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Abstract

The absorption spectrum of the MnO –
4 ion has been a test-bed for quantum-

chemical methods over the last decades. Its correct description requires highly-correlated

multiconfigurational methods, which are incompatible with the inclusion of finite-

temperature and solvent effects due to their high computational demands. There-

fore, implicit solvent models are usually employed. Here we show that implicit solvent

models are not sufficiently accurate to model the solvent shift of MnO –
4 , and we

analyze the origins of their failure. We obtain the correct solvent shift for MnO –
4

in aqueous solution by employing the polarizable embedding (PE) model combined

with a range-separated complete active space short-range density functional theory

method (CAS-srDFT). Finite-temperature effects are taken into account by averaging

over structures obtained from ab initio molecular dynamics simulations. The explicit

treatment of finite-temperature and solvent effects facilitates the interpretation of the
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bands in the low-energy region of the MnO –
4 absorption spectrum, whose assignment

has been elusive.

Introduction

Inclusion of environment effects in computational chemistry is pivotal to achieve the best pos-

sible match between theoretical models and experimental measurements. The presence of an

environment influences both energetics and spectroscopic constants. An example of the latter

is how the presence of a molecular environment can alter absorption spectra, and many chem-

ical compounds have a characteristic shift of their excitation energies that depends on the

specific environment. For solutes, the solvent shift may be defined as ∆Eshift = Esol − Evac,

where Esol and Evac are excitation energies obtained with and without solvent included,

respectively. Accurate prediction of excitation energies and solvent shifts poses special de-

mands on the theoretical model. Obviously it is crucial that the theoretical method is able

to describe the electronic structure to high accuracy. For a solvated compound, it is also

important to accurately model the environment-induced perturbation of the solute’s charge

density. Furthermore, it is necessary to include finite-temperature effects which can be done

by averaging over several structures from a molecular dynamics (MD) trajectory. Transition

metal complexes can generally be expected to display multireference character, and in such

cases both dynamical and static correlation must be modeled accurately with multirefer-

ence methods, such as complete active space second-order perturbation theory (CASPT2).1

A prime example is the MnO –
4 ion whose absorption spectrum has been a test-bed for

quantum-chemical methods2–14 for decades. Despite its apparent simplicity, the closed-shell

(d0) MnO –
4 ion has been shown to have sizable non-dynamical correlation.15 Ab initio meth-

ods based on a single-reference wave function have resulted in different assignments4–6,8,13

of the experimental spectrum.16 The ubiquitous time-dependent density functional theory

(TD-DFT) has also been applied, but is noted to significantly overestimate the absolute ex-
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citation energies,7,9,10 although recent developments by Ziegler and coworkers seems to offer

some improvement.14 An obstacle for the application of multireference methods has been

that the required active space has been estimated to be 24 electrons in 17 orbitals, which

is rather large.17–19 A recent study of the electronic absorption spectrum managed to reach

the required active space with a restricted active space method (RASPT2).20 Although good

agreement with experiment was obtained for the intense transitions, there are still aspects of

the MnO –
4 absorption spectrum that remains puzzling. Transitions in the low-energy region

are still not assigned,16,21 and with the measurement of accurate gas-phase data,21 exper-

imental estimates of the vacuum to aqueous solvent shift for the first and third electronic

bands are available; both are small blue-shifts. Yet previous theoretical studies employing

continuum solvation models have predicted either a negligible solvent shift of 0.01 − 0.02

eV14,20 or a somewhat more pronounced red-shift of −0.13 eV,10,22 in clear contrast to ex-

periment. It is presently not known whether the discrepancies are caused by inadequate

electronic structure methods, solvent models, or both.

