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a b s t r a c t

The paper proposes a generalized shell formulation devised for the triaxial stress analysis of Through-
the-Thickness (TT) confining mechanisms induced by TT Jacketing (TTJ) devices in laminated compos-
ite structures, such as masonry walls retrofitted by stirrups-tied FRP sheets and TT jacketed concrete
sandwich panels.

Assuming a smeared description of TT reinforcements, the proposed shell formulation is constructed
as an enhancement of the classical laminated shell formulation based on the Equivalent Single Layer
Mindlin First-order Shear Deformation Theory (ESL-FSDT). This enhancement captures TT stretching by
adding the TT displacement field among the kinematic variables and permits to describe the smeared TTJ
interaction between transverse uniaxial reinforcements and confined layers in terms of continuum
equilibrium and compatibility equations. Statics and kinematics of the shell are developed by following
standard work-association arguments and encompassing both TT-laminated and TT-functionally graded
structures.

A nonlinear elasto-plastic constitutive behavior of the core material and of the TT reinforcements is
considered and explicit representations of the elasto-plastic tangent operator are derived. The TTJ
formulation is combined with a MITC finite element formulation and implemented in the research FE
code Opensees.

Results of nonlinear structural analyses of walls subject to in-plane and out-of-plane bending show
that the proposed TTJ approach provides physically meaningful predictions of the structural response
and is capable to efficiently track a complex triaxial confining interaction which ultimately results into
marked global structural effects of increased stiffness, strength and ductility.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The employment of confinement techniques for improving
strength and ductility of structural members has progressively
grown in popularity in parallel with the use of analytical and
computational tools capable of describing their mechanics.

Confinement devices find typical applications in the reinforce-
ment of existing concrete and masonry structures by steel bars,
plates or Fiber Reinforced Polymers (FRP) [1e4], to increase the
bearing capacity of both 1D members, such as columns and frames,
or 2Dmembers, such as shear walls, panels, slabs and curved shells.
.

Interest in the effect of through-the-thickness confinement in 2D
elements has recently grown, in particular driven by innovative
structural solutions. These concern several applications such as
concrete sandwich panels [5] and masonry [6] in civil engineering,
or more advanced ones in mechanical [7] and biomedical [8]
engineering.

As well known, the desired gain in strength and ductility is an
effect originated by the triaxiality, or biaxiality, of the stress state
induced in the confined core material [9]. In line of principle, this
effect can be enforced on members of any structural typology and
depends on both the global geometry of the structure as well as on
local details of the confinement device. However, for structural
applications in civil engineering, the experimental characterization
of confinement is mostly carried out over columns [10,11], and its
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effect in the structural analysis of reinforced members is prevail-
ingly taken into account in a simplified form, separating global and
local mechanical analyses.

Relying on this separation, confinement devices are not ordi-
narily included as components of the global analysis; rather, the
approach typically employed is the following: a local experimental
and/or theoretical analysis of a confining device is preliminarily
carried out to obtain suitably defined constitutive parameters
which are subsequently employed in the global structural analyses
in uncoupled form [1,10,12,13]. For 1D elements, this simplified
approach is generally considered to be sufficiently accurate, as
shown by several experimental investigations [1,14,15], providing
also a basis for building code prescriptions [16e18].

Nevertheless, the analysis of confinement in 2D structural
members is more complex since these elements can take advantage
of both in-plane and transverse Through-the-Thickness (TT)
confinement. The former is essentially a global structural effect,
primarily dependent on the boundary conditions and ordinarily
addressed by using membrane or shell Finite Elements Analysis
(FEA) [19] in conjunction with suitable biaxial strength criteria
[20,21]; conversely, the latter is accounted for at constitutive level
though it is not always consistently incorporated in the global
analysis.

In real applications of TT confinement over concrete and ma-
sonry walls transverse confinement is induced by reinforcing rods
passing through the shell core; they tie the opposite exterior
confining layers and the tying elements are uniformly distributed
over large regions of the shell surface in regular arrays.

In particular, in RC walls, these ties correspond to transverse
stirrups, forming the ordinary transverse steel reinforcement,
whose confining effect has been experimentally highlighted in
several studies [22e24], and whose design is also regulated by
building codes [18,25]. For masonry, TT confinement has proved to
be a convenient retrofit strategy by several experimental cam-
paigns, in particular for stonewalls [6] andmultieleafs ones [26] by
using both FRP ties [27] and steel ties [28].

Investigations have also highlighted differences between the
effect of Through-the-Thickness Jacketing (TTJ) observed in shear
walls and in columns [29], since the strength increment due to
confinement is critically influenced by the geometry of the rein-
forced structural member [30]. These experimental evidences show
the meaningfulness of devising analysis methods for 2D shells/
members removing the simplified assumption of a tout-court
uncoupling between local and global responses.

Modeling of TT confinement requires a proper account of the
presence of triaxial stress states inside the core material, on one
side, and of differential TT elongations between the stirrups/ties
and the confined core material, on the other one. Typically, in FEM
analyses, both ineplane and through-the-thickness confinement
are addressed by using 3D brick elements (core material) inter-
acting with confining devices modeled as trusses, rods or external
constraints (see, e.g., [31e33]). Regrettably, such a highly detailed
3D description requires significant computational efforts and can
be hardly extended to global analyses of real structures in ordinary
structural design.

On the other hand, it can be easily recognized that capturing of
TT confinement, even in simplified form, in the context of a less
computationally expensive 2D structural theory, is not trivial and
cannot be achieved by ordinary theories of plates and shells. In
particular, in order to have full development of TT confinement,
differential displacementsmust be allowed at the core-tie interface.
Moreover, a multilayered descriptions is required to account for the
coexistence of exterior confining layers and interior confined core
with different mechanical properties and stress states.

However, to the best of the authors' knowledge there exists no
structural 2D continuum layered formulation suitable for
describing the interaction of TT by-passing ties and confining/
confined layers. This conclusion is gained after scoping the multi-
plicity of 2D formulations of layered plates and shells available to
date, including Equivalent Single Layer (ESL) theories [34], the class
of kinematically enriched shell formulations accounting for non-
plane stress regimes [35,36] and/or addressing through-the-
thickness stretching, or in the shell finite element proposed in
Ref. [37], which introduces a transversal elongation degree of
freedom (see, e.g., [38e40]).

A suitable formulation capable of describing TT confinement in
simplified form seems to be not available even among nontradi-
tional theories of plates and shells [41] or within the larger family of
kinematically richer 2D shell theories, gathered under different
denominations such as layer-wise theories, discrete-layer theories
[34], zig-zag theories [42,43]. In particular these theories enforce
interlaminar stress continuity by making the number of displace-
ment variables dependent upon the number of constitutive layers
of the shell.

Actually, while all the above mentioned formulations are well
suited to address the presence of ineplane reinforcements [44e47],
the TT interaction between ties and core material introduces an
infringement of deformation continuity, as differential strains are
typically present at the ties-core interface, and does not admit a
simple layer-wise description since ties are punctual devices
implying, on principle, a point-wise description.

In addition, it should also be observed that the mechanics of
confinementebearing devices becomes even more complex in the
nonlinear range when, e.g., steel stirrups may yield or a crushing
core may implode, as well as in presence of preestress.

On the basis of the previous considerations, aim of the present
paper is the development of a suitable 2D continuum structural
formulation for capturing the effects of TTconfinement in nonlinear
elasto-plastic structural analyses of layered shells.

A continuum theory with the above mentioned features is
herein formulated proceeding from the adoption of a simplest
possible enhancement of the classical laminated shell formulation
based on ESL Mindlin First-order Shear Deformation Theory (ESL-
FSDT). Such a theory is devised in order to capture the onset of
triaxial stress states in the core material and to provide in a
smeared form the description of the TTJ interaction, between
transverse uniaxial reinforcement and confined layers, in terms of
continuum equations of equilibrium and compatibility.

