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Background and purpose: In this study we investigated the interchangeability of planning CT and cone-
beam CT (CBCT) extracted radiomic features. Furthermore, a previously described CT based prognostic
radiomic signature for non-small cell lung cancer (NSCLC) patients using CBCT based features was vali-
dated.

Material and methods: One training dataset of 132 and two validation datasets of 62 and 94 stage I-IV
NSCLC patients were included. Interchangeability was assessed by performing a linear regression on
CT and CBCT extracted features. A two-step correction was applied prior to model validation of a previ-
ously published radiomic signature.

Results: 13.3% (149 out of 1119) of the radiomic features, including all features of the previously pub-
lished radiomic signature, showed an R? above 0.85 between intermodal imaging techniques. For the
radiomic signature, Kaplan-Meier curves were significantly different between groups with high and
low prognostic value for both modalities. Harrell’s concordance index was 0.69 for CT and 0.66 for
CBCT models for dataset 1.

Conclusions: The results show that a subset of radiomic features extracted from CT and CBCT images are
interchangeable using simple linear regression. Moreover, a previously developed radiomics signature
has prognostic value for overall survival in three CBCT cohorts, showing the potential of CBCT radiomics
to be used as prognostic imaging biomarker.

© 2017 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 123 (2017) 363-369
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0)).

With 1.6 million deaths in 2012, lung cancer is the most com-
mon cause of death from cancer worldwide [1,2]. Lung cancer is
also the most frequently diagnosed cancer with 1.82 million new
cases in 2012, comprising 12.9% of the worldwide incidence.
Improved disease outcome and a subsequent increase in a patient’s
chance of survival can be achieved by individualized treatment [3-
5]. To this end, biomarkers are needed [6,7].

Medical imaging has become a cornerstone of personalized can-
cer treatment over the past decades. Novel advanced imaging anal-
ysis techniques such as radiomics - extracting quantitative
features from medical images such as computed tomography
(CT), positron emission tomography (PET), or magnetic resonance
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imaging (MRI) - can identify a patient’s response to treatment or
the probability of developing side effects [3,8-14].

Furthermore, a longitudinal approach where the change of
quantitative radiomic features (i.e. delta radiomics) is examined,
may also aid in early response assessment compared to the use
of only baseline (imaging) characteristics [15-17]. However, in
most studies, PET-, CT- or MRI-scans are only performed at base-
line or at very limited number of points in time, hampering the
possibility for timely treatment adaptation. However, during radio-
therapy for NSCLC patients, three-dimensional (3D) cone-beam CT
(CBCT) images are routinely obtained for patient set-up and posi-
tioning verification [18]. These images could provide valuable
information about day-to-day changes of the tumor during the
course of treatment [19].

Radiomics based on CBCT imaging therefore offers a possibility
for (early) treatment adaptation using the changes of imaging
biomarkers over time. Where the prognostic value of conventional
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CT images is already known [9,11,20], the potential of CBCT radio-
mics still needs to be investigated especially because image quality
of CBCT is generally worse compared to conventional CT images.
Therefore, in this study we aimed to compare radiomics for CT
and CBCT by investigating the interchangeability of radiomic fea-
tures extracted from both modalities. Furthermore, we validated
a previously published CT-based radiomics signature (a Cox regres-
sion model based on imaging only, without clinical parameters)
[20,21], using three independent CBCT datasets to validate the
model and to evaluate the prognostic potential of CBCT imaging
compared to CT imaging.

Methods and materials

Patients

Three NSCLC cohorts from three different institutes were
included in this study. All patients received radiation therapy with
curative intent. Patients that received less than 40 Gy were
excluded from the analysis. Moreover, patients referred to postop-
erative radiotherapy or simultaneous treatment of brain metas-
tases were excluded, as well as patients with prior history of
lung cancer.