In this paper, we address the theoretical description of the MnO –
4 absorption spec-

trum in both vacuum and aqueous solvent. To ensure an accurate description it seems

that methods that can capture multiconfigurational character are required. Here we use a

method that combines Kohn-Sham (KS) density functional theory (DFT) with a multicon-

figurational wave function. A number of such schemes are currently in development23–41

and here we employ a range-separation method denoted complete active space short-range

DFT (CAS-srDFT).27,28,31–33,35 The CAS-srDFT method is computationally cheaper than

perturbation-based multireference methods and has been shown to be of comparable accu-

racy.34–36 Further, its simultaneous treatment of dynamical and static correlation enables

the use of significantly smaller active spaces without much loss in accuracy. We exploit this

here to go beyond what have been done so far, and also consider finite-temperature effects

as well as the solvent effects on the electronic absorption spectrum. Thus, we calculate

CAS-srDFT excitation energies and oscillator strengths using a series of structures taken
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from ab initio MD and combined quantum mechanics / molecular mechanics (QM/MM)

ab initio MD simulations. From these underlying structures we also show that continuum

solvation models describe the electrostatic perturbation by the solvent inadequately. We will

instead employ the polarizable embedding (PE) model42,43 which uses an advanced, classical

potential to model the electrostatic solvent effects. With the combined use of QM/MM MD

and PE-CAS-srDFT,44 we are able to reproduce the experimentally-obtained blue shift of

the lowest intense transition. Furthermore, we assign the low-energy parts of the MnO –
4

absorption spectrum.

Results and discussion

First we investigate the performance of the CAS-srDFT method on the MnO –
4 ion in vacuum

and in aqueous solvent described by the polarizable continuum model (PCM). The four

lowest intense transitions in Td symmetry (i.e. transitions to the T2 states) are examined.

We use symmetric, geometry-optimized structures, i.e., we neglect finite-temperature effects.

We performed the calculations based on two geometries: a vacuum geometry (BLYP/6-31G)

and a solvent (PCM) geometry (PCM-BLYP/6-31G). The lowest vertical excitation energies,

as well as the associated oscillator strengths, were obtained for both structures based on

time-dependent CAS(14,12)-srPBE calculations with and without PCM embedding. This

allows us to separate the solvent effects on the spectrum into a contribution stemming from

the direct electrostatic interactions that polarizes the electron density of the solute, and an

indirect contribution which is caused by the solvent-induced change in molecular geometry.

The results for the four lowest intense transitions are shown in table 1. The CAS(14,12)-

srPBE calculation based on the vacuum geometry gives the values that can be compared to

the accurate results based on RAS(24,17)PT2.20 In terms of excitation energies both methods

agree to within 0.1 eV for the first two transitions, and 0.2 eV for the third transition.

However, there is a relatively large discrepancy for the fourth transition where they differ by
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Table 1: Vertical excitation energies in eV and oscillator strengths of the lowest intense
transitions of the MnO –

4 ion in vacuum or aqueous solution calculated using geometry-
optimized structures

Method CAS(14,12)-srPBEa PCMb-CAS(14,12)-srPBEa RAS(24,17)PT220 experimentc

Geom. vacuum PCMb vacuum PCMb vacuum vacuum21 aq. sol.21 crys.16

State Evac f Evac f Eaq f Eaq f Evac f Evac Eaq Extal

11T2 2.21 0.095 2.25 0.092 2.16 0.127 2.20 0.123 2.33 0.004 2.09/2.18 2.27/2.35 2.3/2.4
21T2 3.61 0.010 3.64 0.010 3.61 0.018 3.64 0.018 3.53 0.002 3.55 - 3.6
31T2 4.01 0.084 4.05 0.082 - - - - 4.20 0.006 3.94 4.00 4.1
41T2 5.13 0.171 5.19 0.162 - - - - 5.72 0.002 - - 5.4

a Calculated using a development version of Dalton45,46 with cc-pVDZ basis set and the srPBE(HSE;RI)
exchange-correlation functional,47 as defined in ref. 27. b Cavity was built using 1.9 and 1.52 Å for Mn and

O atomic radii, respectively. c Estimated absorption maxima from refs. 21 and 16.

0.6 eV. We note that Su et al. 20 actually report two states with low oscillator strength below

41T2, and the state that we have designated as 41T2 is actually 61T2 in ref. 20. The oscillator

strengths are rather different though the same trends are observed except for the fourth state.