More specifically, the detailed objectives of the present work are
to:

i) present the generalized kinematics and statics of the
enhanced TTJ formulation following standard work-
association arguments, within a more general description
which accounts for the presence of a smeared distribution of
TT reinforcement encompassing both TT-laminated and TT-
functionally graded structures;

ii) derive a TT-continuum theory, with the related system of
compatibility and equilibrium equations, from the more
general continuum framework, and the related continuum
tangent operator to be employed in return mapping schemes
for the analysis of the confining interaction adopting elasto-
plastic laws for the ties and the confined materials;

iii) combine this theoretical/numerical framework with estab-
lished finite element formulations in order to carry out
nonlinear structural analyses assessing the predicted global
response for plane shells.

With specific reference to point 1), structural simulations herein
reported have been carried out by implementing the laminated TTJ
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schemes in the framework of a MITC shell element formulation
[48,49]. This element has been purposefully chosen since it behaves
well in the thin shell limit, avoiding locking phenomena, and has
been used also in elasto-plastic analyses [50] as well as in presence
of lamination [51]; moreover, it is available in the open-source
research FEM code OpenSees [52].

The paper is organized as follows. In Section 2 the TTJ shell
formulation is presented in the form of a more general theory
encompassing both laminated and functionally graded structures.
Numerical applications assessing the response of the TT confined
shell formulation and the behavior of the employed numerical
methods are presented in Section 3. Concluding remarks are finally
reported in Section 4.

2. Smeared TTJ formulation

This section details the smeared shell formulation for Through-
the-Thickness Jacketing (TTJ). Proceeding from the introduction of
general assumptions on the continuum description of the shell
configuration, on its kinematics and on the elasto-plastic consti-
tutive assumptions, the work-associated stress measures of the TTJ
shell model are first derived. They are subsequently employed in
the formulation of the equations of equilibrium and compatibility
representing the Through-the-Thickness (TT) confinement. The
section is concluded with the derivation of the continuum elasto-
plastic tangent operators which consistently linearize the
nonlinear equations of the TTJ shell model.

A shell theory is considered so that we make reference to the
median plane S of the shell. This is shown in Fig. 1 together with a
Cartesian reference frame x, y and z, z being the coordinate directed
along the thickness, and x, y the in-plane coordinates. The associ-
ated unit vectors are denoted by bx, by and bz. For simplicity, the shell
thickness d is assumed constant and the origin of the reference
frame is located at the shell midplane, which is plotted in green, so
that the exterior layers have coordinates z ¼ �d=2 and z ¼ d=2.

In the present study attention is focused on infinitesimal kine-
matics so that the deformed geometry of the shell is defined, at the
continuum 3D level, by the infinitesimal displacement field
uðx; y; zÞ.

With a view towards implementation in FEM codes, a suitable
matrix notation is employed throughout this section for stress,
strain and stiffness quantities alongside with ordinary tensorial
notation. The adopted matrix notation is set as a variant of Voigt's
notation in which the entries associated with TT strain/stretch
Fig. 1. Shell geometry and generalized displacement components.
coordinates are moved to the rightmost position in row vectors.
The arrays constructed on the basis of this convention are

denoted by a ð$ÞV subscript. This convention implies that the col-
umn vectors employed for representing strain and stress tensors
are:

εV ¼ � εx εy gxy gxz gyz εz
�T (1)

and

sV ¼ � sx sy txy txz tyz sz
�T
: (2)

Furthermore, collecting the first five components of εV into the 1�
5 vector ε0V the following split is considered

εV ¼
�
ε0V
εz

�
¼

264 εx εy gxy gxz gyz
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ε0V

εz

375
T

(3)

and a similar partition is considered also for the stress vector in (2)

sV ¼
�
s0V
sz

�
¼
"
sx sy txy txz tyz
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{s0V

sz

#T
: (4)

Application of these conventions to fourth-order symmetric
tensor operators permits to represent them by matrices which are
partitioned in four submatrices in the form exemplified below for
the elastic stiffness tensor ℂ

ℂV ¼
24ℂ0 0

VC
0 z

VCz 0
VC

z z
V

35; (5)

where C
z z

V ¼ Czzzz and

ℂ0 0
V ¼

266664
Cxxxx Cxxyy Cxxxy Cxxxz Cxxyz
Cyyxx Cyyyy Cyyxy Cyyxz Cyyyz
Cxyxx Cxyyy Cxyxy Cxyxz Cxyyz
Cxzxx Cxzyy Cxzxy Cxzxz Cxzyz
Cyzxx Cyzyy Cyzxy Cyzxz Cyzyz

377775; (6)

Cz 0
V ¼ �Czzxx Czzyy Czzxy Czzxz Czzyz

�
; (7)

C0 z
V ¼ �Cxxzz Cyyzz Cxyzz Cxzzz Cyzzz

�t
: (8)

As a shorthand notation, Gibbs Nabla operator V is used to
denote 3D gradients of vector fields while Vp is the gradient
operator with respect to in plane variables x and y.
2.1. General configuration assumptions

The formulation of the TTJ shell is herein devised as an
enhancement of the Equivalent Single Layer First-order Shear
Deformation Theory (ESL-FSDT) [34] by accounting for the presence
of a smeared TT reinforcement.

This is described by a continuum scalar field mt , denominated
TT-reinforcement area ratio, smearing the TT reinforcement onto the
shell midplane. The field mt , defined over the shell midplane, as-
sociates with the generic midplane point ðx; yÞ the relevant ratio of
the cross-sectional area Ut of (discrete) TT by-passing ties per unit
core shell midplane area Uc:
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mt ¼
Ut

Uc
: (9)

By shell chord,Pðx; yÞ, located at the surface point ðx; yÞwe refer
to the mechanical subsystem constituted by the material points of
the shell which have coordinates ðx ¼ x; y ¼ y; z2½�d=2; d=2�Þ and
to its relevant mechanical properties.

In each shell chord a tripartition is considered into a core region
Pc, which directly interacts with the TT reinforcement and which is
potentially subject to a full triaxial stress state, plus two exterior
unconfined regions undergoing plane stress conditions, P�

u and Pþ
u .

Henceforth, for simplicity these regions are considered to have
uniform thickness, and denominated core layer and unconfined
layers. Accordingly, upon specifying the pair of (constant) co-
ordinates z�c and zþc such that �d=2< z�c < zþc < d=2, the range of Pc

is defined by the set z2½z�c ; zþc � while the unconfined regions P�
u ,

Pþ
u correspond to the sets z2½�d=2; z�c � and z2½zþc ; d=2�,

respectively.
The above introduced tripartition is exemplified in Fig. 2 with

reference to the plastic (steel) reinforcements typically employed in
masonry (concrete) walls. In this case the coefficient mt corresponds
to the transverse area (per square unit reference area) of stirrups
crossing the middle plane of the wall; in these examples the core
layer can be straightforwardly identified with the masonry (con-
crete) material contained in between the in-plane sheets of FRP
(steel) reinforcements tied with stirrups.
2.2. TT heterogeneity and constitutive assumptions

Heterogeneity of constitutive properties across the thickness is
assumed. For layers and TT reinforcements, attention is hereby
confined to an associative elasto-plastic constitutive behavior
[53,54].

The assumptions above and the employed linearized kinematic
framework imply that the internal state of the generic point x
located at a generic quota z belonging to the shell chord Pðx; yÞ is
defined by the three-dimensional (total) strain tensor,

ε ¼ symðu5VÞ (10)

plus the tensor of plastic strain ε
p. The stress-strain relation is given

by the plastic strain tensor:

s ¼ ℂðε� ε
pÞ (11)

where ℂ is the elastic fourth-order tensor with components Cijhk.
For generality, anisotropy is considered; this corresponds to the
existence of 21 independent coefficients Cijhk fulfilling major,
Fig. 2. Sketch of a typical RC wall partition into core layer/exterior layers.
Cijhk ¼ Chkij, and minor symmetries, Cijhk ¼ Cjihk ¼ Cijkh.
The evolution law of εp is defined in rate terms with the aid of a

plastic multiplier l evolving as dictated by Karush-Kuhn-Tucker
conditions [55,56]:

_εp ¼ _l
vf
vs

; _l � 0; f sð Þ � 0; _lf ¼ 0; (12)

where f is a convex yield function.
To encompass a sufficiently comprehensive family of elasto-

plastic behaviors, associated with a generic point x, dependence
of f upon all three stress invariants is considered, viz.:

f ¼ aJ2 þ bI1 þ cJ3 þ d; (13)

where I1 is the first invariant of the stress tensor, J2 and J3 are the
second and third invariants of the deviatoric part, devs, of the
stress tensor:

I1 ¼ trs; J2 ¼ ðdevs$devsÞ1=2; J3 ¼ detðdevsÞ; (14)

while a, b, c and d are scalar coefficients fulfilling the convexity of f.
In particular yield functions associated with Von Mises and

Drucker-Prager criteria are retrieved as special cases of (13). Spe-
cifically, denoting by s0 the uniaxial yield stress, Equation (13)
specializes to the Von Mises yield criterion with a ¼

ffiffiffi
3

p
,

b ¼ c ¼ 0, d ¼ �s0. Moreover, denoting by st and sc the tensile and
compressive yield stresses and setting

a ¼ 1; b ¼ � 1ffiffiffi
3

p
�
st � sc
st þ sc

	
;

c ¼ 0; d ¼ � 2ffiffiffi
3

p
�

stsc
st þ sc

	
;

(15)

the Drucker Prager criterion is desumed from (13).
Through-the thickness heterogeneity is accounted for by

assuming that, for a given shell chordPðx; yÞ, coefficients a, b, c, d as
well as coefficients Cijhk are function of z. To encompass a more
general through-the-thickness distribution of mechanical proper-
ties, namely both TT-laminated and TT-functionally graded struc-
tures, functions aðzÞ, bðzÞ, cðzÞ, dðzÞ and CijhkðzÞ are assumed to be a
combination of piecewise constant functions (laminated structure)
and piecewise linear functions (functionally graded structure).

Relationships between work-associated generalized stress var-
iables and generalized strain variables are represented with the aid
of an Helmoltz free energy functional Fðai;aj;akÞ of three generic
(scalar, vector or tensor) mechanical descriptors ai, aj and ak,
(which can be scalar variables or functions); the usual notation
vF=vai denotes the standard partial differentiation carried out by
varying ai while holding fixed all remaining state descriptors.

As a standard application of the work-association concept, upon
introducing the free energy function Fðε; εpÞ, the mechanical
quantities entering (11) can be framed within the continuum
thermomechanics with internal variables [57e59] where the stress
tensor s is the mechanical quantity work-associated with the total
strain ε, [53,54], viz.:

s ¼ vF
vε

¼ vF
vε






ε
p

z}|{fix: : (16)

In (16) the subscript εp under the ð$Þ
z}|{fix:

sign is used to remark that
this quantity is held fixed. Using the same notation to represent
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fourth-order stiffness operators, the elastic stiffness operator is
defined as:

ℂ ¼ vs

vε
¼ vs

vε






ε
p

z}|{fix: ¼ v2F
vε5vε







ε
p

z}|{fix: : (17)

The notation in (16) is also conveniently employed in Subsection
2.4 to represent in a short-hand format the work-association re-
lationships between generalized stress variables and generalized
strain variables entering the TTJ shell formulation.

A different derivative concept is the differentiation of a free
energy functional F, with respect to a descriptor ai, carried out
while the mechanical system remains relaxed over some de-
scriptors aj and ak, i.e., letting aj, ak evolve in fulfillment of un-
derlying evolution laws dictated by lower-scale equilibrium, or by
thermodynamic laws. This differentiation operation, which is
herein denoted as:

vF
vai






aj;ak

zfflffl}|fflffl{rel: ; (18)

permits to conveniently represent the elasto-plastic tangent oper-
ator ℂep of the material constituting the shell at a point x. It enters
the explicit rate form of the stress-strain relation

_s ¼ ℂep _ε; (19)

or in the compact form

ℂep ¼ vs

vε






ε
p

z}|{rel: : (20)

As well known [53], the expression of ℂep for the rate-
independent work-associated perfect plasticity herein considered
is:

ℂep ¼

8><>:
ℂ _l ¼ 0

ℂ�
�
vf
vs

$ℂ
vf
vs

	�1

ℂ

�
vf
vs

5
vf
vs

	
ℂ _l>0

: (21)

Fourth order tensors ℂ, ℂep are also represented in the Voigt-
similar matrix notation reported in (5)e(8), respectively as ℂV

and ℂep
V . This permits to represent relation (19) in the Voigt form:

_sV ¼ ℂep
V _εV : (22)

An elasto-plastic stress-strain response is considered also for the
constitutive response of the transversal ties. The relevant laws can
be straightforwardly obtained by specializing to the uniaxial case
their triaxial counterparts recalled above. Specifically, denoting by
st , εt and ε

p
t , respectively, the scalar stress, elastic and plastic strains

of the ties (smeared onto the median plane), and byFt the smeared
free energy of the ties, one has:

st ¼ Ct
�
εt � ε

p
t
�
; st ¼ vFt

vεt






ε
p
t

z}|{fix : (23)

The corresponding rate incremental stress-strain law is:

_st ¼ Cep
t _εt ; (24)

where Cep
t is the (smeared) tangent elasto-plastic operator associ-

ated with the (nonlinear) constitutive function of the transverse
reinforcement material, an operator that can be operatively
computed as a 1D specialization of (21).
2.3. Kinematics of the TTJ shell

The kinematics of the proposed TTJ formulation is devised as an
enrichment of the generalized displacement fields of a standard
ESL-FSDT formulation [34,60] by supplementing the generic shell
chord Pðx; yÞ with a TT transverse displacement field uzðzÞ. This
enrichment has the objective of describing stretches along-the-
thickness, yet ensuring TT continuity of stresses sz on account of
its key role in TT confinement.

We recall that, within the standard FSDT of planar shells, the
generalized displacements uPV ðx; yÞ of chord Pðx; yÞ are

uPV ðx; yÞ ¼
h
uðmÞðx; yÞ bðx; yÞ

iT
(25)

where uðmÞ is the field of in-plane membrane displacements and b

is the field of generalized plate displacements:

u mð Þ ¼ �u mð Þ
x u mð Þ

y

�T
; (26)

b ¼ � bx by
�T
: (27)

Fig. 1 provides graphical illustrations recalling the elementary
3D displacements of the shell associatedwith individual unit values
of the coordinates appearing in (26) and (27); in particular, vector b

is related to the rotations about axes x and y, q ¼ � qx qy
�T , by

means of b ¼ bz � q ¼ ��qy qx
�T . Rotations qx and qy are assumed

positive if counter-clockwise.
The inclusion of the TT transverse displacement field uzðzÞ

among the kinematic descriptors of the shell chord implies that the
state of Pðx; yÞ is defined by:

Pðx; yÞ/ uPV ;uzðzÞ (28)

where ðx; yÞ2S and z2½�d=2; d=2�. Hence, the relation between
generalized shell displacements and 3D displacements reads:

u ¼ uðmÞ þ q� zbz þ uzðzÞbz; (29)

where dependence upon variables x and y has been omitted.
Strain components from ordinary ESL-FSDT are grouped below

in the vector:

3
P
V ¼

h
E m

x E m
y gmxy kbx kby 2kbxy gsxz gsyz

iT
(30)

whose entries are the components of membrane strain measures
3m, bending strains 3b and shear strain measures 3s. Their relation
with generalized FSDT displacements is recalled below

3
m ¼ sym


uðmÞ5Vp

�
¼
"

E m
x gmxy

.
2

gmxy

.
2 E m

y

#
(31)
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E b ¼ sym
�bz � q5Vp

	
¼ sym

�
b5Vp

�

¼

26664
vbx
vx

1
2

�
vbx
vy

þ vby
vx

	
1
2

�
vbx
vy

þ vby
vx

	
vby
vy

37775 ¼

26664
kbx

kbxy
2

kbxy
2

�kby

37775 (32)

The whole set of chord strains includes the shear strains gxz and gyz

3
s ¼

�
vuz
vx þ bx

vuz
vy � by

�T
¼ �gxz gyz

�T
: (33)

As a result of the adoption of descriptors in (28), the set of
enriched strain measures of the shell chord is

Pðx; yÞ/ E P
V ; εz zð Þ; (34)

where εz ¼ vuz=vz.
The tensor relation between 3D continuum strains and gener-

alized TTJ strains is accordingly:

ε ¼ cE m � zcE b þ gxz
1
2

�bx5bz þ bz5bx	þ gyz
1
2

�by5bz þ bz5by	
þ εz

�bz5bz	;
(35)

where the superposed hat over 3m and 3b denotes their immersion
in the space of 3D second order symmetric tensors, what corre-
sponds, for instance, to:

b3m ¼
24 E m

x gmxy

.
2 0

gmxy

.
2 E m

y 0
0 0 0

35: (36)

Relation (35) can be conveniently rewritten in Voigt-like matrix
form. Using (30) and with the aid of the following matrix
projectors:

ℙ
0
V ðzÞ ¼

26666664
1 0 0 �z 0 0 0 0
0 1 0 0 �z 0 0 0
0 0 1 0 0 �z 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

37777775 (37)

and

Pz
V ¼ ½0 0 0 0 0 1 �T ; (38)

the following relation holds

εV ¼ ℙ
0
V ðzÞ 3

P
V þ εzðzÞP

z

V (39)

from which one also deduces

vεV

v 3PV

¼ ℙ
0
V ðzÞ: (40)
In order to simplify some matrix operations reported in the
sequel, it is also convenient to consider the upper 5� 8 submatrix
of (37) (denoted by a starred superscript)

ℙ+V

0
ðzÞ ¼

266664
1 0 0 �z 0 0 0 0
0 1 0 0 �z 0 0 0
0 0 1 0 0 �z 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

377775 (41)

whereby vector ε0V can be represented as

ε0V zð Þ ¼ ℙ+V zð ÞE P
V : (42)
2.4. Stress measures of the TTJ shell

Generalized stress measures of the shell chord are also defined

in terms of work-association in relation to the free energy FP of
Pðx; yÞ:

FPðx; yÞ ¼
Zd=2

�d=2

Fðx; y; zÞ dz: (43)

Specifically, the eight-entries vector of generalized stress measures
of the shell can be directly introduced in Voigt notation as follows:

sP
V ¼ vFP

v 3PV

: (44)

Owing to the addition of the degrees of freedom represented by
field uzðzÞ, describing TT stretch of the core chord and of the
exterior unconfined layers, the stress state of a chord Pðx; yÞ is
characterized by the following triplet of generalized stress
measures

sP
V ;st ; sz zð Þ; (45)

where sP
V captures the FSDT deformation component of Pðx; yÞ, st

the smeared stress in the ties (assumed constant in the core layer),
and szðzÞ is such that sz ¼ 0 for z belonging to the unconfined
layers, i.e., for z2½�d=2; z�c � and z2½zþc ; d=2�.

The relation between 3D stress measures and generalized stress
measures stems from work-association by application of the chain
rule on account of (16), (40) and (43):

sP
V ¼ vFP

vE P
V

¼
Zd=2

�d=2

vFP

vεV
zð Þ vεV

vE P
V

zð Þ dz ¼
Zd=2

�d=2

�
ℙ
V

	T

sV dz:

(46)

It is worth being observed that, according to the previous relation,
the generalized stress vector sP

V does not depend on field szðzÞ. This
is a natural consequence of the fact that FSDT simply neglects TT
stretching, while a complete description of the stress state in the
present formulation is the one in (45).

The explicit relations between 3D stress components and
generalized FSDT stress components are computed from (46). These
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are reported below, grouped by membrane generalized stresses,
plate generalized stresses and out-of-plane shear stresses:

sm
V ¼

266666666666664

vFP

vE m
x

vFP

vE m
y

vFP

vgmxy

377777777777775
¼

26666666666666666664

Zd=2
�d=2

sx dz

Zd=2
�d=2

sy dz

Zd=2
�d=2

txy dz

37777777777777777775

(47)

sb
V ¼

266666666666664

vFP

vkbx

vFP

vkby

1
2
vFP

vkbxy

377777777777775
¼

26666666666666666664

Zd=2
�d=2

zsx dz

Zd=2
�d=2

zsy dz

Zd=2
�d=2

ztxy dz

37777777777777777775

(48)

ss
V ¼

2666664
vFP

vgsxz

vFP

vgsyz

3777775 ¼

26666666664

Zd=2
�d=2

txz dz

Zd=2
�d=2

tyz dz

37777777775
(49)

sP
V ¼ vFP

v 3PV

¼
h
sm
V sb

V ss
V

iT
: (50)
2.5. TTJ equilibrium and compatibility equations

The TTJ interaction between ties and core material is described
based on the following assumptions:

� the opposite upper and lower ends of the ties are perfectly
pointwise joined with the upper and lower boundary planes of
the core layer, i.e., with planes z ¼ z�c , z ¼ zþc , respectively, so
that the transverse displacements of the core and the stress of
the ties are coincident at these locations: uzðz�c Þ ¼ utzðz�c Þ,
uzðzþc Þ ¼ utzðzþc Þ;

� in the interior part of the core layer, z�c < z< zþc , tie-core inter-
action is absent, so that the core material and the ties can un-
dergo completely independent deformations.

For a generic chord Pðx; yÞ, the hypotheses above imply, on the
one hand, the compatibility condition that the core elongation
must be equal to the elongation of the ties, and, on the other hand,
as a consequence of translational equilibrium along the z axis, the
existence of a direct relation between the normal stresses along z of
the shell core and of the ties, mediated by mt defined in (9). These
conditions correspond to the following equations:
1 TTJS compatibility:

Zzþc
z�c

εzðzÞ dz ¼ εtdt (51)

where dt ¼ zþc � z�c .

2 TTJS equilibrium:

UcszðzÞ þ Utst ¼ 0; cz2
i
z�c ; z

þ
c

h
: (52)

The system composed by equations (51) and (52), combined
with the constitutive equations of Section 2.2 and the kinematic
equations of Section 2.3 (and with (9)), defines a continuous convex
optimization problem, in the primary unknown field uzðzÞ,
describing the meso-scale response of the elasto-plastic TTJ shell
chord Pðx; yÞ located at ðx; yÞ. This meso-scale problem is, in
general, coupled with the global minimization problem expressing
equilibrium of the shell at a structural level.

Hereby, it is convenient to consider the rate form of the local
problem which is specially suited for handling elasto-plastic
problems so as to derive an explicit relation for the elasto-plastic
tangent operator of the shell chord, in a form analogous to the
one provided by (20)e(22) for the standard 3D problem.

Following a conceptual scheme usual in strain-driven elasto-
plasticity, the (rate-form) shell chord problem can be cast in a form
such that the rate field _uzðzÞ is set as the primary unknown func-
tion, which all other unknown (rate) kinematic fields are related to,

while _3PV is treated as the known driving vector variable.
Upon recalling definition (9) for mt and introducing the rate of TT

elongation of the core layer _dt defined as:

_dt ¼
Zzþc
z�c

_εzðzÞ dz ¼
Zzþc
z�c

v _uz
vz

dz ¼ _uz

zþc
�
� _uz


z�c
�

(53)

the rate forms of equations (51) and (52) are written as follows,
respectively:

_dt ¼ _εtdt ðcompatibility in rate formÞ ; (54)

_sz zð Þ þ mt _st ¼ 0 ðequilibrium in rate formÞ ; (55)

where (55) holds for any z2�z�c ; zþc ½:
To obtain the solution of the rate problemwe combine (22) with

the rate form of (39) and obtain

_sV ¼ ℂep
V

�
ℙV zð Þ _E

P
V þ _εz zð ÞPz

V

	
(56)

Using (42) and recalling the Voigt-like matrix conventions
(3)e(8) which separate the entries associated with the TT strain/
stretch coordinates, the previous equation can be split in the
following vector and scalar equations:

_s0V zð Þ ¼ ℂep
V 0 0 zð Þℙ+V zð Þ _E

P
V þ _εz zð ÞCepV 0 z zð Þ; (57)

_sz zð Þ ¼ CepV z 0 zð Þ$ℙ+V zð Þ _E
P
V þ Cep

V z z zð Þ _εz zð Þ: (58)

The last equation can be inserted into (55), observing that

_εz ¼ v _uz=vz and that the relation _st ¼ Cep
t
_dt=dt can be inferred from

(24) and (54); this provides:
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v _uz
vz

zð Þ � mt
Cep
t

Cep
V z z

zð Þ _dt
.
dt ¼ � 1

Cep
V z z

zð ÞCepV z 0 zð Þ$ℙ+V zð Þ _E
P
V :