The first dataset consists of 132 stage I-IV patients treated
between January 2012 and January 2014 at Maastro Clinic, Maas-
tricht, the Netherlands. Data are provided online on www.cancer-
data.org [22]. The second dataset consists of 62 stage I-IIIB
patients receiving treatment between January 2009 and January
2011 at Radboud University Medical Center, Nijmegen, the Nether-
lands. The third dataset consists of 94 stage I-IIIB patients, a subset
of the cohort used in a previous study on CBCT imaging [19], trea-
ted between November 2007 and December 2011 at Odense
University Hospital, Odense, Denmark. This retrospective study
was approved by each respective institutional review board.

Image acquisition

The images of the treatment planning CT (pCT) scan and the
images of the cone-beam CT (CBCT) scan prior to the first radio-
therapy fraction were used for all analyses in this study. Details
of all image acquisitions can be found in the Supplementary
Material.

Feature extraction

The gross tumor volume (GTV) of the primary tumor was man-
ually delineated on the CT scan by experienced radiation oncolo-
gists and used for treatment planning. For each patient, the GTV
was registered to the CBCT image using a deformable transforma-
tion field obtained by performing non-rigid registration of the pCT
image and the CBCT image [23,24]. Afterward, all contours were
visually checked and manually adjusted when necessary by an
experienced radiation oncologist.

Radiomic features were extracted from the delineated tumor
regions of the pCT and CBCT images. A total of 1119 radiomic fea-
tures were calculated, divided into five groups: tumor intensity
(n=19), texture (n=95), wavelet (n=912), Laplacian of Gaussian
(n=74), and shape (n =19). Emphasis was placed on the features
of the previously published prognostic radiomic signature: I)
tumor intensity: ‘Energy’, II) texture: ‘Gray Level Nonuniformity,
III) wavelet: ‘Gray Level Nonuniformity HLH’, and IV) shape: ‘Com-
pactness’ [20]. All features were automatically extracted using in-
house developed software, using Matlab 2014a (MathWorks, Nat-
ick, Massachusetts, U.S.A.). A mathematical description of all fea-
tures can be found at the end of the Supplementary Material.

Correction

A two-step correction procedure was performed on CBCT prior
to model validation, which will be explained in further detail
below. The first step comprises an intensity value correction and
the second step is a radiomic feature normalization. The workflow
of correcting CBCT is shown in Fig. 1.

Step 1, the intensity correction, was performed to equalize the
distribution of the intensity levels between CBCT images. To find
the correction factor, the mean intensity level in a region of inter-
est (ROI) of approximately 5 cm? in the heart was derived for each
patient in the CBCT image. This ROI was chosen because typical
Hounsfield units were known and because an area of this size at
that location could be drawn for all images. The reference value
was set to 50 HU, since according to literature typical Hounsfield
units in myocardium and blood are between 40 and 60 HU [25].
A scaling factor was calculated using (mean intensity level
+1000)/(reference value + 1000). Correction factors, derived for
individual patients, were multiplied with intensity levels of CBCT
images prior to feature extraction. In this study we decided to
apply the intensity correction for all images, instead of defining a
certain range around the reference value of 50 HU within which
some intensity values could be accepted.

uncorrected
CBCT images

Y

1. Intensity correction
Correct intensity values
of CBCT images

Feature
extraction

\ 4

Linear regression on
pCT vs. CBCT

R2>0.857?

2. Feature normalization
Correct feature values
extracted from CBCT

images

CBCT and pCT
extracted features
cannot be used
interchangeably

Y

corrected
CBCT feature
values

Model
validation

Fig. 1. Workflow. Workflow of two-step correction of CBCT images and extracted
features prior to model validation.
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Step 2 is the radiomic feature normalization, this was per-
formed to correct CBCT extracted features with a fixed calibration
factor in case of a linear relationship between CT and CBCT radio-
mic feature values. The correction factor was derived by perform-
ing a linear regression on the CBCT and pCT extracted features. A
coefficient of determination (R?) above 0.85 was considered to
indicate a strong linear relationship between pCT and CBCT feature
values, meaning that the linear regression parameters (slope and
intercept) could be used to correct radiomic feature values derived
from CBCT. This procedure was performed for all datasets for the
features of the radiomic signature prior to model validation.

