Structure of the isomeric states in 123,125Sb

D. S. Judson,1 A. M. Bruce,1,* T. Kibédi,2 G. D. Dracoulis,2 A. P. Byrne,2,3 G. J. Lane,2 K. H. Maier,2 C.-B. Moon,4 P. Nieminen,2 J. N. Orce,1,† and M. J. Taylor1‡

1School of Engineering, University of Brighton, Brighton BN2 4GJ, United Kingdom
2Department of Nuclear Physics, Australian National University, Canberra ACT 0200, Australia
3Department of Physics, The Faculties, Australian National University, Canberra ACT 0200, Australia
4Department of Display Engineering, Hoseo University, Chung-Nam 336-795, Korea

(Received 28 August 2007; published 5 November 2007)

Excited states in 123,125Sb have been studied following the 122,124Sn(7Li,α2n)123,125Sb reactions at beam energies of 35 and 37 MeV, respectively. Conversion coefficients for transitions depopulating isomeric states in 123Sb have been measured using an electron spectrometer. This has allowed firm J^π assignments to be made and enabled the structure of the isomeric states to be compared with those in 121,123Sn and in the neighboring even-A tin isotopes. The half-lives of the $J^\pi = \frac{23}{2}^+$ isomeric states in 123Sb and 125Sb have been measured to be 66(4) μs and 272(16) ns, respectively. The half-lives of the $J^\pi = \frac{15}{2}^−$, $\frac{3}{2}^−$, and $\frac{1}{2}^-$ states in 125Sb have been measured as 31(2) ns, 28.0(7) μs, and 4.1(2) μs, respectively. The transition probabilities for the transitions depopulating these states are compared with those in 121,123Sn and with the results of shell-model calculations using the Oxbash code and the SN100PN interaction in a restricted model space.

DOI: 10.1103/PhysRevC.76.054306

PACS numbers: 21.70.Tg, 23.20.Lv, 27.60.+j

I. INTRODUCTION

Isomeric $J^\pi = \frac{23}{2}^+$, $\frac{19}{2}^−$, and $\frac{15}{2}^−$ states have previously been observed in odd-mass antimony nuclei and have been interpreted [1] as the odd $2^+ \alpha$ proton coupled to known isomeric $10^−$, $7^−$, and $5^−$ states in the $(A−1)$Sn core, respectively, based on the energy systematics. Figure 1 shows the energy systematics of these states in $^{121−131}$Sn in comparison with the even-A tin isotopes and indeed a clear correlation is observed. A more stringent test of any comparison requires analysis of transition probabilities. The half-lives of isomeric states in $^{127−131}$Sn are known from measurements of the β decay of $^{127−131}$Sn [1–3] and, for 121,123Sn, from the results of fission fragment experiments [4,5]. The values for 125Sb were measured by [4,6–8] but have large error bars associated with them. In addition, the J^π values were uncertain.

Previous work on 125Sb by Liu et al. [7,8] reported on the 124Sn(7Li,α2n)125Sb reaction and proposed the existence of three isomeric states: (i) a $\left(\frac{23}{2}^−\right)$ state at 1970 keV with a half-life of 70 and 600 ns, (ii) a $\left(\frac{19}{2}^−\right)$ state at 2110 keV with a lower limit on the half-life of 2 s in Ref. [7] and 2 μs in Ref. [8], and (iii) a $\left(\frac{23}{2}^+\right)$ state at 2471 keV with a half-life of 40 and 200 ns. A subsequent study by Porquet et al. [4] used the EUROBALL III and IV detectors to study fission fragments induced by heavy-ion reactions but only observed one isomeric state, at 2470 keV, for which they measured a half-life of 155(20) ns and assigned a J^π value of $\frac{15}{2}^−$. This is not consistent with the $J^\pi = \frac{23}{2}^+$ assignment made by Liu et al. [7,8]. Porquet et al. [4] also identified a $J^\pi = \left(\frac{15}{2}^−\right)$ isomeric state in 123Sb at an excitation energy of 2237 keV for which a half-life of 110(10) ns was measured. The current article reports the results of experiments aimed at pinning down the J^π values of states in 125Sb and measuring the half-lives of isomeric states in 123,125Sb.

