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ABSTRACT  

We explore an alternative, finance theory-based explanation for the documented positive relationship 

between fund diversification (or lack of fund specialization) and performance in venture capital (VC). Our 

proposed "Risk Hypothesis" posits that the expected negative impact of diversification on fund risk 

induces fund managers to endogenously select riskier investments, which in turn leads to higher 

performance of more diversified funds. While other channels may also be at play, we provide results that 

support this hypothesis for an international sample of VC funds. However, this effect is weakened when 

expertise is limited. The study offers implications of how VC fund managers’ investment decisions are 

influenced by strategic portfolio considerations, which in turn affect which innovative ventures receive 

funding. 
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Executive Summary 

Prior research has investigated whether diversification is beneficial for the VC industry. Managing 

VC investments is typically viewed as requiring highly specialized skills, knowledge, and time to 

select and assist investee companies. This suggests excessive diversification should come at a cost. 

Existing studies on whether diversified VC funds underperform specialized VC funds provide 

contradictory results, while recent studies tend to indicate a premium for diversified VC funds. This 

conclusion was recently attributed to knowledge-sharing effects across different industries and 

stages of development.  

Understanding the impact of diversification versus specialization is particularly crucial for VC 

because fund managers aim to build a portfolio of promising firms and much of the value-adding 

may come from their capacity to actively assist investees and create synergies between them. In this 

paper, we explore an alternative explanation for the diversification premium based on risk effects 

from diversification to argue that diversification may lead to higher fund returns (which we call the 

"Risk Hypothesis").  We explore the joint interaction among risk, diversification, and performance. 

Greater diversification reduces fund risk, enabling risk-averse managers to select riskier investments 

in the first place and, thus, investments with higher expected returns. In this framework, greater 

diversification represents more investments in riskier ventures. However, the increased risk of 

individual ventures is compensated in part by greater diversification at the fund level. Ultimately, 

given the higher risk of each venture, the average return should be higher.  

Our sample originates from the CEPRES database that includes detailed information of VC 

investments at the deal and fund levels, including cash flow data. We use an international sample of 

308 VC funds that invested in 10,131 portfolio companies. We employ two measures of 

diversification: industry and stage of development. Our analysis indicates that greater industry 



3 

 

diversification leads to a higher fraction of funds invested in riskier, hi-tech ventures; similarly, 

greater stage diversification represents in our sample of VC funds a greater fraction of funds 

invested in early-stage ventures. Both represent increased investments in riskier ventures, consistent 

with underlying assumptions of the Risk Hypothesis.  

Using multivariate analyses, we find that both dimensions of diversification (industry and stage of 

development) leads to higher return (measured by fund IRR), provided the VC fund is run by 

experienced managers. For less experienced VC funds, we find no relationship.  Thus, these results 

support the idea that experienced VC fund managers who are able to access better deals benefit 

from diversifying in more industries and/or stages of development. We further find that 

diversification affects both types of risk, upside and downside risks. Overall, we conclude that our 

findings support the Risk Hypothesis. Finally, we find evidence for strong persistence in the level of 

diversification over time by VC firms, which suggests that part of the diversification strategy is 

determined by the accumulated expertise of VC managers. When managers diversify primarily into 

industries in which they lack experience, we show that greater industry diversification can even have 

a negative overall impact on fund performance. This study offers implications of how VC fund 

managers’ investment decisions are influenced by strategic portfolio considerations, which in turn 

affect which innovative ventures receive funding. 
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1. Introduction 

The question whether diversification is detrimental to venture capital (VC) has attracted a 

great deal of attention but is still under debate among entrepreneurship and finance scholars. 

Managing VC investments is viewed as requiring highly specialized skills, knowledge, and time to 

select and assist investee companies well (Dimov and De Clercq, 2006; Norton and Tenenbaum, 

1993). This leads to a smaller number of investments (Bernile et al., 2007; Jackson et al., 2012; 

Kanniainen and Keuschnigg, 2003) or investments in a smaller set of industries (Cressy et al., 2007; 

Humphery-Jenner, 2013), which means that a discount (lower performance) rather than a premium 

for more diversified funds should be expected. Thus, managing VC investments in entrepreneurial 

firms is a strategic choice (generally described from the beginning in the private placement 

memorandum) that directly affects the type of ventures that will more easily receive capital. 

 While other studies have explored costs and benefits of diversification, the existence of such 

a diversification discount for VC funds (and private equity funds more generally) remains unclear. 

Humphery-Jenner (2013) documents a premium, which he explains by the enhanced knowledge-

sharing capacity across more investments and reduced managerial risk aversion when the fund is 

more diversified. Other studies also document a positive relationship between fund diversification 

and performance (Humphery-Jenner, 2012; Knill, 2009; Lossen, 2009), though without testing 

specific economic channels of this relationship.1  

 In this paper, we explore an alternative, more direct explanation for the diversification 

premium based on endogenous risk effects from diversification. We investigate a cost-side factor of 

                                                           
1 Other studies find a negative relationship (e.g., Dimov and De Clercq, 2006; Gompers et al., 2009; Han, 2009), or even 

a non-linear relationship ( Matusik and Fitza, 2012; Yang et al., 2014). We discuss these studies and the differences in 

performance measures used in these different studies in Section 2.  
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fund specialization by arguing that specialization also increases expected managerial exposure to 

risk, which in turn affects the selection process of investments themselves. Thus, this paper is the 

first to jointly (1) assess the impact of diversification on fund performance and fund risk, while 

explicitly taking into account the asymmetric nature of VC returns, and (2) explore how deviations 

from past diversification experience of the VC firm affect the relationship among current 

diversification, performance, and risk. Thus, we examine to which extent expertise matters to 

explain these relationships. 

 Understanding the impact of diversification versus specialization is particularly crucial for VC 

because fund managers aim to build a portfolio of promising firms and much of the value-add may 

come from their capacity to actively assist investees and create synergies between them (Cressy et 

al., 2007; Humphery-Jenner, 2013; Norton and Tenenbaum, 1993). In the same vein, entrepreneurs 

want to receive funds from investors who devote enough time and have the right knowledge and 

skills to help add value. While the finance literature argues that risk reduction is a primary benefit 

of diversification (Markowitz, 1991), its impact on portfolio building in the context of active 

managers is particularly important in VC, given the significant investment risks involved in these 

types of investments (Cochrane, 2005; Cressy et al., 2014; Ewens et al., 2013). Much of the 

literature focuses on the relationship between diversification and performance without considering 

the simultaneous impact on fund risk.  

 In this study, we explore the interaction among risk, diversification, and performance. We 

expect a positive impact of diversification on fund performance as a result of a risk channel (which 

we call the "Risk Hypothesis"), in which greater diversification reduces fund risk, enabling risk-

averse managers to select riskier investments in the first place and, thus, investments with higher 

expected returns. For example, it may induce VC managers with a stronger diversification strategy 
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to invest more in early-stage ventures, which tend to be riskier than later-stage ventures. However, 

the increased risk from investing in more early-stage ventures is compensated in part by greater 

diversification. Ultimately, given the higher risk of each venture, the average return may eventually 

be higher (as ventures with the highest potential also entail higher risk). A similar outcome may 

result through a larger diversification across industries, as industries also vary greatly in terms of 

risk and return.2 To test our Risk Hypothesis thoroughly, we explicitly control for the endogeneity of 

risk, as investment decisions fund managers make simultaneously affect diversification and risk and 

also performance. The Risk Hypothesis proposed and tested in this paper sheds light on the cost 

side of specialization when VC fund managers are risk averse. We further draw implications for 

entrepreneurs and entrepreneurship literature. 

 Understanding how diversification and the resulting risks relate to VC fund managers’ 

investment decisions is crucial to gain insights into how they take into account portfolio 

perspectives in their decisions to provide funding to investees. Managers do not make investment 

decisions in isolation without any regard for the impact on the overall portfolio of investments. 

Ultimately, these decisions also affect the availability of capital to innovative start-ups. We 

therefore contribute to the entrepreneurship literature by offering a better understanding of how 

portfolio-level risk affects the selection process in VC, the provision of capital to risky start-ups, and 

its impact on performance. Our study complements the strand of literature on VC fund manager 

specialization (Cressy et al., 2014; Cressy et al., 2007; Ewens et al. 2013; Gompers et al., 2009; 

Humphery-Jenner, 2013; Jackson et al. 2012; Knill, 2009; Matusik and Fitza, 2012; Norton and 

                                                           
2 As will become clear below, we use a large sample of VC funds to test this prediction. The claims made here with 

regards to what diversification means for risk are backed by our data. For instance, a greater stage diversification in our 

sample (which we measure by 1 – Herfindahl index of the stages of development in which the fund invested) is 

positively correlated with a greater fraction of funds invested in early-stage ventures. Similarly, greater industry 

diversification in our sample is correlated with a greater fraction of funds invested in hi-tech industries. Both, early-

stage and hi-tech ventures, are considered riskier investments, consistent with the examples presented here.  
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Tenenbaum, 1993), which argues that investing in a narrower set of investment segments offers 

costs and benefits.  

 Existing studies do not test this risk-based channel directly, because they generally lack the 

proper data to measure risk. A sometimes used, indirect proxy for portfolio risk is the fraction on 

investments made in an early stage of development (Ruhnka and Young, 1991; Seppa and 

Laamanen, 2001); however, this proxy does not take into account that risk also varies across 

industries. In addition, to the best of our knowledge, while several studies document the 

importance of risk in VC, they do not explicitly control for the endogenous impact of risk on 

investment decisions of fund managers, leading to the implicit assumption that managers are risk 

neutral. Moreover, whereas existing studies often rely on indirect proxies of VC performance, such 

as the fraction of companies that went public or the growth of capital under management (e.g., 

Gompers et al., 2009; Knill, 2009; Matusik and Fitza, 2012), we are able to construct precise fund-

level measures of returns (the fund internal rate of return [IRR] based on all the individual 

investments done by the fund) and risk (standard deviation of deal-level IRR of individual 

investments), based on a large, international deal-level sample. Our investment data stem from a 

proprietary dataset collected by Center of Private Equity Research (CEPRES), which offers detailed 

information on individual investments (including cash flows over time), the participating funds, and 

the fund managers.  