The linear regression parameters were used to derive correction
factors for feature normalization for the radiomic signature, but at
the same time they provide a measure of interchangeability
between conventional pCT and CBCT imaging for all radiomic fea-
tures. Only dataset 1 was used to perform a linear regression on all
1119 radiomic features.

For dataset 1, the slice thickness of all CBCT images matches with
the pCT images (3 mm), whereas in datasets 2 and 3 there is discrep-
ancy in slice thicknesses (1 mm for CBCT and 3 mm for pCT). There-
fore, analysis of linear regression parameters of the features of the
radiomic signature was performed before and after resampling into
equal voxel sizes of 1 x 1 x 3 mm using linear interpolation.

Validation of previously published radiomics signature

Model validation was performed on pCT and CBCT images of all
datasets to validate its prognostic value and to compare prognostic
values of the two modalities. The previously published Cox regres-
sion model consisted of 4 radiomic features [20]. Overall survival,
measured from the start of radiotherapy, was used as endpoint.
Patients alive at the end of follow-up were considered right-
censored.

The linear predictors (LP), defined as the sum of each coefficient
multiplied by the respective feature value with adjustment for
average feature values [20], LP = Y ,5;(xi — X;), were calculated
for pCT and CBCT before and after correction to provide another
measure for the interchangeability and to visualize the effect of
the two-step correction procedure. The median value of the LP
derived from the original dataset was —0.11916 [20], and used to
separate patients with high prognostic value (i.e. linear predictor
below the median) from patients with low prognostic value.

Model validation was performed on all datasets using multiple
methods [26], similar as described in Leijenaar et al. [21]. For the
first measure of validation, Cox regression was performed on the
prognostic index (P, defined as >";B;x;, equal to LP without adjust-
ment for average feature values) to determine the calibration
slope, where a slope equal to 1 means that the relative risk model
is still valid and there is no need for recalibration. A log-rank (LR)
test was used to test whether the slope was different from 1. Sec-
ondly, model fit was evaluated by performing the Cox regression
on the individual features of the signature with variable coeffi-
cients plus the PI with a fixed coefficient of 1 (i.e. offsetting the
PI), and performing a joint test that all feature coefficients are 0.
Thirdly, discrimination of the model was assessed by calculating
Harrell’s concordance index (c-index), ranging from 0.5 (no dis-
crimination) to 1 (perfect discrimination). Finally, Kaplan-Meier
curves were made to visualize the potential discrimination
between survival curves of groups with high or low prognostic
value based on a median prediction threshold of the original model
data of Aerts et al. [20] and a LR test was performed to test the sig-
nificance of the curve split.

To compare the performance of the original model on corrected
CBCT to a new model on original CBCT images, the coefficients of
the same four variables of the radiomic signature were refitted
on the CBCT images of dataset 1 without applying correction step

1 or 2. The performance of this recalibrated model was evaluated
for all three datasets.

To investigate the relevance of using this radiomics model for
comparing prognostic performance of pCT and CBCT, we compared
the model’s performance to the recognized prognostic factor ‘TNM-
stage’ for dataset 1. Four dummy variables with T2, T3/4, N1/2 and
N3 were created, using T1 and NO as reference categories. We com-
pared the performance of a model with TNM-stage to the original
radiomic signature model and also calculated the performance of a
model with both the radiomic signature and TNM-stage. Even
though we performed this small comparison with clinical data,
we want to emphasize that it was not the purpose of this study
to develop a new highly prognostic model incorporating different
types of information.

All statistical analyses were performed using R (version 3.2.2
and 3.2.3), using the packages stats, survcomp and rms.

