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Production and covalent immobilisation of the recombinant bacterial carbonic
anhydrase (SspCA) onto magnetic nanoparticles

Rosa Perfettoa, Sonia Del Pretea,b, Daniela Vullob, Giovanni Sansonec, Carmela M.A. Baroned, Mos!e Rossia,
Claudiu T. Supuranb and Clemente Capassoa

aIstituto di Bioscienze e Biorisorse, CNR, Napoli, Italy; bDipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Universit!a degli Studi di Firenze, Sesto Fiorentino, Italy; cDipartimento di Biologia, Universit!a degli Studi di
Napoli, Federico II, Napoli, Italy; dDipartimento di Agraria, Universit!a degli Studi di Napoli, Federico II, Portici, Napoli, Italy

ABSTRACT
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic
CO2 capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reac-
tion of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the
fastest known enzymes, with kcat values of up to 106 s!1 for some members of the superfamily, providing
thus advantages when compared with other CCP methods, as they are specific for CO2. Thermostable CAs
might be used in CCP technology because of their ability to perform catalysis in operatively hard condi-
tions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse
are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a
specific support. We report in this article that the recombinant thermostable SspCA (a-CA) from the
thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-
density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic
Fe3O4 nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a
benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at
low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through
the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using
a magnet or an electromagnetic field, due to the strong ferromagnetic properties of Fe3O4.
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Introduction

Lately, a group of metalloenzymes named carbonic anhydrases
(CAs; EC 4.2.1.1) has acquired a great importance in biomedical
and biotechnological applications, such as in the achievement of
artificial respiration systems, selective biosensors for metal ions,
and post-combustion CO2 capture processes (CCPs)1–5. CCPs are
acquiring a great importance, as CO2 emission reduction is becom-
ing a pressing issue in the industrial production sectors. In fact,
the increase of gases with greenhouse effect in the atmosphere,
including CO2, coming from the combustion of fossil materials,
represents one of the leading factors of environmental stress, and
is considered a major cause of climate change6–8. The production
of “eco-compatible” combustible materials and/or the reduction of
CO2 accumulation in the atmosphere represent the highest priority
for a better quality of human life. In the field of CCP, a number of
CO2 sequestration methods have been proposed. Among them
are noteworthy the sequestration of CO2 as a carbonate salt9,
which is interesting since the carbonate minerals constitute the
largest reserve of CO2 on earth, as well as the chemical absorption
of CO2 by alkanolamines, considered as highly toxic substances7,10.
In recent years, CAs have emerged as biocatalyst with a pivotal
potential role in the biomimetic CCP. The reason for the enormous

importance of CAs in CCP can be summarised as follow: (i) CAs
are metalloenzymes present in all life kingdoms, and they catalyse
the simple but physiologically crucial reaction of carbon dioxide
hydration to bicarbonate and protons: CO2þH2O¢
HCO!

3 þHþ11–13; (ii) CAs are among the fastest known enzymes,
with a kcat value of up to 106 s!1 for some members of the super-
family, which is almost 10 million times faster than the noncata-
lysed reaction11,14,15; (iii) the biomimetic approach based on the
use of a CA has several advantages, when compared with the
other CCP methods, as it is specific for CO2, being also an eco-
compatible process; (iv) the CO2 solubilisation as ions (bicarbonate
and carbonate) allows its further use, for example for the growth
of algae or other microorganisms, as well as in a variety of indus-
trial applications, in which calcium bicarbonate derived from the
reaction of calcium salts/hydroxide with the carbonate ion pro-
duced by the hydratase reaction, is employed16,17.

In biology, the conversion of carbon dioxide to bicarbonate,
and vice versa, is associated with processes such as respiration,
photosynthesis, pH regulation and homeostasis of the organism,
CO2 and HCO!

3 transport, several biosynthetic processes, produc-
tion of body fluids, bone resorption, and other physiological proc-
esses, mostly investigated in plants and mammals13,18–20.
Moreover, CAs are essentials in the biomineralisation process in
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mollusks, corals and other marine organisms19–27 playing an
important role during the calcium carbonate shell formation, acid-
base regulation, calcification and mineralisation28,29. Thus, all life
kingdoms need CAs to make faster the naturally reversible but
slow CO2 hydration, due to the slow rate of carbonation reaction
(10!1 s!1). The CA superfamily includes seven distinct classes
known as the a, b, c, d, f, g and h-CAs18,19,25,26,30–38. Some of the
catalytically active a- and h-CAs can also catalyse the hydrolysis of
esters, such as 4-nitrophenyl acetate (4-NpA)39. However, no ester-
ase activity was detected so far for enzymes belonging to the
other five classes (b-, c-, d-, f- and g-CAs)40. The a-, b-, d-, g- and
perhaps h-CAs, use Zn(II) ions at the active site, the c-CAs are
probably Fe(II) enzymes (but they are active also with bound Zn(II)
or Co(II) ions)41–48, whereas the f-class CAs are cambialistic
enzymes, active both with Cd(II) or Zn(II) bound within the active
site in order to perform the physiologic reaction catalysis13,49,50.
The coordination chemistry of zinc in proteins involves N, O and S
donors of the side chains of histidine, glutamate/aspartate and/or
cysteine. The metal ion from the CA active site is coordinated by
three His residues in the a-, c-, d- and probably the h-classes, by
one His, and two Cys residues in b- and f-CAs or by two His and
one Gln residues in the g-class, with the fourth ligand being a
water molecule/hydroxide ion acting as nucleophile in the cata-
lytic cycle of the enzyme15,20,24,25,51,52. All CAs identified in animal
systems belong to the a-class14,53. CAs identified in plants and
algae belong to the a-, b-, c-, d- and h-classes; fungi encode for a-
and b-CAs; protozoa encode for a-, b- or g-CAs; bacteria encode
for enzymes belonging to the a-, b- and c-CA families20–26.