(59)

Integration of the previous relation in the interval �z�c ; zþc ½ yields

Zzþc
z�c

v _uz
vz

zð Þ dz� mt

Zzþc
z�c

Cep
t

Cep
V z z

zð Þ _dt
.
dt dz

¼ �
Zzþc
z�c

1
Cep
V z z

zð ÞCepV z 0 zð Þ$ℙ+V zð Þ _E
P
V dz; (60)

or, equivalently:
_dt � mt
_dt
dt
Cep
t

Zzþc
z�c

1
Cep
V z z

zð Þ dz ¼ �

0B@ Zz
þ
c

z�c

1
Cep
V z z

zð Þ

ℙ+V zð Þ

�T
CepV z 0 zð Þ dz

1CA _E
P
V : (61)
Thus, setting

V ¼ �

0B@Z zþc

z�c

1

Cep
V

z z
ðzÞ

 
ℙ+V

0
ðzÞ
!T

CepV
z 0

ðzÞ dz

1CA
1� mt

dt
Cep
t

Z zþc

z�c

1

Cep
V

z z
ðzÞ

dz

(62)

_dt is finally computed as:

_dt ¼ V $_3PV (63)
_s0V ðzÞ ¼
vs0V
v 3PV







uz
z}|{rel: _3PV ¼

264ℂep
V

0 0
ðzÞℙ+V

0
ðzÞ þ CepV

0 z
ðzÞ

Cep
V

z z
ðzÞ

5

0@�
 
ℙ+V

0
!T

CepV
z 0

ðzÞ þ mt
dt
Cep
t V

1A
375_3PV (69)
The rate problem is completely solved once _dt is known from Eq.
(63), since Equation (59) provides:

_εzðzÞ ¼ 1

Cep
V

z z
ðzÞ

0@�
 
ℙ+V

0
!T

CepV
z 0

ðzÞ þ mt
dt
Cep
t V

1A$_3PV (64)

and the primary unknown field _uzðzÞ is computed taking the inte-
gral of (64) in the interval ½0; z�, viz.:
_uzðzÞ ¼ _uzð0Þ þ
Zz
0

v _uz
vz

dz

¼ _uzð0Þ þ mt
dt
Cep
t

Zz
0

1

Cep
V

z z
ðzÞ

V dz�
Zz
0

1

Cep
V

z z
ðzÞ

 
ℙ+V

0
!T

CepV
z 0

ðzÞd
When field _uzðzÞ evolves in compliancewith (65) we say that the
mechanical system Pc of the core layer is relaxed with respect to
field uz, i.e., it evolves in fulfillment of equilibrium and elasto-
plastic constitutive laws.

Employing the same notation as in (20) the elasto-plastic
tangent operator ℍV of the chord P, entering its rate constitutive
law

_sP
V ¼ ℍV

_E
P
V ; (66)

can be represented as

ℍV ¼ vsP
V

vE P
V







uz
z}|{rel: : (67)
Hence, substituting (46) into (67) one computes

ℍV ¼
Zd=2

�d=2

 
ℙ+V

!T
vsV

vE P
V







uz
z}|{rel: dz; (68)

where the term vsV=v 3PV




uz
z}|{rel: is computed, for z belonging to the

confined core chord Pc and, accounting for the relaxed expression
of _εz provided by (64), from (57), (58). In particular, for the confined
core chord Pc substitution of Equation (64) into (57) yields
For the exterior unconfined layers undergoing plane stress
conditions,P�

u andPþ
u , the integrand in (68) is computed with the

plane-stress elasto-plastic tangent operator.
Finally, considering the split Pc ¼ P�

u ∪P
þ
u and additivity of

integration, the tangent operator ℍV of the TTJ chord, as deter-
mined by Equations (54) and (55), can be computed as the sum of
the tangent operators ℍC

V and ℍU
V associated with the confined and

unconfined region, respectively, viz.:
z$_3PV

(65)



Fig. 3. Structural scheme of wall subject to in-plane pushover test.

Fig. 4. Structural scheme of wall subject to out-of-plane pushover test.
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ℍV ¼ ℍC
V þ ℍU

V : (70)

Substitution of Equation (69) in (68) provides a particularly
compact expression of the tangent operator ℍC

V of the confined
core:

ℍC
V ¼

Zzþc
z�c

 
ℙ+V

0
!T

ℂep
V

0 0
ðzÞℙ+V

0
ðzÞ dz

þ�
Zzþc
z�c

 
ℙ+V

0
!T

CepV
0 z

ðzÞ

Cep
V

z z
ðzÞ

5

24 ℙ+V0
!T

CepV
z 0

ðzÞ � mt
dt
Cep
t V

35dz
(71)

Note that the first integral in Eq. (71) represents the tangent
operator of the classical ESL-FSDT shell formulation which is in-
dependent of the transverse confinement. Actually, this term de-

pends on the 5� 5 submatrix ℂep
V

0 0
of the tangent operator of the

core material (independent from εz), and on the (constant) geo-

metric projector ℙ+V
0

. Conversely, the second integral computes the
contribution of the TT confinement to the generalized tangent
operator of the shell chord. In turn, this second term depends on

Cep
V

z 0
and CepV

0 z
, i.e. the z components of the material tangent operator,

on the transverse ties stiffness Cep
t , geometry and TT area ratio mt .

The second addend ℍU
V in (70) is provided by

ℍU
V ¼

Zzþc
z�c

 
ℙ+V

!T
264ℂep

V 0 0� 1
Cep
V z z

CepV z 05CepV z 0

375ℙ+V zð Þdz;

(72)

where the tensor under square bracket achieves the classical form
of the elasto-plastic tangent operator obtained by stress conden-
sation in case of plane stress [20,21].

Finally, it is worth being observed how the two limit behaviors
of plane stress and zero TT stretch are consistently recovered by the
proposed TTJ model, respectively for mt/0 and mt/∞. Specifically,
whenever ties area is nil (Ut ¼ 0), so that mt ¼ 0, the second addend
in Equation (55) vanishes together with the stress field szðzÞ.
Moreover, the second addend in square brackets in the second in-
tegral on the RHS of Equation (71) vanishes as well, so that the
tangent operator assumes the classic plane-stress form entering

(72). On the contrary, in the limit Ut/∞, the terms V and _dt
vanish due to Equations (62) and (63). In such case, Equation (65)
yields for z2½z�c ; zþc �:

_uzðzÞ ¼ _uzð0Þ þ
Zz
0

v _uz
vz

dz ¼ _uzð0Þ (73)

what corresponds to the vertical displacement rate _uzðzÞ equal to its
mid-plane value, throughout the core layer, with zero TT stretch. In
presence of in-plane loading and when the chord is entirely
confined (z�c ¼ �d=2, zþc ¼ d=2 this condition corresponds to plane
strain.

3. Numerical applications

In this section numerical applications are presented in order to
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illustrate the modeling features provided by the TTJS formulation
detailed in Section 2. The effect of transverse confinement is
examined in terms of global response and of local triaxial stress and
strain states for two selected structural examples; they consist of
rectangular walls fully clamped at the base subject to in-plane and
out-of-plane pushover loading with geometry and loading pa-
rameters shown in Figs. 3 and 4.

Finite Element (FE) analyses have been carried out employing
the 4-noded, 24 DOFs Mindlin-Reissner plate based MITC shell
element formulation [48] for interpolating the generalized
displacement fields uðmÞ and b over the wall midplanes.

Analyses have been performed in the open-source object-ori-
ented FEM code OpenSees [52], upon implementing the formula-
tion for the TTJ chord presented in Section 2 as a user-defined
section object-class. Given the generalized strain at each integra-
tion point of a shell element, the object-class computes the corre-
sponding generalized stress and tangent operator.

Homogeneous elasto-plastic constitutive laws having the form
described in Section 2.2 have been considered for all tests. In
particular, an isotropic linear elastic-perfectly plastic behavior has
been assumed for the reinforced core material of the wall; TT
reinforcement area ratio as uniformly distributed over the shell
mid-plane. The Young's modulus E and the Poisson's ratio n,
together with the yield function coefficients a, b, c, d entering (13),
do not vary with x and y and, over the shell chord, along z. The shell
chord is assumed to be entirely confined, i.e., z�c ¼ �d=2, zþc ¼ d=2.