Results

For 17 CBCT images of dataset 1, the field of view (FOV) did not
cover the entire tumor volume, so these patients were excluded
from further analyses. Moreover, 13 patients had not enough mar-
gin around the tumor volume to be able to calculate any filtered
radiomic features without needing to perform padding which
required imputing values and were therefore also excluded from
the analysis. This resulted in a total of 102 CBCT images available
for analysis. In Fig. 2 an example of a treatment planning CT and
corresponding kV cone-beam CT image from dataset 1 is shown.

For dataset 2, 6 patients had to be excluded because the regis-
tration of the images to transfer the delineated GTV did not work
or the tumor was not visible on the CBCT due to blurring or
decreased image quality. This resulted in a total of 56 patients
available for analysis in dataset 2.

For dataset 3, no patients were excluded.

Clinical variables of all patients included in the analysis are
shown in Table 1 in Supplementary Material. All patients, including
the stage IV patients who had 1 or 2 metastases, were treated with
curative intent.

Prior to model validation, correction was applied on CBCT
images and features. The mean intensity level in a ROI in the heart
ranged from —65 to 117 (median 17.5) for CBCT images acquired in
dataset 1, from —364 to 225 (median —242) for dataset 2 and from
—372 to 226 (median —113) for dataset 3 (Fig. 1 of Supplementary
Material). This shows large variability between patients and
explains the why correction step 1, intensity correction, was
applied. The distribution of intensity levels in the GTV before and
after intensity correction was summarized in histograms for all
datasets, shown in Fig. 2 of Supplementary Material.

After intensity value corrections, linear regression was per-
formed on the pCT and CBCT extracted radiomic features.

The coefficient of determination (R?) was calculated for all 1119
radiomic features acquired from dataset 1. A total of 149 out of
1119 (13.3%) features had a R?> above 0.85. This included 2 out of
19 (10.5%) features from the ‘tumor intensity’ group, 14 out of 95
(14.7%) features from the ‘texture’ group, 5 out of 74 (6.8%) from
the ‘Laplacian of Gaussian’ group, 118 out of 912 (12.9%) features
from the ‘wavelet’ group and 10 out of 19 (52.6%) features from
the ‘shape’ group. Scatterplots and linear regression parameters
of the 100 features with highest R? are shown in Supplementary
Material Fig. 3 and Table 1, respectively.

The results of linear regression for the four features of the pre-
viously published radiomic signature are shown in Table 3 of the
Supplementary Material for all datasets. Scatterplots for CBCT ver-
sus pCT for the four radiomic signature features are shown in Fig. 3
for all datasets (using original voxel sizes). The parameters of the
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B

Fig. 2. Example of pCT and CBCT image of dataset 1. (A) treatment planning CT scan, (B) kV cone-beam CT scan of the same patient prior to the first fraction of treatment. The
GTV is indicated in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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linear regression, i.e. the slopes and intercepts, were used to cor- After the two-step correction procedure, model validation was
rect CBCT feature values of all CBCT images of that respective data- performed. All validation statistics are shown in Table 1 for both
set (correction step 2). pCT and CBCT. For dataset 1, the proportion of Stage I patients

Linear predictor values of the radiomics signature were derived was relatively large, therefore model validation was performed
from CBCT imaging before and after performing the two-step separately for the patients with Stage I (n = 42) and for the patients
correction method. Linear predictors of individual patients of all with Stage II or higher (n = 60). These results are shown in Table 4
datasets are shown in Figs. 4-6 of the Supplementary Material. of Supplementary Material.
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Table 1
Model validation results for pCT and CBCT for all datasets.
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Calibration slope on the PI (SE, p-value LR test)

Joint test on all coefficients, p-value Harrell’s c-index (95% CI, p-value)

Dataset 1 pCT 1.77 (SE=0.42, p=0.09)
CBCT 1.90 (SE = 0.44, p = 0.06)

Dataset 2 pCT 0.90 (SE=0.28, p=0.72)
CBCT 1.17 (SE=0.33, p=0.62)