II. EXPERIMENTAL PROCEDURE

Excited states in 125Sb were populated using the 124Sn(7Li,α2n)125Sb incomplete fusion reaction. The beam was provided by the 14UD Pelletron Tandem accelerator at the Australian National University (ANU) and the Super-E electron spectrometer [10,11] was used in conjunction with a single germanium detector to measure electron-conversion coefficients and half-lives. In this case a beam energy of 37 MeV was used and the 124Sn target was 1.5 mg/cm2 thick. Two different beam profiles were used: (i) 2 ns pulses separated by 1.7 μs and (ii) 2.7 μs pulses separated by 85.6 μs. A prompt veto of 2.8 μs was applied in the latter case so that only delayed transitions were recorded. γ-ray and electron energies were recorded along with their time measured with respect to the rf pulse train. These data were used to construct two sets (one for each beam profile) of time-electron and time-γ matrices that contained the energy on one axis and the time on the other.

An experiment to measure the half-lives of long lived ($T_{1/2} > 2 \mu$s) states in 124Sb was performed using the 122Sn(7Li,α2n)125Sb reaction at a beam energy of 35 MeV. The target was 3.5 mg/cm2 thick and a beam pulsing profile of 21.4 μs on/428 μs off was used with a prompt veto of 21.7 μs. γ rays were detected in the CAESAR germanium detector array [12], augmented by three Compton suppressed germanium detectors. γ-ray energies and their time measured with respect to the rf pulse train were collected and a time-γ matrix was constructed and analyzed.

*Alison.Bruce@brighton.ac.uk

†Current address: Department of Physics & Astronomy, University of Kentucky, Lexington KY 40506, USA.

‡Current address: Department of Physics, University of York, Heslington, York YO10 5DD, UK.
III. EXPERIMENTAL RESULTS

A. 125Sb

The level scheme for 125Sb is shown in Fig. 2 and Table I lists the relative intensities of transitions below the isomeric states in 125Sb, measured using the beam pulsing profile of 2 ns on/1.7 µs off with a condition requiring that the events were detected at least 100 ns after the beam pulse. Intensities are normalized to the 1090.0 keV transition. The half-lives of states at 1972, 2113, 2326, and 2472 keV were also obtained. Figure 3(a) shows the decay profile of the 2472 keV state, and has been fitted using the value of 28.0(7) µs as quoted in Ref. [15]. The Jπ values for the levels in 125Sb are uncertain and therefore are shown as open symbols.

![Graph showing excitation energy vs mass number](image)

FIG. 1. Comparison of the Jπ = 23/2+, 19/2−, and 15/2− states in the odd-A antimony isotopes [1–5,7,8] with the energies of the Jπ = 10/2+, 7/2−, and 5/2− states in the even-A tin isotopes [9]. The Jπ values for the levels in 125Sb are uncertain and therefore are shown as open symbols.

A value of 28.0(7) µs has been deduced for the 131.8 keV transition from a balance of intensities across the 2194 keV state. The multipolarity of the 1104.2 keV transition that depopulates the 2194 keV level is not known but the energy of this transition is so high that the difference between the conversion coefficient for an E1 transition and an E2 transition is insignificant. The internal conversion coefficient of the 131.8 keV transition is consistent with it having a multipolarity of E2. The 140.9 keV transition is observed in the γ-ray spectrum as a doublet with a 139.7 keV contaminant transition and therefore these peaks had to be unfolded. For both the electrons and γ rays, the energies and intensities of the transitions below the isomeric states in 125Sb have an uncertainty of ±0.3 keV.

TABLE I. γ-ray energies, initial and final level energies, relative γ-ray intensities, and conversion coefficients of transitions below the isomeric states in 125Sb. The γ-ray energies have an uncertainty of ±0.3 keV.