 We offer different results that support the Risk Hypothesis, while also leaving room for 

other hypotheses to hold simultaneously. We find that for experienced VC firms, both dimensions 

of diversification considered in our study (i.e., industry and stage of development) lead to higher 

returns (measured by fund IRR), consistent with the notion that diversification offers a premium on 

average. We find no relationship between diversification and performance for less experienced VC 
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firms. A plausible explanation is that the more experienced VC firms are more likely to have access 

to a larger pool of investments opportunities, which helps them achieve a better mix of risk and 

return. However, when we control for ex ante (expected) fund risk, this relationship disappears, 

suggesting that the risk effect presented by the Risk Hypothesis is an important driver that links 

diversification, risk, and performance in VC funds. We further explore how diversification affects 

the ex post (realized) risk of VC funds. Because VC funds exhibit highly skewed returns, we consider 

the effects of diversification on both upside and downside risk. Finally, we document persistence in 

the diversification strategy of VC funds, and that accumulated expertise through previous funds is 

crucial to obtain higher performance from diversification. 

 Our analysis produces several important findings and implications that partly contrast earlier 

studies. For example, we find that after controlling for endogeneity, higher industry diversification 

leads to higher upside and downside risks. This finding also provides direct support for the Risk 

Hypothesis that the higher performance of more diversified funds is due to higher levels of risk 

taking. We also provide evidence that there is strong persistence in the level of diversification over 

time by VC firms, which suggests that part of the diversification strategy is also exogenously given 

by the accumulated expertise of VC managers. Because managing a VC investment requires detailed 

knowledge of the industry and stage of the portfolio company, we finally explore whether the 

effects of diversification on performance depend on whether managers diversify into areas in which 

they have gained experience. We find that the overall effect of industry diversification on fund 

performance depends on which industries managers choose for diversification. When managers 

diversify primarily into industries in which they lack experience, high industry diversification can 

even have a negative overall impact on fund performance. In contrast, we find that deviations from 

past investment stage experience do not significantly affect fund performance, which suggests that 

past industry experience is more important for fund performance than stage experience. These 
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results may also help reconcile the mixed empirical evidence on performance and diversification 

from prior studies. For prior studies that rely on samples in which VC managers lack proper 

expertise in the areas of diversification, our results suggest a negative relationship between 

performance and (industry) diversification.  

 The remainder of this study is structured as follows: Section 2 presents a literature review 

and highlights our contribution. Section 3 describes our data and discusses our sample. Section 4 

presents our results. Section 5 discusses extensions and robustness checks. Section 6 concludes by 

presenting implications for entrepreneurship literature. 

 

2. Literature review and theory development 

[Tighten the first FIVE paragraphs.] Questions about how entrepreneurial firms raise capital 

and how VC managers allocate funds to innovative start-ups are at the core of entrepreneurship 

research, given the difficulties for these start-ups to receive adequate funding (Berger and Udell, 

1998; Cassar, 2004). In particular, early-stage ventures tend to experience the greatest difficulties in 

closing their funding gaps (Cressy, 2002). The interest in the question of diversification versus 

specialization in VC is not new, and it is well recognized that VC (and private equity more generally) 

fund managers are actively involved in their investments (see, e.g., Cressy et al., 2007; Gompers, 

1995; Hellmann and Puri, 2002; Kang et al., 2011). Thus, an understanding of portfolio effects 

across different investments is crucial for both VC managers and entrepreneurs. The notion that VC 

fund managers are active investors is further evidenced by the typical limitation of portfolios in 

terms of number of investments (Bernile et al., 2007), potentially restricting the scope of 

diversification. This is because VC managers would otherwise devote less time and attention to 

each portfolio company when investing in more companies (Cumming, 2006; Cumming and Dai, 
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2011; Gifford, 1997; Jaaskelainen et al., 2006). Bernile et al. (2007) show that active fund managers 

face a tradeoff between larger portfolios and lower average company values. Although a larger 

portfolio does not imply greater industry or stage diversification (which we consider in this study, in 

contrast with Bernile et al. [2007], who consider the overall number of investments rather than the 

diversity of these investments), increasing diversification along at least one of these dimensions 

could force managers to monitor and focus on multiple investment stages and possibly on multiple 

industries rather than focusing on only a few investments or sectors. Thus, the overall fund returns 

are likely to be lower as diversification increases. The relative importance of these different effects 

is unclear however, and most studies generally abstract from risk-reduction effects of 

diversification.  

 Instead, many studies focus on benefits associated with specialization, such as information 

sharing between investments (Norton and Tenenbaum, 1993) and organizational improvements 

(Gompers et al., 2009). As a result, this strand of literature often concludes that specialist funds 

outperform diversified funds (i.e., generalists). In contrast, Humphery-Jenner (2013) concludes that 

diversification increases fund returns because of knowledge sharing and learning across 

investments. Other studies conclude the same. For example, Knill (2009) finds that more diversified 

managers raise subsequently more follow-up capital, suggesting that diversification also leads to 

higher performance because realized performance enables fund managers to raise more capital in 

the future. In a different test, Humphery-Jenner (2012) documents a positive relationship between 

industry and geographical diversification and performance. Matusik and Fitza (2012) find a U-

shaped relationship in which the effect is first negative and then becomes positive. Performance is 

lowest for intermediate levels of diversification. They develop a framework of costs and benefits of 

diversification based on knowledge resource diversification, flexibility, and environmental 

uncertainty. Yang et al. (2014) also find a U-shaped relationship in the specific case of corporate VC. 
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In contrast, Cressy et al. (2014) find that industry diversification reduces fund performance but that 

geographical diversification improves performance.  

 Our contribution is to explore the impact of expected risk exposure on the selection of 

investments that may be at play at the same time as the channels discussed previously. Risk effects 

matter when VC managers are risk averse because they are no longer indifferent to the overall risk 

level of their fund. Moreover, VC fund managers have increased incentive to manage the risk level 

of their portfolio companies through diversification, because their compensation is based on 

performance (carried interest). Typically, VC funds invest in risky portfolio companies, which have 

highly skewed returns with significant bankruptcy risk (Cochrane, 2005; Gompers and Lerner, 1998; 

Korteweg and Sorensen, 2010). Therefore, risk reduction is important for VC fund managers. In 

practice, they are able to affect their risk exposure by choosing an appropriate set of industries 

(which also have their own level of risk) or development stages of ventures. For example, expected 

risk exposure is likely higher when allocating a larger fraction of funds to early-stage ventures. In 

practice, by selecting investments, fund managers set ex ante the degree of diversification, the 

expected risk and expected return of the fund. At the end of the fund's lifecycle, this leads to 

realized fund risk (dispersion of returns of individual investments) and fund return, which we are 

able to measure with our data. 

 The Risk Hypothesis explored in this study states that risk-averse fund managers who 

diversify investments more (in either more industries or stages of development) may invest in 

riskier and, thus, potentially more profitable companies, because diversification eliminates some of 

the deal-level risk. In contrast, specialists may prefer less risky companies as a way to limit overall 
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risk exposure, at the expense of higher performance.3 For diversified funds, the higher fund returns 

stem from the fact that diversified funds invest in startups with higher risk and thereby also higher 

return prospects. This is typically the case for early-stage ventures as opposed to later-stage 

ventures, or when a larger fraction of funds are invested in riskier industries but with higher 

prospects. Crucially, this notion of diversification is not directly related to the number of ventures, 

which affects the amount of time that VC fund managers can devote to each venture. Rather, our 

analysis focuses on the composition of the portfolio itself.  

We further expect the effect on performance to be strongest for more experienced and 

knowledgeable VC fund managers, because they are more likely to have access to a larger pool of 

investment opportunities that allow them to build a portfolio more easily with an optimal risk–

return exposure than less experienced managers. Therefore, expertise is likely to be a critical 

ingredient to enable VC fund managers to source promising deals in a larger range of industries or 

stages of development. Also, experienced and knowledgeable managers are more likely to be 

invited to join syndicates that allow them to more easily diversify across industries and stages of 

development.  In terms of the impact on risk, we develop the Risk Hypothesis separately for industry 

and stage diversification, because industry diversification does not occur in the same way as stage 

diversification. If a VC manager diversifies more across industries, the fund will carry less industry-

specific risk, thus enabling the manager to engage in riskier portfolio companies (i.e., portfolio 

companies with a high downside risk but also a high upside potential in terms of returns).4 We 

therefore expect that higher industry diversification leads to higher downside risk of a fund but also 

                                                           
3 Humphery-Jenner (2013) discusses this economic channel as a possible alternative explanation for the documented 

results on the effect of diversification on performance. However, he does not investigate it because of a lack of data on 

risk. 

4 We formally define the concepts of downside and upside risk in the next section, in which we show the exact formula. 

Upside risk is generated by high volatility of returns on the upside (i.e., through very high returns); thus, upside risk is 

deemed "good" risk. In contrast, downside risk is "bad" risk, because it captures volatility of losses (negative returns). 
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higher upside risk (which is due to very high returns). Because higher risk taking should go along 

with higher expected returns when VC investments are properly priced, this also leads to a positive 

relationship between industry diversification and ex post performance. We further expect that 

diversification across stages has a slightly different impact on fund downside and upside risk than 

industry diversification. In VC financing, different investment stages have very different risk and 

return profiles. Early-stage investments, such as investments in seed or start-up companies, are 

associated with higher levels of downside risk and higher upside potential, whereas later-stage 

investments are associated with lower downside risk and moderate upside potential (and, thus, 

also less upside risk). By diversifying into later stages, fund managers can limit the downside risk of 

the fund. The lower downside risk in turn enables them to simultaneously engage in riskier early-

stage portfolio companies, which enhances the fund's expected returns. Similarly, stage 

diversification may result from stage financing. Staging enables sorting out bad investments more 

quickly so that returns are higher and losses are reduced (which means less downside risk). Good 

investments receive further capital to fund follow-up development stages. We therefore expect 

that the higher performance of funds that diversify more across investment stages goes along with 

lower downside and higher upside risk. We test these predictions subsequently. 