Although CAs are ubiquitous in nature, bacterial CAs from ther-
mophiles, microorganisms living at temperatures ranging from
70 #C to 110 #C, are the mostly used ones as biocatalysts in CCP
technology because of their ability to perform catalysis in the
operatively hard conditions, typical of the industrial processes,
such as extreme temperatures, pH values and in the presence of
organic solvents1,54. In fact, it has been demonstrated that
enzymes from thermophiles are thermostable, thermoactive up to
100 #C, and generally better supporting common enzyme denatur-
ants1,54. Recently, our groups reported the discovery and charac-
terisation of a-CAs from thermophilic bacteria, belonging to the
genus Sulfurihydrogenibium, living in hot springs all over
the world, at temperatures of up to 110 #C55–57. The a-CA identi-
fied in the bacterial species S. yellowstonense and indicated
with the acronym (SspCA) retained its high catalytic activity for
the CO2 hydration reaction even after being heated at 80 #C for
several hours46,56–59. The a-CA, named SazCA and recognised in
S. azorense, resulted the most active CA known to date, and
the second most efficient enzyme (after superoxide dismutase),
with a kcat value of 4.40$ 106 s!1 and a kcat/KM value of
3.5$ 108M!1 s!143,55,60,61. Moreover, our groups resolved the crys-
tallographic structures of SspCa and SazCA in order to identify the
molecular factors responsible for the higher thermostability of
SspCA and the higher catalytic activity of SazCA with respect to
the other bacterial and mammalian CAs known so far43,46.

Recently we reported a three-phase trickle-bed reactor contain-
ing the highly thermostable SspCA covalently immobilised within a
polyurethane (PU) foam1. We demonstrated that when a gas phase
containing CO2, was put in contact with the PU–SspCA suspended
in a liquid phase, working in countercurrent, the CO2 was efficiently
absorbed and converted into bicarbonate. Here, we described a
heterologous expression of the recombinant SspCA carried out
using high-density fermentation of Escherichia coli cultures, in order
to produce SspCA which was covalently immobilised onto the sur-
face of magnetic Fe3O4 nanoparticles (MNP) by using the carbodii-
mide activation reaction.

Materials and methods

Chemicals

The a-CA from the bovine erythrocytes (bCA) and all other
chemicals used were commercial products of the purest quality
and purchased from Sigma-Aldrich (Milan, Italy).

Gene synthesis

The GeneArt Company (Invitrogen, Carlsbad, CA), specialised in
gene synthesis, designed the synthetic Sulfurihydrogenibium sp.
gene encoding for the SspCA lacking of the signal peptide (the
first 20 amino acids at the N-terminal amino acid sequence) and
containing four base-pair sequences (CACC) necessary for direc-
tional cloning at the 50 end of the SspCA gene. The recovered
SspCA gene and the linearised expression vector (pET-100/D-
TOPO) were ligated by T4 DNA ligase to form the expression vec-
tor pET-100/SspCA.

