.e., for which the
IDS flagged at least one flow as malicious, and 20 additional
hosts randomly selected from the population of users; none
of the URLs of this second group of hosts are flagged by the
IDS. In total, more than 411,000 URLs are present, 78,421 of
which are unique. For the sake of completeness, Table I details
also the statistics considering only the 14 infected hosts. Out
of the 255,000 total URLs, 43,479 are unique, of which only
228 are flagged as TidServ.

V. RESULTS

In this section, we first present experiments to tune CLUE
parameters. Then, we provide proofs about the CLUE effec-
tiveness by presenting case studies and examples of analysis
it enables.

A. TidServ overview

We firstly provide some highlights on the TidServ traffic.
TidServ, also known as Alureon, TDSS or TDL [4], is a
popular Trojan Horse. After infecting an host and transforming
it in a bot, it communicates with a Command-and-Control

6

TABLE II: Examples of TidServ URLs flagged by the IDS.
Common substrings in bold.

swltcho81.com/NZf4A07d7r7yE1C1dmVyPTQuMCZiaWQ9YjZjYWVhNj
E0NjhhMmQ4ZTc0OGQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9
NDAxOTcmc2lkPTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPXV
pbmZlIG15ZGVzaw==38c

rammyjuke.com/kaI1wWRd8Y5yfbU9dmVyPTQuMCZiaWQ9YjZjYWVhNj
E0NjhhMmQ4ZTc0OGQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9
NDAxOTcmc2lkPTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPWZ
vcnVtIGFybWF0YSBkZWxsZSB0ZW5lYnJl37g

bangl24nj14.com/TVq2BttP743qt1c8dmVyPTQuMCZiaWQ9YjZjYWVh
NjE0NjhhMmQ4ZTc0OGQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9
NDAxOTcmc2lkPTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPXV
pbmZlIG15ZGVzaw==05c

iau71nag001.com/Kvb13nWd6P4XrFs3dmVyPTQuMiZiaWQ9MDU0NWQw
ZDQwY2MyODU4YWNjYzFlZjJkM2FiZDA5N2RiYmRlYmVkZiZhaWQ9N
TAwMTgmc2lkPTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPWZhY2Vib
29r27c

(C&C) server to receive commands.1 C&C servers are typ-
ically contacted using HTTP to evade firewalls. Originally,
static URLs were used, and security software could easily
block the communications using, e.g., static rules and black-
lists. However, recently malware started to evade IDS rules by
using polymorphic approaches, e.g., randomly generating and
rotating hostnames on the DNS for C&C servers, or adding
randomness in the URL path. This makes more difficult to
create static blacklists based on simple string matching.

TidServ adopts this expedient and changes periodically the
URLs to contact C&C servers. To give the reader the intuition
of how random can a TidServ URL appear, Table II reports
four examples of URLs that the IDS flagged. Hostnames and
paths change, but some common parts (in bold) are still visible
(and could be used by the IDS to flag them). Sometimes the
common pattern may be very long, but sometimes as few as
4 characters are found in common, suggesting different com-
munication patterns may be present. Observing these patterns
is easy if one is provided by the correct set of URLs. But
finding them when mixed in the hundred thousands of URLs
generated by a host makes the identification very challenging.

B. Parameter settings

We now run CLUE on the overall dataset. We fix
minPoints to 4 to let CLUE consider clusters of at least
4 points. This choice is not critical since normally one is
interested in observing clusters with much higher number of
points. The impact and choice of E needs a preliminary study
since it can completely change clustering results. Intuitively,
a too small value of E leads to a large number of very small
clusters and to a lot of points that fall in a not-dense region,
i.e., to a large number of outliers points. Conversely, a too large
values of E leads to few and very big clusters, where all points

1The C&C servers run on centrals computer that attackers use to update
and control infected hosts.

0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

E

0

500

1000

1500

2000

2500

To
ta

ln
um

be
r

of
cl

us
te

rs

(a) Number of clusters varying E.

0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

E

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
of

ou
tl

ie
rs

(%
)

(b) Percentage of outliers varying E.

Fig. 3: Number of clusters and percentage of outliers versus
E. Generic dataset.

are core points, sometimes artificially connected together by
a single path.

Fig. 3 reports results when considering E ∈ [0.175, 0.5].
Recall dURL ≤ 1 by construction. Specifically, Fig. 3a and
Fig. 3b report the total number of clusters and the percentage
of outliers, respectively. As expected, both curves decrease
as E increases. Since we are interested in some hundreds of
clusters, these results suggest to use large values of E (between
0.4 and 0.45). Notice that for E > 0.45, a sudden drop in the
number of outliers is observed due to the emerging of gigantic
clusters.