 

3. Data and summary statistics 

3.1 Data 

We use a research dataset provided by CEPRES. A unique feature of the data is that they 

provide detailed information, including cash flow data at the deal and fund levels; other commonly 

used databases tend to provide data at either the fund level or the deal level only. Several studies 
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have used the database, including Cumming, Schmidt, and Walz (2010), Cumming and Walz (2010), 

Franzoni, Nowak, and Phalippou (2012), and Krohmer, Lauterbach, and Calanog (2009).  

 CEPRES obtains data from private equity (VC and buyout) firms that participate in a general 

partner network (called Private Equity Analyzer). Private equity firms that participate in this 

network report monthly cash flows and investment details (e.g., industry, investment stage) for 

each deal and fund in which they are involved. In exchange, they receive statistics, such as risk-

adjusted performance measures, for their own investments and for the aggregate private equity 

market. CEPRES effectively anonymizes all the information to meet the confidentiality requirements 

of the VC and buyout firms that provide data to CEPRES. This means that third parties are not able 

to identify individual portfolio companies, funds, or management firms. This eliminates the 

incentives for management firms to overstate the results they report to CEPRES. Lack of anonymity 

in other databases may result in overstating, partial reporting, or back-filling of information, 

amounting to positive self-reporting biases. In addition, CEPRES independently checks all reported 

data for accuracy and impartiality. For example, they independently check whether the reported 

fund-level cash flows are consistent with the reported deal-level cash flows. Additionally, CEPRES 

compares the information provided by the private equity firms on the funds and portfolio 

companies with information available from other commercial databases such as PREQIN. 

The total database as of March 2011 includes information for 1,314 funds that have invested 

in more than 30,000 portfolio companies worldwide. It is important to note that these figures 

correspond to the full universe of private equity investing covered by CEPRES which includes the 

VC, buyout, and mezzanine segments. Out of these 1,314 funds, a total number of 442 funds have a 

self-designated focus on VC investments while the remaining funds focus either on buyout 

investments (567 funds), mezzanine investments (225 funds), or invest in all segments of the 
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private equity universe (80 funds). For our study, we focus on the subset of the 442 VC funds. We 

apply several criteria to obtain our final sample. First, we only include funds in our sample which 

are fully realized or which are at least seven years old. This decreases the sample from 442 funds to 

309 funds. Second, we exclude funds with vintage years prior to 1980 since the coverage of the 

CEPRES data is relatively poor in the 1970s. Excluding one fund with vintage year 1972 gives our 

final sample of 308 VC funds which have invested in 10,131 portfolio companies. Since CEPRES only 

includes funds in the database which provide complete data for all portfolio company investments 

of the fund, we did not have to exclude funds from our sample because of missing information. 

In terms of data representativeness, a comparison of the number of sample funds with that 

contained in other commercial and proprietary databases commonly used in private equity 

research is worthwhile. The proprietary database Robinson and Sensoy (2016) use contains 292 VC 

funds, which is slightly less than our sample size of 308 VC funds. The commercially available 

private equity databases most often used in recent academic research on fund performance are 

BURGISS and PREQIN. For these databases, Harris et al. (2014) report sample sizes of 555 and 830 

VC funds, respectively. Compared with BURGISS or PREQIN, our sample contains a lower but still 

sufficient coverage of VC funds. Importantly, the strength of the CEPRES dataset is its provision of 

detailed information on both the fund and deal level, whereas the mentioned data sources only 

provide fund-level information. This feature is crucial for our subsequent analysis because it 

enables us to calculate precise measures of fund diversification and risk. 

3.2 Summary statistics 

Table 1 (Panel A) reports the sample statistics for all the variables by mean, median, 

standard deviation, minimum, and maximum values. The average IRR in our sample of funds is 

35.5%, with a median of 19.6%. Note that these performance figures are reported gross of 



16 

 

management fees and carried interest payments and therefore do not represent the returns earned 

by the fund investors. The fact that the mean is higher than the median indicates that the 

distribution of returns is highly positively skewed, which is a common feature of VC returns (see 

Cochrane, 2005). The large standard deviation further implies a large dispersion of fund returns, as 

can also be inferred by comparing the minimum and maximum values, which amount to –30.6% 

and 476.70%, respectively.  

Potential sample selection biases are a natural concern in private equity research. To assess 

potential bias, we can compare the IRR statistics of our sample with those of other databases used 

in the literature. PREQIN reports an annual average IRR of 24.9% for VC funds with the same 

vintage years as in our sample. Harris et al. (2014) report an average annual performance for VC 

funds of 12.8% for funds with vintage years in the 1980s, of 35.2% for funds with vintage years in 

the 1990s, and of –1.0% for funds with vintage years in the 2000s. Given the distribution of our 

sample funds by vintage years, this yields an average comparable annual IRR of their data of 22.5%. 

These figures are substantially lower than the average annual IRR of 35.5% of our sample VC funds. 

However, it is important to note that CEPRES reports performance before all fund-level fees while 

the PREQIN database and the data Harris et al. (2014) use is reported net of all fund-level fees. 

Private equity fund managers typically receive a fixed annual management fee and a performance-

based incentive fee, also known as carried interest. According to Robinson and Sensoy (2013), the 

median VC fund has an annual management fee of 2.5% and a carried interest of 20%, with an 

annual hurdle rate of 8%. Using this typical compensation structure, we perform a simple back-of-

the-envelope calculation to convert our average sample performance before fees into performance 

after fees. Overall, this calculation reduces the annual average IRR of our sample funds to 27.1% 
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after fees,5 which is still slightly higher but close to the 24.9% from PREQIN and the 22.5% from 

Harris et al. (2014). Thus, we conclude that a significant selection bias is not a factor in our sample. 

Finally, it is also important to note that our cross-sectional analyses would only be sensitive to 

selection issues insofar as any potential bias in the data is correlated in specific ways with the 

explanatory variables.  

We consider two diversification measures, one along the industry dimension (labeled 

Industry Diversification) and one along the different stages of development (Stage Diversification) 

of the portfolio companies in which the VC fund invested. We measure the first by 1 – Herfindahl 

index of the industries and the second by 1 – Herfindahl index of the different stages of 

development (see Table 1 for more details on the different categories considered).6 The mean 

(median) figures of our diversification variables are 0.657 (0.730) for Industry Diversification and 

0.466 (0.550) for Stage Diversification. These values cannot be directly compared across the two 

dimensions, because some of these differences are likely to be attributed to the different number 

of categories considered for each dimension. Seventy percent of our sample contains US funds, 

which is consistent with the common notion that the United States is the dominant market for VC 

investments worldwide. The average fund in our sample invests in 32.893 portfolio companies and 

has 22.668 investment professionals, leading to an average value of 1.45 companies managed per 

investment professional. The VC management firms in our sample are mature, as indicated by Firm 

                                                           
5 This simple approximation assumes a typical fund lifetime of 10 years and that committed capital is steadily and fully 

invested over the entire lifetime. Let  denote the average IRR before fees,  the annual management fee,  the 

carried interest level,  the hurdle rate, and  the lifetime of the fund. The reduction in IRR caused by management 

fees can be approximated by , and the reduction in IRR caused by 

carried interest payments can be approximated by . 

6 This measure of diversification (or specialization) is also used in other venture capital studies, including Cressy et al. 

(2014), Dimov and De Clercq (2006), Gompers et al. (2009), Jaaskelainen et al. (2006), and Yang et al. (2014). 
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Age (mean of 18.001 years), and participate, on average, in 3.887 rounds in their portfolio 

companies.  

[Table 1 about here] 

 Table 1 also shows statistics for our risk measures. We use upside and downside volatility as 

measures for investment risk of a fund as a way to disentangle "good" from "bad" fund risk. Using 

volatility seems unconventional under the standard asset pricing theory, which suggests that only 

systematic risk is priced in equilibrium. However, in contrast with this conventional view, Ewens et 

al. (2013) provide evidence that idiosyncratic risk is also a priced factor for VC and private equity 

investments. They develop a theoretical model to analyze the role of idiosyncratic risk in the pricing 

of VC and private equity investments. Their model predicts a positive relationship between the 

investment returns of funds and the ex post idiosyncratic risk of the funds’ returns. Empirically, they 

find a strong correlation between realized total risk and fund returns. This evidence suggests that 

total risk as measured by volatility is an appropriate risk measure for VC and private equity funds. 

Note that we use upside and downside volatility rather than total volatility in this study. We do so 

because VC investments typically involve highly skewed investment returns that deviate 

substantially from a normal distribution, as discussed previously. An important drawback of the 

standard return volatility is that it treats positive and negative deviations from the mean return as 

equally undesirable risk. Tobin (1958) shows that volatility can be the risk measure of choice only 

for normally distributed returns. In contrast, downside volatility is a risk measure that accounts for 

asymmetric return distributions by considering only negative deviations from a pre-specified target 

return. Markowitz (1991) was the first to propose the concept of downside volatility; he argues that 

downside volatility is a more plausible measure of risk than standard volatility because investors 

worry about under-performance rather than over-performance. However, downside risk is 
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meaningful not only from an individual investor’s perspective but also from an asset pricing 

perspective. For example, Bali et al. (2009) demonstrate a strong risk–return tradeoff using 

downside risk measures.  

 In this paper, we also consider upside volatility, which is a measure of the upside potential 

(the "good" risk) of the returns of a VC fund. In contrast with downside volatility, upside volatility 

considers only positive deviations from a pre-specified target return. This additional measure allows 

us to further assess how diversification affects the right tail of the return distribution. In other 

words, does diversification affect the possibility of a VC firm generating higher returns? For 

example, a negative relationship between diversification and the upside volatility suggests that 

diversified funds have limited access to very high returns. Because time series of investment returns 

are not available for private equity funds, we proxy upside and downside volatility of a fund by 

using the IRRs of the portfolio companies in which the fund has invested. For a fund that has 

invested in N portfolio companies with returns given by IRR1, IRR2, …, IRRN, we can calculate the 

downside volatility by 

   


N

i iDown TarIRR
N 1

2
0,min

1
        (1) 

and the upside volatility by  

   


N

i iUp TarIRR
N 1

2
0,max

1
 .       (2) 

In both equations, Tar denotes the return target. Motivated by Ang et al. (2006), we use a target 

return of zero in all the following calculations. 