Transverse ties have been modeled employing the uniaxial
Giuffr�e-Menegotto-Pinto [61] elasto-plastic model. This model has
been selected since it is available in Opensees and it is endowed
with an asymptotic hardening branch exhibiting a smooth yield
transition which, by providing a convenient regularization of an
ideal elastic-perfectly plastic uniaxial law, turned out to be also
beneficial for numerical convergence. Furthermore, a no-
compression behavior is added to TT reinforcement to reproduce
a no-tension response of concrete in the TT direction in presence of
TT shrinking of the shell core. This choice implies that sz � 0 in all
simulations.

Both a J2 and a Drucker-Prager yield function have been
employed in the analyses since they approximate a large class of
material responses encompassing both equal and differentiated
tensile and compressive strengths, the Drucker-Prager model
providing also a conveniently simple description of frictional
materials.

Shell elements with 4 Gauss points have been considered. Shell
chords located at the Gauss points have been further partitioned
into 10 layers, each layer having its own elasto-plastic history
variables integrated at each loading step. The TT integration points
are located at the layer thickness midpoint. In all analyses a regular
mesh of 4� 8 quadrilateral elements have been used by
Table 1
Employed material and geometrical parameters for shell core and TT reinforcement

Description

TT reinf. yield stress
TT reinf.Young modulus
TT reinf. kinematic hardening modulus
Shell core Young modulus
Shell core Poisson ratio
Shell core J2 uniaxial strength
Shell core Drucker-Prager uniaxial tensile strength
Shell core Drucker-Prager uniaxial compressive strength
Wall height
Wall base width
Wall thickness
considering nodes at the lower base of the wall fully constrained.
We do not document the results of numerical examples referred to
irregular meshes since insensitivity of the proposed layered TTJ-
MITC shell element to mesh distortion is basically inherited from
the underlying MITC formulation.

Our main concern was to evaluate the sensitivity of the global
and local response to confinement bymaking the confinement ratio
mt span the entire range ½0;þ∞½ for every combination of in-plane/
out-of-plane loading and J2/Drucker-Prager yield functions. The
results of these sensitivity analyses are reported in Section 3.2.

A second main objective of the analyses was to assess that the
present formulation correctly fulfilled consistency with limit be-
haviors of the model associated with mt ¼ 0, i.e. a plane stress
response, and mt ¼ ∞ corresponding to zero TT stretch.

Furthermore, as a first assessment of the predictive capabilities
of the TTJS, we have documented in Section 3.3 the strength
increment in RC walls induced by TT confinement assigned in
accordance with Eurocode 2 provisions [62]. The numerical-
experimental comparison has been purposefully carried out for
RC structures in consideration of the higher degree of confidence/
control of material properties guaranteed by code regulations and
of the relevance of TT confinement in RC structural members.

The analyses on strength increment in RC walls motivated the
choice of employing, for the elastic moduli and uniaxial strength,
ordinary values prescribed by regulations for common design
practices of RC members. Specifically, the constitutive parameters
employed for concrete and reinforcement steel refer to class C20/25
and 450 of Eurocode 2 [62], respectively. Vertical load Qv has been
assumed to be twice the dead load of the wall in order to forfeitly
account for vertical loads transferred by other structural members.

Early collapse of the wall due to tensile stress was prevented by
the addition, along the vertical sides of the wall, of two vertical
alignments of reinforcing uniaxial 2-noded steel trusses, as shown
in Figs. 3 and 4. Trusses are modeled with the same constitutive law
and parameters of the transverse ties with an area of 1885 mm2

corresponding to 6� f20 mm.
The employed material and geometrical parameters are re-

ported in Table 1.
Fig. 5 shows the biaxial elastic domains corresponding to the

employed strength parameters for J2 and Drucker-Prager yield
functions. Due to the assumed values for the tensile and
compressive uniaxial strengths for the Drucker Prager model, the
biaxial elastic domain is unbounded in the direction of equibiaxial
compression.

3.1. Geometry, loads and analysis specifications

The static pushover analyses consist of two loading steps. In the
first step, vertical loads are applied by a linear ramp law up to a final
compressive force Qv,B ¼ �400 kN uniformly distributed on the
common to all numerical analyses.

Symbol Units Value

fy t MPa 450
Et GPa 200
Ht GPa 20
E GPa 21
n e 0.2
sy MPa 25
syþ MPa 1.19
sy� MPa �25
H m 4
B m 2
d m 0.5



Fig. 5. Intersections of J2 and Drucker-Prager yield domains with plane sz ¼ 0.
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upper base of the wall. In the second step vertical loads are kept
constant while horizontal loads are uniformly applied over the
upper base and increased by means of a displacement driven
control algorithm monitoring the horizontal displacement of the
node at the middle-point of the upper base. In all analyses, dis-
placements are increased up to 0:08 m, a value which is the 2% of
the wall height.

Figs. 3 and 4 show the horizontal loads applied along x and z,
activating in-plane membrane and out-of-plane flexural behavior
in the wall, respectively.
3.2. Results of sensitivity analyses

A first set of numerical simulations was carried out to analyze
the sensitivity of the wall response to the value of ties area ratio mt
in relation to the employed yield criterion and to the in-plane/out-
of-plane horizontal loading.

The response of the wall is examined in Section 3.2.1 in terms of
Fig. 6. Wall subject to in-plane pusho
global structural response, in Section 3.2.2 in terms of distribution
of TTconfining stress over the shell midplane and in Section 3.2.3 in
terms of evolution of the local triaxial stress state at a selected
monitored point of the structure.

3.2.1. Load-displacement curves
Fig. 6 shows two families of load-displacement Rx-Ux curves,

where Rx ¼ B$Qx is the total horizontal load and Ux is the x
displacement component of the top-middle point of the wall,
computed during the shear step of the pushover loading. This
family of curves is obtained at different values of mt including mt ¼ 0
and mt ¼ ∞, where the latter value has been enforced by directly
setting the zero TT-stretch εz ¼ 0 at all integration points of the
shells.

Fig. 6(a) reports the results obtained with the J2 yield surface
and Fig. 6(b) refers to the Drucker-Prager yield surface.

As expected, for a given value of shear displacement, the
structure gains stiffness and reaches higher shear loads as mt in-
creases. More interestingly, numerical results show that the curves
corresponding to plane stress ðmt ¼ 0Þ and zero TT-stretch ðmt ¼ ∞Þ
bound all other structural responses obtained at intermediate mt
values, thus confirming the analytical considerations of limit plane-
stress and zero TT stretch conditions made in Section 2. In both
Fig. 6(a) and (b) the nonlinear shapes of the curves show that
during shearing the elastic regime is exceeded in all simulations.

The load-displacement curves corresponding to out-of-plane
loading are plotted in Fig. 7 with the same layout of Fig. 6. The
plotted variables are the total horizontal load along z, Rz ¼ B$Qz and
the displacement Uz of the top-middle point of the wall. Also in this
case plane stress and zeroTT stretch limits bound all Rz � Uz curves.
It can be observed from Fig. 7(a) that, when J2 plasticity is
considered, effects of TT confinement are absent since all curves
overlap.

For out-of-plane bending with J2 plasticity, numerical results
showed that one has uniformly sz ¼ 0, through the whole panel
and during all time steps. This circumstance is easily explained by
considering that, in out-of-plane flexure, the vertical stress and the
deformation over the shell chord are antisymmetric with respect to
the middle plane, see, e.g., 'Fig. 10(c); hence the mean thickness
elongation (i.e., the variation of dt) due to bending is zero and the
out-of-plane flexural behavior is uncoupled from sz.
ver e Load-Displacement curves.