We now focus on how TidServ URLs are clustered. In-
tuitively, we would like to have them all clustered together,
possibly in different clusters (cfr. Fig. 2), with none of them
left in the noise region, and with only TidServ URLs being
present in each cluster. We run CLUE for increasing values of
E, and then we study how TidServ elements are clustered by
leveraging the IDS labels as ground truth. We report results
in Fig. 4. We consider two performance metrics:

(i) Number of TidServ in Outliers - Nout: the number
of URLs labeled as malicious by the IDS which are left
unclustered;

(ii) Total Clustered TidServ URL - Nclue: the total number
of URLs belonging to any cluster in which there is at least a
TidServ URL. This includes both TidServ labeled URLs, and
eventual other URLs which the IDS did not label as malicious,
but that CLUE included in the same cluster.

7

0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

E

0

5

10

15

20

25

30

N
o
u
t

(a) Nout versus E.

0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

E

200

300

400

500

600

700

800

900

1000

N
cl
u
e

(b) Nclue versus E.

Fig. 4: Number of TidServ elements left unclustered and total
number of URLs in TidServ clusters.

Fig. 4a reports Nout versus E. If set too small, a large num-
ber of TidServ URLs results unclustered, since the randomness
added in the URLs makes dURL too large compared to E.
Conversely, for values of E ≥ .375, all TidServ labeled URLs
are assigned to a cluster. Look now at Fig. 4b which depicts
Nclue. We observe how more and more URLs gets clustered
when E increases. Steps correspond to outliers being included
into clusters. However, when E > 0.45, a sudden increase
is observed, i.e., URLs suddenly gets merged in very large
clusters, with Nclue > 2600 elements.

These results suggest that the best setting of E is in
[0.375, 0.45]. We set it to 0.4 in the following. With this
settings, CLUE isolates 574 clusters in total, 7352 outlier
URLs on the whole dataset. All TidServ elements are assigned
to a cluster. In particular, 7 clusters have at least 1 TidServ
labeled URL. These clusters contain in total 357 URLs.
However only 228 are labeled by the IDS, and we need to
investigate if there are some not malicious URLs that are
mistakenly clustered with TidServ URLs.

C. TidServ findings

Table III reports details for each of the 7 TidServ clusters.
It reports the number of URLs, the number of labeled ones,
the number of unique hostnames and the longest common
substring for hostnames. Cluster are sorted by number of IDS
labeled TidServ elements. The table shows the polymorphic

TABLE III: TidServ clusters identified by CLUE. E = 0.4.

Tot. URL TidServ URL Hostnames Hostname common string
192 118 14 .com
79 75 1 wuptywcj.cn
32 18 2 clickpixelabn.com
6 6 1 biiwf3iidpkxiwzqmj.com
6 5 1 zl091kha644.com
5 5 1 zhakazth.cn

37 1 3 .com

TABLE IV: TidServ URLs identified by CLUE as belonging
to the same cluster. Only the first one was identified by the
IDS. Common patterns are highlighted in bold.

gnu4oke0r.com/4VY00y9P7Z5xiPs9dmVyPTQuMCZiaWQ9NWJjNWFiMjE1
YjRmN2I4ZjM3OTRmODNkZjhmNWY0ZjFmODZkYjE1YyZhaWQ9M
zAwMDEmc2lkPTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPWxvdWlzIGN
ydWlzZXM=16h

lkckclcklii1i.com/sVV2mztX5W4xXZu5Y2xrPTIuNCZiaWQ9NWJjNWFiMjE1
YjRmN2I4ZjM3OTRmODNkZjhmNWY0ZjFmODZkYjE1YyZhaWQ9M
zAwMDEmc2lkPTAmcmQ9MA==15g

lkckclckl1i1i.com/sVV2mztX5W4xXZu5Y2xrPTIuNCZiaWQ9NWJjNWFiMjE1
YjRmN2I4ZjM3OTRmODNkZjhmNWY0ZjFmODZkYjE1YyZhaWQ9M
zAwMDEmc2lkPTAmcmQ9MA==15g

lkckclcklii1i.com/TAR3vUsX844qz1c5Y2xrPTIuNCZiaWQ9NWJjNWFiMjE1
YjRmN2I4ZjM3OTRmODNkZjhmNWY0ZjFmODZkYjE1YyZhaWQ9M
zAwMDEmc2lkPTAmcmQ9MA==27g