Large-scale production of the recombinant SspCA

BL21-CodonPlus (DE3)-RIPL competent cells (Agilent, Palo Alto,
CA) were transformed with pET-100/SspCA and grown at 30 #C in
a New Brunswick BioFlo 315 benchtop fermenter (Eppendorf,
Hauppauge, NY) having the following configuration: air flow con-
trol, 2 L working volume vessel, direct drive motor, a water-tem-
perature controller, a gas sparger, two peristaltic pumps to
control pH by adding concentrate NaOH or HCL, and one peristal-
tic pump to control the foam by adding the antifoam 204
(Sigma-Aldrich, St. Louis, MO). As medium was used Terrific Broth
(Sigma) to which has been added 150ml 10$ phosphate/citric
acid buffer [133 g/L KH2PO4, 40 g/L (NH4)2HPO4 and 17 g/L citric
acid]. Deionised water to a final volume of 2 L was added to the
vessel before sterilisation at 121 #C for 20min. After the solution
was cooled to room temperature, the following sterile compo-
nents were added to make the complete fermentation medium:
15ml of 240 g/L MgSO4, 0.34ml of 20 g/L thiamine, 15ml of 100$
trace element solution, and 22ml of 70% glucose solution. The
100$ trace element solution contained: 10 g/L iron (III) citrate,
0.25 g/L CoCl2%6H2O, 1.5 g/L MnCl2%4H2O, 0.15 g/L CuCl2%6H2O,
0.3 g/L H3BO3, 0.25 g/L Na2MoO4%2H2O, 1.3 g/L zinc acetate%2H2O,
0.84 g/L EDTA. The inoculum was grown in Terrific Broth medium.
A 500ml baffled shake flask containing 100ml of TB medium
were inoculated with 2–3 colonies of transformed E. coli and incu-
bated at 30 #C, 200 rpm overnight in a New Brunswick Innova 40
benchtop incubator shaker (Eppendorf). After the overnight cul-
ture, the vessel was inoculated with 100ml of inoculum (5% of
the working vessel volume). E. coli cells were grown at 30 #C and
induced with 1mM IPTG. After 30min, 0.5mM ZnSO4 has been
added. Cells were grown for additional 2 h and 20ml of a feeding
medium was added. The additional concentrate-feeding medium
was prepared to mix 45ml of 240 g/L MgSO4, 1.66ml of 20 g/L
thiamine solution, 15ml of 100$ trace element solution, and 70%
glucose solution to a final volume of 500ml. After the feeding,
the culture medium and cells were grown for additional 2 h.
Subsequently, cells were harvested and resuspended in the fol-
lowing buffer: 50mM Tris/HCl, pH 8.0, 0.5mM PMSF, and 1mM
benzamidine. Cells were then disrupted by sonication at 4 #C and
centrifuged at 12,000g for 1 h. Following centrifugation, the cell
extract was heated at 70 #C for 30min and centrifuged at 12,000g
for 30min. At this stage of purification, the protein was at least
60% pure and the obtained recovery was of about 100mg of the
recombinant protein.
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Affinity chromatography

To obtain the pure SspCA, the supernatant was incubated with His
Select HF nickel affinity gel resin (Sigma) equilibrated in lysis buf-
fer for 30min. Following centrifugation at 2000g, the resin was
washed with wash buffer (50mM Tris/HCl, pH 8.3, 500mM KCl,
20mM imidazole). The protein was eluted with the wash buffer
containing 300mM imidazole. Collected fractions were dialyzed
against 50mM Tris/HCl, pH 8.3. At this stage of purification, the
amount of recovered SspCA was 90mg and the protein was at
least 90% pure.

SDS–PAGE

Sodium dodecyl sulphate (SDS)–polyacrylamide gel electrophoresis
(PAGE) was carried out according to Laemmli62. Samples were dis-
solved in buffer with 5% b-mercaptoethanol. The gel was stained
with Coomassie blue. Protein concentration was determined by
Bio-Rad assay kit (Hercules, CA).

Carbonic anhydrase assay

Carbonic anhydrase activity assay was a medication of the proced-
ure described by Capasso et al.57. Briefly, the assay was performed
at 0 #C using CO2 as substrate following the pH variation due to
the catalysed conversion of CO2 to bicarbonate. Bromothymol
blue was used as the indicator of pH variation. The production of
hydrogen ions during the CO2 hydration reaction lowers the pH of
the solution until the colour transition point of the dye is reached.
The time required for the colour change is inversely related to the
quantity of CA present in the sample. Wilbur–Anderson units were
calculated according to the following definition: One
Wilbur–Anderson unit (WAU) of activity is defined as (T0! T)/T,
where T0 (uncatalysed reaction) and T (catalysed reaction) are
recorded as the time (s) required for the pH to drop from 8.3 to
the transition point of the dye in a control buffer and in the pres-
ence of enzyme, respectively. Generally, 100mg of bound SspCA
or bCA to the magnetic nanoparticles (MNP) were added to the
test tube containing 1ml of substrate solution. Free enzymes were
assayed using in the test tube 10 ng of SspCA or bCA.

Immobilisation of SspCA or bCA onto magnetic nanoparticles

Magnetic nanoparticles of Fe3O4 were prepared by coprecipitating
Fe2þ and Fe3þ ions with aqueous ammonia solution. The ferric
and ferrous chlorides (molar ratio of 2:1) were dissolved in water
at a total concentration of 0.3M iron. Chemical precipitation was
achieved at 25 #C under vigorous stirring by adding the NH4OH
solution (29.6%) and maintaining the pH at about 10. The precipi-
tate was heated at 80 #C for 30min, washed several times with a
solution of water and ethanol (2:1), and finally dried in a vacuum
oven at 70 #C. Magnetic particles (about 3 g) were stored at room
temperature. For the binding of SspCA or bCA, 250mg of MNP
was first added to 2ml of buffer 1 (0.003M phosphate, pH 6.0,
0.1M NaCl). Next, the reaction mixture was sonicated for 30min
after addition of 0.5ml of carbodiimide solution (0.025 g/mL in
buffer 1). Finally, 5ml of SspCA or bCA solution at a concentration
of 2mg/mL in buffer 1 were added, and the reaction mixture was
sonicated for 45min. The binding process was carried out at a
constant temperature of 4 #C. The SspCA or bCA bound to MNP
were recovered from the reaction mixture by placing the bottle
on an electromagnet with a surface of magnetisation of 10 cm.
The magnetic particles settled within 5min. The supernatant was

used for protein analysis for determining the unbound proteins.
The precipitates were washed with buffer 1 and then buffer 2
(0.1M Tris, pH 8.0, containing 0.1M NaCl for the flocculation of
MNP) and then directly used for the measurements of activity and
stability.