Panel A of Table 1 shows that the average upside volatility of the sample funds is much 

larger than the average downside volatility. This difference also indicates that the returns of our 
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sample funds are highly positively skewed and deviate substantially from a normal distribution, 

which is consistent with the distribution of VC returns.  

 Panel B of Table 1 shows the correlation matrix of these same variables. As is evident, 

multicollinearity is not a major issue given the lack of excessive correlations between the 

explanatory variables. 

 

4. Analysis and results 

Given that diversification affects the risk of VC funds, we examine whether fund managers 

invest in riskier deals to achieve higher returns. If so, this would lead to a positive relationship 

between fund diversification and fund performance, consistent with our Risk Hypothesis. 

Humphery-Jenner (2013) finds that higher diversification across industries leads to higher returns as 

measured by funds’ IRR, proposing a hypothesis based on learning. We aim to explore a cost-side 

factor, which stipulates that the positive relationship between diversification and fund IRR is also 

related to fund-level risk.  

4.1. Main results on the risk hypothesis 

To test the Risk Hypothesis, we perform several analyses. As a first step, we examine the 

relationship between IRR and diversification (i.e., Equation 3), followed by fund risk and 

diversification (Equation 4). Both left-hand-side variables are outcome (ex post) variables and 

determined jointly at the end of the fund's lifetime, while diversification pertains to the portfolios 

selected during the first years of the fund's lifetime (the so-called investment period of the fund):  

  XationDiversificIRR ijti,  and      (3) 
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  XationDiversificFundRisk ijti, ,     (4) 

where IRR is the fund's realized internal rate of returns, Diversification is either Industry 

Diversification or Stage Diversification, Fund Risk is either the upside or downside fund volatility of 

the realized IRR, and X are control variables, which include fund origin (US versus non-US), the 

number of portfolio companies in the fund, number of professionals in the fund, fund size, average 

number of investment rounds, and average size of investments. All these variables are defined in 

Table 1. These specifications also include fund (vintage) year dummies. A positive and significant j 

in Equation (3) suggests that diversification increases performance, consistent with Humphery-

Jenner’s (2013) study. A positive and significant j in Equation (4) suggests that diversification also 

increases fund risk, in which the impact on downside risk ("bad" risk) is particularly crucial for our 

Risk Hypothesis. The analysis of upside risk complements the picture, as it allows us to examine 

whether diversification also affects the likelihood of generating very high returns. The distinction 

between upside and downside risk offers insights into differential effects for stage and industry 

diversification, as we show subsequently. 

 Crucially, risk is not a mediating factor in our model (Aguinis et al., 2016) but rather an 

outcome variable in our analysis. This is because we use realized risk just like realized returns. The 

risk we consider in the context of strategic choice of diversification is ex ante risk, which is not 

directly measurable (though we include some proxies for ex ante risk subsequently). An important 

but common assumption in finance (Markowitz, 1991) is that ex ante and ex post risk are 

correlated.  

 Table 2 reports the results of Equations (3) and (4). Models 1 and 2 show that a one-

standard deviation change in diversification increases the returns by 3.774% (= 0.222*17.0%) using 

the industry Herfindahl index and 3.260% (= 0.247*13.2%) using the stages Herfindahl index. The 
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evidence is statistically significant at the 1% level for stages of development but only 10% for 

industries. Thus, overall, we find a positive and statistically significant relationship between 

diversification and performance (i.e., more specialized funds underperform on average), though 

mainly for stage diversification.7 These values of impact are also economically meaningful. In 

Models 3–6, we estimate Equation (4) for upside volatility (Models 3 and 4) and downside volatility 

(Models 5 and 6) to offer first insights into the Risk Hypothesis. We find a positive and significant 

relationship between industry diversification and downside volatility (i.e., higher industry 

diversification increases the likelihood of picking “losers”). This result is surprising from a general 

finance perspective because it counters the general notion that higher diversification decreases 

downside risk. The positive coefficient for upside volatility further suggests that higher industry 

diversification also increases the likelihood of picking “stars.” However, this evidence is only weakly 

significant at the 10% level. For stage diversification, we find a weak (10% significance level only) 

and negative relationship to downside volatility and no significant relationship to upside volatility. 

This implies that stage diversification does not affect the upside potential in fund returns but can 

reduce the likelihood of picking underperforming deals.  

[Table 2 about here] 

 Taken together, these results offer a consistent picture of higher risk and higher return for 

industry diversification but especially more downside volatility ("bad" risk) in the event of industry 

diversification with weak compensation in terms of IRR. Thus, the findings suggest that the extra 

returns that could be achieved through higher industry diversification mainly represent a 

compensation for the higher levels of risk taken. Stage diversification suggests a somewhat 

                                                           
7 We also examined whether diversification increases the probability of achieving a top-quartile performance, using a 

logit model. We obtained non-significant results. In addition, we checked for the impact of outliers by winsorizing IRRs 

at the 1% and 5% levels. In both cases, we obtain similar results as reported in the text.  
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different picture. It increases returns significantly and weakly reduces downside volatility ("bad" 

risk). These findings are consistent with stage diversification being quality driven, possibly because 

of stage financing. Staging enables sorting out bad investments more quickly so that returns are 

higher and losses are reduced (which means less downside volatility). Overall, these results offer 

empirical support for the Risk Hypothesis that the positive relationship between IRR and 

diversification is driven by differences in risk taking. For industry diversification, our results suggest 

that higher diversification is accompanied by higher downside (i.e., "bad") risk and higher upside 

(i.e., “good”) risk. In case of stage diversification, the results suggest that higher diversification is 

accompanied by lower downside risk.8 

 The specifications in Table 2 includes several control variables, one of which is the number 

of portfolio companies included in the VC fund (the variable Portfolio Companies). This variable 

allows controlling for the fact that the number of portfolio companies may affect our diversification 

measures. Although they are based on the fractions of funds invested and not the absolute number 

of companies in the portfolio, a larger portfolio may still force the VC manager to invest in a larger 

set of industries or stages of development. This may affect the amount of time available for each 

investee company. Consistent with theories on limited attention (Cumming, 2006; Cumming and 

Dai, 2011; Gifford, 1997; Jaaskelainen et al., 2006), we expect a negative impact on fund 

performance. Our results generally support this prediction.  

We also argued in Section 2 that the effects are strongest for the most experienced VC firms, 

because these firms are better able to attract more investment opportunities and thus can more 

easily achieve their desired portfolio selection outcome from a larger pool, which in turn helps 

                                                           
8 In unreported analyses, we considered geographical diversification by calculating a measure similar to the other two 

dimensions (based on the Herfindahl index) but with the 86 different countries represented in our sample. We found no 

impact of geographical diversification on either performance or risk.  
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achieve diversification. Moreover, more experienced VC firms are likely to have accumulated more 

expertise, so they can more easily invest in a larger range of industries and stages of development 

and thereby mitigate downside risk. To test this extra prediction, we run the same specifications 

(Equations (3) and (4)) using an interaction term between the diversification measure and a proxy 

for VC firm experience. For the latter, we use two measures, one based on VC firm age (i.e., 

whether the fund belongs to a VC firm with Firm Age larger than the sample median) and one based 

on investment experience (i.e., whether the fund belongs to a VC firm with a value of Past Portfolio 

Companies larger than the sample median, meaning the firm has accumulated extensive experience 

through a large number of past investments with other VC funds).  

 Table 3 reports the results. Panel A shows the results for the experienced VC firms using 

Firm Age, and Panel B shows the results using Past Portfolio Companies. We find that experienced 

VC firms benefit most from diversification in terms of returns while less experienced firms do not. 

The higher returns of experienced VC firms are associated with more upside volatility for stage 

diversification (the "good" risk, consistent with the presence of high-performing investees in the 

portfolio) and no significant impact on downside volatility. For industry diversification, we obtain 

similar results to the full sample, in that higher performance comes with higher downside risk, but 

not more than less experienced VC firms. In contrast, less experienced VC firms generate no extra 

returns from diversification, while stage diversification even reduces their upside volatility (i.e., 

their capacity to invest in outperforming start-ups), and industry diversification increases the 

downside volatility. In Panel B, we use the second measure of VC experience and find consistent 

results, though the significance level sometimes varies. Overall, the results show that the 

simultaneous impact on fund risk helps explain the positive relationship between IRR and 

diversification, and the results are strongest for the most experienced VC firms. This finding is 
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consistent with the Risk Hypothesis and serves as a first piece of evidence for the hypothesis. Given 

the possibility of endogeneity however, we consider this first empirical evidence preliminary. 

[Table 3 about here] 

 As an extended test, we now include ex ante measures of risk in Equation (3). If risk helps 

explain the relationship between diversification and performance, we expect the coefficient of the 

diversification measure to be reduced or even lose statistical significance when these measures are 

included. To avoid endogeneity problems, we calculate our ex ante measures of fund risk using a 

qualitatively similar approach to that proposed by Phalippou (2010). This approach uses historical 

data rather than realized IRRs of the fund (which can only be calculated ex post, as done in 

Equations (1) and (2)). We again consider ex ante downside volatility and ex ante upside volatility. 

Formally, Downside Vol Ex Ante is the downside volatility of all portfolio companies managed by the 

same VC firm before raising the current fund, while Upside Vol Ex Ante is the upside volatility of all 

portfolio companies managed by the same VC firm before raising the current fund. These ex ante 

measures of risk better capture what the market expects for the risk of the current fund. Given that 

the market lacks better information when the fund is set up, we assume here that the market's 

expectation stems from the risk the VC manager has taken in the past.9  

 Table 4 reports the results. Models 1 and 2 again show the standard performance 

regressions using our measures of industry and stage diversification; they are identical to Models 1 

and 2 in Table 2 and serve as comparisons. In Models 3 and 4, we include our ex ante downside and 

upside risk measures as additional control variables to directly test the Risk Hypothesis. In line with 

                                                           
9 As alternative measure of ex ante risk, we considered a dummy variable equal to 1 if the fund's focus is on early-stage 

companies (see Ruhnka and Young, 1991; Seppa and Laamanen, 2001). However, this alternative measure does not 

explain ex post performance. The inclusion of this extra control variable as a proxy of fund focus also does not affect 

our main conclusions. Similarly, our conclusions remain unchanged when we proxy fund ex ante risk by the fraction of 

early-stage investments made by the fund. 
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finance theory, we find that the coefficient on Downside Vol Ex Ante is positive and significant (at 

the 5% level), which implies that a higher level of downside risk increases fund performance. The 

coefficient on Upside Vol Ex Ante is close to zero and statistically non-significant in all specifications. 

