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Abstract: The human gut is a composite anaerobic environment with a large, diverse and dy-
namic enteric microbiota, represented by more than 100 trillion microorganisms, including at 
least 1000 distinct species. The discovery that a different microbial composition can influence 
behavior and cognition, and in turn the nervous system can indirectly influence enteric mi-
crobiota composition, has significantly contributed to establish the well-accepted concept of 
gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, 
which involve the vague nerve, the immune system, the hypothalamic-pituitary-adrenal 
(HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on 
delineating a role for this axis in health and disease, ranging from stress-related disorders 
such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disor-
ders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alz-
heimer’s Disease etc. Based on this background, and considering the relevance of alteration 
of the symbiotic state between host and microbiota, this review focuses on the role and the 
involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main 
members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoile-
thanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a 
large group of bioactive lipids able to modulate peripheral and central pathologic processes. 
Their effective role has been studied in inflammation, acute and chronic pain, obesity and 
central nervous system diseases. A possible correlation has been shown between these lipids 
and gut microbiota through different mechanisms. Indeed, systemic administration of specific 
bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the 
rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory 
bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing in-
flammation and pain in irritable bowel syndrome and IBD animal models. In this review, we 
underline the relationship among inflammation, pain, microbiota and the different lipids, fo-
cusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in 
the central nervous system diseases. 
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1. INTRODUCTION 

The human body, primarily the gastrointestinal (GI) 
tract, is widely colonized by several species of bacteria  
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(about 1014 bacterialcells and 500-1,000 species), col-
lectively termed as the “human microbiota”. Their 
whole genome is called “human microbiome” [1, 2]. 
Before birth, the human fetal gut is sterile, but few 
hours after delivery, all the external stimuli, such as 
environment, diet, maternal transfer or even the early 
introduction of antibiotics, start to influence the coloni-
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zation process leading, in each different infant, to an 
adult-like gut microbiota profile, that will reach a cer-
tain stability in composition and number at 1 year of 
age [3]. Given the high variability of bacterial commu-
nities among individuals, lately subjects have been 
classified into three distinct clusters -enterotypes- 
based on the prevalence of key bacterial genera in their 
gut microbiota composition (i.e. Bacteroides, 
Prevotella or Ruminococcus genes). However, different 
sampling analysis and methods influence the detection 
of enterotypes, with divergent interpretation of results 
[4]. 

It is worth noting that the relationship established by 
commensal bacteria with the host seems to be more 
mutually symbiotic rather than a parasitism with hu-
man host [5]. In fact, the gut microbiota contributes to 
the development of immune system, behavior and cog-
nition [6] and, remarkably, concur to maintain normal 
homeostasis through three major functions: (i) it helps 
and protects the host against pathogen colonization by 
nutrient competition and production of active anti-
microbial agents, such as hydrogen peroxide, acido-
phylin, acidolin, lactallin, etc. (ii) It stimulates the in-
nate immunity and limits production of toxins and 
penetration of pathogenic microorganism into gut tis-
sues adjusting the sensitization and/or the tolerance (iii) 
It facilitates nutrient absorption by metabolizing indi-
gestible dietary fibers, or tri/tetrasaccharides, to mono-
saccharides producing B-group vitamins. 

Microbiota and central nervous system (CNS) 
comunication, known as microbiota-gut-brain axis, is 
able to influence neurotransmission and behavior and 
occurs through different pathways [7, 8]. In particular, 
visceral afferent activity is known to modulate behav-
ioral and cognitive process through brainstem nuclei 
and cholinergic and noradrenergic projections, to cor-
tex/cognitive process [9]. This relationship is strongly 
strenghtened by the high comorbidity between GI al-
terations and psychiatric disorders. Interestingly, im-
balance of the gut microbiota (dysbiosis) can contrib-
ute, among others, to the pathogenesis of inflammatory 
bowel disorders (IBD) [10] and irritable bowel syn-
drome (IBS) [11], commonly described as gut-brain 
axis disorders. These pathologies are characterized by 
abdominal pain and/or discomfort associated with al-
tered bowel habits. In more than one case, chronic in-
flammation or immune activation, in IBD and IBS, can 
contribute to predispose individuals to neurological and 
neurodegenerative diseases through the cytokines re-
lease into the bloodstream [12,13]. Specific changes in 
the inflammatory process, in pain threshold and in the 

intestinal innate immune system have been supposedly 
linked to be under lipid regulation and host metabo-
lism. A large body of evidence underlines the correla-
tion between lipids and microbiota [14] identyfing en-
docannabionids, N-acylethanolamines (NAEs) and bu-
tyrate among the main compounds having a key role in 
several pathologies associated to gut inflammation, 
pain and central disorders. As reported by Rousseaux et 
coworkers [15], systemic administration of Lactobacil-
lus acidophilus strain reduces abdominal pain through 
the involvement of cannabinoid receptor (CB); moreo-
ver, it has been reported that an indirect cannabi-
nomimetic acylethanolamide, palmitoylethanolomide 
(PEA), reduces inflammation in a mouse model of IBD 
[16]. On the other side, butyrate, a short chain fatty 
acid (SCFA) produced in the colon and nowadays 
considered an active postbiotic, has proved to be highly 
effective in reducing pain discomfort in IBS and IBD, 
controlling inflammation and peripheral nerves sensiti-
zation [17]. 

The multiplicity of different lipids involved in 
pathological status, as well as in spontaneous recovery 
or therapeutic approach, underlines the role of these 
molecules in cellular trafficking and signalling, in 
structure and in energy storage, thus indicating their 
possible role as risk markers in distinct cellular 
physiopathological functions. Here we analyze how the 
gut microbiota and lipidic transmitters are able to 
modulate the inflammatory diseases of the intestinal 
tract which represent the “primo movens” to CNS dis-
eases (Fig. 1). 

2. GUT-BRAIN AXIS 

Many evidences have shown that gut microbiota in-
fluences human brain development and its function. 
The exchange of regulatory signals through an integra-
tive and bidirectional communication between the gas-
trointestinal tract and the CNS represents the gut-brain 
axis. The complexity of these interactions suggested, 
for the first time in the 1880s, the term gut-brain axis 
by William James andCarl Lange, refined later by Wal-
ter Cannon [18]. Specifically, this network includes the 
CNS, both brain and spinal cords, the autonomic nerv-
ous system, the enteric nervous system (ENS) and the 
HPA. This crosstalk has revealed a complex communi-
cation system that not only ensures the proper mainte-
nance of GI homeostasis, but also is likely to have mul-
tiple effects influencing brain development, mood and 
cognitive functions. Indeed, emerging data supports the 
role of microbiota in anxiety and depressive-like be-
haviors [19, 20] and, more recently, in autism too [21]. 
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Furthermore, the direct or indirect release of signaling 
molecules, such as serotonin, norepinephrine and 
dynorphins, cytokines and antimicrobial peptides into 
the gut lumen, underlines that the CNS has an immedi-
ate influence on gut microbiota [22]. Indeed, disregula-
tion of serotonin in the human gut has been implicated 
in anassorted group of GI disorders, such as IBD and 
IBS. Moreover, norepinephrine and dynorphins are re-
leased into the gut lumen during perturbation of GI 
homeostasis [23]. Recently, it has been suggested that 
there is a direct interaction between gut microbiota and 
ENS. Kunze et al. [24] observed that Lactobacillus 
reuteri enhanced the excitability of colonic neurons in 
naive rats and, more recently, it has been found that 
both Lactobacillus rhamnosus and Bacteroides fragilis 
are able to activate intestinal afferent neurons [25].  