Temperature studies

Effect of temperature on the free and immobilised SspCA and bCA
To compare the stability of SspCA and bCA free and immobilised
at different temperatures, free enzymes at the concentration of
1mg/ml in 10mM Tris/HCl, pH 8.3 or MNP with the immobilised
enzyme (1000mg) were incubated at 50 and 70 #C for different
time (6, 24 and 72 h). Free or bound enzymes aliquots were with-
drawn at appropriate times and the residual activity was measured
using CO2 as substrate. All data have been analysed by means of
GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA).
Curves were obtained by the mean of three independent
determinations.

Long-term stability
Free and bound CAs (SspCA and bCA) were examined for long-
term stability (5, 15 and 30 days) at 25 #C by assaying their hydra-
tase residual activities using CO2 as substrate. Free or bound
enzymes aliquots were withdrawn at appropriate times for the
measurements of the long-term enzyme stability. All the solutions
containing the CAs were sterilised by using a sterile 0.22 mm PVDF
filter and the aliquots were withdrawn under a sterile hood. All
data were obtained by the mean of 3 independent
determinations.

Results and discussion

SspCA production

The recombinant thermostable SspCA was heterologous expressed
through a high cell density fermentation process using E. coli
BL21-CodonPlus (DE3)-RIPL as host cells. The experiments were ini-
tially performed in shake flasks to formulate an alternative culture
medium and to replace the medium in the large-scale experi-
ments. The optimisation of the entire process using the bioprocess
station, the selection of the expression vector, the choice of a par-
ticular bacterial strain, the use of a modified medium culture and
the feeding strategy resulted in a significant enhancement of the
biomass and protein production, compared to our previously
reported procedure1. The biomass production was increased 20-
fold in cell density with respect to the production usually carried
out in our laboratories using 3 L flasks cultures. Consequently, a
large amount of SspCA was detected in the soluble fraction after
sonication and centrifugation of the cellular extract. Moreover,
since the recombinant SspCA showed an extreme resistance
toward high temperature43,46,57,59–61,63, the enzyme was partially
purified by heating the bacterial extract at 70 #C for 30min. After
the thermoprecipitation, the specific activity of SspCA was recov-
ered in the supernatant (Figure 1, lane 1), whereas most of the
host proteins were thermo-precipitated and eliminated after cen-
trifugation. At this step of purification and starting from about
30 g of bacterial biomass, SspCA was about 60% pure (Figure 1,
lane 1) and its total protein amount was 100mg, as estimated
from the determined hydratase specific activity using CO2 as sub-
strate. Moreover, the recombinant SspCA was expressed as a
fusion protein with a His-Tag fragment containing six histidines at
the N-terminal amino acid sequence of SspCA. Thus, using the
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affinity column (His-select HF Nickel affinity gel), SspCA was puri-
fied to an apparent homogeneity with a purity grade of about
90% (Figure 1, lane 2) as indicated by a single protein band after
SDS–PAGE (Figure 1, lane 2). After the affinity chromatography,
the total amount of pure SspCA was about 90mg. Our results
demonstrated that using a benchtop bioprocess station and the
strategies aforementioned for optimising the bacterial growth,
it was possible to produce “in house” and at low cost a rather
high amount of SspCA. Moreover, the thermoprecipitation is a
cheap technique and a good strategy for obtaining enough SspCA
to be used as biocatalyst in a bioreactor for the biomimetic
CO2 capture.

Immobilisation onto MNP

The improvement of the enzyme stability and the reuse of the
enzyme are two important aspects for lowering the production
costs of the biomimetic CCP. The enzyme stability is generally

influenced by the industrial process conditions and this problem
can be overcome by immobilising it on a specific support. The
immobilisation improves the operational stability of the enzyme
and avoids the diffusion of the macromolecules. In this context,
we decided to immobilise SspCA and bCA (commercial bovine
a-CA) onto MNP, which allows the separation of the CA from the
reaction mixture and the reuse of the enzyme for many cycles.
MNP can be easily captured using a magnetic field, such as a mag-
net or an electromagnet. SspCA (or bCA) was efficiently and dir-
ectly bound to MNP prepared by coprecipitating Fe2þ and Fe3þ

ions with aqueous ammonia solution. As reported in the literature,
after the activation of the magnetite with carbodiimide (EDC) the
binding was achieved via the reaction between the OH or NH2

groups present on the surface of hydrated magnetite nanopar-
ticles (the last ones obtained from the first by reaction with the
concentrated ammonia solution), and carboxyl groups of the
thermostable SspCA or bCA64 (see Figure 2). By measuring the
unbound protein in the supernatant after the binding process, the
amount of SspCA or bCA bound to 250mg of Fe3O4 increased up
to about 12mg of SspCA or bCA. As indicated in Figure 3, the
amount of SspCA immobilised onto 250mg of MNP was in the
range of 10–12mg of total enzyme (bCA showed a similar result).
Moreover, measuring the hydratase activity using CO2 as substrate,
we found that 100mg of MNP with the immobilised enzyme
showed a hydratase activity corresponding to that obtained using
100 ng of the unbound enzyme. These differences should be
attributed to different phenomena, such as the reduced grade of
the three-dimensional conformational changes of the immobilised
enzyme, which is linked to the support matrix; the diverse micro-
environment of the reaction between the substrate and the immo-
bilised enzyme respect to those of the free enzyme; and the MNP
aggregation during the assay.