Dataset 3 pCT 0.36 (SE=0.23, p=0.0017)
CBCT 0.73 (SE=0.30, p=0.35)

p=0013 0.69 (0.63 - 0.75, p=9.9*10710)
p=0.027 0.66 (0.59 - 0.73, p = 4.8*10~°)
p=084 0.61 (0.52 - 0.70, p = 0.016)
p=053 0.63 (0.54 - 0.72, p = 0.0052)
p=028 0.59 (0.53 - 0.65, p = 0.0036)
p=0.0024 0.59 (0.53 - 0.66, p = 0.0063)

Significant differences between Kaplan-Meier curves of groups
with high and low prognostic value were found for both the pCT
cohort and the CBCT cohort (p = 0.00064 and p = 0.00020, respec-
tively) in dataset 1. For dataset 2, the Kaplan-Meier curves did
not split significantly for pCT (p = 0.43) and for CBCT (p=0.12).
For dataset 3, differences between Kaplan-Meier curves were not
significant for both pCT (p=0.05) and CBCT (p =0.19). Survival
curves are shown in Fig. 4. Additional Kaplan-Meier curves with
different forms and steps of the correction procedure are shown
in Figures 7-9 in Supplementary Material for all datasets.

The model consisting of the same four radiomic signature fea-
tures, but recalibrated on original, uncorrected CBCT images of
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dataset 1, achieved a c-index of 0.69 (95% CI 0.63-0.75,
p=4.0 %1019 for dataset 1, a c-index of 0.43 (95% CI 0.34-0.51,
p=0.08) for dataset 2 and 0.45 (95% CI 0.38-0.52, p=0.16) for
dataset 3 (all uncorrected images). All other statistics also showed
that this recalibrated model could not be validated on original
CBCT images of dataset 2 and 3 (not shown).

For dataset 1, the c-index of TNM-stage was found to be 0.62
(95% CI 0.54-0.71, p=0.0044), but model performance of the
radiomic signature did not improve when including staging in
the original model, with a c-index of 0.66 (95% CI 0.58-0.73,
p=2.0«10"%) and 0.65 (95% CI 0.58-0.72, p=5.1 *107>) for pCT
and CBCT imaging, respectively.
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Discussion

A small proportion (13.3%) of radiomic features retrieved from
planning CT are interchangeable with those retrieved from cone
beam CT’s. This group of features did include all features from
the previously published prognostic radiomic signature [20]. More-
over, we tested its prognostic value in all three cohorts for pCT as
well as CBCT. The similarity of linear predictors, after the two-step
correction method, estimated by the Cox model of the radiomic
signature shows that prognostic information can be obtained inter-
changeably from pCT or CBCT images. It has already been shown
that image features derived from CBCT can potentially serve as
an early biomarker for assessing response to treatment [27,28].
To the best of our knowledge, only one study investigated the
potential of CBCT imaging in the field of radiomics [29]. However,
these authors only performed test-retest analyses to assess the
reproducibility of radiomic features obtained from CBCT imaging.
The current study shows that a subset of radiomic features and
the prognostic value of the radiomic signature are interchangeable
between pCT and CBCT, showing the potential for using radiomics
on CBCT imaging.

Kaplan-Meier curves of pCT and CBCT images are very similar
for all datasets after correction, indicating that the same informa-
tion can be derived from kV cone-beam CT images as from conven-
tional spiral planning CT. Differences between the Kaplan-Meier
curves between datasets could be explained by differences in
cohorts, e.g. tumors were on average larger in dataset 2 and 3
(109.2 cm® and 71.1 cm® vs. 42.2 cm®) and also more stage III
patients were included compared to dataset 1. More similar
Kaplan-Meier curves are expected when cohorts are more compa-
rable in both size and characteristics. For dataset 2, the non-
significant split of the Kaplan—-Meier curves could potentially be
explained by the low number of patients (16 out of 56) in the high
prognostic group.

In this study, overall survival was analyzed as outcome.
Although this outcome is highly relevant for patients, its associa-
tion with imaging features is expected to be less strong than local
tumor control or disease progression. Using this outcome, the
prognostic performance of pCT as well as CBCT might increase.