<table>
<thead>
<tr>
<th>Eγ (keV)</th>
<th>Ei</th>
<th>Ef</th>
<th>Iγ</th>
<th>αK</th>
<th>αK(\text{theory}) \text{[14]}</th>
<th>Assigned multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.1</td>
<td>2217.9</td>
<td>2112.7</td>
<td>2.4(2)</td>
<td>E2 = 0.62 \text{a}</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>107.9</td>
<td>2325.9</td>
<td>2217.9</td>
<td>9.4(5)</td>
<td>E2 = 0.37, M3 = 8.83</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>131.8</td>
<td>2325.9</td>
<td>2194.2</td>
<td>9.5(6)</td>
<td>0.58(4) \text{a}</td>
<td>M1 = 0.045</td>
<td></td>
</tr>
<tr>
<td>140.9</td>
<td>2112.7</td>
<td>1971.8</td>
<td>52.9(15)</td>
<td>E2 = 0.33</td>
<td>M1 or E2</td>
<td></td>
</tr>
<tr>
<td>146.3</td>
<td>2472.2</td>
<td>2325.9</td>
<td>30.8(4)</td>
<td>0.34(2)</td>
<td>E2 = 0.0032</td>
<td></td>
</tr>
<tr>
<td>246.1</td>
<td>2217.9</td>
<td>1971.8</td>
<td>8.3(3)</td>
<td>0.048(13)</td>
<td>M2 + E3 (δ2 > 0.56)</td>
<td></td>
</tr>
<tr>
<td>331.5</td>
<td>2325.9</td>
<td>1994.4</td>
<td>17.2(8)</td>
<td>0.022(5)</td>
<td>M2 + E3 (δ2 > 0.56)</td>
<td></td>
</tr>
<tr>
<td>881.8</td>
<td>1971.8</td>
<td>1090.0</td>
<td>75.9(10)</td>
<td>0.0035(9)</td>
<td>E3 = 0.0032</td>
<td></td>
</tr>
<tr>
<td>904.0</td>
<td>1971.8</td>
<td>1067.8</td>
<td>119(3)</td>
<td>0.0034(4)</td>
<td>E3 = 0.0032</td>
<td></td>
</tr>
<tr>
<td>904.4</td>
<td>1994.4</td>
<td>1090.0</td>
<td>21.8(5)</td>
<td>0.0015(1)</td>
<td>E2 = 0.0015</td>
<td></td>
</tr>
<tr>
<td>1067.8</td>
<td>1067.8</td>
<td>0.0</td>
<td>118.6(14)</td>
<td>0.0013(2)</td>
<td>M1 + E2 (δ2 < 2.4)</td>
<td></td>
</tr>
<tr>
<td>1090.0</td>
<td>1090.0</td>
<td>0.0</td>
<td>100.0(13)</td>
<td>0.0012(3)</td>
<td>E2 = 0.0010</td>
<td></td>
</tr>
<tr>
<td>1104.2</td>
<td>2194.2</td>
<td>1090.0</td>
<td>15.0(4)</td>
<td>E2 = 0.0010</td>
<td>E2</td>
<td></td>
</tr>
</tbody>
</table>

\(a \) \(\alpha_\text{tot} \) (see text for details).
rays, energy spectra were produced from the beam-γ matrix with gates 10–43 µs and 43–76 µs after the prompt peak. The number of counts making up the 139.7 and 140.9 keV peaks was determined for each time gate and put into a 2 × 2 matrix as a percentage of the total number of counts. This matrix was then transposed to give the coefficients needed to resolve the 139.7 and 140.9 keV γ-ray peaks from the time gated spectra. Figure 4 illustrates the results of this process and shows that the 139.7 keV contaminant was not seen in the electron spectrum, indicating that it was not from the target. The electron spectrum does not show any evidence for a peak corresponding to the 1104.2 keV transition and this nonobservation implies that the 1104.2 keV transition is of either E1 or E2 multipolarity.