Effect of temperature and long-term stability of the free and
immobilised SspCA and bCA

The effect of temperature (at 50 and 70 #C) was determined
for the free and bound CAs (SspCA and bCA), as shown in
Figure 4. The residual activity of bound SspCA remained constant
(100%) at both 50 and 70 #C for all times considered on the x-axis
(Figure 4(A,C)). On the other hand, the immobilised mammalian
enzyme (bCA) was less stable compared to the bound SspCA.

Figure 2. Schematic representation of the crosslinked carbonic anhydrase (CA) and magnetic nanoparticles (MNP) incorporating NH2 moieties obtained by reaction of
hydrated magnetite with concentrated ammonia solution. The OH from magnetite may also be derivatised in a similar manner with formation of ester linkages.

Figure 1. SDS–PAGE of the recombinant SspCA expressed and purified from E.
coli. Lane STD, molecular markers, M.W. starting from the top: 250, 150, 100, 75,
50, 37, 25, 20 kDa; Lane 1, SspCA after thermoprecipitation at 70 #C and centrifu-
gation; Lane 2, purified SspCA from His-tag affinity column.
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In fact, in the first 10 h, the residual activity at 50 #C of the bound
bCA was of 85% (Figure 4(B)), while at 70 #C decreased to 50%
(Figure 4(B)). The unbound enzymes showed a different behaviour
compared to the immobilised ones. In particular, by increasing the
incubation time, the free SspCA residual activity at 50 #C decreased
to about 50% and at 70 #C became of 30% after 70 h (Figure
4(A,C)). Instead, the free bCA lost most of its residual activity after
6 h at 50 #C, and after 3 h at 70 #C. These results demonstrated
that the enzyme immobilisation onto MNP considerably increased
the enzyme stability and the effect was more evident when the
thermostable CA SspCA was immobilised. The bound enzymes
continued to work at temperature considered prohibitive for
free enzymes, such as 70 #C. We want to stress the fact that the
temperature of the absorption column used for the biomimetic
capture of CO2 typically ranges between 40 and 60 #C. Thus,
the enzyme immobilisation is a good choice for enhancing the
operational stability of the enzymes. Figure 5 shows the long-term
stability of the free and bound SspCA and bCA at 25 #C and pH
8.3. After an incubation time of 30 days, the residual activity of
the free SspCA was of 25% (Figure 5(A)). Interestingly, this value
(25%) was reached by the free bCA in only 4 days (Figure 5(B)).
In fact, free bCA completely lost its residual activity after 5 days.

Figure 4. Temperature stability of the free and bound CAs (SspCA and bCA). Panel A and B: temperature stability at 50 #C; Panel C and D: temperature stability at
70 #C. Continuous line: bound SspCA or bCA; Dashed line: unbound SspCA or bCA. Each point is the mean of three independent determinations.

Figure 3. Binding of SspCA to MNPs. The amount of SspCA bound to 250mg of
Fe3O4 increased up to about 12mg of enzyme. Measurements have been done
determining the unbound SspCA in the supernatant after the binding process. Each
point was the mean of three independent determinations. All data was analyzed by
means of GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA).
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However, the bound SspCA retained 100% activity at 25 #C
over a period of one month (Figure 5(A)), while the residual
activity of the bound bCA was 50% after 30 days of incubation
(Figure 5(B)). These results clearly demonstrate that the storage
stability of the enzymes was significantly improved after binding
to the MNPs.

Conclusions

Using a benchtop bioprocess station and the strategies for opti-
mising the bacterial growth, it was possible to produce “in
house” and at low cost a rather high amount SspCA. Moreover,
the thermoprecipitation used in the purification process is a
cheap technique and a good strategy for obtaining enough
SspCA to be used as biocatalyst in a bioreactor for the biomim-
etic capture of CO2. It is possible to identify three major criteria
that, in general, typify the immobilised enzymes: the easy separ-
ation of the enzyme from the product of the reaction; the
increases in the enzyme stability by preventing the protein from
unfolding to a certain degree; and the reuse of the enzyme.
From our results, it is readily apparent that magnetic nanopar-
ticle-immobilised CAs meets all three aforementioned criteria. In
fact, the covalent immobilisation of SspCA directly onto the sur-
face of magnetic Fe3O4 nanoparticles (MNP) via carbodiimide
activation increased the stability and the log-term storage of
the biocatalyst. Moreover, the bound SspCA to MNP can be
recovered from the reaction mixture and reused simply applying
a magnet or an electromagnet field because of the strong ferro-
magnetic properties of Fe3O4. All these aspects contribute to
consider the thermostable SspCA a good candidate for the real-
isation of a bioreactor involved in the biomimetic capture of
the CO2.