In the recent years, most studies using germ-free 
(GF) and probiotic- or antibiotic-treated animals indi-
cate that enteric microbiota strongly impacts gut-brain 

axis. Accordingly, in the absence of gut bacteria, as 
happens in GF rodents, the HPA axis abnormally de-
velops, leading to altered stress response, reducing hip-
pocampus levels of brain derived neurotrophic factor 
(BDNF)-mRNA and protein [26]. In addition, GF mice 
also show immune defects at both structural and cellu-
lar levels [27, 28]. During early stages of life, the colo-
nization of the body by different microorganisms offers 
abundance of antigens, which are critical for a healthy 
maturation of the immune system [29,30].  

As above mentioned, vagal activation is necessary 
for a series of physiological effects and, with its 
approximately 80% afferent fibers, it relays signals 
from peripheral organs -including GI tract- to the CNS, 
modulating with a still unclear mechanism cognition 
and behavior. Although vagotomy abolished some of 
these effects, as reported in the studies on mice fed 
with probiotics or pathogens [31-33], others revealed 
that behavior modification are independent from vagus 

 

Fig. (1). 
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pathway [34]. Therefore, vagous nerve seems not to 
be the only mediator of microbiota-gut-brain interac-
tion. An example of vagal-independent communication 
is given by the immune signaling, which plays a role in 
both normal brain function and neurodegenerative dis-
eases [35]. The immune activation in the gut elicited by 
local microbes can cause an alteration of barrier func-
tion, activation of ENS and changes in sensory-motor 
function [36]. Several evidences demonstrated that 
probiotics can improve intestinal barrier function and 
decrease the immune cell activation both locally and 
systemically [37, 38]. Moreover, they can induce im-
mune modulatory effects in gut-brain axis disorders 
characterized by “leaky gut.” This hypothesis, is sup-
ported by the evidence that chronic stress is able to dis-
rupt the continuity of intestinal barrier, making it 
“leaky” and increasing the permeability to ions and 
bacterial peptides [39], triggering the immune re-
sponse. Other studies have shown that stress can influ-
ence microbial colonization, affecting pain pathways. 
In addition, treatment with antibiotics in early life is 
associated with visceral hypersensitivity [40]. Actually, 
mice exposed to a social disruption stressor showed an 
altered gut microbiota, as well as increased circulating 
levels of cytokines [41]. In particular, stress-induced 
reduction of Lactobacillus reuteri, a specific immuno-
modulatory species of bacteria, leads to an increased 
proinflammatory gene expression and monocyte differ-
entiation [42, 43]. This results in an altered gut micro-
biota, which in turn can enhance the ability of enteric 
pathogens to colonize the intestine [44]. It has also 
been shown that stress is able to modulate the levels of 
intestinal secretory IgA, influencing intestinal homeo-
stasis, inflammatory response and dysbiosis [45]. Fur-
thermore, gut bacteria can stimulate circulating cytoki-
nes, which in turn can influence the brain function [46, 
47]. This condition occurs for example, in the clas-
sic sickness behavior where pro-inflammatory cyto-
kines, acting on the CNS, cause low motivation to eat, 
exaggerated pain response and slowed psychomotor 
functions [48]. 

3. ENDOCANNABINOIDS, ACYLETHANOLA-
MIDES AND SHORT CHAIN FATTY ACIDS 
(SCFAS) 

N-arachidonoylethanolamine (anandamide or AEA), 
a member of a large group of bioactive lipids named N-
acylethanolamine family, was the first endogenous 
agonist discovered for CB [49]. Another class of lipids 
active on CB are the fatty acid glycerol esters to which 
belongs the second ligand of CB, 2-arachidonoyl-
glycerol (2-AG), identified for the first time in the in-

testine [50]. During the last decade, it has been pointed 
out that the physiological and pharmacological activi-
ties of endocannabinoids are the result of the modula-
tion of several cellular systems. This is not only re-
stricted on CB receptors, called cannabinoid receptor 
CB1 and CB2. They are also able to interact with perox-
isome proliferator-activated receptors (PPAR)-types α 
and γ, G-protein-coupled receptor (GPR)55 [51], vanil-
loid receptor 1 [52], and through the modulation of cal-
cium and potassium channels. CB receptors are the 
members of G-protein-coupled membrane receptors 
family: in particular, CB1 is mostly abundant in differ-
ent brain areas, as well as in peripheral nerve terminals, 
while CB2 is mainly expressed in lymphoid tissues, 
myeloid cells and spinal cord, modulating immune re-
sponse and pain [53]. The endocannabinoid system also 
contributes by multiple mechanisms to the regulation 
of both gut and adipose tissue functions. In particular, 
it modulates gastric emptying and motility [54], food 
intake, satiety and postprandial glycaemia [55, 56]. 
Moreover, it also has a major role in facilitating adipo-
genesis and adipose tissue expansion and in regulating 
inflammation [57, 58]. The modulation of visceral pain 
perception by bacteria through the endocannabinoid 
system was shown in patients with irritable bowel syn-
drome, who commonly have abdominal pain. Indeed, 
oral administration of specific Lactobacillus acidophi-
lus strain modulates the expression of CB receptors, as 
well as µ-opioid receptor in intestinal epithelial cells, 
enhancing the analgesic pathways underlying these re-
ceptors [15]. Obesity is usually associated with changes 
in the composition of the gut microbiota, which in turn 
induce gut barrier dysfunction and increase gut perme-
ability [59]. This leads to the increased levels of 
lipopolysaccharide serum (LPS). Several studies have 
shown that treatment with LPS influences the produc-
tion of endocannabinoids by immune cells, suggesting 
a strong link between bacterial components and the 
endocannabinoid system [60, 61]. In addition, in obese 
mice, the gut microbiota modulates the endocannabi-
noid tone and adipose tissue, regulating key enzymes 
related to NAEs metabolism and activity as N-acyl 
phosphatidylethanolamine-specific phospholipase D 
(NAPE-PLD), CB1 and fatty acid amide hydrolase 
(FAAH) expression, and AEA concentration [62]. The 
endocannabinoid system controls gut permeability and 
endotoxaemia in obesity and diabetes, through a CB1-
dependent mechanism. Specific CB antagonism de-
creases gut permeability, acting as ‘gate keepers’ [63]. 
Furthermore, it has been proven that specific deletion 
of NAPE-PLD in adipose tissue induces an obese phe-
notype in normal-diet-fed mice, characterized by glu-
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cose intolerance, adipose tissue inflammation, altered 
lipid metabolism and affects gut microbiota composi-
tion. It has been demonstrated that chronic administra-
tion of a potent CB1 agonist, HU-210, leads to severe 
metabolic disorders, such as glucose intolerance, mus-
cle macrophage infiltration and lipid content [64]. 