More important, Models 3 and 4 show that the positive relationship between IRR and 

diversification turns non-significant when controlling for fund risk. These results support the Risk 

Hypothesis that differences in ex ante fund risk drive the relationship between IRR and 

diversification. As our sample includes US and non-US funds, we also examine whether the sub-

sample of US funds drives the regression results. Models 5 and 6 include a dummy variable that 

takes the value of 1 for the US funds and 0 otherwise. We find that including the US dummy 

decreases the significance of the coefficient on Downside Vol Ex Ante. This result is most likely due 

to the higher levels of risk US funds take. However, our main result that the coefficients on the 

diversification measures turn non-significant continues to hold when we include the US dummy as 

an additional control variable. 

[Table 4 about here] 

 As a robustness check, we further examine the impact of activeness of VC managers by 

adding the constructed measures to our performance regressions to determine whether it explains 

performance. We use two measures of "activeness": (1) a dummy variable that takes the value of 1 

if the fraction of investments in which the VC manager holds a board seat is above the median 

(third quartile) of all funds in our sample and 0 otherwise and (2) the fraction of the portfolio 

companies in which the VC fund holds a board seat. We find that the level of activeness of a VC 

fund only has a significant, positive impact on fund performance for the most active VC firms 

(results not reported in tables, but available on request). More important, the results show that the 

level of activeness of a VC fund does not explain the positive relationship between diversification 



27 

 

and performance, as our measures of diversification remain at the same significance levels after 

controlling for activeness.10 

4.2 Endogeneity 

Campa and Kedia (2002) document self-selection and endogeneity issues related to 

diversification choices. They focus on whether the negative relationship between firm value and 

diversification is due to endogeneity. However, in the context of the Risk Hypothesis and owing to 

the nature of VC investments (see Humphery-Jenner, 2013), the potential endogeneity arises 

among risk, performance, and diversification. For example, VC fund managers may decide to invest 

in riskier start-ups while diversifying more across industries or stages of development as a way to 

reduce overall risk. If so, this would suggest that fund risk and diversification are jointly determined. 

The same holds for fund returns. To address this concern empirically, we use the Generalized 

Method of Moments (GMM) instrumental variable estimation approach, in which VC firm 

experience (proxied by Firm Age) serves as an instrument for the Stage and Industry Diversification 

measures. However, if endogeneity does not drive the relationship among risk, return, and 

diversification, the results reported in Table 2 remain valid. The following stages outline our 

method for controlling for endogeneity: 

Stage I: We estimate diversification using Equation (5) as a function of different control 

variables and the instrument: 

  XationDiversific iti, ,      (5) 

                                                           
10 In an unreported analysis, we examine the combined effects of portfolio size and our measures of portfolio 

diversification on fund returns. Our results suggest that VC funds who also invest in a large number of portfolio 

companies will experience lower returns from increased stage diversification. This relationship is most likely driven by 

the fact that investments in early-stage companies require a high level of VC involvement. Thus, funds following a 

strong stage diversification strategy should limit the number of portfolio companies in which they invest. In contrast, 

we find no significant effect of the interaction between portfolio size and industry diversification on fund returns. 
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where Diversification is either the Stage or Industry Diversification measure and X includes the 

number of professionals, fund size, number of rounds, and average size of the fund investments. 

Our instrument is Firm Age, which is a proxy for VC firm experience, consistent with previous 

studies (e.g., Lee and Wahal, 2004). The choice of this instrument is motivated by the idea that 

more experienced management firms are better able to affect portfolio composition because of 

better access to high-quality deal flow than less experienced VC firms. This view is consistent with 

our findings in Table 3. 

 Stage II: We model the endogeneity among risk, return, and diversification using Equations 

(6) and (7): 

  XationDiversificIRR ijti, and        (6) 

   XationDiversificFundRisk ijti , ,     (7)   

where IRR is the fund's internal rate of returns, Fund Risk is either the upside or downside fund 

volatility, Diversification is estimated in the first step using Equation (5), and X are control variables 

similar to Equation (5) but excluding our instrument. We estimate both steps simultaneously using 

GMM.  

 Consistent with previous studies (see, e.g., Humphery-Jenner, 2013), we use three 

diagnostic tests for the GMM assumptions: (1) Hansen j-test for over-identification of our 

instrumental variable, (2) Relevance test to assess whether excluding the instrument from Stage II is 

valid, and (3) Exclusion Criteria, where we assess the orthogonality of the instrument to the error 

term. Failure to reject the null hypothesis in the Hansen j-test suggests that the instrument is over-

identified and thus consistent with the GMM assumptions. Rejecting the null hypothesis in the case 

of the Relevance test indicates that excluding the instrument from Stage II is consistent. The null 
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hypothesis under the Exclusion Criteria test suggests that the instrumental variable is orthogonal to 

the error term.  

 Table 5 shows the Stage II results for industry and stage diversification using GMM 

estimations. For brevity, the Stage I results are not reported. Model 1 shows that industry 

diversification (our instrumented variable) continues to have a positive impact on the realized IRR, 

but its impact is significant only at the 10% level (as before). Similarly, Models 2 and 3 show that 

industry diversification has an equally positive impact on both upside and downside fund risk, again 

consistent with our results in Table 2; however, significance levels have become stronger. Our 

endogeneity test is based on the Hansen j-test, and our values range between 1.871 and 4.408, 

which are all lower than the critical values. For the Relevance test, we obtain Wald statistics values 

that are higher than the critical values, suggesting that we reject the null hypotheses that VC firm 

experience is a weak instrument in our GMM model. Finally, we examine whether excluding our 

instrument from Stage II is a valid assumption. Following the Exclusion Criteria test, we conclude 

that exclusion of the instrumental variable is relevant because the null hypothesis is not rejected at 

any conventional level. Although there is no perfect approach to ensure validity of instruments, our 

case offers some assurance that the results are qualitatively consistent with those when omitting 

the instrument.  

In Models 4-6, we show similar results for our Stage Diversification measure instead of 

Industry Diversification measure to assess the robustness of the results obtained in Table 2. We also 

show similar endogeneity test results (Hansen j-test, Relevance test, and Exclusion Criteria test). 

Stage Diversification increases the returns and upside volatility but reduces downside volatility. 

While the coefficient signs of Stage Diversification remain the same, the results are now significant 

for both types of risk. Thus, Stage Diversification increases upside potential and, at the same time, 
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reduces risk of incurring great losses (affecting downside volatility), generating superior benefits for 

Stage Diversification. Although we already established this finding in Section 4.1, it is even stronger 

when we control for the endogenous nature of VC managers' diversification decisions. 

Furthermore, the diagnostic tests indicate that the GMM model is correctly specified.  

[Table 5 about here] 

 Overall, the results indicate that Industry Diversification is related to risk in a way that 

counters basic intuitions of finance theory. Basic finance theory suggests that high levels of 

diversification decrease both upside and downside risks. In contrast, we find that Industry 

Diversification leads to higher upside and downside volatility. This finding again corroborates the 

Risk Hypothesis that the higher performance of more diversified funds is due to higher levels of risk 

taking, which increases both the downside and upside potential in fund returns. Moreover, these 

results reinforce our previous conclusions (Table 2) because they remain valid even after we control 

for possible endogeneity of diversification choices.  

  

5. Persistence in diversification strategy and impact of past experience   

We perform several extensions to offer further insights into the results obtained. First, we examine 

persistence in industry and stage diversification to explore the question of whether the past 

diversification strategy of a VC fund manager is significantly related to the diversification strategy of 

the current fund. And second, we explore whether accumulated experience in terms of 

diversification is crucial in achieving the improved performance and reduced risk documented so 

far. 

5.1 Persistence in diversification strategies 
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Investigating diversification persistence addresses the question whether VC managers pursue 

similar diversification strategies over time. Persistence in diversification would suggest that 

diversification is a matter of knowledge accumulation and not only driven by risk mitigation as 

shown so far. As discussed in Section 2, expertise is likely to be a crucial ingredient for VC fund 

managers to make advised investment decisions across a larger range of industries or stages of 

development.  

 Finding persistence in diversification strategies is a first step towards supporting the 

underlying assumption that accumulating knowledge matters in VC. Table 6 reports the results. The 

dependent variable in Models 1 and 2 is the industry diversification of the current fund, while the 

dependent variable in Models 3 and 4 is the stage diversification of the current fund. The 

explanatory variable Industry Diversification (Previous) is the industry diversification calculated for 

all previously managed VC funds of the same VC firm; similarly, the explanatory variable Stage 

Diversification (Previous) is the investment stage diversification calculated for all previously 

managed VC funds of the same VC firm. Model 1 shows strong persistence in industry 

diversification. The coefficient on Industry Diversification (Previous) is positive and strongly 

significant at the 1% level; the point estimate is 0.864, with a t-value of 20.57. The coefficient 

implies that a 10% higher past industry diversification is associated with an 8.64% higher industry 

diversification in the current fund. Model 2 supports the view that the evidence for persistence in 

industry diversification is robust when controlling for VC firm age, fund size, and number of 

professionals in the VC firm. Similarly, Model 3 shows a strong and positive persistence in stage 

diversification. This persistence is also highly significant at the 1% level. Again, this result remains 

robust when we control for VC firm age, fund size, and number of professionals (see Model 4). 

Overall, these results suggest that there is strong persistence in industry and stage diversification; 

that is, VC managers who have diversified a great deal over industries or stages in the past also tend 
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to do so in their next fund. The most likely explanation for this behavior is that managers learn from 

their past investments and that changing the diversification strategy might involve significant costs 

for the manager or require substantial time.  