The level scheme shown in Fig. 2 is based on that published by Liu et al. [7,8], discussed in Sec. I, but shows the half-lives measured in the current work. The J^π values assigned to the isomeric states in the current work are consistent with those assigned in Refs. [7,8] and, specifically, the spin and parity of the 2472 keV state is confirmed as 2^+. This is not consistent with the value of (19^-) assigned in the work of Porquet et al. [4] but the previous interpretation was based only on systematic arguments and so the assignment made in the current work is preferred. The 2326 keV state has been observed as isomeric state in the current work and may not have been identified as such previously [4,7,8] because of the short half-life (31(2) ns), which may have been outside their experimental sensitivity.

B. 123Sb

The experiment on 123Sb provided evidence for an isomeric state with a half-life greater than 2 µs. The 2614 keV state was measured to have a half-life of 66(4) µs by fitting the summed γ-gated spectra shown in Fig. 5. In parallel with the current work, Jones et al. [5] have obtained a half-life of 52(3) µs for this state. The reason for the discrepancy between this value and that measured in the current work is unclear.

IV. DISCUSSION

Isotopes in the range 121Sb to 131Sb have 1 proton and 20–30 neutrons in the $Z/N = 50–82$ shell, which contains the $g_{7/2}$, $d_{5/2}$, $d_{3/2}$, $s_{1/2}$, and $h_{11/2}$ orbitals. The shell-model calculations presented in the current work were performed using the Oxbash code [16] and the SN100PN [17] interaction and model space. The single-particle energies used were deduced from the experimentally observed level schemes of 131Sn [18] and 133Sb [19]. This interaction has been used with good success to describe the excitation energies and magnetic moments of the even mass $^{124–130}$Sn, $^{130–134}$Te, and 134Xe isotopes [17]. However, calculations in the full model space could only be achieved for odd-mass antimony nuclei heavier than 125Sb; therefore, it was necessary to truncate the space. Examination
FIG. 4. Results of the unfolding of the 139.7/140.9 keV doublet for the electron and γ-ray spectra. Panels (a) and (b) are the raw electron and γ-ray spectra. Panels (c) and (d) show the unfolded 140.9 keV peaks from the transition in 125Sb. Panels (e) and (f) show the unfolded 139.7 keV contaminant peak. Transition energies are calculated using the antimony K-shell binding energy of 30.5 keV.

of the wave functions calculated in the full space indicated that the following truncation would be appropriate:

(i) The odd proton was restricted to the \(g_{\frac{7}{2}}\), \(d_{\frac{5}{2}}\), and \(d_{\frac{3}{2}}\) orbits.

(ii) The \(g_{\frac{1}{2}}\) neutron orbit was required to be full and the \(d_{\frac{1}{2}}\) orbit was required to have a minimum occupancy of \(\frac{4}{7}\). The remaining neutrons (8 for \(121\)Sb and 18 for \(131\)Sb) were allowed to occupy the remainder of the \(d_{\frac{5}{2}}, d_{\frac{3}{2}}, s_{\frac{1}{2}},\) and \(h_{\frac{11}{2}}\) space.

A. Level energies

The calculated level energies are compressed in the restricted space. To compensate for this, multiplicative factors were derived by comparing the excitation energies of the first \(J^\pi = \frac{9}{2}^+, \frac{11}{2}^+, \frac{15}{2}^-, \frac{15}{2}^-, \frac{19}{2}^+, \frac{19}{2}^-,\) and \(\frac{23}{2}^+\) states in \(121,123,131\)Sb calculated using the restricted model space with those calculated using the full model space. This gave compression factors of 1.19 for \(131\)Sb, 1.26 for \(129\)Sb, and 1.32 for \(127\)Sb. A linear extrapolation of these values gives a compression factor of 1.44 for \(125\)Sb. The calculated level scheme multiplied by this factor is shown in Fig. 6 with the arrows representing experimentally observed transitions. The overall level of agreement between the calculated levels shown in Fig. 6 and the experimental level scheme, shown in Fig. 2, is generally within \(\sim 200\) keV but there are a few notable exceptions. The first \(J^\pi = \frac{5}{2}^+\) state is calculated to be \(\sim 800\) keV too high and the second \(J^\pi = \frac{9}{2}^+\) state is calculated to be \(\sim 700\) keV above the first, while experimentally it is only \(\sim 350\) keV above.