However, the effect of the endocannabinoid system 
on gut-barrier function might be due to other mecha-
nisms during intestinal inflammation [65]. Everard and 
co-workers [66] showed that administration of Akker-
mansia muciniphila in high-fat diet fed mice increased 
the intestinal levels of 2-AG, improved gut-barrier 
function and decreased endotoxaemia. Although the 
mechanisms involved are unknown, the increased level 
of 2-AG by a selective inhibitor of monoacylglycerol 
lipase can protect mice from colitis and reduce endo-
toxaemia and systemic inflammation [67]. Moreover, 
the deletion of the intestinal epithelial Myeloid differ-
entiation primary response gene (MYD)88, which is 
involved in the signaling of most Toll-like receptors, 
partially protects against obesity, diabetes, inflamma-
tion and disruption of the gut barrier, increasing the 
anti-inflammatory endocannabinoids (2-AG and AEA) 
[68]. 

In addition to these “sheer” endocannabionoids, 
other related NAEs, such as N-palmitoylethanolamine 
and N-oleoylethanolamine (OEA), have also shown to 
modulate gut microbiota. Specifically, PEA has a 
prominent role in acute and chronic inflammation, as 
well as in pain [69]. Moreover, it has been suggested 
that these compounds have a role in the regulation of 
energy homeostasis, through PPAR-α mediated 
mechanism. Reduction of PEA levels was found in ge-
netic obese mice, possibly linked to increased N-
acylethanolamine acid amidase (NAAA) activity, the 
enzyme responsible for the metabolism of PEA that 
regulates its levels in the colon. In two murine models 
of IBD, NAAA inhibition increases PEA levels and 
reduces inflammation in colon [70, 71]. Apart from the 
well known role of PEA on behavior, inflammation and 
pain [72], it has been demonstrated that peripheral ad-
ministration of PEA in ovariectomized obese rats in-
creases the expression of leptin receptor in the hypo-
thalamus and this effect is related to the reversal of 
leptin resistance and the suppression of food intake and 
fat accumulation [73]. OEA is considered a fat sensor, 
as it mediates the response of the gut to the consump-
tion of high-fat meals [74], and regulates thermogenic 
processes through PPAR-α [75]. PPARs have been 
shown to be regulated by a number of bacterial patho-
gens, including Helicobacter pylori and Mycobacte-

rium tuberculosis [76, 77], greatly impacting disease 
severity.The role of PPARs in gut inflammation has 
been recognized. Indeed, PPARγ agonists are used to 
treat type-2 diabetes and are known to reduce colitis in 
mice [78]. Moreover, PPARγ heterozygous mice ex-
hibit an increased susceptibility to experimentally in-
duced colitis [79], indicating that PPARγ are involved 
in maintaining gut homeostasis. PPARs activation has 
been shown to improve the severity of inflammatory 
bowel disease in rodent DSS, trinitrobenzene sulphonic 
acid, and ischemic colitis model [80]. Finally, PPARγ 
is reduced in colonic epithelial cells from ulcerative 
colitis (UC) patients, suggesting PPARγ role in the gut 
[81].  

Butyrate, a SCFA, can reduce, as PEA or OEA, in-
flammation and glucose tolerance too in a model of 
steatosis induced by high fat diet in rats [82]. SCFAs, 
the final products of fermentation of dietary fiber in the 
colon, are compounds with an aliphatic tail of less than 
six carbon atoms. Among different SCFAs, butyrate is 
known to modulate numerous processes, from the main 
energy source for colonocytes [83], to signal metabolite 
affecting epithelial cell proliferation, to apoptosis and 
differentiation [84]. All these intestinal effects are as-
cribed to butyrate [85], indicating its possible therapeu-
tic indications in many GI disorders and in IBD, where 
butyrate reveals anti-inflammatory properties [86]. 
Based on all its characteristics, butyrate can be consid-
ered a post-biotic given that is a nonviable bacterial 
metabolic product obtained from microorganisms that 
have biologic activity in the host. The importance of 
butyrate supplementation in UC has been proven by the 
impaired butyrate metabolism in intestinal inflamed 
mucosa [87]. This deficiency results from the reduction 
of butyrate uptake by the inflamed mucosa due to down 
regulation of the monocarboxylate transporter (MCT)-1 
expressed on the apical membrane of intestinal epithe-
lium [88]. Luhers and coworkes [89] showed that the 
administration of butyrate to patients with UC sup-
pressed mucosal inflammation and decreased NF-κB 
activation in lamina propria macrophages. Moreover, in 
IBS, supplemental therapy with butyrate can reduce the 
frequency of selected clinical symptoms, without a sig-
nificant effect on the reduction symptoms severity [90]. 
The effects exerted by butyrate are multiple and in-
volve several distinct mechanisms of action. It is an 
anti-inflammatory agent, primarily inhibiting NF-κB 
activation [91], moreover it has a well-known epige-
netic mechanism through inhibition of histone deacety-
lase (HDAC) [92], and also acts as signal molecules on 
Free Fatty Acid Receptor 2 (FFAR2, GPR43) and 
FFAR3 (GPR41) [93]. Recently, it has been demon-
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strated that the effect of butyrate is related to PPARs 
involved in the control of inflammatory enzymes ex-
pression and pain [94]. In fact repeated oral butyrate-
based compound administrations increase pain thresh-
old in mice both in acute and chronic pain models, and 
these effects are PPARs mediated. In agreement with 
these data, many studies have shown that the anti-
inflammatory activity of butyrate could be related to 
the up-regulation of PPARγ [95]. 

4. DYSBIOSIS (IBD AND IBS) AND LIPIDS  

The GI tract is the most complex organ of the hu-
man body. The intestinal mucosa, which is continu-
ously exposed to a variety of commensal microbiota 
and food antigens, maintains intestinal homeostasis and 
integrates both acquired and innate immune systems. 
An alteration of this homeostasis can lead to abnormal 
immune response to the enteric microbiota, causing 
chronic inflammation. IBD are characterized by pro-
longed inflammation of all or part of the GI tract, 
which in turn led to a malfunction of GI organs along 
with abdominal pain, persistent diarrhea, cramping, 
weight loss, rectal bleeding, fatigue with consequent 
compromised quality of life [96, 97]. The two types of 
IBD are Crohn’s Disease (CD) and UC. In details, CD 
affects the GI tract from mouth to anus and is charac-
terized by abdominal pain, fever, weight loss and clini-
cal signs of bowel obstruction or diarrhea [98]. Instead, 
UC damages solely colon, extending proximally 
through the entire colon and rectum [99]. In 2011, Di 
Sabatino and coworkers [100] showed that the content 
of the major endocannabinoid AEA is reduced in IBD 
inflamed mucosa as a consequence of both defective 
synthesis and increased degradation. In this study, the 
authors detected AEA, 2-AG, and PEA levels in gut 
mucosa of IBD patients, and they found that AEA lev-
els, but not 2-AG and PEA ones, are significantly re-
duced in inflamed compared to uninflamed areas. 
Moreover, they found a higher expression of CB1 but 
not CB2. However, even today no clear causes have 
been found about IBD; pathology development and 
course may be affected by the complex interactions 
between genetic factors [101], breast feeding, diet, 
smoking, drugs etc. [102], and microbial factors [103], 
sustaining inflammation, changes of mucosal barrier, 
and defects in the immune system [104]. Intestinal in-
flammation in animal models related to the expression 
of genes to IBD susceptibility suggests that IBD may 
be caused by a dysregulated GI immune response to-
wards microbiota.  