lkckclckl1i1i.com/TAR3vUsX844qz1c5Y2xrPTIuNCZiaWQ9NWJjNWFiMjE1
YjRmN2I4ZjM3OTRmODNkZjhmNWY0ZjFmODZkYjE1YyZhaWQ9M
zAwMDEmc2lkPTAmcmQ9MA==27g

behavior of the malware: several hostnames are used for the
C&C server, and randomness is introduced in the URL paths
too. CLUE is able to identify all TidServ labeled URLs in the
total set of 78421 URLs. For instance, consider the first cluster.
It is the largest one, with 192 URLs pointing to resources
apparently hosted on 14 different hostnames, whose common
pattern is just the .com substring. Interestingly, CLUE groups
118 different URLs that the IDS flags as TidServ, and 74
additional URLs which the IDS did not flag. By manually
checking the latters, they present very strong similarities with
the labeled URLs. Overall, CLUE associates to TidServ 357
unique URLs, of which only 228 are labeled by the IDS.
With a manual validation, we verified that all the not-labeled
elements are very likely malicious communications associated
to TidServ. We hypothesize the IDS signatures do not cover
them, and those can be considered false negatives. To give the
reader some insight, Table IV reports some of the URLs of
the last cluster in Table III. The IDS flags only 1 URL out of
the 37 URLs CLUE clusters together. By looking at strings in
Table IV, it is easy to spot some very strong similarity, hinting
to all those URLs to be indeed TidServ related ones.

These promising results clearly show that CLUE can easily
improve the analyst knowledge, finding new malicious patterns
that could be used to improve IDS and firewall signatures.

8

D. Silhouette analysis

In this section, we present some interesting findings ob-
tained by running CLUE on the whole dataset. We aim at
exploring clusters, and observe if they provide some useful
information. To select which cluster to analyze, we rely on the
silhouette analysis, an unsupervised methodology to find how
well each object lies within its cluster. Silhouette coefficient
s(i) measures how close a point i is assigned to its cluster. It
computes the average distance a(i) of i with all points in the
same cluster; and b(i) as the minimum average distance of i
to points in other clusters. Then

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) =
∑

j∈C dURL(i, j), C being the cluster i belongs
to; b(i) = minC′ 6=C

∑
j∈C′ dURL(i, j); it results s(i) ∈

[−1, 1]. Values close to 1 indicate that the sample is far away
from the neighboring clusters, and it means that core point i
is very close to all other core points in its cluster, i.e., cluster
C is very compact. Instead, values close to 0 indicate that
i is on or very close to the decision boundary between two
neighboring clusters; finally, negative values indicate that those
samples might have been assigned to the wrong cluster. The
average S(C) = E[s(i), i ∈ C] over all points in cluster C
is a measure of how tightly grouped all the elements in the
cluster are, i.e., how good is the cluster.

Since silhouette analysis permits to understand the quality
of clustering, we firstly study the distribution of S(C) among
clusters. We consider only those clusters with more than 20
elements. We observe that 14% of clusters have a silhouette
coefficient lower than 0.3, 37% between 0.3 and 0.5, 29%
between 0.5 and 0.7 and, finally, 20% of clusters with a
coefficient greater than 0.7. In a nutshell, most of the clus-
ters have elements with a strong connectivity between them
(S(C) ≥ 0.5 for 49% of clusters), and only a small subset
of clusters appears to be sparse. These results suggest that
the choice of E and MinPoints parameters are fitting to our
case.

E. Generic findings

1) Mining strongly connected clusters: Silhouette analysis
can easy the choice of which cluster to analyze. For instance,
it suggests to the analyst those clusters whose points are very
similar inside the cluster, and very different from points in the
rest of clusters. Table V shows the effectiveness of CLUE
in giving the analyst clues about the traffic generated by
the system. Focus first on the top part of the table, which
ranks clusters by decreasing S(C). All these clusters but the
TidServ one contains URLs sharing a single hostname with
however different paths. The first cluster contains 551 unique
elements. Manually checking those, it is straight forward to
observe that all those are related to the Sky Go video streaming
service, supported by Akamai CDN, using both HTTP Live
Streaming (HLS) and Video on Demand, using MP4 and
H.264 formats. The latter information is extracted from URL
paths, not reported for brevity. Paths are different, but follow
a clear syntax that allows CLUE to cluster them.