Figure 7 shows the experimentally determined level energies for the isomeric \(J^\pi = \frac{23}{2}^+, \frac{19}{2}^+, \frac{19}{2}^-,\) and \(\frac{15}{2}^-\) states as well as for the \(J^\pi = \frac{5}{2}^+, \frac{7}{2}^+, \frac{11}{2}^+, \) and \(\frac{15}{2}^-\) states in \(123\)Sb taken from Refs. [4,5], in comparison with those calculated using the restricted model space and multiplied by the extrapolated factor of 1.52. The figure shows that the agreement between experiment and theory for these states is generally excellent, agreeing to within 100 keV. However, as in \(125\)Sb, the calculated energy of the \(J^\pi = \frac{5}{2}^+\) state is several hundred keV higher than is observed experimentally and the second \(J^\pi = \frac{9}{2}^+\) state is calculated to be \(\sim 200\) keV too high.

FIG. 6. Calculated level scheme for \(125\)Sb produced using the restricted SN100PN model space and showing only the levels that were experimentally observed in this work. Level energies were multiplied by a factor of 1.44 to account for the effect of the restricted model space. The width of the arrows does not represent the transition strengths.
The first $J^\pi = \frac{9}{2}^+$ state in 121Sb has been identified from (t,α) reaction studies at 935 keV [20] and has been explained as being generated by the excitation of a $g_\pi^\frac{5}{2}$ proton across the $Z = 50$ shell gap. The corresponding states in 123,125Sb have been identified at 1324 and 1813 keV, respectively [20]. The second $J^\pi = \frac{9}{2}^+$ states in 123,125Sb are therefore not due to this mode of excitation but are likely the result of collective core deformation effects that are not accounted for in the calculations.

B. Wave functions and transition probabilities

Examination of the calculated wave functions of the isomeric states indicates that the wave function of the $J^\pi = \frac{23}{2}^+$ isomer in 125Sb can be expressed as $|\Psi_{125}^{23/2^+}\rangle = \sim 74\%|\Psi_{10}^{10^+}\rangle \otimes \pi g_{\frac{5}{2}}^\pi$, the wave function of the $J^\pi = \frac{19}{2}^+$ state populated by an $E2$ transition from the $J^\pi = \frac{23}{2}^+$ isomer can be expressed as $|\Psi_{125}^{19/2^+}\rangle = \sim 70\%|\Psi_{10}^{10^+}\rangle \otimes \pi g_{\frac{5}{2}}^\pi$, the wave function of the $J^\pi = \frac{15}{2}^-$ isomer can be expressed as $|\Psi_{125}^{15/2^-}\rangle = \sim 80\%|\Psi_{5}^{5^-}\rangle \otimes \pi g_{\frac{5}{2}}^\pi$, and the wave function of the $J^\pi = \frac{15}{2}^-$ isomers can be expressed as $|\Psi_{125}^{15/2^-}\rangle = \sim 82\%|\Psi_{5}^{5^-}\rangle \otimes \pi g_{\frac{5}{2}}^\pi$. Analysis of the wave functions of these states in 121,123,127,129Sb and 120,122,126,128Sn show comparable levels of overlap. This is consistent with the qualitative interpretation presented in the Introduction.

Table II summarizes the information on the transition probabilities for the decay from the isomeric states in 121Sb to 131Sb. Figure 8 shows these data in comparison with the analogous

FIG. 7. A comparison of calculated and experimental level energies for 123Sb showing selected levels below the 2614 keV isomer. Calculated level energies were multiplied by a factor of 1.52 to account for the effect of the restricted model space.

The $\frac{9}{2}^+$ state is almost 1 MeV higher in the calculation than is seen experimentally.

The $J^\pi = \frac{5}{2}^+$ state in 127Sb is observed experimentally at 491 keV [1]. The results of calculations performed for 127Sb using the full model space predict this state to be at 894 keV and so the poor agreement between experiment and theory in the case of 125,123Sb is not due to the restricted model space but possibly to the proton-neutron interaction used.
transitions in the neighboring even-A tin isotopes and with the results of the shell-model calculations using standard effective charges of $e_p = 1.5$ and $e_n = 0.5$. The values calculated for 129,131Sb in the restricted space are in excellent agreement with those obtained from the unrestricted calculations giving further faith in the validity of the approximation.