It has been reported that some immune processes 
are modulated by the endocannabinoid system. Indeed, 
cannabinoids reduce the MHC class II expression on 
the surface of dendritic cells and inhibit peripheral T-
cell activation in response to LPS and anti-CD3 anti-
bodies [105]. Many in vivo studies on various animal 
models of IBD demonstrated that the administration of 
CB1 and/or CB2 agonists improved colitis [106]. 
Moreover, several evidences indicate that FAAH plays 
an important protective and restorative role in the early 
stages of inflammation [107]. As shown by Storr and 
coworkers [108] FAAH mRNA expression was altered 
following TNBS injection in mice. Thus, the inhibition 
of FAAH alleviates colitis symptoms by raising the 
levels of endogenous cannabinoids [109]. Furthermore, 
there are evidence supporting the role of PEA as an 
anti-inflammatory compound, capable of alleviate in-
flammation in murine models of IBD. In a matter of 
fact, PEA reduces the macroscopic parameters of mur-
ine colitis, namely the colon weight/length ratio and the 
weight of the cecal content [110]. Furthermore, PEA 
significantly reduces proinflammatory cytokine pro-
duction and immune cell infiltration. Recently, it has 
been shown that NAAA inhibitors were able to prolong 
PEA half life, as a potential therapeutic strategy in the 
IBD [16]. 

Recent studies have suggested that diet has an im-
portant role in the etiology of IBD. In particular, popu-
lation who eat several starch kinds (the main precursors 
of SCFA) has low incidence to develop GI ailments, 
such as IBD and IBS. Therapeutic use of butyrate has 
been suggested in the treatment of chronic IBD. In-
deed, butyrate is an effective remedy to histological 
healing of experimental colitis induced in rats by trini-
trobenzenesulphonic acid [111]. Moreover, UC exhib-
its an altered metabolism of SCFA in epithelial cells of 
the colon [112] leading to low intra-luminal concentra-
tions of these fatty acids, contributing to mucosal dam-
age [113]. In some studies, butyrate administered lo-
cally in patients with UC, has shown positive effects, 
accelerating the clinical, endoscopic and histological 
healing process, when administered along with anti-
inflammatory drugs, such as mesalazine [114,115]. Fi-
nally, quantitative and qualitative changes in the com-
position of the enteric microbiota have been observed 
in the IBD, through a decrease in the diversity and an 
increase in the concentration of bacterial species [116, 
117]. It was observed that in CD, the dysbiosis is char-
acterized by the loss of intestinal bacteria from the 
Firmicutes phylum, including Faecalibacterium praus-
nitzii, which are the most important butyrate producing 
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bacterium in cluster IV of the Clostridium leptum 
phylogenetic group in the gut [118]. 

IBS is characterized by the presence of abdominal 
pain with one or a combination of the following symp-
toms: comorbid changes in stool appearance and al-
tered frequency of stooling and/or relief of pain upon 
defecation [119]. Factors such as younger age, pro-
longed fever, anxiety, depression, and history of child-
hood physical and psychological abuse are often asso-
ciated with the development of this pathology after 
acute infectious gastroenteritis [120]. Although IBS is a 
highly common functional bowel disorder of unknown 
origin and with an intricate pathophysiology, it is 
commonly described as a disorder of the brain-gut axis, 
including central, spinal cord, peripheral elements, in-
cluding the ENS and the immune system [121, 122]. It 
was noticed that psychological stress is a predominant 
factor on GI symptoms and exacerbation, likely be-
cause of the significant psychiatric co-morbidities, in-
cluding both anxiety and depression [123]. IBS symp-
toms have been previously linked with visceral hyper-
sensitivity and aberrant serotonin (5-HT) signaling. 
Feng and coworker [124] showed a possible correlation 
between 5-HT and the endocannabinoid system, in par-
ticular duodenal biopsies from IBS patients exhibited 
increased 5-HT and decreased AEA levels, most likely 
related to abdominal pain severity. They demonstrated 
that the analgesic effect induced by acute intraduode-
nally injection of 5-HT involves vagal 5-HT3R-
mediated duodenal AEA release and downstream CB1 
activation [21, 125]. Visceral pain is a common debili-
tating symptom of many disorders, such as GI (colic, 
colitis) but also urogenital (interstitial cystitis, endome-
triosis) and thoracic (non-cardiac chest pain, angina) 
ailments. Taken together it is clear that IBS has a com-
plex etiology and thus a multifaceted pathophysiology. 
Moreover, low levels of NAEs in IBS patients may be 
involved in hyperalgesia and in abdominal pain, and 
cause alterations in the bowel motility, that could be 
improved by direct or indirect CB or PPARs agonists 
[126]. Indeed, in IBS patients, a decrease in PEA was 
observed in comparison to healthy subjects, and this 
reduction was associated with abdominal pain [127]. 
FAAH inhibitors have been suggested for their analge-
sic action in IBS patients, where visceral pain is one of 
the major symptoms [128, 129]. Since FAAH inhibi-
tors act site-specifically in the GI tract, they could be 
active both after systemic and topical (enemas) admini-
stration.  

Butyrate represents a potential new compound for 
IBS therapy. In fact, butyrate plays an important role 

due to inhibitation of the signal of proinflammatory 
cytokines, restoration of the microbial composition, 
and also reduction of visceral pain. Banasiewicz and 
coworkers [130] performed a double-blind, random-
ized, placebo-controlled study on patients with IBS, 
who received microcapsulated butyric acid or placebo 
as an adjunct to standard therapy. Four weeks later, the 
patients showed a significant decrease in the frequency 
of abdominal pain during defecation. 

Recently, the role of sodium butyrate in pain behav-
iour and its derivative has been addressed, the N-(1-
carbamoyl-2-phenyl-ethyl) butyramide (FBA), identi-
fying different and converging genomic and non-
genomic mechanisms of action, which cooperate in 
nociception control [94]. In this study, a significant 
effect of both butyrate-based compounds was shown on 
inflammatory visceral pain and on neuropathic pain.  

5. GUT-BRAIN AXIS, CNS DISEASE AND LIP-
IDS  

Gut microbiota imbalance is known to influence the 
CNS functions and viceversa emotional and physio-
logical stress can influence gut microbiota through gut-
brain axis.  

Therefore, it is a key factor understanding how gut 
microbes could exert beneficial and therapeutic effect 
on neurocognitive behaviors. Lately, a large body of 
literature reports that several CNS disorders are related 
to gut dysbiosis, accordingly with gut-brain axis hy-
pothesis. 

5.1. Autism Spectrum Disorders 

Autism spectrum disorder (ASD) is a range of neu-
rodevelopmental disorders characterized by repetitive 
and stereotyped behaviours and dysfunction in com-
munication and social interactions skills [131, 132].  

In recent years, many studies indicate that active 
neuroinflammatory process in different brain regions is 
relatively common in children with an ASD. It has 
been revealed that they present GI problems and altered 
GI flora underlying the pathological role of gut micro-
biota in this disease [133]. Many children with ASD 
are also more likely to have IBS, so the effective reduc-
tion of GI symptoms, as diarrhea and bloating, is a 
positive result considering the severity of autism. In 
details, litterature show both a general gut microbiota 
and specific strains alteration in the ASD. The first 
study in 1988, exhibitted that Clostridium tetani can 
induce autism. However, during the recent years, sev-
eral studies report numerous species under the Clostrid-
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ium genus present in faecal samples of autistic children 
[134]. In addition, other phyla as Bacteroidetes and 
Firmicutes are implicated in autism [135]. Other human 
gut microbiome studies, based on cultures from stool 
samples, show that Bifidobacterium, Prevotella, Sut-
terella, Lactobacillus, Ruminococcus genera and Alca-
ligenaceae family are also linked with autism [136, 
137]. 