Acknowledgements

This research was financed by the grant “SMART GENERATION –
Sistemi e tecnologie sostenibili per la generazione di energia –
PON03PE_00157_1, OR3 – Bio-sistemi di cattura ed utilizzazione
della CO2.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was financed by the grant Programma Operativo
Nazionale Ricerca e Competitivit!a 2007-2013- Titolo III – Avviso
n.713/RiC del 29/10/2010 – PON03PE_00157_1. “SMART
GENERATION – Sistemi e tecnologie sostenibili per la generazione
di energia – PON03PE_00157_1, OR3 – Bio-sistemi di cattura ed
utilizzazione della CO2.

References

1. Migliardini F, De Luca V, Carginale V, et al. Biomimetic CO2

capture using a highly thermostable bacterial alpha-carbonic
anhydrase immobilized on a polyurethane foam. J Enzyme
Inhib Med Chem 2014;29:146–50.

2. Boone CD, Habibzadegan A, Gill S, McKenna R. Carbonic
anhydrases and their biotechnological applications.
Biomolecules 2013;3:553–62.

3. Alvizo O, Nguyen LJ, Savile CK, et al. Directed evolution
of an ultrastable carbonic anhydrase for highly efficient
carbon capture from flue gas. Proc Natl Acad Sci USA
2014;111:16436–41.

4. Floyd WC, 3rd, ; Baker SE, Valdez CA, et al. Evaluation of a
carbonic anhydrase mimic for industrial carbon capture.
Environ Sci Technol 2013;47:10049–55.

5. da Costa Ores J, Sala L, Cerveira GP, Kalil SJ. Purification of
carbonic anhydrase from bovine erythrocytes and its appli-
cation in the enzymic capture of carbon dioxide.
Chemosphere 2012;88:255–9.

6. Anderson TR, Hawkins E, Jones PD. CO2, the greenhouse
effect and global warming: from the pioneering work of
Arrhenius and Callendar to today's Earth System Models.
Endeavour 2016;40:178–87.

7. Patel HA, Byun J, Yavuz CT. Carbon dioxide capture adsorb-
ents: chemistry and methods. ChemSusChem.
2017;10:1303–17.

Figure 5. Long-term stability of the free and bound CAs (SspCA and bCA). Long-term stability was performed at 25 #C measuring the residual activity of the free and
bound SspCA and bCA at the days indicated on the x-axis. Legend: Panel A: free and bound SspCA. Panel B: free and bound bCA. Continuous line: bound SspCA or
bCA; Dashed line: unbound SspCA or bCA. Each point is the mean of three independent determinations.

764 R. PERFETTO ET AL.



8. Adderley B, Carey J, Gibbins J, et al. Post-combustion carbon
dioxide capture cost reduction to 2030 and beyond. Faraday
Discuss 2016;192:27–35.

9. Drake K, Halifax H, Adamowicz SC, Craft C. Carbon seques-
tration in tidal salt marshes of the Northeast United States.
Environ Manage 2015;56:998–1008.

10. Conway W, Wang X, Fernandes D, et al. Toward the under-
standing of chemical absorption processes for post-combus-
tion capture of carbon dioxide: electronic and steric
considerations from the kinetics of reactions of CO2(aq)
with sterically hindered amines. Environ Sci Technol
2013;47:1163–9.

11. Supuran CT. Carbonic anhydrases: novel therapeutic applica-
tions for inhibitors and activators. Nat Rev Drug Discov
2008;7:168–81.

12. Supuran CT. How many carbonic anhydrase inhibition mech-
anisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.

13. Supuran CT. Advances in structure-based drug discovery of
carbonic anhydrase inhibitors. Expert Opin Drug Discov
2017;12:61–88.

14. Supuran CT. Carbonic anhydrases as drug targets – an over-
view. Curr Top Med Chem 2007;7:825–33.

15. Supuran CT. Structure and function of carbonic anhydrases.
Biochem J 2016;473:2023–32.

16. Kim IG, Jo BH, Kang DG, et al. Biomineralization-based con-
version of carbon dioxide to calcium carbonate using recom-
binant carbonic anhydrase. Chemosphere 2012;87:1091–6.

17. Rau GH. CO2 mitigation via capture and chemical conversion
in seawater. Environ Sci Technol 2011;45:1088–92.

18. Supuran CT, Capasso C. New light on bacterial carbonic
anhydrases phylogeny based on the analysis of signal pep-
tide sequences. J Enzyme Inhib Med Chem 2016;31:1254–60.

19. Ozensoy Guler O, Capasso C, Supuran CT. A magnificent
enzyme superfamily: carbonic anhydrases, their purification
and characterization. J Enzyme Inhib Med Chem
2016;31:689–94.

20. Capasso C, Supuran CT. An overview of the alpha-, beta-
and gamma-carbonic anhydrases from bacteria: can bacterial
carbonic anhydrases shed new light on evolution of bac-
teria? J Enzyme Inhib Med Chem 2015;30:325–32.

21. Capasso C, Supuran CT. Anti-infective carbonic anhydrase
inhibitors: a patent and literature review. Expert Opin Ther
Pat 2013;23:693–704.

22. Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs –
antimetabolites acting as carbonic anhydrase, dihydropter-
oate synthase and dihydrofolate reductase inhibitors.
J Enzyme Inhib Med Chem 2014;29:379–87.

23. Capasso C, Supuran CT. Bacterial, fungal and protozoan car-
bonic anhydrases as drug targets. Expert Opin Ther Targets
2015;19:1689–704.

24. Capasso C, Supuran CT. An overview of the selectivity and
efficiency of the bacterial carbonic anhydrase inhibitors. Curr
Med Chem 2015;22:2130–9.

25. Capasso C, Supuran CT. An overview of the carbonic anhy-
drases from two pathogens of the oral cavity: Streptococcus
mutans and Porphyromonas gingivalis. Curr Top Med Chem
2016;16:2359–68.

26. Supuran CT, Capasso C. The eta-class carbonic anhydrases as
drug targets for antimalarial agents. Expert Opin Ther
Targets 2015;19:551–63.

27. Xiang L, Kong W, Su JT, et al. Amorphous calcium carbonate
precipitation by cellular biomineralization in mantle cell cul-
tures of Pinctada fucata. PLoS One 2014;9:e113150.

28. Bertucci A, Moya A, Tambutte S, et al. Carbonic anhydrases
in anthozoan corals – a review. Bioorg Med Chem
2013;21:1437–50.

29. Bertucci A, Tambutte S, Supuran CT, et al. A new coral car-
bonic anhydrase in Stylophora pistillata. Mar Biotechnol (NY)
2011;13:992–1002.

30. Vullo D, Del Prete S, Osman SM, et al. Burkholderia pseudo-
mallei gamma-carbonic anhydrase is strongly activated
by amino acids and amines. Bioorg Med Chem Lett
2017;27:77–80.

31. Vullo D, Del Prete S, De Luca V, et al. Anion inhibition
studies of the beta-carbonic anhydrase from the pathogenic
bacterium Vibrio cholerae. Bioorg Med Chem Lett
2016;26:1406–10.

32. Vullo D, Del Prete S, Capasso C, Supuran CT. Carbonic anhy-
drase activators: activation of the beta-carbonic anhydrase
from Malassezia globosa with amines and amino acids.
Bioorg Med Chem Lett 2016;26:1381–5.

33. Melis C, Meleddu R, Angeli A, et al. Isatin: a privileged scaf-
fold for the design of carbonic anhydrase inhibitors.
J Enzyme Inhib Med Chem 2017;32:68–73.

34. Del Prete S, Vullo D, Di Fonzo P, et al. Sulfonamide inhibition
profile of the gamma-carbonic anhydrase identified in the
genome of the pathogenic bacterium Burkholderia pseudo-
mallei the etiological agent responsible of melioidosis.
Bioorg Med Chem Lett 2017;27:490–5.

35. Del Prete S, Vullo D, De Luca V, et al. Anion inhibition pro-
files of alpha-, beta- and gamma-carbonic anhydrases from
the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem
2016;24:3413–17.

36. Del Prete S, De Luca V, Vullo D, et al. A new procedure for
the cloning, expression and purification of the beta-carbonic
anhydrase from the pathogenic yeast Malassezia globosa, an
anti-dandruff drug target. J Enzyme Inhib Med Chem
2016;31:1156–61.

37. De Luca V, Vullo D, Del Prete S, et al. Cloning, characteriza-
tion and anion inhibition studies of a gamma-carbonic anhy-
drase from the Antarctic bacterium Colwellia psychrerythraea.
Bioorg Med Chem 2016;24:835–40.

38. Del Prete S, Vullo D, De Luca V, et al. Biochemical character-
ization of recombinant beta-carbonic anhydrase (PgiCAb)
identified in the genome of the oral pathogenic bacterium
Porphyromonas gingivalis. J Enzyme Inhib Med Chem
2015;30:366–70.

39. Del Prete S, De Luca V, Scozzafava A, et al. Biochemical
properties of a new alpha-carbonic anhydrase from the
human pathogenic bacterium, Vibrio cholerae. J Enzyme
Inhib Med Chem 2014;29:23–7.

40. Del Prete S, Vullo D, De Luca V, et al. Biochemical character-
ization of the delta-carbonic anhydrase from the marine dia-
tom Thalassiosira weissflogii, TweCA. J Enzyme Inhib Med
Chem 2014;29:906–11.

41. Pinard MA, Lotlikar SR, Boone CD, et al. Structure and inhib-
ition studies of a type II beta-carbonic anhydrase psCA3
from Pseudomonas aeruginosa. Bioorg Med Chem
2015;23:4831–8.

42. Ferraroni M, Del Prete S, Vullo D, et al. Crystal structure and
kinetic studies of a tetrameric type II beta-carbonic anhy-
drase from the pathogenic bacterium Vibrio cholerae. Acta
Crystallogr D Biol Crystallogr 2015;71:2449–56.

43. De Simone G, Monti SM, Alterio V, et al. Crystal structure of
the most catalytically effective carbonic anhydrase enzyme
known, SazCA from the thermophilic bacterium

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 765



Sulfurihydrogenibium azorense. Bioorg Med Chem Lett
2015;25:2002–6.