Figure 8(a) shows that the calculated values for the $B(E2: \frac{21}{2}^+ \rightarrow \frac{19}{2}^+)$ (closed squares) agree with the data (open squares) to within a factor of three for $A > 125$ but do not reproduce the rapid drop (approximately two orders of magnitude) between 128Sb and 129Sb. It is of note that the experimental data have the same shape as for the $B(E2: 10^+ \rightarrow 8^+)$ values in the neighboring even-A tin isotopes (circles). The $J^\pi = 10^+$ and 8^+ states in the even-A tin isotopes and the $\frac{21}{2}^+$ and $\frac{19}{2}^+$ states in the odd-A antimony isotopes have $h_{\frac{3}{2}}$ neutron configurations. Inspection of the level schemes shows that the $J^\pi = 10^+ \rightarrow 8^+$ and $\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$ transitions proceed between states of the same seniority. Because the $B(E2)$ values of these transitions depend critically on the occupation number of the $h_{\frac{3}{2}}$ orbital, a dependence on A is expected. In particular, at the point of half-filling, the particle and hole contributions are equal and so the $B(E2)$ value reduces to zero $^{[21]}$. The experimental trend shown in Fig. 8(a) for $121 \leq A \leq 124$ can therefore be attributed to the half-filling of the $h_{\frac{3}{2}}$ neutron orbital at $N \sim 73$.

TABLE II. Experimentally determined reduced transition probabilities.