Nonetheless, special diets or dietary supplementa-
tions may alter microbiota composition. Emerging data 
have indicated that polyunsaturated fatty acids (PUFA) 
levels in the plasma of children with ASD are signifi-
cantly low, in particular docosahexaenoic acid (DHA) 
[138], and patients treated with dietary supplementa-
tions rich in omega-3 fatty acids and linoleic acid, sub-
stantially improve their behavioral symptoms [139]. 
Indeed, dietary omega-3 contributes to decrease in-
flammation and alter endocannabinoid system related 
gene expression, reducing AEA, 2-AG and all the 
acylethanolamides, with the exception for PEA [140]. 
These studies suggest beneficial effects in psychiatric 
illness and their link with endocannabinoids [141]. In 
particular, Schultz and co-workers [142] have pub-
lished the first study relating endocannabinoid system 
and autism. Several studies describe that an abnormal 
endocannabinoid signaling might contribute to ASD 
symptoms and in particular, to normal social behavior. 

Even though the direct activation of CB1 receptors 
produces social deficit in rats [143], their suppression 
can impair social interaction in a context-dependent 
manner [144]. In addition, human studies have found 
that marijuana may enhance sociability [145] and a 
polymorphism in the CB1 gene modulates social gaze 
[146]. 

In contrast, enhancing the endogenous level of 
AEA, through the inhibition of its deactivating enzyme, 
FAAH, or FAAH loss of function in mice increases 
social interactions in two distinct ASD-related models, 
BTBR T+tf/J (BTBR) and fmr1−/− mice [147]. Fur-
thermore, substrates of FAAH as NAEs (AEA, OEA 
and PEA) are increased after sociability tests, suggest-
ing a behavioral deficit due to reduced AEA tone in 
critical brain areas. Interestingly, the down-regulation 
of GPR55 and PPAR gene expression supports a role 
for these receptors in autism [148]. Moreover, rats sub-
jected to the exposure of valproic acid, which is con-
sidered another murine model of autism, showed ab-
normalities in sociability and nociception tests and al-
terations in distinct elements of endocannabinoid sys-
tem [149]. 

SCFAs are linked to autism, being the object of 
studies in autistic children [150]. Discordant data 
shows an increase or decrease in the SCFA in faecal 
samples, as the result of poor absorption based on the 
increased gut permeability or excessive fermentation. 
Interestingly, due to increased gut permeability or ab-
normal microbiota, the elevated level of SCFAs in the 
circulatory system, may actually be negative in autistic 
children. In particular, between them, propionic acid, 
injected both peripherally and centrally in rodents, in-
duces repetitive behaviors and object preference [151], 
and also alters basic mitochondrial functions [152]. In 
agreement with these studies, prenatal or early postna-
tal exposure to valproate, an anti-epileptic and mood-
stabilizing drug and histone deacetylase inhibitor, like 
butyrate, increases the risk of autism which was re-
cently used to induce a mouse model of ASD [153]. On 
the other hand, chronic treatment with sodium butyrate 
at postnatal period, improved social behavior in a 
mouse model of autism [154]. All together, these stud-
ies point out that the time of exposure is crucial to re-
veal the effects of treatments on autism-like behavior.  

5.2. Mood Disorders 

Among the mental illnesses, depression and anxiety 
are the result of a multi-factorial disease caused by be-
havioral disturbance and immunological, metabolic and 
neurotransmitter dysregulation, common in people of 
all ages [155-157]. They are also frequent conditions in 
obesity, IBS patients and people with GI disturbances, 
indicating a key role of the gut microbiota and the gut-
brain axis in these disorders [158-160]. Literature 
shows three lines of evidence by which the gut micro-
biota is correlated to depression, namely through in-
flammation, the HPA axis or neurotransmitter signaling 
pathways [161]. Moreover, early postnatal life repre-
sents an important stage for both the stress response 
system and the colonization by gut microbiota, which 
can influence the development of brain plasticity. Stud-
ies that use rats show that neonatal stress caused by 
maternal separation leads to long-term changes in the 
diversity and composition of gut microbiota [162], 
which may contribute to alterations in stress-related 
behavior persisting throughout life. In support of this, 
the use of probiotics during the early stress period has 
been shown to normalize basal corticosterone levels, 
which are elevated after maternal separation [163]. In 
this case, the use of GF mouse model is a useful tool to 
study this brain-gut axis. GF mice showed exaggerated 
HPA stress response and motor activity and less anxi-
ety-like behavior compared to specific pathogen-free 
mice [164]. The modulation of gut microbiota is able to 
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reverse this HPA stress response in the GF mice due to 
the use of Bifidobacterium infantis [165]. Since 1910, 
different data from animal studies have provided the 
evidence of this relationship and the important effects 
of the use of probiotics on both GI and psychiatric 
symptoms [166]. Indeed, species under Lactobacillus 
and Bifidobacterium genus have showed anti-
depressant effects in different animal models [167, 
168] and healthy volunteers have low score in anxiety 
tests and low urinary free cortisol levels [169].  

On the other hand, mental illnesses and stress-
related alterations may also affect the microbiota pro-
file [170]. High levels of inflammation markers, like 
IL-6, TNF-α, and IL-1β [171], have been found in pa-
tients with depression; thus alteration in gut microbiota 
may be linked to depressive symptoms through the in-
flammatory response. Indeed, in both human and ani-
mal studies, obesity and depression have been associ-
ated with low levels of Bacteroidetes [172] and signifi-
cant overgrowth of Acidaminococcaceae family [173]. 
Across human studies, an increase in Oscillibacter and 
Alistipes has been reported in depressed subjects with 
abdominal pain in IBS patients with inflammation 
[174]. Moreover, a decrease in fecal Faecalibacterium, 
known to have anti-inflammatory activity [176], has 
been observed in depression [175]. Evidences from 
previous studies suggest a role of different inflam-
mogenic enteric pathogenic gram-negative bacteria of 
the Enterobacteriaceae family [177]. Although their 
presence in normal gut flora results in the increased 
permeability of the gut wall in depressed patients, 
which may induce their translocation into the systemic 
circulation, leading to behavioral and psychological 
changes in both animals and humans [178]. 

In contrast, mice infection with Campylobacter je-
juni or Citrobacter rodentium increases anxiety-like 
behaviour, accompanied by an increase in the neuronal 
activation marker c-Fos in the CNS [179, 180], 
whereas Trichuris muris displays the same effect 
through immunological and metabolic mechanisms 
[32]. 

According to the previous animal studies [181], 
clinical trials revealed a profound lower expression of 
various species of the Lachnospiraceae and Rumino-
coccaceae families, within the phylum Firmicutes, in 
stool samples from patients with depression. The Lach-
nospiraceae family has also a role in the breakdown of 
carbohydrates into SCFAs. Consequently, low level of 
these bacteria leads to a reduction of SCFAs, which in 
turn results in intestinal barrier dysfunction [182].  

Among SCFAs, butyrate displays antidepressant 
profile in animal models of depression and chronic 
mild stress [183, 184]. Previous studies indicate an as-
sociation between omega-3 and omega-6 dietary sup-
plementation in people affected by different kind of 
depressed mood, major depression, or post-partum de-
pression [185]. Considering that anxiety disorders are 
common comorbid of major depression, the diet sup-
plementation may be an effective treatment of anxiety 
as well [186, 187]. As for depression disorder treat-
ment, the possible mechanism is associated with re-
duced oxidative stress [188] and pro-inflammatory cy-
tokines [189]. 

