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Abstract: The discovery of new gigantic molecules formed by
self-assembly and crystal growth is challenging as it combines
two contingent events; first is the formation of a new molecule,
and second its crystallization. Herein, we construct a workflow
that can be followed manually or by a robot to probe the
envelope of both events and employ it for a new polyoxo-
metalate cluster, Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1)
which has a trigonal-ring type architecture (yield 4.3% based
on Mo). Its synthesis and crystallization was probed using an
active machine-learning algorithm developed by us to explore
the crystallization space, the algorithm results were compared
with those obtained by human experimenters. The algorithm-
based search is able to cover ca. 9 times more crystallization
space than a random search and ca. 6 times more than humans
and increases the crystallization prediction accuracy to 82.4:
0.7% over 77.1: 0.9% from human experimenters.

Understanding the supramolecular self-assembly of com-
plex inorganic molecules poses a difficult problem since it
relies on two contingent events.[1] To make a discovery the
conditions under which the building blocks assemble have to
be found and then the conditions under which the product
aggregates into crystals to be isolated and characterized need
to be identified. The vast number of combinations of the
experimental conditions and the coordination modes of the
transition metals taking part in the building blocks means that
a full exploration of the chemical space of any given
compound would be impossible.[2] For these reasons, the
intuition of experienced chemists is required to design the
appropriate experiments to determine the right conditions for
the isolation of any new products.[3] But intuitions can be
biased by both the current knowledge of the field and the

frame of mind of the experimenter—making important
discoveries difficult to achieve.

Herein, we design and investigate a new approach for
probing the envelope of both the synthesis and the crystal-
lization process of a new polyoxometalate compound with the
formula Na6[Mo120Ce6O366H12(H2O)78]·200 H2O (1)
{Mo120Ce6} (Figure 1). Our method is drawn from recent

advances for active data acquisition in the field of machine
learning, known as active learning.[4] Active learning consists
of methodologies able to decide what experiments to perform
next in order to optimally improve the understanding of the
system at hand. We compare our algorithmic method with
a random screening process in the exploration and modelling
of the crystallization conditions of compound (1). Impor-
tantly, we study how human experimenters approached this
specific problem and compare their strategies and perfor-
mance to our machine-learning approach.

So far, work in this area has been mainly focused on
simulations and only a few studies have involved real
experiments.[5] For example, recently, Wicker and Cooper[6]

applied machine learning methods to draw a map of
crystallinity according to the size of a molecule and its
number of rotatable bonds. Similarly, Oliynyk et al.[7] used
machine learning to predict structures of inorganic binary
compounds of the general formula AB by considering various
atomic and physical properties in their calculations. Of

Figure 1. Schematic representation of the self-assembly of the
{Mo120Ce6} wheel from basic building blocks in polyhedron mode.
Coloring code: {Mo2} red; {Mo8} blue with central atom in cyan;
{Mo1} yellow; Ce green.
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particular interest, Norquist et al.[8] made use of data from
unsuccessful syntheses to predict reaction outcomes of
vanadium compounds and compared the efficiency of their
algorithms with the typical strategies that human chemists
apply.

Our machine learning approach actively defines new
experiments to perform with an aim to improve its model of
the system. Such targeted data acquisition strategy allows
a reduction in the number of experiments needed to attain the
same model quality, thus saving time and financial resources.
To our knowledge, it is the first time that such an active data
acquisition strategy is applied in this context and compared
with human experimenters. Machine learning methods have
previously been used as a tool of optimization[9] and a faster
data mining technique for extensive databases.[10–14] It is
important to note that our approach should not be mistaken
for high-throughput screening as it uses machine learning
techniques capable of abstracting problems rather than
a brute force increase of processing speed. We instead suggest
this approach should be viewed as “intelligent throughput”
since not all the possible experiments are done, and only those
chosen by the algorithm are explored and the system
effectively learns as the experiment continues similar to
how an expert chemist would work.

We first introduce the compound that was discovered, the
reaction conditions from which it can be isolated and
characterized. We then compare our machine-learning
approach against random screening and human experiment-
ers in terms of performance and methodologies for the
exploration of the crystallization boundaries (see Figure 2).