This is not unprecedented, as we recently showed that CASPT2 and CAS-srDFT can obtain

oscillator strengths that differ significantly,34 although they usually predict the same trends.

Some of the differences have been attributed to the fact that oscillator strengths in CASPT2

(and RASPT2) methods are effectively obtained at the CASSCF level.34 For these higher-

lying excitations (close to the ionization limit) the inclusion of Rydberg basis sets can be

of importance, although it had only little effect in ref. 20. CAS-srDFT has previously been

noted to be more sensitive than e.g. CASPT2 to Rydberg-valence mixing35,36 which could

also be a possible explanation for the differences. CAS(14,12)-srPBE compares very well

with experimental values for the first three excitations for which there exist experimental

values. Although there are no experimental values for the fourth transition in vacuum it has

been measured in crystalline phase, and comparing to this value it seems that CAS(14,12)-

srPBE slightly underestimates the excitation energy whereas RAS(24,17)PT2 overestimates

it by about the same amount.

The most consistent estimates of the solvent shifts are obtained as the difference be-

tween PCM-CAS(14,12)-srPBE values using the PCM geometry and the CAS(14,12)-srPBE

values using the vacuum geometry. However, previous theoretical studies of MnO –
4 have
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occasionally neglected the indirect geometry effect of the solvent.10,22 The shift of −0.14 eV

for the first intense transition reported in ref. 10 is based on a vacuum excitation energy

that was obtained from a structure optimized in vacuum (BPW91/TZ2P), and the solvated

excitation energy was from the work by Seth et al. 22 where COSMO-SAOP/TZ2P was used

on a structure that was also optimized in vacuum (BP86/TZ2P). Meanwhile, the small shift

(0.01 eV) reported by Su et al. 20 was obtained with SAOP/TZ2P and COSMO. If both

structure and excitation energy are obtained consistently, then our estimate of the solvent

shift is only −0.01 eV, which is in good agreement with the shift obtained by Su et al. 20 but

differs somewhat from the red-shift of −0.14 eV. The discrepancy can, at least partly, be

explained by the neglect of indirect solvent effects since we also obtain a small red-shift of

−0.05 eV when using structures optimized in vacuum (see table 1). All the same, even with

a consistent procedure, implicit solvent models alone do not seem to be able to reproduce

the experimental blue-shift which is around 0.1-0.2 eV.21

We now consider MnO –
4 in an explicit solvent environment. We computed absorption

spectra based on the twelve lowest states and in table 2 we report Evac and Esol for these

twelve states as averages based on structures taken from MD trajectories.49 Gaussian convo-

lution of these states leads to the spectrum shown in figure 1. The two intense peaks in this

figure correspond to the two lowest intense bands of 1T2 parentage (corresponding to 11T2

and 21T2 for the symmetric structures in table 1). The perturbation induced by the solvent

molecules as well as the finite-temperature effects remove the degeneracy of the T1 and T2

states. Thus, the T1 and T2 states are split into six states in total. Further, the transition to

the T1 state is dipole-forbidden in Td symmetry, but gains intensity when the symmetry is

removed by finite-temperature effects and solvent interactions. The peak-maxima in figure 1

are used to calculate ∆Eshift which are given in table 3. We start by discussing these, and

thereafter we will provide a more detailed analysis of the individual states in table 2.

From the spectrum we obtain an excitation energy of 2.25 eV for the 11T2 state in

vacuum. This is 0.04 eV higher than the energy obtained using the geometry-optimized
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Table 2: Vertical excitation energies in eV and oscillator strengths of the twelve lowest
intense transitions of the MnO –

4 ion in vacuum or aqueous solution calculated as averages
using structures from a molecular dynamics trajectorya