Consistent with the signaling role of endocannabi-
noid/NAE in the regulation of appetite and metabolism, 
inflammation, pain and mood disorders, it is interesting 
to determine the beneficial effects of this system on 
anxiety, as well as on the depressive disorders [190]. 
Despite the clear role of the endocannabinoid system in 
mood disorders, different studies have reported a bi-
modal action in anxiety as in the depressive disorders. 
Indeed, CB1 agonists at lower doses are anxiolytic, 
while at higher doses are anxiogenic agents [191-193] 
and similar bimodal responses were found using CB1 
antagonists [194]. Human study revealed high level of 
CB1 in post-mortem analysis of brain from patients 
with major depression [195] and the use of CB1 an-
tagonists has been associated with an antidepressant-
like activity in several animal models of depression 
[196]. By contrast, enhancing the AEA-CB1-receptor 
signaling pathway by both CB1 agonists and inhibitors 
of FAAH, has evidenced an antidepressant-like and 
dose-dependent anxiolytic effects in both rats and mice, 
without anxiogenic effects at high dose as happens for 
CB1 [197-200]. Moreover, studies on CB1 knockout 
mice have evidenced an increase in the depressive be-
havior [201]. In particular, taken together, we can as-
sume that the dose and the duration of treatment and 
brain region of interest are important contributing fac-
tors to determine these contrasting results. In addition, 
plasma levels of NAE molecules are particularly low in 
woman with depression. Among NAEs, the antidepres-
sant-like activity of PEA was recently investigated in 
combination with luteolin in a mouse model of anxi-
ety/depressive-like behavior [202]. Instead, exposure to 
stress contributes to the increase in inflammatory 
markers and the NAE catabolism, resulting in the 
down-regulation of PEA and OEA levels. However, 
AEA levels do not decline in a similar way to PEA and 
OEA, although they share the same catabolic pathway. 
The aforementioned studies about the correlation be-
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tween gut microbiota and mood disorders could repre-
sent an important start point for future directions. 

5.3. Neurodegenerative Diseases: Parkinson’s dis-
ease (PD), Alzheimer’s Disease(AD) and Multiple 
Sclerosis (MS). 

5.3.1. Parkinson’s Disease (PD) 

Lewy bodies, a physiopathological characteristic of 
PD, are constituted by aggregated proteins -mainly al-
pha synuclein and ubiquitin- also found in the ENS in 
post mortem cases of early PD. This pathology is char-
acterized by a GI dysregulation that usually appears 
several years before its typical symptoms. Braak and 
coworkers [203] have hypothesized that this pathology 
“begins” in the gut, and then spreads to the CNS via 
vagus nerve and spinal cord. In fact, it has been dem-
onstrated that alpha synuclein injected in the gut wall 
migrated to the brain via vagus nerve at a rate esti-
mated to be 5-10mm/day in rats [204]. It has been also 
observed that colonic biopsies of PD patients have a 
low-grade inflammation, with an increased expression 
of pro-inflammatory cytokines compared to the control 
subjects [205]. To date, the mechanisms involved in 
these effects are not clear at all. However, it has been 
suggested that matrix metalloproteinase-9, a major 
component of the basement membrane, may contribute 
to the pathogenesis of PD regulating blood-brain bar-
rier permeability through the release of cytokines and 
free radicals and by cleaving vascular basal lamina 
and/or tight junctions between cells within the 
neurovascular unit [206, 207]. This process may con-
tribute to enhanced permeability and inflammation in 
autoimmune encephalitis, hypoxic brain injury, and 
other inflammatory diseases of the CNS [208]. 

It was noted that bacteria from the genera Blautia, 
Coprococcus, and Roseburia were significantly lower 
in PD patients compared to controls [209]. Moreover, 
proteobacteria of the genus Ralstonia were signifi-
cantly more abundant in mucosa of PD than in controls, 
which potentially tips the microbial balance within the 
colon to a more inflammatory phenotype. Fecal micro-
biota collected from 72 PD subjects and age-matched 
controls showed higher counts of Enterobacteriaceae 
and reduced Prevotellaceae. Prevotella is known to 
metabolize complex carbohydrates, providing SCFAs 
as well as thiamine and folate, that promote a healthy 
intestinal environment. Decreased Prevotella numbers 
are likely to result in reduced production of these im-
portant micronutrients. However, the study did not 
evaluate whether or not the patients had a history of GI 
disturbances or significant inflammation. The impor-

tance of SCFA is highlighted by the same reports that 
show association between PD and the abundance of 
certain gut microbiota and show a reduction in fecal 
SCFA concentrations [210, 211]. Nevertheless, 
changes in the gut microbiome could have a direct ef-
fect on the CNS via the gut-brain axis with a chronic 
mild systemic inflammation, possibly driving the 
pathogenesis: in fact, microbiota can influence the de-
velopment of normal motor patterns and thus alteration 
in its composition, especially if sustained it may poten-
tially lead to sensory-motor dysfunction [212]. PD pa-
tients show both dysmotility and alterations in the mi-
crobiota composition, but which one comes first is not 
clear yet. The dysmotility has been proposed to result 
from several factors including diet [213], autonomic 
dysfunction, direct involvement of the ENS, or as a 
side-effect of certain anti-Parkinsonian medications 
[214]. An imbalance in the intestinal microbiota can 
lead to increased permeability, as well as systemic and 
intestinal inflammation, due to the translocation of bac-
terial products and of bacteria themselves [215]. Sev-
eral studies evidence the possibility of GI symptoms 
even prior to the development of motor ones of PD 
[216-218]. Moreover, recently, it has been showed that 
IBS patients have higher hazard of PD compared to 
population who are IBS free [219, 220]. 

Finally, on this basis, butyrate represents an impor-
tant tool not only for its role in the gut inflammation 
(IBS and IBD), but also for its therapeutic potential 
through histone remodelling, as an inhibitor of HDAC. 
Epigenetics, the process by which gene activity is al-
tered without altering genetic information, has long 
attracted interest in neurodegenerative disease, due to 
the multifactorial origins of this pathology. Epigenetic 
factors are thought to contribute to neuronal cell death 
in PD [221], and it is suggested that alteration in epige-
netic regulation could hold therapeutic promise against 
neurodegeneration [222, 223]. In particular, butyrate 
has been shown to improve rotenone-induced models 
of PD by preventing the death of dopaminergic neurons 
[224]. Moreover, it has recently been shown that 
BDNF expression decreases in n-3 PUFA deficient rats 
and the upregulation of BDNF and its receptor has 
been recognized as a potential mechanism of action of 
n-3 PUFA [225, 226]. DHA supplementation in a non-
human primate (MPTP) model reduces levodopa-
induced dyskinesia, suggesting an innovative and safe 
approach to improve the quality of life of PD patients 
[227]. 