[Table 6 about here] 

5.2 Impact of past experience on performance and risk 

Although that past diversification is a main determinant of the diversification level of the current 

fund (see Table 6), it does not answer the question whether managers tend to diversify into 

industries (stages) in their current fund for which they have gained experience or whether they 

tend to go to completely different industries (stages). For example, a VC manager who first 

manages a specialized biotech fund and then a specialized Internet fund would keep the same level 

of specialization (based on our measures of diversification) but is clearly investing in very different 

industries. Because managing a VC investment requires detailed knowledge of the industry and 

stage of the portfolio company, as discussed in Section 2, we would expect that managers primarily 

diversify into industries and stages in which they have acquired experience. To explore this 

question, we calculate Euclidian distances between the proportions the manager has invested in 

each industry (stage) in the past and the proportions the manager invests in the same industries 

(stages) in the current fund. Formally, we define the Euclidian distance measure as   

  

  


N
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where N is the number of different industries (stages), wi is the proportion the manager invests in 

industry (stage) in the current fund, and wp,i is the proportion the manager invests in industry 

(stage) in all previously managed VC funds. 

 This measure is equal to 0 if the manager exactly invests the same proportion in each 

industry (stage) as in the past. Positive values of the measure indicate that the manager deviates 

from what was done in the past, and the deviation increases as the value becomes larger. The 

maximum value of the measure equals  and is attained in case the manager chooses completely 

different industries (stages) from those invested in the past.  

 The mean (median) value of the Euclidian distance for industry in our sample is 0.33 (0.32), 

which is relatively low for this measure. Given that there are 22 different industries in total, the 

mean value suggests that the average absolute deviation of the proportion in each industry, |wi- 

wp,i|, equals only =7%. The mean (median) value of the Euclidian distance for stage of 

development in our sample is 0.30 (0.24). The mean value here suggests that the average absolute 

deviation of the proportion in each stage equals 11.34%. This number is slightly higher than the 

average absolute deviation for the industries. Overall, this result provides some evidence that 

managers do take into account their past industry experience when choosing where to diversify in 

their current fund. They also consider past investment stage experience, but to a lesser extent.  

 It is important to analyze whether diversification differently affects fund performance when 

managers diversify into industries (stages) in which they have extensive past experience or whether 

they diversify into industries (stages) in which they have little or no past experience. We analyze 

this question in Table 7, which shows regression results that also explain the impact of the Euclidian 

distance measures on fund performance. Model 1 includes the Euclidian distance measure for 

industry. The results show that the coefficient on Industry Diversification remains positive and 
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significant and that the coefficient on Euclidian Industry is negative and highly significant. These 

results give an even clearer picture of the effects of industry diversification on fund performance. 

The positive coefficient on Industry Diversification indicates that diversifying over industries 

positively affects fund performance, as documented previously. However, the negative coefficient 

on Euclidian Industry also shows that diversifying a great deal into industries in which managers 

have little or no past experience has a negative impact on fund performance. Because the second 

effect can also outweigh the first effect, the overall effect of industry diversification on fund 

performance depends on the industries into which managers choose to diversify. When managers 

diversify a great deal into industries in which they lack experience, high industry diversification can 

even have a negative overall effect on fund performance. Similarly, Model 2 includes both the Stage 

Diversification measure and the Euclidian measure for investment stage. The results show that the 

coefficient on Euclidian Stage is not significant while the coefficient on Stage Diversification is 

positive and highly significant at the 1% level. Therefore, diversifying into investment stages in 

which managers have little or no past experience does not significantly affect fund performance. 

Again, the reason may be due to follow-up investments in the same start-ups over several rounds. 

Overall, these results imply that past industry experience is more important for fund performance 

than past investment stage experience.   

[Table 7 about here] 

  Models 3 to 6 explore whether investing heavily in different industries (stages) from the past 

affects the upside and downside risk of a fund. Models 3–8 assess the effects of the Euclidian 

distance measures on upside risk of the funds. The regression results imply that deviations from 

past industry and investment stage experience do not significantly affect managers’ ability to pick 

the “stars” (i.e., portfolio companies with extraordinarily large returns and, thus, high upside 
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volatility), as indicated by the non-significant coefficients on Euclidian Industry and Euclidian Stage. 

Similarly, Models 5–6 examine the effects of the Euclidian distance measure on downside risk of the 

funds. The results in Model 5 show that the coefficient on Euclidian Industry is positive and 

significant at the 5% level. This result is consistent with the regression results from Models 1 and 2 

and suggests that a lack of proper industry experience increases the downside risk of a fund ("bad" 

risk); that is, it increases the likelihood of picking "losers." In contrast, Model 6 shows that 

deviations from past investment stage experience do not significantly affect downside risk, which 

again is consistent with the evidence in Models 1 and 2.  

 

6. Discussion and concluding remarks  

This study develops and tests a finance-related explanation for the positive effect of diversification 

(or lack of specialization) on the performance of VC funds. Because fund diversification also affects 

fund risk, risk-averse fund managers are tempted to invest in companies with higher idiosyncratic 

(i.e., company-specific) risk when pursuing a strong diversification strategy. In practice, 

diversification strategies are part of the private placement memorandum that VC fund managers 

use to secure capital commitments of limited partners. Doing so eventually leads to higher realized 

fund performance on average, since investments in riskier ventures only make sense if they come 

with better prospects of high returns. We tested this prediction using detailed information on a 

large sample of international VC funds. In contrast with most other studies, we measured 

performance by IRRs instead of indirect measures, such as initial public offering ratios. Similarly, our 

data allowed us to obtain good measures of fund risk. Our different results provide support for this 

risk channel, which highlights strategic considerations of VC fund managers in their investment 

decisions. 
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 These findings provide several practical implications for entrepreneurs and VC fund 

managers. First is the importance of good fit with the expertise of the fund manager, as deviations 

from accumulated expertise lead to lower performance. While this implication is intuitive at first 

glance, it is not immediately obvious in light of the documented premium for diversified funds. A 

more consistent view is that diversified VC funds are run by more knowledgeable managers, who 

are less likely to deviate because, with their accumulated expertise, they are better able to match 

investments in different areas. Expertise is a key ingredient to the risk channel documented in this 

study. This directly affects the allocation of capital to riskier companies and, thus, entrepreneurs 

themselves. Entrepreneurs with riskier, possibly early-stage projects are more likely to receive 

funds from more diversified VC funds. Entrepreneurs are less likely to receive capital at the early 

stage from highly specialized funds, unless they are run by experienced VC managers. Less 

experienced managers are less likely to provide capital to early-stage ventures because of their lack 

of experience, unless they diversify to reduce their overall exposure to risk. 

  A second implication for entrepreneurs is that VC managers take a portfolio perspective 

when making investments, consistent with finance theory presumptions that individual investments 

should be viewed in terms of contribution to the portfolio rather than in isolation. Consistent with 

Dimov and De Clercq (2006), the investment strategy adopted by VC managers matters and affects 

the outcome of entrepreneurial firms. More specifically, the Risk Hypothesis proposed herein 

argues that performance and diversification should also be considered in light of risk implications, 

especially for industry diversification in which downside risk may increase as a result of more 

diversification. This means that entrepreneurs cannot expect VC managers to consider their start-

ups an investment in isolation. This situation may become an issue particularly for entrepreneur 

with very risky projects. Even if their expected performance can compensate for the idiosyncratic 

higher risk, the willingness of VC managers to invest will also depend on what else they invested in, 
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as some of the risk is reduced with diversification. Finally, our findings lend support to the view that 

expertise is accumulated only over a longer time horizon, given the persistence of diversification 

over time and the significant costs borne by deviations from previous investment areas. 

 Our study also offers implications for entrepreneurship literature. Whereas other studies 

have proposed alternative reasons VC managers may take a portfolio perspective and thus not 

necessarily choose the most promising projects (notably the hypothesis that VC managers have 

limited attention to devote to each entrepreneurial firm and therefore seek investments that fit 

ongoing investments; see Bernile et al., 2007; Cumming, 2006; Gifford, 1997; Jaaskelainen et al., 

2006), this study proposes a new channel through which portfolio considerations may affect the 

choice of ventures and, thus, entrepreneurs seeking funding. Our results indicate that especially 

entrepreneurial ventures in the riskiest industries or at the early stage of development may be the 

most affected and would gain from a greater diversification of VC funds. We further find that 

experience can overcome the need for greater diversification, as more experienced VC firms can 

generate higher returns with lower diversification. The latter allows them to acquire more 

specialized knowledge in a given industry or stage of development, which will also benefit 

entrepreneurs. 
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Table 1:   Summary statistics of final sample: Panel A shows fund-level descriptive statistics (mean, median, standard deviations, minimum, and maximum values) for all variables used in the analysis. 
Panel B shows the matrix of pair-wise correlations between the variables. The IRR is the fund IRR based on all the investments made. Industry Diversification is equal to 1 – Herfindahl index of the 
industries in which the fund invested. Stage Diversification is equal to 1 – Herfindahl index of the stages in which the fund invested. The following seven stage categories are considered (in parentheses): 
Early Stage (seed, start-up, early stage), Later Stage (expansion, later stage), Buyout, and Other. Fund Risk is downside or upside fund volatility of the IRR. US Dummy is a dummy variable taking the value 
of 1 if the fund origin is the United States and 0 otherwise. Portfolio Companies is the number of portfolio companies in the fund. Number of Professionals is the number of professionals in the fund. 
Ln(Fund Size) is the natural logarithm of the fund's size. Firm Age is measured as the difference between founding date of the VC management firm and the fund's inception date. Past Portfolio 
Companies is the number of portfolio companies in which the VC firm invested prior to raising the current fund. Number of Rounds is the average number of investment rounds in which the fund 
participated, calculated as the number of investments made divided by the number of companies. Ln(Investment Size) is the natural logarithm of the average size of the fund's investment. ***, **, and * 

indicate significance at 1, 5, and 10, respectively  

Panel A: Descriptive statistics 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Mean 
 0.355 0.657 0.466 0.471 1.231 0.700 32.893 22.668 18.662 18.001 51.082 3.887 15.178 