Fig. 7. Wall subject to out-of-plane pushover e Load-Displacement curves.
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The same effect is not detected with Drucker Prager plasticity
since the different tensile and compressive elasto-plastic behavior
disrupts the middle-plane antisymmetry inducing coupling with sz
and a consequent sensitivity to confinement; this is shown in
Fig. 7(b) where a more pronounced stiffness increment with
increasing mt is observed. This effect is due to the pure-bending,
sketched in Fig. 10(d), induced by the mutual magnitude of axial
force and bending moment. Thus, the neutral axis of the monitored
Gauss point does not belong to the middle plane of the shell.
3.2.2. Distribution of TT confinement stress
Figs. 8e10 report the colormap contours of sz, plotted over the

deformed shape of the rectangular panels, corresponding to the last
step of the pushover analyses, i.e. at the maximum horizontal
displacement U ¼ 0:08 m. Stresses are plotted for all loading/yield
criteria combinations (except for the J2 case where, as above re-
ported, the analyses yield uniformly sz ¼ 0) and at different TT
reinforcement area ratios.

All contours show the increase of confining stress sz with mt .
Moreover, white areas correspond to regions where sz ¼ 0. This
condition is the result of the previously described tensileeonly
constitutive model of the ties, and substantially corresponds to
Fig. 8. Colormap contours of compressive TT confinement stress (�sz , [kP
concrete shrinking in z direction.
The computed confining stress distributions consistently reflect

the distribution of TT stretch which would be more simply
analytically evaluated by a cantilever model subjected to combined
axial force and uniaxial in-plane and out-of-plane flexure. In
particular, in Fig. 8(a) and (b) the regionwith compressive sz at the
wall base essentially corresponds to the left half of the structure.
Actually, the neutral axis at the clamped end section is parallel to
axis z and, due to the high eccentricity of stress resultants at the
base section, is located almost at the middle point of the base so
that the left half of the wall is compressed and the right half is
subject to tensile actions. This is consistent with the relative
magnitude of axial vertical force and bending at the base section for
which the wall is subject to almostepure bending.

In case of zero TT stretch (Fig. 8(c)), the onset of confining
compressive stresses is observed to have a broader distribution
involving the right side of the wall with the presence of 45+-in-
clined purple region. This is indicative of the presence of a com-
pressed region inducing compressive sz as a consequence of the
transverse dilation impeded by the zero TT stretch hypothesis.

A similar distribution of confinement stress is found in the tests
where shells are modeled by the Drucker-Prager yield criterion
a]) e In-plane pushover test e J2 core (Deformed shape out of scale).



Fig. 10. Colormap contours of compressive TT confinement stress (�sz , [kPa]) e Out-of-plane pushover test e Drucker-Prager core (Deformed shape out of scale) and bending
schemes.

Fig. 9. Colormap contours of compressive TT confinement stress (�sz , [kPa]) e In-plane pushover test e Drucker-Prager core (Deformed shape out of scale).
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plotted in Fig. 9. The order of magnitude of confinement stress
results lower since the Drucker-Prager wall stiffness is lower than
the J2 one; thus, at a same value of the horizontal displacement,
stresses are expected to be lower.

Results of out-of-plane pushover test with shells modeled by
Drucker-Prager material are illustrated in Fig. 10(a) and (b). Results
with the J2 material are not plotted since, as previously observed,
the computed TT confining stress sz is zero due to the anti-
symmetry of deformation with respect to the middle plane, see,
e.g., Fig. 10(c). On the contrary, when the Drucker-Prager law is
employed, the stress resultants at the base section, consisting in
coupled compressive axial force and uniaxial out-of-plane bending,
produce an unsymmetrical stress distribution, sketched in
Fig. 10(d), which induces a positive TT elongation which ultimately
results into TT confining stress reaction.
3.2.3. Local triaxial stress state evolution
The response of the wall to in–plane pushover loading is

examined in closer detail in terms of evolution of the local triaxial
stress state. This is monitored at the chord associated with the
Gauss point indicated in Fig. 3, in particular at the integration point
located at the shell middle plane, i.e., at z ¼ 0. However, since in the
in–plane test internal actions are limited to membrane behavior,
the selected integration point is representative of the behavior of
the whole chord.

Results concerning pushover analyses with both the J2 and the
Drucker-Prager criteria are hereby reported by plotting the evolu-
tion curves of the monitored stress tensor in the space of principal
stresses. In particular, a family of evolution curves is generated for
different values of mt and comparing the response with curves
corresponding to perfect plane-stress and zero TT-stretch
conditions.

The response obtained with the J2 criterion is shown in Fig. 11.
The yellow cylinder represents the J2 yield surface while the red
plane is the locus corresponding to plane stress behavior (i.e., with
sz ¼ 0). The black-dashed line is the hydrostatic axis for which
sx ¼ sh ¼ sz, while the black-solid line is the elliptical intersection
between the yield surface and the plane sz ¼ 0. Depicted curves,
computed for different values of ties area ratio, represent the
evolution of principal stress components during the in-plane test.

The plane stress response, recovered by setting mt ¼ 0 in the
structural model, corresponds to the blue line. In this curve, as
expected, principal stresses remain contained within plane sz ¼ 0
and the plastic branch follows the biaxial yield ellipse.



Fig. 11. Yield surface and principal stress path e in-plane pushover test, J2 shells.
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Transversal confinement produces two effects which can be
observed in the figure. During the elastic phase the slope of the
stress paths increases with the ties area ratio as well as the yield
stress; however such a phenomenon is not prominent. A signifi-
cantly more pronounced effect is observed for nonzero mt in the
plastic branches of these curves, confined onto the boundary of the
constant J2 cylindrical yield surface. These branches depart from
the sz ¼ 0 plane, and drift towards the hydrostatic axis. In partic-
ular, it is noticeable how the propagation of green and red curves,
corresponding to mt ¼ 2% and plane strain, respectively, tends to
run parallel to the hydrostatic axis. This peculiarity indicates of
course that the increasing load results in an increment of the
spherical part of the stress tensor while the deviatoric part remains
constant in norm.

Fig. 12(a) reports the corresponding results for the Drucker-
Prager yield surface with the same layout of Fig. 11, showing the
known increased beneficial effect of confinement for this criterion
dependent upon the first two stress invariants. Fig. 12(b) shows an
alternative plot of the stress paths where the deviatoric part of the
stress D is plotted vs. the spherical one S.
3.3. Evaluation of TT confinement-induced strength increment in RC
walls

To explore the applicability of the TTJS formulation in civil en-
gineering analyses, this section estimates the increment range of
strength induced by transverse confinement for the structural wall
considered in Fig. 3. The strength increment is hereby estimated by
a straightforward adoption of Eurocode 2 provisions [62] for beam
element design. Specifically, the strength increment of the wall
subject to ineplane pushover is determined by identifying the
attainment of the ultimate limit state and, in particular, considering
the increment of limit stress and strain for confinement effects
proposed in chapter 3.1.9 of Eurocode 2 provisions.

To this end the interaction betweenTT reinforcement in RCwalls
and the concrete core is assumed to be described by the kinematic
hypotheses of Section 2.5, i.e., with TT reinforcement and concrete
core being able to deform undergoing independent TT stretches.
For concrete the Drucker-Prager law is employed using again the
parameters of Table 1 referred to a class C20/25 concrete. A
mt ¼ 0:2% TT area ratio is employed as a value representative of a TT
reinforcement corresponding to f10 mm steel ties with spacing
0:2� 0:2m. Sensitivity of strength estimates to increasing mt has
also been explored.

The provision accounting for the effect of confinement in RC
members (Chapter 3.1.9 in Ref. [62]), prescribe the following cor-
relations between the confined ultimate strain εcu2;c and the
confinement stress, sz

εcu2;c ¼ εcu2 þ 0:0002
sz
fck

; (74)

where εcu2 is the ultimate limit strain and fck is the (unconfined)
cylindrical limit stress of concrete. Similarly, the correlation for the
concrete confined strength fck;c provided by Eurocode 2 reads:

fck;c ¼ fck

�
1þ 5

sz
fck

	
(75)

In particular, for the considered class of concrete one has
fck ¼ �25MPa and εcu2 ¼ 0:0035.



Fig. 12. Yield surface and principal stress path e in-plane pushover test, Drucker-Prager shells.
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Ultimate strength of the RC panel is conventionally identified by
Eurocode 2 with the first attainment of the value εcu2;c for the
longitudinal strain, referred to beam elements. By identifying the
longitudinal direction with axis y, the strain component εy is taken
for the longitudinal strain. The most stressed shell element is
depicted in yellow in Fig. 3 for the in-plane pushover test.