Increasing evidence suggests a prominent modula-
tory function of the cannabinoid signaling system in the 
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basal ganglia. As the cannabinoid signaling system un-
dergoes a biphasic pattern of change during the pro-
gression of PD, it explains the motor inhibition typi-
cally observed in patients with PD. Cannabinoid ago-
nists such as WIN-55,212-2 have been experimentally 
demonstrated as neuroprotective agents in PD, with 
respect to their ability to suppress excitotoxicity, glial 
activation, and oxidative injury that cause degeneration 
of dopaminergic neurons. Additional benefits provided 
by cannabinoid related compounds, including OEA, 
have been reported to possess efficacy against bradyki-
nesia and levodopa-induced dyskinesia in PD. Despite 
promising preclinical studies on PD, the use of can-
nabinoids has not been studied extensively at the clini-
cal level [228]. However, a vast body of literature 
documents the beneficial effects of exogenously ad-
ministered PEA in the experimental models of PD 
[229, 230]. 

5.3.2. Alzheimer’s Disease (AD) 

The mediterranean diet particularly rich in fibers, 
anti-oxidants, and natural antimicrobic agents appears 
to be able to support the growth of a beneficial micro-
biota and able to prevent the development of putrefac-
tive bacteria characterized by free radicals and toxic 
metabolites production [231,232]. The great abundance 
of flavonoids and radical scavengers correlate with pro-
tective aspects of the mediterranean diet and the bene-
ficial effects in neurodegenerative diseases, such as AD 
[233, 234]. 

Considerable interest has been emerged in the un-
derstanding of the role of gut microbiota in the context 
of AD. Gram-positive facultative anaerobic or mi-
croaerophilic Lactobacillus and other Bifidobacterium 
species are copious in the GI tract. They are capable of 
metabolizing glutamate to produce gamma-amino bu-
tyric acid (GABA), the major inhibitory neurotransmit-
ter in the CNS. Dysfunctions in GABA-signaling are 
also linked to defects in synaptogenesis, and cognitive 
impairment, including AD [235-237]. Another impor-
tant example is constituted by BDNF, a neurotrophin 
that has pleiotropic effects on neuronal development, 
differentiation, synaptogenesis and the synaptic plastic-
ity, underlying circuit formation and cognitive func-
tion. It has been found that BDNF exhibits in brains 
and serum in patients with schizophrenia, anxiety and 
AD [238]. In experimental infection models that lead to 
alterations in the microbiota populations, BDNF ex-
pression is reduced in the hippocampus and cortex of 
GF mice, and this reduction is associated with in-
creased anxiety behavior and progressive cognitive  
 

dysfunction [16-239]. Finally, pre-clinical findings 
show neurobiological mechanisms in which omega-3 
alteration may contribute to the modulation of BDNF 
in the hippocampus, the regulation of HPA axis, and in 
neuroinflammation; all conditions related to dysbiosis. 

It has also been shown that there exists an interac-
tion between microbiota and the N-methyl-D-aspartate 
glutamate receptor. This receptor regulates synaptic 
plasticity and cognition [240]. In the GI tract, there is a 
small number of Cyanobacteria that produce β-N-
methylamino-L-alanine (BMAA), which is elevated, 
for example, in the brain of AD and PD patients. 
BMAA is an excitotoxin that activates metabotropic 
glutamate receptor 5 and induces depletion of glu-
tathione. Thus, neurons and glial cells are unable to 
effectively control reactive oxygen species and reactive 
nitrogen species production in the brain. BMAA is also 
implicated in the aggregation of the amyloid peptide as 
seen in the AD, and in facilitating protein misfolding 
tipically seen in the PD [241]. Interestingly, BMAA, a 
neurotoxic amino acid normally not incorporated into 
protein, has been linked with intra-neuronal protein 
misfolding and neuroinflammation, that characterize 
PD, AD and prion disease [242, 243]. Cyanobacteria 
generate other neurotoxins, such as saxitoxin and ana-
toxin-α that may further contribute to neurological dis-
eases, especially during aging when the intestinal 
epithelial barrier of the GI tract becomes more perme-
able [244]. Differences in exposure to pathogens and 
genetic vulnerability toward microbioma-mediated 
autoimmunity may be significant determinants of age-
related neurological disease course and outcome [245, 
246]. Finally, it is well known that a sustained inflam-
mation, in gut, as much as in brain, would up-regulate 
the expression of already triplicated amyloid precursor 
protein gene and contribute earlier to brain amyloid 
accumulation. 

The endocannabinoids OEA and PEA have been 
implicated in the pathology of neurodegenerative dis-
eases. In the particularly case of Alzheimer's disease, 
different studies showed their proctective role in neu-
roinflammation, oxidative stress and neurodegeneration 
[247, 248]. Recent in vivo evidence shows that fenofi-
brate reduces β-amyloid production in an Alzheimer's 
disease transgenic mouse model and also PEA exerts 
neuroprotective effect in an experimental model of AD 
induced by Ab25-35 [249, 250]. Future investigations 
are necessary to understand the possible involvement 
of these compounds and the gut brain axis on this dis-
ease. 
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5.3.4. Multiple Sclerosis (MS) 

MS is a chronic demyelinating inflammatory dis-
ease of CNS. For reproducing human MS, the most 
widely and extensively studied animal model of auto-
immunity is experimental autoimmune encephalomye-
litis (EAE). EAE is induced after immunization with 
antigens including myelin basic protein, myelin oli-
godendrocyte glycoprotein (MOG) or proteolipid pro-
tein in the presence of bacterial adjuvant, which leads 
to myelin-reactive T cells responsible for the pathology 
features. Recent studies have begun to underline the 
correlation between microbiome and its relevant factors 
to MS pathogenesis, with a particular attention on EAE 
models [245]. Berer and coworkers [246] have demon-
strated that commensal microbiota is essential for the 
development of spontaneous EAE in MOG TCR dou-
ble-transgenic mice, which simulates opticospinal MS. 
GF RR mice were protected from EAE because of an 
attenuated T helper 17 cells and auto-reactive B cell 
responses [246]. EAE can also be induced by commen-
sal microbiota, since GF B6 mice developed this pa-
thology in a less severe manner, characterized by de-
creased interferon gamma and interleukin-17 re-
sponses. Antibiotic therapies could control EAE pro-
gression, modulating gut microbiota. Indeed, the hy-
pothesis that gut microbiome is the potential site of 
molecular mimicry, is supported by the fact that with 
induction of EAE, both the adjuvant and immunogen 
need to be injected simultaneously [251]. However, it 
might be a microbial antigen that triggers an inflamma-
tory response in the MS, and the only area of the hu-
man body with sufficient amounts of adjuvants in the 
form of bacterial cell walls is the gut [252]. 

It has already been demonstrated that there is a posi-
tive correlation between the body mass index and the 
risk of developing MS, especially at younger ages 
[253]. Obesity is characterized by an inadequate accu-
mulation of white adipose tissue (WAT) that can lead 
to a state of systemic inflammation called “metaflam-
mation”. WAT is not only involved in energy storage, 
but also operates as an endocrine organ secreting pro-
inflammatory cytokine, such as tumor necrosis factor 
(TNF)-α, IL-6 or leptin. The latter in particular, deeply 
influencing T cell responses in the EAE [254, 255], 
enhances phagocytosis and cytokine secretion in 
macrophages and promotes CD4+ T cell proliferation 
and survival [256]. Both monocytes and T cells are 
present in MS lesions and patient-derived cerebrospinal 
fluid, highly express leptin and leptin receptor [257, 
258]. However, MS incidence is not necessarily ac-
companied by weight gain, so a direct effect of fatty 

acids on immunity was supposed. Finally, as reported 
above, PEA is able to increase the expression and sig-
naling of leptin receptor in the hypothalamus and these 
effects might be related to the suppression of food in-
take and fat accumulation [73]. 