Geom. QM MDb QM/MM MDc

Environment vacuumd vacuume PCMf PEg

Multiplet State Evac f Eaq f Eaq f Eaq f

1 1.93 0.013 1.97 0.008 1.98 0.011 1.91 0.010
11T1 2 2.03 0.005 2.07 0.005 2.07 0.008 2.04 0.003

3 2.08 0.006 2.13 0.007 2.13 0.008 2.14 0.006

4 2.19 0.014 2.23 0.017 2.22 0.015 2.30 0.016
11T2 5 2.29 0.019 2.34 0.018 2.32 0.019 2.45 0.014

6 2.41 0.016 2.46 0.016 2.44 0.019 2.55 0.012

7 3.36 0.002 - - 3.42 0.003 3.33 0.003
8 3.39 0.002 - - 3.45 0.002 3.40 0.003

21T1/21T2 9 3.42 0.002 - - 3.48 0.002 3.45 0.003
10 3.46 0.002 - - 3.52 0.002 3.50 0.002
11 3.49 0.002 - - 3.56 0.002 3.55 0.003
12 3.54 0.004 - - 3.61 0.006 3.61 0.004

a Calculated using a development version of Dalton45,46 and PElib48 with
(PCM-/PE-)CAS(14,12)-srPBE/cc-pVDZ with the srPBE(HSE;RI) exchange-correlation functional47 as

defined in ref. 27. b Averages based on structures taken from 1.0 ns BLYP/6-31G MD trajectory.49 c

Averages based on structures taken from ten 0.1 ns BLYP/6-31G//TIP3P MD trajectories.49 d Averages
based on 100 structures. e Averages based on 87 structures. f Cavity was built using 1.9 and 1.52 Å for
Mn and O atomic radii, respectively. Averages based on 87 structures. g Embedding potential based on

B3LYP/cc-pVDZ calculations. Averages based on 99 structures.
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Figure 1: Simulated spectra of the MnO –
4 ion in vacuum and aqueous solution modeled

by the PCM or the PE model. The insert shows the generally accepted frontier molecular
orbital diagram labeled according to the Td point group.

structure (see table 1) which can be attributed to finite-temperature effects in the ground-

state. The PCM predicts a very small blue-shift of 0.02 eV (see table 3) and is thus similar

to the shift obtained from the geometry-optimized structures. The PE model predicts a

more significant blue-shift of 0.15 eV (see table 3) which is in excellent agreement with the

experimental shift.

Table 3: Absorption maxima and solvent shifts in eV of the two lowest bands of MnO –
4 ion

obtained from the spectrum in figure 1

Band Evac EPCM
aq EPE

aq Eexp
vac

21 Eexp
aq

21

1st 2.25 2.27 2.40 2.09/2.18 2.27/2.35
2nd 3.44 3.52 3.49 3.55 -

∆EPCM
shift ∆EPE

shift ∆Eexp
shift

1st - 0.02 0.15 - 0.17/0.18
2nd - 0.08 0.05 - -

The spectrum in figure 1 can be interpreted on the basis of the individual states given in

table 2. We can compare these to the results obtained with a symmetric structure in table 1.

For the symmetric structure used in table 1 we obtain an excitation energy of 2.13 eV for the

11T1 multiplet (not shown in table 1), and with the excitation energy of 2.21 eV for the 11T2

state (table 1), the splitting of the 11T1 and 11T2 states in vacuum is only 0.11 eV, similar to

results with RASPT2.20 With such a small energy-gap, the two states are expected to mix
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when the tetrahedral symmetry is lifted. This is indeed the case, but among the lowest six

states, the 11T1 and 11T2 multiplets can still be discerned (see table 2). The three states of

11T1 parentage are still lower in energy than the intense 11T2 band, and can also be discerned

in the spectrum in figure 1, as a weak transition at approximately 1.7-1.9 eV (13700-15300

cm−1) prior to the large peak from 11T2. Low-intensity peaks have indeed previously been

observed in MnO –
4 spectra around 1.8 eV.16,21 Analysis have suggested that their origin were

either in spin-forbidden 3T2, orbital-forbidden 1T1 states, or both.50–52 From our calculations

here, we cannot exclude the involvement of triplet states, but our results show that the 1T1

states are likely to gain sufficient intensity to be responsible for the observed low-intensity

band. This assignment can naturally not be extracted from previous studies10,20,22 with

symmetric structures, where the intensity of the T1 states are identically zero.