<table>
<thead>
<tr>
<th>A</th>
<th>Level (keV)</th>
<th>$T_\frac{1}{2}$</th>
<th>Transition</th>
<th>E_r (keV)</th>
<th>$\sigma \lambda$</th>
<th>$\alpha_{\lambda \text{ (theory)}}$</th>
<th>γ-ray branching</th>
<th>Ref.</th>
<th>$B(\sigma \lambda)$ ($e^2 f_m^{2\lambda}$ or $\mu_0^2 f_m^{2\lambda - 2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>2166.3</td>
<td>1.1(2) μs</td>
<td>$\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$</td>
<td>96.4</td>
<td>$E2$</td>
<td>1.88</td>
<td>100</td>
<td>[2]</td>
<td>$21(4)$</td>
</tr>
<tr>
<td>1687.9</td>
<td>4.3(8) μs</td>
<td>$\frac{19}{2}^+ \rightarrow \frac{17}{2}^-$</td>
<td>11.2</td>
<td>$E2$</td>
<td>1.82×10^4</td>
<td>100</td>
<td>[2]</td>
<td>$41(8)$</td>
<td></td>
</tr>
<tr>
<td>1676.7</td>
<td>65(5) μs</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{9}{2}^+$</td>
<td>447.4</td>
<td>$E3$</td>
<td>3.21×10^{-2}</td>
<td>4*</td>
<td>[22]</td>
<td>201(15)</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>2138.9</td>
<td>1.1(1) μs</td>
<td>$\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$</td>
<td>98.6</td>
<td>$E2$</td>
<td>1.73</td>
<td>100</td>
<td>[3]</td>
<td>$20(2)$</td>
</tr>
<tr>
<td>1851.0</td>
<td>17.7(1) min</td>
<td>$\frac{17}{2}^+ \rightarrow \frac{13}{2}^+$</td>
<td>722.6</td>
<td>$M4$</td>
<td>5.47×10^{-2}</td>
<td>100</td>
<td>[23]</td>
<td>6140(35)</td>
<td></td>
</tr>
<tr>
<td>1860.9</td>
<td>2.2(2) μs</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{9}{2}^+$</td>
<td>9.8</td>
<td>$E2$</td>
<td>3.56×10^4</td>
<td>88a</td>
<td>[3,23]</td>
<td>80(7)</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>2324.8</td>
<td>165(20) $n s$</td>
<td>$\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$</td>
<td>130.4</td>
<td>$E2$</td>
<td>6.44×10^{-1}</td>
<td>100</td>
<td>[4]</td>
<td>$55(7)$</td>
</tr>
<tr>
<td>1920.2</td>
<td>11(1) μs</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{9}{2}^+$</td>
<td>805.9</td>
<td>$E3$</td>
<td>5.09×10^{-2}</td>
<td>58(8)</td>
<td>[1]</td>
<td>288(60)</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>2472.2</td>
<td>272(16) $n s$</td>
<td>$\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$</td>
<td>146.3</td>
<td>$E2$</td>
<td>4.29×10^{-1}</td>
<td>100</td>
<td>c</td>
<td>$22(1)$</td>
</tr>
<tr>
<td>2325.9</td>
<td>31(2) $n s$</td>
<td>$\frac{19}{2}^+ \rightarrow \frac{15}{2}^+$</td>
<td>331.5</td>
<td>$E2$</td>
<td>2.68×10^{-2}</td>
<td>48(3)</td>
<td>c</td>
<td>1.8(2)</td>
<td></td>
</tr>
<tr>
<td>2239.1</td>
<td>19(30) $n s$</td>
<td>$\frac{17}{2}^+ \rightarrow \frac{13}{2}^-$</td>
<td>131.8</td>
<td>$E2$</td>
<td>6.20×10^{-1}</td>
<td>26(2)</td>
<td>c</td>
<td>98(11)</td>
<td></td>
</tr>
<tr>
<td>2038.2</td>
<td>37(4) $n s$</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{11}{2}^+$</td>
<td>107.9</td>
<td>$E1$</td>
<td>1.52×10^{-1}</td>
<td>26(2)</td>
<td>c</td>
<td>$2.4(3) \times 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>2112.7</td>
<td>28.0(7) $n s$</td>
<td>$\frac{17}{2}^+ \rightarrow \frac{15}{2}^+$</td>
<td>140.9</td>
<td>$E2$</td>
<td>4.90×10^{-1}</td>
<td>100</td>
<td>c</td>
<td>$2.4(1) \times 10^{-1}$</td>
<td></td>
</tr>
<tr>
<td>1971.8</td>
<td>4.1(2) μs</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{13}{2}^+$</td>
<td>881.8</td>
<td>$E3^d$</td>
<td>4.66×10^{-3}</td>
<td>39(1)</td>
<td>c</td>
<td>188(90)</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>2614.1</td>
<td>66(4) μs</td>
<td>$\frac{21}{2}^+ \rightarrow \frac{19}{2}^+$</td>
<td>127.6</td>
<td>$E2$</td>
<td>6.95×10^{-1}</td>
<td>100</td>
<td>c</td>
<td>$1.5(1) \times 10^{-1}$</td>
</tr>
<tr>
<td>2486.3</td>
<td>7.9(4) $n s$</td>
<td>$\frac{19}{2}^+ \rightarrow \frac{15}{2}^-+$</td>
<td>441.9</td>
<td>$E2$</td>
<td>1.11×10^{-2}</td>
<td>100</td>
<td>[5]</td>
<td>4.2(2)</td>
<td></td>
</tr>
<tr>
<td>2239.1</td>
<td>190(30) $n s$</td>
<td>$\frac{17}{2}^+ \rightarrow \frac{13}{2}^-+$</td>
<td>201.0</td>
<td>$E2$</td>
<td>1.42×10^{-1}</td>
<td>100</td>
<td>[5]</td>
<td>8.0(1)</td>
<td></td>
</tr>
<tr>
<td>2038.2</td>
<td>37(4) $n s$</td>
<td>$\frac{15}{2}^+ \rightarrow \frac{11}{2}^-+$</td>
<td>381.7</td>
<td>$E2$</td>
<td>1.73×10^{-2}</td>
<td>100</td>
<td>[5]</td>
<td>1.9(2)</td>
<td></td>
</tr>
<tr>
<td>2434.3</td>
<td>8.5(5) $n s$</td>
<td>$\frac{17}{2}^+ \rightarrow \frac{15}{2}^-+$</td>
<td>292.3</td>
<td>$E2$</td>
<td>4.03×10^{-2}</td>
<td>94(1)</td>
<td>[5]</td>
<td>28(2)</td>
<td></td>
</tr>
</tbody>
</table>

aNo errors are quoted in the original publication.