In MS patients, the levels of Clostridia clusters 
XIVa and IV were shown to be reduced [259], both 
formed by diverse bacterial species that are able to 
produce SCFAs, such as butyrate [260], that displays 
anti-inflammatory properties. This probably indicates 
that a reduction in these microbes in MS patients may 
be associated with disease [261]. Most studies have 
demonstrated that the effect of SCFA mechanism in-
volves regulatory T cells (Tregs). In fact, the admini-
stration of butyrate to GF mice mimicked the effect of 
Clostridium colonization and increased Treg levels in 
colon lamina propria [262]. In the EAE model, SCFA 
increases Tregs, while suppresses T helper 17 cells dif-
ferentiation [263], furthermore, butyrate as inhibitor of 
HDAC could regulate the differentiation of Tregs in the 
gut, producing an improvement of the disease. Indeed, 
as reported in several papers, butyrate maintains acety-
lation of genes important for Treg function [264, 265]. 
To date, the in vivo amelioration of EAE remains un-
fortunately unclear, even if synthetic small inhibitors of 
HDAC have already shown to decrease inflammation 
in animal models of arthritis, IBD, asthma, diabetes, 
cardiovascular diseases, and MS. Hence, SCFA as 
naturally occurring nutrients [266] or fermentation 
products may have a possible therapeutic use in auto-
immune diseases, such as MS by triggering the produc-
tion of anti-inflammatory Tregs. In fact, a higher per-
centage of MS patients exhibited antibody responses 
against GI antigens in contrast to healthy control, indi-
cating a possible alteration in gut microbiome and im-
mune status [267]. Ezendam and coworkers have ob-
served that oral treatment with a single bacterium or 
bacteria mixture can modulate EAE; in particular, Bifi-
dobacterium animalis reduced the duration of symp-
toms in a rat EAE model [268]. On the contrary, Lac-
tobacillus casei Shirota exacerbated EAE symptoms in 
rats [269]. However, later studies indicated that Lacto-
bacilli, did not enhance but rather suppressed EAE in 
rats [270]. This has been supported by other studies 
using probiotic mixtures of strains under the Lactoba-
cillus genus. Indeed, Lactobacilli, alone or in combina-
tion with other strains of Bifidobacterium genus, allevi-
ates EAE symptoms in mice regulating pro- and anti-
inflammatory cytokine responses [271-273]. Probiotic 
treatment with Bacteroides fragilis and Pediococcus 
acidilactici (strain R037) also significantly reduced 
mice susceptibility to EAE [274]. Furthermore, engi-
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neered strains, such as Salmonella-CFA/I and Hsp65-
producing Lactococcus lactis can prevent EAE in mice 
via Tregs-associated TGFβ and IL-13 signals [275]. 

Finally, Piccio and coworkers found that high-fat 
diet increased EAE severity in mice. In contrast, caloric 
restriction diet attenuated EAE symptoms, which was 
associated with hormonal, metabolic and cytokine 
changes rather than immune suppression [276]. It has 
also been illustrated that mice fed with a high-salt diet 
developed a more severe form of EAE, in line with the 
ability of sodium chloride to activate T helper 17 cells 
[277].Therefore, several evidences pointed out a central 
role of gut microbiome in linking diet with MS and 
EAE. However, endocannabinoids has some potential 
to relieve, pain, spasms and spasticity in the MS [278] 
showing as in AD and PD, a clear anti-inflammatory 
and neuroprotective potential, while until now no stud-
ies have considered a possible link with the microbiota-
brain axis. 

CONCLUSION 

The concept of a gut-brain axis has been introduced 
to describe a recognized integrative physiology be-
tween the GI and the CNS, with particular emphasis on 
the key role of microbiota in this bidirectional system. 
The interaction between the host and its gut micro-
biome is a complex relationship whose manipulation 
could be essential in preventing or treating not only 
various gut diseases, like IBS, IBD, but also CNS dis-
orders, such as mood alteration, AD, PD, and autism. 
As previously described, dysbiosis can contribute to the 
pathogenesis of IBD and IBS, commonly defined as 
gut-brain axis disorders, producing a state of malaise 
where pain is one of the main symptoms, but in more 
than one case, this state of chronic inflammation or 
immune activation can also contribute to neurological 
and neurodegenerative diseases. Several evidences 
suggest that many bioactive lipids (AEA, PEA, OEA, 
butyrate) are involved in many physiological processes 
directly linked with the maintenance of gut-barrier 
function, the regulation of inflammation and pain, and 
energy metabolism. In particular, it has been shown 
that dysregulation of the endocannabinoid system as 
well as PEA or OEA alteration, might play an impor-
tant role in etiopathogenesis of intestinal disorders, in-
cluding IBS and IBD. Recent evidence showed the 
possibility to decrease the symptoms of these patholo-
gies through the manipulation of endocannabinoid or 
PPARs system, suggesting that these targets could rep-
resent a new therapeutic strategy for these conditions. 
Moreover, several evidences underline that mood dis-

orders or neurodegenerative diseases or autism are 
characterized by changes in gut microbiota, but there is 
a lack of data about lipidomics, CNS disorders and mi-
crobiota . Finally, the modulation of gut microbiota or 
the supplementation with postbiotic molecules, restor-
ing normal intestinal integrity, could be beneficial to 
peripheral and central disorders related to dysbiosis, 
representing a good strategy to prevent the develop-
ment of diseases.  

LIST OF ABBREVIATIONS 

2-AG = 2-arachidonoylglycerol 

5-HT = Serotonin 

AD = Alzheimer’s Disease 

AEA = Anandamide 

ASD = Autism spectrum disorder 

BDNF = Brain-derived neurotrophic factor 

BMAA = β-N-methylamino-L-alanine 

CB = Cannabinoid 

CD = Crohn’s Disease 

CNS = Central nervous system 

DHA = Docosahexaenoic acid 

EAE = Experimental autoimmune encepha-
lomyelitis 

ENS = Enteric nervous system 

FAAH = Fatty acid amide hydrolase 

FFAR = Free Fatty Acid Receptor 

GABA = Gamma-amino butyric acid 

GF = Germ-free 

GI = Gastrointestinal 

GPR = G-protein-coupled receptor 

HDAC = Histone deacetylase 

HPA = Hypothalamic-pituitary-adrenal 

IBD = Inflammatory Bowel Disease 

IBS = Irritable Bowel Syndrome 

LPS = Lipopolysaccharide 

MCT = Monocarboxylate transporter 

MOG = Myelin oligodendrocyte glycoprotein 

MS = Multiple Sclerosis 

MYD = Myeloid differentiation primary re-
sponse gene 
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NAAA = N-acylethanolamine acid amidase 

NAE = N-acylethanolamine 

NAPE-PLD = N-acyl phosphatidylethanolamine-
specific phospholipase D 

OEA) = Oleoilethanolamide 

PD = Parkinson’s disease 

PEA = Palmitoylethanolamide 

PPAR = Peroxisome proliferator-activated 
receptors 

PUFA = Polyunsaturated fatty acids 

SCFA = Short chain acid 

Tregs = Regulatory T cells 

UC)  = Ulcerative Colitis 

WAT = White adipose tissue 
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