Median 
 0.196 0.730 0.550 0.484 0.673 1.000 27.000 14.000 18.683 16.000 21.000 3.800 15.325 

STD 
 0.615 0.222 0.247 0.149 1.643 0.459 19.263 44.587 1.250 8.918 84.456 1.584 0.965 

Min 
 -0.306 0.000 0.000 0.000 0.017 0.000 7.000 2.000 15.425 0.420 0.000 1.100 12.494 

Max 
 4.767 0.900 0.820 0.780 13.729 1.000 122.000 514.000 23.719 40.920 582.000 14.760 17.592 

Panel B : Correlation matrix  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

IRR (1) 1 
            

Industry Diversification (2) -0.0562 1 
           

Stage Diversification (3) 0.0614 0.0134 1 
          

Fund Risk (Downside) (4) 0.0073 -0.1210** 0.0759 1 
         

Fund Risk (Upside) (5) 0.4707*** 0.0775 -0.0597 0.1260** 1 
        

US Dummy (6) 0.0081 -0.0608 -0.1199** 0.0453 0.0430 1 
       

Portfolio Companies (7) -0.0791 -0.2731*** -0.2079*** 0.0723 -0.0442 0.0706 1 
      

Number of Professionals (8) 0.0108 -0.1100** -0.0103 -0.0482 -0.0387 0.0794 0.1029* 1 
     

Ln(Fund Size) (9) -0.2095*** -0.1645** -0.2886*** -0.0386 -0.1031* 0.1627** 0.4072*** 0.1481** 1 
    

Firm Age (10) 0.0065 -0.1919** -0.2446*** 0.0031 -0.0188 0.1715** 0.4134*** 0.2045** 0.2657*** 1 
   

Past Portfolio Companies (11) -0.0809 -0.1683** -0.1839** -0.0421 -0.0911 0.1523** 0.4620*** 0.1468** 0.3915** 0.3324*** 1 
  

Number of Rounds (12) -0.2026*** 0.0238 -0.0610 0.1559** -0.1046* 0.0145 -0.0404 -0.1839** 0.1827** 0.0506 -0.0479 1 
 

Ln(Investment Size) (13) -0.2032*** -0.0541 -0.2452*** -0.0270 -0.0593 0.2343*** 0.1850** 0.1550** 0.3048*** 0.1866** 0.3080*** 0.3039*** 1 
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Table 2 

Baseline analysis of the impact of diversification on performance. 

This table shows OLS regression results. The dependent variable is the fund's IRR in Models 1 and 2, the fund's upside volatility in 

Models 3 and 4, and the fund's downside volatility in Models 5 and 6. All the explanatory variables are defined in Table 1. All the 

models include fund (vintage) year dummies. The values in parentheses are t-test values, based on heteroskedasticity-corrected 

standard errors. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 

 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Variables  IRR IRR Upside Vol Upside Vol Downside Vol Downside Vol 

Industry Diversification 0.1701* 
 

0.2390* 
 

0.1480*** 
 

 
(1.81) 

 
(1.65) 

 
(4.22) 

 
Stage Diversification 

 
0.1321** 

 
-0.0083 

 
-0.0590* 

  
(2.53) 

 
(-0.06) 

 
(-1.72) 

US Dummy 0.0509 0.0172 0.0056*** 0.0052** 0.0011** 0.0021*** 

 
(1.06) (0.57) (2.61) (2.20) (2.27) (3.66) 

Portfolio Companies -0.0016 -0.0023** 0.1321* 0.1662** 0.0347* 0.0400** 

 
(-1.12) (-2.59) (-1.78) (2.01) (1.94) (2.00) 

Number of Professionals 0.0003 0.0004 -0.0004 -0.0005 0.0002 0.0002 

 
(0.74) (1.58) (-0.57) (-0.66) (0.96) (0.97) 

Ln(Fund Size) 0.0037 0.0214 -0.0033 0.0088 -0.0348*** -0.0358** 

 
(0.11) (0.99) (-0.06) (0.15) (-2.73) (-2.53) 

Number of Rounds  -0.0297** -0.0198** -0.0739*** -0.0783*** 0.0169*** 0.0201*** 

 
(-2.20) (-2.33) (-3.82) (-3.39) (3.38) (3.60) 

Ln(Investment Size) 0.0341 0.0084 -0.0020 0.0278 -0.0242 -0.0169 

 
(0.86) (0.33) (-0.03) (0.41) (-1.63) (-1.02) 

       
Vintage Year Dummies Yes Yes Yes Yes Yes Yes 

No Obs. 308 308 308 308 308 308 

Adj. R-square 0.360 0.364 0.38 0.345 0.285 0.293 
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Table 3: The impact of diversification on performance: the moderating role of VC firm experience. 

This table shows OLS regression results for experienced VC firms using two measures of experience. The first measure (Panel A) is a dummy variable equal to 1 (0) if Firm Age is larger than (smaller than or equal 

to) the median of Firm Age. The second measure (Panel B) is a dummy variable equal to 1 (0) if Past Portfolio Companies is larger than (smaller than or equal to) the median of Past Portfolio Companies. Panel A 

shows the results for the first measure of VC firm experience, and Panel B shows the results for the second measure of VC firm experience. The dependent variable is the fund's IRR in Models 1 and 2, the fund's 

upside volatility in Models 3 and 4, and the fund's downside volatility in Models 5 and 6. All the other explanatory variables are defined in Table 1. All the models include fund (vintage) year dummies. The 

values in parentheses are t-test values, based on heteroskedasticity-corrected standard errors. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively.  

 

Panel A: First Measure of VC Experience 
 

Panel B: Second Measure of VC Experience 

 

Model 1A Model 2A Model 3A Model 4A Model 5A Model 6A 
 

Model 1B Model 2B Model 3B Model 4B Model 5B Model 6B 

Variables IRR IRR Upside vol Upside vol Downside vol Downside vol  
 

IRR IRR Upside vol Upside vol Downside vol Downside vol  

Industry Diversification 0.0095 
 

0.1710 
 

0.1550*** 
  

0.0696 
 

0.3300 
 

0.1130**  

 
(0.100) 

 
(0.89) 

 
(3.62) 

  
(0.59) 

 
(1.59) 

 
(2.54)  

Industry Diversification × VC Experience 0.3840** 
 

0.1740 
 

-0.0131 
  

0.2670 
 

-0.2140 
 

0.0858  

 
(2.24) 

 
(0.51) 

 
(-0.17) 

  
(1.45) 

 
(-0.67) 

 
(1.24)  

Stage Diversification 
 

-0.0894 
 

-0.2820** 
 

-0.0541 
  

-0.2250*** 
 

-0.2610***  -0.0721* 

  
(-1.53) 

 
(-2.30) 

 
(-1.28) 

  
(-4.29) 

 
(-3.38)  (-1.70) 

Stage Diversification × VC Experience 
 

0.318*** 
 

0.6430*** 
 

0.00537 
  

0.4450*** 
 

0.3560***  0.0440 

  
(3.48) 

 
(3.36) 

 
(0.08) 

  
(5.59) 

 
(3.03)  (0.68) 

US Dummy 0.0207 -0.0164 0.1510* 0.0369 0.0359* 0.0384** 
 

0.0471 -0.0718*** 0.1770** -0.1040*** 0.0337* 0.0348* 

 
(0.49) (-0.63) (1.80) (0.68) (1.94) (2.05) 

 
(0.97) (-3.06) (2.10) (-3.01) (1.86) (1.84) 

Portfolio Companies -0.0017 -0.0029*** 0.0055** 0.0052*** 0.0013** 0.0017*** 
 

-0.0015 -0.0028*** 0.0057** 0.0027*** 0.0011** 0.0016*** 

 
(-1.38) (-3.72) (2.20) (3.11) (2.27) (2.99) 

 
(-1.03) (-3.94) (2.22) (2.65) (2.05) (2.89) 

VC Experience -0.2360** -0.1190** -0.1630 -0.2770*** -0.0001 0.0019 
 

-0.1920 -0.1130** 0.0632 -0.0796 -0.0547 -0.00409 

 
(-2.01) (-2.39) (-0.69) (-2.66) (-0.00) (0.05) 

 
(-1.48) (-2.58) (0.28) (-1.23) (-1.13) (-0.12) 

Number of Professionals 0.0002 0.0002 -0.0005 0.0002 0.0002 0.0002 
 

0.0003 -0.0001 -0.0007 -0.0003 0.0002 0.0002 

 
(0.600) (0.94) (-0.67) (0.37) (1.06) (1.16) 

 
(0.69) (-0.31) (-0.88) (-0.80) (1.00) (1.23) 

Ln(Fund Size) 0.0104 -0.0325* -0.0097 -0.011 -0.0353*** -0.0313** 
 

0.0056 -0.0267 -0.0131 -0.0155 -0.0336*** -0.0315** 

 
(0.35) (-1.76) (-0.17) (-0.28) (-2.74) (-2.35) 

 
(0.16) (-1.62) (-0.22) (-0.64) (-2.61) (-2.36) 

Number of Rounds -0.0328*** -0.0569*** -0.0776*** -0.0524*** 0.0176*** 0.0159*** 
 

-0.0305** -0.0615*** -0.0774*** -0.0557*** 0.0169*** 0.0162*** 

 
(-2.84) (-7.78) (-3.36) (-3.42) (3.47) (3.02) 

 
(-2.27) (-9.45) (-3.29) (-5.81) (3.35) (3.09) 

Ln(Investment Size) -0.0004 0.0571*** 0.0318 -0.0087 -0.0232 -0.0276* 
 

0.0332 0.0431** 0.0511 0.0959*** -0.0248 -0.0289* 

 
(-0.01) (2.65) (0.47) (-0.19) (-1.55) (-1.78) 

 
(0.83) (2.23) (0.73) (3.37) (-1.65) (-1.85) 

Vintage Year Dummies Yes Yes Yes Yes Yes Yes 
 

Yes Yes Yes Yes Yes Yes 

No Obs. 308 308 308 308 308 308 
 

308 308 308 308 308 308 

Adj. R-square 0.386 0.734 0.348 0.641 0.286 0.255 
 

0.358 0.773 0.331 0.844 0.283 0.251 
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Table 4 

Analysis of the impact of diversification and ex ante risk on performance. 