bThe states at 2325 and 2194 keV were assigned $J^\pi = \frac{19}{2}^+$ and $\frac{17}{2}^-$ in Ref. [4] but are interpreted in the current work as the $J^\pi = \frac{21}{2}^+$ and $\frac{19}{2}^+$ states.

cThis work.

d $E3$ component of the mixed $M2 + E3$ transition, calculated using the δ^2 value listed in Table I.

eAssuming a pure $E1$ transition.
Figure 8(b) shows the $B(E2; {7}^-\rightarrow {5}^-)$ values in antimony (squares) alongside the $B(E2; {7}^-\rightarrow {5}^-)$ values in tin (circles). No values are shown for 129Sb as the $J^\pi = \frac{19}{2}^-$ state is not observed to decay to the $\frac{15}{2}^-$ state. The state assigned $J^\pi = \frac{19}{2}^-$ in 127Sb by Porquet et al. [4] is interpreted as the $J^\pi = \frac{23}{2}^+$ state in the current work. No other $J^\pi = \frac{19}{2}^-$ states are known in 127Sb and so no $B(E2; {19}^-\rightarrow {15}^-)$ value is given for 127Sb. The calculations for antimony (closed squares) clearly reproduce the systematics of the experimental values, in particular the reduction by two orders of magnitude between $A = 121$ and 125 and the increase of the same magnitude between $A = 125$ and 131. They overestimate the transition probabilities for 121,123Sb by only a factor of ≈ 8. It is interesting to note that the experimental values for $B(E2; {7}^-\rightarrow {5}^-)$ (open circles) show the same shape as the values for $B(E2; {19}^-\rightarrow {15}^-)$ (open squares) but with a shift of ≈ 6 mass units. The calculated $B(E2; {7}^-\rightarrow {5}^-)$ values (closed circles) do not reproduce this and indeed overlap with the values for $B(E2; {19}^-\rightarrow {15}^-)$ (squares). This indicates that the calculated wave functions for the isomeric $J^\pi = {7}^-$ and $J^\pi = {5}^-$ states in the even-A tin isotopes do not reflect the experimental ones. This is not related to the truncated model space as calculations for the tin isotopes performed using the full model space show the same trend. The results for the odd-A antimony isotopes show that the addition of a single proton enables the calculated wave functions to reflect the experimental wave functions with much greater success. The origin of this anomaly is not clear. However, the underlying feature is that the $B(E2)$ data for the $J^\pi = \frac{19}{2}^-$ and $J^\pi = \frac{15}{2}^-$ states do not support the interpretation of the states in antimony being generated by the simple coupling of the extra proton to the $J^\pi = {7}^-$ and $J^\pi = {5}^-$ isomeric states in the tin core, implied by the energy systematics shown in Fig. 1.

V. CONCLUSIONS

The half-lives of excited states in 123,125Sb have been measured and the J^π values of excited states in 125Sb have been confirmed. The range of nuclei for which Oxbash calculations can be performed has been extended down to 121Sb by the choice of a suitable truncation of the $N/Z = 50–82$ model space. A comparison of the systematics of the energy levels and of the transition probabilities with those of neighboring nuclei and with the results of shell-model calculations casts doubt on the previous interpretation of the negative parity isomeric states in antimony nuclei as an odd proton coupled to isomeric structures in neighboring even-A tin nuclei.

ACKNOWLEDGMENTS

The visitors to the ANU thank the technical and academic staff of the 14UD accelerator at the Australian National University for their assistance and hospitality. V. Pucknell at STFC Daresbury Laboratory is thanked for his help in running the shell-model calculations. D.S.J. and J.N.O. acknowledge receipt of EPSRC postgraduate grants. This work has been performed under an ANU-EPsrc agreement.