There are several challenges in using CBCT imaging for radio-
mics. Extracted textural features typically depend on reconstruc-
tion and scanning parameters [29-32]. Therefore, to be
consistent throughout this study, only CBCT images with a 3 mm
slice thickness were included in dataset 1, which is identical to
the slice thickness in the pCT images. Nonetheless, the CBCTs of
dataset 2 and 3 all had a slice thickness of 1 mm, which could
partly explain the differences in linear regression parameters and
model validation results between datasets. After resampling all
slice thicknesses into an equal size of 3 mm, energy features of
CBCT images of dataset 2 and 3 decreased by a factor 3, as expected
since energy is directly related to the number of voxels. The resam-
pling resulted in more similar results between datasets in terms of
linear regression parameters. However, the influence of slice thick-
ness on the radiomic feature values needs further investigation
[33]. Furthermore, other unknown factors might influence the
interchangeability between pCT and CBCT radiomics or the consis-
tency of radiomics’ performance on CT images. Potentially, a radio-
mics approved reconstruction or corrections afterward as
performed in this study, could in general improve the consistency
and utility of radiomics in medical imaging.

Besides this, the detector size of the cone-beam CT has a limited
field of view (FOV) that may not be large enough for extensive
tumors and off-axis patient positions. Moreover, for calculating fil-
tered radiomic features, a certain margin is necessary to avoid pad-
ding with artificial values. These issues could potentially be solved

by stitching together two acquisitions, or extracting radiomic fea-
tures using the image slice with the largest tumor cross section,
which should still be investigated for CBCT imaging [10,34].

Other challenges with CBCT images for radiomics include their
increased noise and sensitivity to (strike) artifacts compared to
conventional CT images. Due to the prolonged scan time of approx-
imately one minute, CBCT images are more susceptible for motion
artifacts. Respiratory correlated CT imaging minimizes the breath-
ing artifacts, which is not the case for respiration-averaged CBCT
images. Four-dimensional (4D) CBCT imaging might overcome this
problem, however possible decreased image quality and increased
noise compared to 3D CBCT imaging [35] may be observed and 4D
CBCT images are typically not acquired in routine clinical practice.
More research is needed to investigate the influence of artifacts in
CBCT radiomics.

This study shows that after applying correction, comparable
prognostic information can be derived from CBCT images as from
CT images for NSCLC patients. Apparently, the radiomic signature
is a subset of features that is able to derive the important prognos-
tic information which is not affected by differences in image acqui-
sition and reconstruction between CT and CBCT. When performing
radiomics, one should perform extensive test-retest and stability
analyses to select most reliable imaging features, which is espe-
cially important when using lower quality images like cone-
beam CT. In the future, new models can be developed based on
CBCT extracted radiomic features in combination with other (clin-
ical) parameters that potentially have improved prognostic perfor-
mance. Developing new models was outside the scope of the
current study.

Since multiple scans are routinely made in clinical practice, CBCT
imaging could potentially be used in a longitudinal fashion to
develop so-called “delta radiomics”. Tumor changes occurring over
the course of treatment, e.g. cell death, accelerated proliferation and
reoxygenation, could then be monitored using radiomics metrics.
Since this study only shows the interchangeability with planning
CT radiomics, further research is needed to explore the performance
of delta radiomic features extracted from kV cone-beam CT images
for the (improved) prediction of survival and/or to quantify acceler-
ated proliferation as a predictor for local progression.

Conclusion

This study shows that a selection of radiomic features are inter-
changeable when extracted from either planning CT or cone-beam
CT images. The performance of the previously developed CT-based
radiomic signature on CBCT images shows that prognostic infor-
mation on overall survival can be derived from CBCT images of
non-small cell lung cancer patients acquired prior to the first frac-
tion of treatment, providing a two-step correction procedure was
performed. These results show great potential for the use of radio-
mics on CBCT images. CBCT radiomics can now be further evalu-
ated for its potential to monitor tumor changes over the course
of treatment (the so-called “delta radiomics” approach).
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