S(C) Main hostname (unique number) Elements Activity
0.92 skygo_streaming-i.akamaihd.net (1) 551 Streaming
0.91 ad.doubleclick.net (1) 99 Advertising
0.87 cookex.amp.yahoo.com (1) 61 Malware
0.85 static.simply.com (1) 25 File Hosting
0.81 d24w6bsrhbeh9d.cloudfront.net (1) 63 File Hosting
0.81 mfdclk001.org (1) 27 Malware
0.78 adserver.webads.it (1) 35 Advertising
0.77 .com (3) 37 TidServ
0.75 pixel.quantserve.com (1) 57 Advertising
0.72 watson.microsoft.com (1) 29 Windows Debug
0.7 coadvertise.cubecdn.net (1) 36 Advertising
0.65 su.ff.avast.com (1) 82 Avast Update
0.64 log.dmtry.com (1) 24 Advertising
0.61 clickpixelabn.com (1) 32 Malware
-0.19 . (5468) 43592 Normal Traffic
0.26 fbcdn (22) 10572 Facebook CDN

– Outliers (1783) 7352 –
0.61 feeds.wordpress.com (1) 1043 Feeds
0.69 atdmt.com (2) 768 Tracking
0.09 doubleclick.net (9) 691 Advertising
0.92 skygo_streaming-i.akamaihd.net (1) 551 Streaming
0.31 repubblica.it (6) 186 News
0.43 doubleclick.net (2) 171 Advertising
0.47 exch-eu.atdmt.com (1) 150 Tracking

TABLE V: Clusters information sorted by Silhouette coeffi-
cient on the top, and and for number of elements in the bottom.
In all cases, clusters clearly pinpoint specific services.

Continuing the analysis, we observe some legitimate ser-
vices related with advertisement platforms, all using explicit
URL formats for parameter exchange. Identifying them is
very easy, e.g., by performing a simple Google search [23].
Except these licit cases, the top clusters show many ser-
vices with less legitimate purposes. Some services, e.g.,
cookex.amp.yahoo.com, mfdclk001.org clickpixelabn.com, are
associated to malware activities. Also in this case, a simple
Google search unveil immediately clues to understand the
picture. The first cluster is associated to spyware actions2.
Beside the common hostname, we find the common part
“http%3A//ad.yieldmanager.com/imp” in the URL path. Proba-
bly this malware is connected to click fraud activities, and the
C&C server hosted at cookex.amp.yahoo.com instruments the
bots to perform fake-clicks on legitimate ads hosted on the
Yieldmanager infrastructure. The second hostname is linked
to a modified version of TidServ3, and the last is a C&C
server of another malware4. Also in this case, the analysis
of URLs gives interesting hints about the possible malicious
activities, not discussed for the sake of brevity. In all cases,
the availability of several URLs easy the signature extraction
job, e.g., to augment IDS or firewalls coverage.

2) Mining bigger clusters: The second part of Table V
reports clusters sorted by number of unique URLs. The largest
cluster contains many elements with a high number of different
hostnames. It aggregates all “normal” traffic into the network,
whose URLs are well-formed, with hostnames and paths that
are syntactically simple. Given the very large number of
services, it is possible to transform a URL into a similar
one so that a large dense area is identified. Notice that this
cluster is the only one with a bad Silhouette index. It would
be appropriate to then run CLUE on these URLs with a smaller

2https://www.google.it/#q=cookex.amp.yahoo.com
3https://www.google.it/#q=mfdclk001.org
4https://www.google.it/#q=clickpixelabn.com

9

choice of E to better split URLs. We leave this for future work.
The second largest cluster aggregates URLs from the Face-

book CDN, as easily highlighted by the common substring
found in hostnames. It serves all images, videos, and static
Facebook content. The third largest group of URLs collects
all outliers. Here we find the 7252 URLs that fall outside
any dense area. For these, it would be appropriate eventually
to run CLUE with largest choice for E. Going down in
the list, we observe URLs generated automatically by blog
platforms, by advertising platforms, by newspapers websites,
and by third-party tracking services [24]. These services follow
users during their online activities identifying them using
different techniques. User identifiers and other information
about advertising (e.g., timestamp or banner size) are often
sent to the server embedded into URL queries. Since these
elements are obviously created artificially, and follow a regular
syntax, they are easily identifiable by CLUE. This is why
these services are so frequent in our results. By analysing the
URLs, it is possible to unveil some of the mechanisms they
use to track online activities. For instance, doubleclick.net,
an advertising service subsidiary of Google, communicates
using artificial URLs, with common parts, like “u=”, “kvid=”,
“kpid=” or “sz=”, that clearly carry information about user
and her navigation. CLUE can thus also help researchers,
network or security analysts to find (and eventually filter) these
services.