This table shows OLS regression results. The dependent variable is the fund's IRR. Downside Vol Ex Ante is the downside volatility of all 

portfolio companies managed by the same VC firm before raising the current fund, and Upside Vol Ex Ante is the upside volatility of all 

portfolio companies managed by the same VC firm before raising the current fund. All other explanatory variables are defined in Table 

1. All the models include fund (vintage) year dummies. The values in parentheses are t-test values, based on heteroskedasticity-

corrected standard errors. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 

 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Variables  IRR IRR IRR IRR IRR IRR 

Industry Diversification 0.1701* 
 

0.1515 
 

0.1656 
 

 
(1.81) 

 
(0.89) 

 
(0.97) 

 
Stage Diversification 

 
0.1321** 

 
0.1858 

 
0.1724 

  
(2.53) 

 
(1.33) 

 
(1.22) 

Downside Vol Ex Ante   0.5823** 0.5881** 0.5005* 0.5171* 

   (2.20) (2.24) (1.85) (1.85) 

Upside Vol Ex Ante   0.0052 0.0030 0.0042 0.0023 

   (0.25) (0.14) (0.20) (0.11) 

US Dummy 0.0509 0.0172 
 

 0.1541* 0.1435 

 
(1.06) (0.57) 

 
 (1.75) (1.63) 

Portfolio Companies -0.0016 -0.0023** -0.0009 -0.0008 -0.0008 -0.0007 

 
(-1.12) (-2.59) (-0.38) (-0.35) (-0.34) (-0.29) 

Number of Professionals 0.0003 0.0004 -0.0001 0.0002 0.0001 0.0002 

 
(0.74) (1.58) (0.17) (0.36) (0.15) (0.34) 

Ln(Fund Size) 0.0037 0.0214 0.0325 0.0317 0.0281 0.0282 

 
(0.11) (0.99) (0.49) (0.48) (0.42) (0.42) 

Number of Rounds  -0.0297** -0.0198** -0.0376 -0.0352 -0.0380 -0.0358 

 
(-2.20) (-2.33) (1.52) (-1.42) (-1.53) (-1.44) 

Ln(Investment Size) 0.0341 0.0084 -0.0308 0.0254 0.0024 -0.0003 

 
(0.86) (0.33) (-0.42) (0.35) (0.03) (-0.00) 

       
Vintage Year Dummies Yes Yes Yes Yes Yes Yes 

No Obs. 308 308 179 179 179 179 

Adj. R-square 0.360 0.364 0.356 0.364 0.362 0.367 
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Table 5 

Industry diversification and fund risk. 

The table reports instrumental variables (IV) GMM-based regression results. The dependent variable of Stage I equation (not reported) is 

the Industry Diversification for Models 1–3 and Stage Diversification for Models 4–6. The dependent variable in Models 1 and 4 (Stage II) 

is IRR, the dependent variable in Models 2 and 5 (Stage II) is the fund's upside volatility, and the dependent variable in Models 3 and 6 

(Stage II) is the downside volatility. All the variables are defined in Table 1. The instrument in Stage I is the variable Firm Age. All the 

models in Stages I and II include fund (vintage) year dummies. Hansen j-test is the over-identification test, Relevance test assesses 

whether the instrumental variables are valid, and Exclusion test examines whether excluding variables from Stage I is relevant. The values 

in parentheses are t-test values, based on heteroskedasticity-corrected standard errors. ***, **, and * indicate significance at 1%, 5%, 

and 10%, respectively. 

 Stage II: Regression Analysis 

Variables 
Model 1 
Dep. Var. = IRR 

 
Model 2 
Dep. Var. = 
Upside Vol 

Model 3 
Dep. Var. = 
Downside Vol 

Model 4 
Dep. Var. = IRR 

 
Model 5 
Dep. Var. = 
Upside Vol 

Model 6 
Dep. Var. = 
Downside Vol 

Industry Diversification 0.1247* 0.0052** 0.1617*** 
   

 
(1.81) (2.21) (5.00) 

   

Stage Diversification    0.1722** 0.0056** -0.3871** 

    (3.03) (2.36) (-2.48) 

US Dummy 0.0482 0.3119** 0.0354** 0.0178 -0.6632 0.0629** 

 
(1.29) (2.10) (2.02) (0.54) (-0.94) (2.90) 

Portfolio Companies -0.0015 0.1527* 0.0011** -0.0061 0.2061** 0.0017*** 

 
(-1.38) (1.90) (2.29) (-0.78) (2.10) (3.18) 

Number of Professionals 0.0031 -0.0007 0.0001 0.0004 -0.0007 0.0002 

 
(0.88) (-0.94) (0.74) (1.35) (-0.83) (0.98) 

Ln(Fund Size) 0.0145 -0.0107 -0.0327** -0.0381* -0.0101 -0.0376*** 

 
(0.54) (-0.19) (-2.63) (-1.91) (-0.17) (-2.86) 

Number of Rounds -0.0320*** -0.0842*** 0.0152*** -0.0111 -0.0823*** 0.0156*** 

 
(-3.04) (-3.73) (3.09) -(1.43) (-3.56) (3.05) 

Ln(Investment Size) 0.0005 0.0399 -0.0221 0.1244*** 0.0662 -0.0073 
 

(0.210) (0.60) (-1.53) (4.84) (0.87) (-0.43) 

 

  
 

   

Hansen j-test 3.641 4.408 1.871 2.279 2.882 3.798 

Relevance test 7.268 6.463 11.530 2.453 2.299 2.763 

Exclusion Criteria test 0.507 0.7255 0.763 0.382 0.157 0.150 

 

  
 

   

Vintage Year Dummies Yes Yes Yes Yes Yes Yes 

No Obs. 308 308 308 308 308 308 
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Table 6 

Persistence in diversification. 
This table shows persistence in diversification using OLS regression analysis. The dependent variable in Models 1 
and 2 is the industry diversification of the current fund, and the dependent variable in Models 3 and 4 is the 
investment stage diversification of the current fund. Industry Diversification (Previous) is the industry 
diversification of all previously managed VC funds of the same VC firm, and Stage Diversification (Previous) is the 
investment stage diversification of all previously managed VC funds of the same VC firm. All other variables are as 
defined in Table 1. The values in parentheses are t-values, based on heteroskedasticity-corrected standard errors. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively.  

 

 

 
Model 1 Model 2 

 
Model 3 Model 4 

Variables 
 Industry 

Diversification 
Industry 

Diversification 
 

Stage 
Diversification 

Stage 
Diversification 

Industry Diversification (Previous) 
 

0.8641*** 0.8361*** 
   

 

 
(20.57) (15.29) 

   
Stage Diversification (Previous) 

 

   
0.6690*** 0.6740*** 

 

 

   
(8.74) (8.54) 

Firm Age 
 

 
-0.0005 

  
-0.0013 

 

 

 
(-0.60) 

  
(-0.80) 

Ln(Fund Size) 
 

 
0.0030 

  
0.0232 

 

 

 
(0.20) 

  
(1.57) 

Number of Professionals 
 

 
0.0002 

  
0.0007*** 

 

 

 
(1.31) 

  
(2.66) 

 

 

     
Vintage Year Dummies 

 
Yes Yes 

 
Yes Yes 

No Obs. 
 

179 179 
 

179 179 

Adj. R-square 
 

0.661 0.682  
 

0.455 0.473 
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Table 7 

Extended performance and risk regressions. 

This table shows the effect of the Euclidian distance measures for industry (Euclidian Industry) and investment stage (Euclidian Stage) on 
the fund's upside and downside risk. The Euclidian measures are calculated for each fund using Equation (8). All other variables are as 
defined in Table 1. The values in parentheses are t-values, based on heteroskedasticity-corrected standard errors. ***, **, and * indicate 
significance at 1%, 5%, and 10%, respectively.  

 

 
Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 

Variables IRR IRR Upside Vol Upside Vol Downside Vol Downside Vol 

Industry Diversification 0.1921**  0.3070 
 

0.1562*** 
 

 
(2.52)  (1.61) 

 
(3.15) 

 
Stage Diversification  0.1661***  -0.0295 

 
-0.0389 

 
 (2.75)  (-0.15) 

 
(-0.80) 

Euclidian Industry -0.3770***  -0.1472 
 

0.1530** 
 

 
(-3.82)  (-0.60) 

 
(2.37) 

 
Euclidian Stage  0.0753  0.0855 

 
0.0576 

 
 (1.36)  (0.49) 

 
(1.29) 

US Dummy -0.0751* 0.0339 0.1572 0.2701** 0.0509** 0.0588** 

 
(-1.97) (0.96) (1.65) (2.42) (2.03) (2.06) 

Portfolio Companies -0.0030*** -0.0017* 0.0057** 0.0067** 0.0019*** 0.0022*** 

 
(-2.74) (-1.76) (2.07) (2.18) (2.67) (2.72) 

Number of Professionals 0.0005 0.0005 -0.0001 -0.0005 -0.0010* -0.0014** 

 
(1.42) (1.54) (-0.16) (-0.48) (-1.96) (-2.36) 

Ln(Fund Size) 0.0401 0.0459* -0.0062 0.0071 -0.0436** -0.0345* 

 
(1.42) (1.77) (-0.09) (0.09) (-2.39) (-1.66) 

Number of Rounds  -0.0345*** -0.0039 -0.0670** -0.0656** 0.0227*** 0.0199** 

 
(-3.31) (-0.41) (-2.57) (-2.15) (3.28) (2.51) 

Ln(Investment Size) 0.0252 -0.0285 -0.0372 -0.0718 -0.0090 -0.0055 

 
(0.76) (-0.94) (-0.45) (-0.75) (-0.41) (-0.22) 

 
   

   
Vintage Year Dummies Yes Yes Yes Yes Yes Yes 

No Obs. 179 179 179 179 179 179 

Adj. R-square 0.712 0.754 0.709 0.458 0.333 0.166 

 

 