The new polyoxometalate cluster belongs to the family of
lanthanide-doped molybdenum blues.[15–21] Compound 1 is
isostructural to the reported[22] Na6[Mo120Pr6O366-
(H2O)78H12]·ca. 200H2O, but notably was first discovered
automatically by our automated chemical robot, see Support-
ing Information: Experimental Section, Method A. In later
experiments we also reproduced the synthesis and crystal-
lization of the compound on the bench, see Supporting
Information: Experimental Section, Method B. Compound
1 was characterized by elemental analysis, single-crystal X-ray
structure analysis, bond valence sum (BVS) calculations, IR

and visible-NIR spectroscopy, redox titrations and thermog-
ravimetry.

The single-crystal X-ray structure analysis reveals four of
the dodecameric ring-shaped clusters 1 in the unit cell, packed
parallel to the crystallographic bc plane giving rise to 1D
channels occupied by guest water molecules (Figure S3 in the
Supporting Information). The framework of 1 consists of
12 sets of basic building blocks {Mo8}, {Mo2} and {Mo1} units,
which are well-defined in Mo Blue clusters such as the
archetypal {Mo154},

[22] {Mo176},
[23] and {Mo368},

[24] with 6 {Mo2}
units substituted by 6 CeIII ions. On the whole, the architec-
ture of 1 is constructed from 12 {Mo8} units, 6 {Mo2} units,
12 {Mo1} units and 6 {Ce(H2O)5} units (Figure 1). The coor-
dination configuration of the two distinct types of CeIII can be
described as a distorted monocapped square antiprism, built
from four m2-O atoms and five H2O molecules that is,
{Ce(H2O)5}. Bond lengths of molybdenum atoms coordinated
to terminal oxo groups have a Mo=O bond length in the range
of 1.554(12)–1.702(9) c. The symmetric arrangement of
3 CeIII ions on both the upper and lower surfaces of
{Mo120Ce6} greatly reduces the symmetry of 1 to D3 as
compared with the parent {Mo154} (D7d point group). As
a result, the wheel displays an irregular ring-shaped structure
with an outer ring diameter of about 31 c and an inner ring
diameter of about 17 c. A further characteristic of the
structure of 1 is the large number of protons resulting from
the 24 e@ reduction. The overall reduction state of 1 was
confirmed using three independent techniques: UV/Vis
spectroscopy, redox titration and bond valence sum calcu-
lations (BVS), [see Supporting Information for details]. BVS
calculations[25] are carried out on all the Mo and O centers
(Table S2). A careful analysis of the BVS result reveals
12 singly and 78 doubly protonated oxygen atoms. Taking into
consideration the obtained information from the above
calculations along with elemental analysis and redox titra-
tions, it is possible to determine the overall building-block
scheme and overall charge for compound 1: [{Mo2}6{Mo1}12-
{Mo8}12{Ce6}]/[{MoVI

2O5(H2O)2}6{MoVI/V
8O26(m3-O)2H-

(H2O)3MoVI/V}12 {CeIII(H2O)5}6]
6@.

To explore the synthetic and crystallization process it is
important to define the process of the reaction accurately as
shown in Figure 2. By describing an abstract method we could
then turn this into a concrete procedure and then output the
precise set of experiments to perform, determined by either
a human or the algorithm-driven robot using three methods;
robot-algorithm; human; and robot-random as the control
method. For the experimental conditions to be defined and
explored three distinct pieces of information must be
provided: 1) the chemicals involved in the synthesis, 2) an
experimental method for the synthesis and crystallization
process, and 3) an initial set of data consisting of successful
and failed crystallization experiments, that is, the starting
information used to decide what experiments to perform next,
see Figure 3. Next, to compare the methods using a commonly
calibrated and therefore robust experimental test, we devel-
oped an automated platform (Figure S8) able to consistently
perform the crystallization experiments given a list of
parameters such as the number of reagents and their
corresponding volumes (see Supporting Information, part 7).

Figure 2. Representation of the experimental method showing how the
automated and bench work was done. Structure: Mo blue; Ce green.
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