It is worth being emphasized that the presence of confining ties
has two different effects on the behavior of the core material. The
spheric stress increment determined by increased values of mt
shifts the attainment of the yield surface towards higher values of
principal stresses for a same given deformation level. Furthermore,
the nonzero value of sz, according to Equation (74), results in an
increment of εcu2;c. Although small, this increment significantly
increases the top horizontal displacement of the wall correspond-
ing to the attainment of the ultimate limit state for concrete at the
Fig. 13. Drucker-Prager wall subject to in-plane
wall base section.
Confinement stress sz is directly computed by the FE structural

analysis. Fig. 13(a) shows, for several values of mt , the curves ob-
tained plotting vertical strain vs. sz as function of mt . The gain in
ultimate limit strain εcu2;c provided by Equation (74) is represented
by the dashed line. Intersections of solid and dashed lines, denoted
by diamond markers, correspond to the attainment of the ultimate
limit state for concrete at different TT reinforcement area ratios
Indeed, for mt ¼ 0:2%, the ultimate load increases of:

D ¼
Rulsmt¼0:2%

Rulsmt¼0

� 1 ¼ 18%: (76)

Diamond markers also represent the attainment of ultimate
limit states in Fig. 13(b) where the corresponding load-
pushover: strength increment estimation.
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displacement ðUx � RxÞ curves of the wall are plotted. This graph
shows that, alongside with the strength increment captured by the
triaxial TTJS analysis, the ultimate limit state is attained at larger
horizontal displacements when mt is increased, i.e., the confine-
ment effect modeled by Equation (74) is also associated with an
increment of the wall ductility.

Strength increments show a similar order of magnitude if
computed starting from Equation (75). In fact, the computed
confinement stress, obtained from the finite element results at the
ultimate limit state, turns out to be sz ¼ �1:0405MPa; the concrete
confined ultimate stress fck;c, provided by Equation (75), turns out
to be

fck;c
fck

� 1 ¼ 20:81%: (77)

The recovery of physically plausible orders of magnitude for these
strength increment estimates, which fall within the ranges of
common practice design, provides an encouraging assessment of
the structural analyses herein reported.

4. Conclusions

A generalized shell formulation for the triaxial stress analysis of
Through-the-Thickness (TT) confining mechanisms induced by
Through-the-Thickness Jacketing (TTJ) devices in laminated com-
posite structures has been proposed.

By assuming a smeared description of TT reinforcements, the
proposed formulation has been constructed as an enhancement of
the classical laminated ESL-FSDT shell theory, capturing the TTJ
interaction between transverse uniaxial reinforcements and
confined layers in terms of continuum equilibrium and compati-
bility equations.

Statics and kinematics of the shell have been developed by
following standard work-association arguments and encompassing
both TT-laminated and TT-functionally graded structures.

Upon introducing elasto-plastic constitutive assumptions for
the shell core and the reinforcements, a closed-form explicit rep-
resentation of the consistent elasto-plastic tangent operator has
been derived, thus allowing for return mapping algorithms with
optimal convergence features within Newton-Raphson integration
schemes. It has been analytically shown that the response pre-
dicted by the TTJ formulation is consistently bounded by the or-
dinary plane stress response and by the zero TT-stretch response,
respectively recovered in the limits of vanishing TT reinforcement
and infinitely stiff TT reinforcements.

The TTJ formulation has been subsequently combined with a 2D
layered MITC shell finite element and exploited in the nonlinear FE
simulation of in-plane and out-of-plane pushover tests for com-
posite TT-reinforced rectangular panels. In particular, the proposed
formulation represents a versatile tool to be combined with 3D
elasto-plastic constitutive models for the shell core and shell finite
element formulations.

These FE analyses have provided an assessment of the proposed
modeling strategy in terms of both global predicted structural
response and local triaxial response of the shell chords.

Results of the nonlinear structural analyses for TT confined
panels subject to in-plane and out-of-plane pushover, endowed
with a J2 and Drucker-Prager elasto-plastic behavior of the shell
core, indicate that the TTJ approach efficiently captures the
confining interaction between the shell core and the TT reinforce-
ment, while granting predictions that are physically meaningful
and consistent with those provided by simpler analytical 1D
models (albeit 1D models cannot capture confinement effects).

In particular, numerical results have confirmed that the
responses corresponding to zero TT-stretch ðmt ¼ ∞Þ and plane
stress ðmt ¼ 0Þ, represent upper and lower bounds to the responses
obtained at intermediate values of the reinforcement area ratio mt .
These results have also shown the capability of the proposed
modeling strategy to track a complex triaxial interaction between
the shell core and the TT reinforcement along the TT shell chords.
The computed interaction was found to determine a structurally
relevant stress redistribution, both in the elastic and in post-elastic
phases, resulting into marked global structural effects of increased
stiffness, strength and ductility.

Altogether the above highlighted features indicate that the TTJS
structural formulation introduces a new perspective in the 2D non-
linear structural stress analysis of composite shell structures ret-
rofitted by ad-hoc transverse confinement devices. The kinematic
hypotheses underlying the TTJS formulation are specifically suited
for describing physical systems in which the interaction at the tie-
core interface is loose or absent so that differential dilatations are
permitted. Accordingly, examples of these structural typologies,
where TTJS may find a convenient application for stress analysis,
are masonry panels retrofitted by composite ribbons and TT jac-
keted concrete sandwich panels.

More interestingly, the results of simulations of out-of-plane
pushover tests have shown that TTJS captures a beneficial and
structurally significant effect of TT confinement even for out-of-
plane responses when an elasto-plastic constitutive behavior
with different compressive and tensile strengths is employed.
These constitutive assumptions are well suited for concrete and
masonry walls.

A separate discussion deserves the application of the TTJS
formulation for modeling the interaction between built-in stirrups
and concrete core in ordinary RCwalls. In these structural members
the TTconfiningmechanism can be activated onlywhen differential
TT stretching are permitted between transverse steel bars and the
surrounding concrete. It can be conjectured that such a differential
TT stretch can be activated as a consequence of cracking in a way
similar to tension stiffening. While this hypothesis requires an
experimental corroboration, the numerical evaluations carried out
in Section 3.3 have indicated that a straightforward application of
Eurocode 2 provisions for estimating the strength increment, on
the basis of the output data from 2D TTJ FE shell analyses of in-
plane pushover tests on RC walls, yields approximately 20%
strength increase when an ordinary stirrup reinforcement is
considered.

Concerning the future developments of the present line of
research, the direct continuation of this study will address the
strategy for the numerical FE integration of the TTJS formulation
and the related implementation issues in OpenSees.

Moreover, while the focus of the present study has been delib-
erately confined to the consideration of ideal associated elasto-
plastic constitutive laws in order to explore the features of the
mechanical response predicted by the TTJ formulation in the
nonlinear range proceeding by an incremental approach, the use of
the TTJ formulation combined with more refined constitutive and
structural models suitably tailored for the description of quasi-
brittle composite materials in civil structural engineering applica-
tions will be a future research endeavor. In particular, with a pri-
mary view towards the nonlinear seismic analysis of masonry and
concretewalls, future research topics will be the combination of the
TTJ formulation with plastic-damage models [63] and, more in
general, the incorporation of friction, damage and unilateral con-
tact in the constitutive response [64].

Although this study has been focused on plane structures, the
TTJS formulation can be ordinarily applied to address curved
structures, such as masonry vaults and domes, for which use of
jacketing is also constitutes a viable retrofitting technique. Effects



S. Sessa et al. / Composites Part B 113 (2017) 225e242 241
of TT confinement will be investigated and compared with alter-
native computational strategies, such as tensegrity approaches
[65,66] and thrust-surface-based procedures [67,68], in order to
check the effectiveness of the proposed modeling strategy in
presence of curved structural elements.

The TTJ formulation will be also employed in combination with
the use of seismic response envelopes [69,70] and encompassing
soil-structure interaction with Equivalent Foundation Oscillator
[71], Winkler-Contact interfaces [72], fully 3D models [73] as well
as with less-computationally expensive potential-based ap-
proaches [74,75].
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