In a nutshell, CLUE proves very useful in grouping similar
URLs, thus easing the analysis of traffic, and naturally letting
common patterns to emerge. Applications for security and
privacy are straightforward.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented CLUE, an unsupervised system
to mine URLs from passive traces. Based on unsupervised
machine learning, it offers the analyst the ability to explore
well defined clusters where similar URLs are grouped. Thanks
to the cohesiveness of clusters, clues about traffic easily
emerge and let the analyst to obtain information and identify
possibly malicious traffic or advertisement and third-party
services.

We presented results using a real but small dataset. We are
now working on improve scalability of CLUE so it can work
in real-time. As further improvement we are also working in
the design of a hierarchical approach where large clusters can
be further analysed by changing CLUE parameters.

REFERENCES

[1] L. Popa, A. Ghodsi, and I. Stoica, “Http as the narrow waist of the
future internet,” in ACM Hotnets, 2010.

[2] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications. Chapman and Hall/CRC, 2013.

[3] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Pearson, 2005.

[4] Backdoor.Tidserv, https://www.symantec.com/security_response/
writeup.jsp?docid=2008-091809-0911-99.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems, vol. 29,
pp. 1157 – 1166, 1997.

[6] V. Crescenzi, P. Merialdo, and P. Missier, “Clustering web pages based
on their structure,” Elsevier Data & Knowledge Engineering, vol. 54,
no. 3, pp. 279–299, 2005.

[7] T. Haveliwala, A. Gionis, and P. Indyk, “Scalable Techniques for Clus-
tering the Web,” in International Workshop on the Web and Databases,
2000.

[8] E. Elmacioglu, Y. F. Tan, S. Yan, M.-Y. Kan, and D. Lee, “Psnus: Web
people name disambiguation by simple clustering with rich features,” in
International Workshop on Semantic Evaluations, 2007, pp. 268–271.

[9] L. Blanco, N. Dalvi, and A. Machanavajjhala, “Highly Efficient Al-
gorithms for Structural Clustering of Large Websites,” in ACM WWW,
2011.

[10] P. D. Grunwald, The Minimum Description Length Principle. The MIT
Press, 2007.

[11] A. Agarwal, H. S. Koppula, K. P. Leela, K. P. Chitrapura, S. Garg,
P. K. GM, C. Haty, A. Roy, and A. Sasturkar, “URL Normalization for
De-duplication of Web Pages,” in ACM CIKM, 2009.

[12] N. Kheir, G. Blanc, H. Debar, J. Garcia-Alfaro, and D. Yang, “Automated
classification of C&C connections through malware URL clustering,” in
Springer ICT Systems Security and Privacy Protection, 2015, pp. 252–
266.

[13] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based
approach to detecting phishing web sites,” in ACM WWW, 2007.

[14] M.-E. Maurer and L. Hofer, “Sophisticated phishers make more spelling
mistakes: Using url similarity against phishing,” in Springer Cyberspace
Safety and Security, 2012.

[15] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao, “Detecting
and characterizing social spam campaigns,” in ACM IMC, 2010.

[16] X. Qi, L. Nie, and B. D. Davison, “Measuring similarity to detect
qualified links,” in ACM Workshop on Adversarial information retrieval
on the web, 2007.

[17] M.-Y. Kan and H. O. N. Thi, “Fast webpage classification using url
features,” in ACM CIKM, 2005.

[18] E. Baykan, M. Henzinger, L. Marian, and I. Weber, “Purely url-based
topic classification,” in ACM WWW, 2009, pp. 1109–1110.

[19] A. A. Goshtasby, Similarity and dissimilarity measures. Springer, 2012.
[20] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of string

distance metrics for name-matching tasks,” in IJCAI-03 Workshop on
Information Integration, 2003, pp. 73–78.

[21] V. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals.” in Soviet physics doklady, 1966, pp. 10–707.

[22] A. Finamore, M. Mellia, M. Meo, M. Munafo, and D. Rossi, “Experi-
ences of Internet Traffic Monitoring with Tstat,” IEEE Network, vol. 25,
pp. 8–14, May 2011.

[23] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Googling the in-
ternet: Profiling internet endpoints via the world wide web,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 666–679, Apr. 2010.

[24] H. Metwalley, S. Traverso, and M. Mellia, “Using Passive Measurements
to Demystify Online Trackers,” IEEE Computer “Communications and
Privacy under Surveillance Issue”, vol. 49, pp. 50–55, 2016.