44. Zolnowska B, Slawinski J, Pogorzelska A, et al. Carbonic
anhydrase inhibitors. Synthesis, and molecular structure of
novel series N-substituted N'-(2-arylmethylthio-4-chloro-5-
methylbenzenesulfonyl)guanidines and their inhibition of
human cytosolic isozymes I and II and the transmembrane
tumor-associated isozymes IX and XII. Eur J Med Chem
2014;71:135–47.

45. De Luca L, Ferro S, Damiano FM, et al. Structure-based
screening for the discovery of new carbonic anhydrase VII
inhibitors. Eur J Med Chem 2014;71:105–11.

46. Di Fiore A, Capasso C, De Luca V, et al. ray structure of the
first 0extremo-alpha-carbonic anhydrase', a dimeric enzyme
from the thermophilic bacterium Sulfurihydrogenibium yel-
lowstonense YO3AOP1. Acta Crystallogr D Biol Crystallogr
2013;69:1150–9.

47. Supuran CT. Structure-based drug discovery of carbonic
anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:
759–72.

48. Supuran CT. Carbonic anhydrases – an overview. Curr Pharm
Des 2008;14:603–14.

49. Bhatt A, Mahon BP, Cruzeiro VW, et al. Structure-activity rela-
tionships of benzenesulfonamide-based inhibitors towards
carbonic anhydrase isoform specificity. Chembiochem
2017;18:213–22.

50. Alterio V, Langella E, Viparelli F, et al. Structural and inhib-
ition insights into carbonic anhydrase CDCA1 from the
marine diatom Thalassiosira weissflogii. Biochimie
2012;94:1232–41.

51. Buzas GM, Supuran CT. The history and rationale of using
carbonic anhydrase inhibitors in the treatment of peptic
ulcers. In memoriam Ioan Puscas (1932–2015). J Enzyme
Inhib Med Chem 2016;31:527–33.

52. Carta F, Supuran CT, Scozzafava A. Sulfonamides and their
isosters as carbonic anhydrase inhibitors. Future Med Chem
2014;6:1149–65.

53. Aspatwar A, Tolvanen ME, Ortutay C, Parkkila S. Carbonic
anhydrase related proteins: molecular biology and evolution.
Subcell Biochem 2014;75:135–56.

54. Frock AD, Kelly RM. Extreme thermophiles: moving beyond
single-enzyme biocatalysis. Curr Opin Chem Eng
2012;1:363–72.

55. Vullo D, De Luca V, Scozzafava A, et al. Anion inhibition
studies of the fastest carbonic anhydrase (CA) known, the
extremo-CA from the bacterium Sulfurihydrogenibium azor-
ense. Bioorg Med Chem Lett 2012;22:7142–5.

56. De Luca V, Vullo D, Scozzafava A, et al. Anion inhibition
studies of an alpha-carbonic anhydrase from the thermo-
philic bacterium Sulfurihydrogenibium yellowstonense
YO3AOP1. Bioorg Med Chem Lett 2012;22:5630–4.

57. Capasso C, De Luca V, Carginale V, et al. Biochemical proper-
ties of a novel and highly thermostable bacterial alpha-car-
bonic anhydrase from Sulfurihydrogenibium yellowstonense
YO3AOP1. J Enzyme Inhib Med Chem 2012;27:892–7.

58. Alafeefy AM, Abdel-Aziz HA, Vullo D, et al. Inhibition of car-
bonic anhydrases from the extremophilic bacteria
Sulfurihydrogenibium yellostonense (SspCA) and S. azorense
(SazCA) with a new series of sulfonamides incorporating
aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-
(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties.
Bioorg Med Chem 2014;22:141–7.

59. Vullo D, Luca VD, Scozzafava A, et al. The alpha-carbonic
anhydrase from the thermophilic bacterium
Sulfurihydrogenibium yellowstonense YO3AOP1 is highly sus-
ceptible to inhibition by sulfonamides. Bioorg Med Chem
2013;21:1534–8.

60. Vullo D, De Luca V, Scozzafava A, et al. The extremo-alpha-
carbonic anhydrase from the thermophilic bacterium
Sulfurihydrogenibium azorense is highly inhibited by sulfona-
mides. Bioorg Med Chem 2013;21:4521–5.

61. Akdemir A, Vullo D, De Luca V, et al. The extremo-alpha-car-
bonic anhydrase (CA) from Sulfurihydrogenibium azorense,
the fastest CA known, is highly activated by amino acids
and amines. Bioorg Med Chem Lett 2013;23:1087–90.

62. Laemmli UK. Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature
1970;227:680–5.

63. Vullo D, De Luca V, Scozzafava A, et al. The first activation
study of a bacterial carbonic anhydrase (CA). The thermo-
stable alpha-CA from Sulfurihydrogenibium yellowstonense
YO3AOP1 is highly activated by amino acids and amines.
Bioorg Med Chem Lett 2012;22:6324–7.

64. Huang SH, Liao MH, Chen DH. Direct binding and character-
ization of lipase onto magnetic nanoparticles. Biotechnol
Prog 2003;19:1095–100.

766 R. PERFETTO ET AL.