From inspection of table 2 we also observe that the direct electrostatic effect of the

solvent is predicted different by the PE model compared to the PCM. In both cases, the

indirect solvent effect, coming from the change in geometry of the solvated MnO –
4 ion,

results in a blue-shift of the excitation energies. This can be seen in table 2 by comparing

the excitation energies based on QM MD geometries to QM/MM MD geometries both with

vacuum environment. For the PCM the direct solvent effects (obtained from column 5 and

7 in table 2) is a (small) red-shift of the excitation energies. Adding this to the indirect

solvent shift thus gives the very small blue-shift as discussed above. Meanwhile, the direct

solvent effects modeled by the PE model (see table 2) result in a blue-shift of the excitation

energy, leading to a more pronounced total blue-shift.

We can also briefly comment on the higher-lying states in table 2 and figure 1. Our

CAS-srPBE results from the symmetric structure in table 1 showed that the dipole-allowed

21T2 multiplet is just above the dipole-forbidden 21T1 multiplet: The excitation energy of

the former is 3.61 eV (see table 1) whereas the 21T1 multiplet has an excitation energy of

3.48 eV (not shown in table 1). The RAS(24,17)PT2 results from ref. 20 predict a similar

situation where the excitation energies are 3.53 eV (21T1) and 3.39 eV (21T1), respectively.
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These two multiplets are mixed when including finite-temperature and solvent effects and

can no longer be discerned (see table 2). From the spectra in figure 1 we obtain an excitation

energy of 3.44 eV in vacuum, and blue-shifts of 0.08 and 0.05 for the PCM and the PE model,

respectively (see table 3). There is no experimental value for this transition in aqueous

solution but a value of 0.09 eV exists for a 0-0 transition in crystalline phase.16,21 Using this

value as reference, both solvent models yield a qualitatively reasonable shift (see table 3),

in particular in the light that the shift of excitation energies due to an environment seem to

be larger in the crystalline phase than in water.21 Our calculated shifts for water are indeed

slightly below the value for the crystalline phase.

It should finally be noted that we do not reproduce the vibrational structure of the spec-

trum, since our underlying structures only include vibrations from the electronic ground

state, while the significant vibrational structure in the MnO –
4 spectrum is a result of vibra-

tional coupling in the excited states. The correct description of this vibronic coupling was

a notable achievement of ref. 10. Although the authors note that the absolute excitation

energies are significantly overestimated by the TD-DFT, they also find that the method con-

vincingly reproduces the vibrational structure through an effective Hamiltonian approach.

Employing a similar model for CAS-srDFT would be an interesting extension of our current

approach but is left for further studies. In any case, the good agreement with experiment

obtained here is encouraging for further investigating the PE-CAS-srDFT method for other

transition metals, both in solution and in protein systems.

Conclusion

In this paper, we present a study of MnO –
4 in vacuum and in aqueous solution, employing

the multiconfigurational CAS-srDFT method combined with implicit and explicit solvation

models. In vacuum calculations, we show that CAS-srDFT is at least as accurate as RASPT2,

although we can employ significantly smaller active spaces with CAS-srDFT. To address the
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solvent shift, we employed a combination of CAS-srDFT and the PE model (explicit solva-

tion), as well as the PCM (implicit solvation). Finite-temperature effects are included by

using structures obtained from QM and QM/MM MD trajectories. An experimental study

has predicted that the lowest intense transition is blue-shifted by about 0.1-0.2 eV compared

to vacuum. However, previous theoretical studies that employed continuum solvation mod-

els predicted that the solvent shift is essentially zero. We find that the reason lies in an

unsatisfactory description of the direct electrostatic interactions between solute and solvent.

The solvent-induced perturbation of the solute geometry shifts the excitation energy about

0.05 eV. Adding the direct electrostatic interactions from the solvent via PCM red-shifts

the energy by about 0.03 eV, leading to a total blue-shift of only 0.02 eV. Using the PE

model instead adds an additional blue-shift of about 0.1 eV, so that the total shift is 0.15

eV. Thus the combined use of the CAS-srDFT and the PE model yield both a solvent shift

and absolute excitation energies that are in excellent agreement with experiment.
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