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Summary

Human longevity is a complex phenotype influenced by genetic

and environmental components. Unraveling the contribution of

genetic vs. nongenetic factors to longevity is a challenging task.

Here, we conducted a large-scale RNA-sequencing-based expres-

sion quantitative trait loci study (eQTL) with subsequent heri-

tability analysis. The investigation was performed on blood

samples from 244 individuals from Germany and Denmark,

representing various age groups including long-lived subjects

up to the age of 104 years. Our eQTL-based approach revealed

for the first time that human longevity is associated with a

depletion of metabolic pathways in a genotype-dependent and

independent manner. Further analyses indicated that 20% of the

differentially expressed genes are influenced by genetic variants

in cis. The subsequent study of twins showed that the transcrip-

tional activity of a third of the differentially regulated genes is

heritable. These findings suggest that longevity-associated bio-

logical processes such as altered metabolism are, to a certain

extent, also the driving force of longevity rather than just a

consequence of old age.

Key words: functional genomics; human; longevity; RNA-

sequencing; transcriptome.

Introduction

Human longevity is likely to be influenced by multiple genetic and

environmental factors as well as by chance (Martin et al., 2007). In

contrast to aging, which is a continuous process occurring in all

individuals, longevity is achieved only by a very small proportion of a

birth cohort. The genetic component to this rare phenotype has been

estimated at ~40% in long-lived individuals (LLI) who survive beyond

85 years (Murabito et al., 2012). Interestingly, many of the elderly who

attain such an extreme age also tend to be healthier for a longer period

of their overall lifetime than their peers who died decades earlier. They

achieve this extension of ‘healthspan’ by postponing the onset of major

age-related diseases and the beginning of functional decline (Andersen

et al., 2012). In addition, LLI often show beneficial profiles for some

metabolic parameters such as lipid and lipoprotein particle profiles

(Barzilai et al., 2003). On the genetic level, nonagenarians and

centenarians have been hypothesized to harbor specific alleles with

protective effects, so-called longevity variants, that may buffer or

counteract the numerous disease variants they carry (Bergman et al.,

2007; Beekman et al., 2010; Sebastiani et al., 2012). However, so far,

variation in only three loci, the APOE gene (Sch€achter et al., 1994; Rea

et al., 2015), the FOXO3A gene in the insulin-IGF1 pathway (Willcox

et al., 2008; Flachsbart et al., 2009; Soerensen et al., 2010), and a

region of unknown function on chromosome 5q33.3 (Deelen et al.,

2014), has been reported to influence survival beyond 90 years of age

in various populations. Many more genes are assumed to play a role in

human longevity, but they have remained undetected as yet despite

large-scale genome-wide efforts (Deelen et al., 2011, 2014; Nebel

et al., 2011; Beekman et al., 2013). As the genetic approaches have

thus far provided only limited information about the determinants and

molecular mechanisms underlying longevity, several studies have

focused on the molecular functional aspects of the phenotype by

analyzing the miRNA, epigenome, and transcriptome profiles of LLI

(Rodwell et al., 2004; Bollati et al., 2009; Harries et al., 2011;

ElSharawy et al., 2012; Passtoors et al., 2012). Yet many other studies

focused primarily on aging mechanisms rather than on longevity (Van

den Akker et al., 2014; Peters et al., 2015). The transcriptome of an

individual reflects the influence of both genetic variation and the

environment. A majority of transcriptome studies in longevity research

use a cross-sectional design (Rodwell et al., 2004; Harries et al., 2011;

Passtoors et al., 2012), in which data of LLI are compared with that of

younger participants who were born generations later. However, such a

setup is not suitable to distinguish between the changes in gene

expression that predispose to longevity and those that result from it

(Deelen et al., 2013). To partly overcome this limitation, we performed

in this study RNA-sequencing-based transcriptome profiling in blood

samples of 244 LLI and younger controls and subsequently employed an

expression quantitative trait loci (eQTL) analysis to investigate the

association between mRNA expression levels and single-nucleotide

polymorphisms (SNPs). As the SNPs involved in the eQTLs are consti-

tutional, they cannot be a consequence of longevity but represent one

of its underlying factors. Taken together, integrating genotype infor-

mation with high-resolution transcriptome data from this sample does

not only help elucidate functional mechanisms associated with long-

evity, but also provides for the first time the opportunity to assess the

genetic contribution to it.

Results

Differential gene expression between LLI and CI

The transcriptome analysis of 55 LLI and 73 CI (CI: control individuals,

German samples) identified 19 483 of 24 934 genes analyzed as

expressed in blood. Of these, 6214 were significantly differentially
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expressed (Benjamini-Hochberg corrected P-value ≤ 0.001; false discov-

ery rate FDR ≤ 0.1%) between LLI and CI including 3525 downregulated

and 2689 upregulated genes in LLI (Fig. 1, Table S1, Supporting

information, Appendix S1: Supplemental raw data, Supporting informa-

tion). Of those 6214 differentially expressed genes, 139 exhibited a high

correlation (r ≥ 0.8) with individual blood cell types (Palmer et al., 2006)

and were excluded from further analysis to control for altered cell

compositions due to age. Subjecting the remaining 6075 differentially

expressed genes to a gene ontology analysis resulted in 107 significant

biological processes. We found that eight of the ten most significantly

enriched or depleted biological processes were functionally linked to

metabolism, which is very unlikely to have occurred by chance

(P = 3.51 9 10�5; Fischer’s exact test). In addition, a larger number of

downregulated genes than expected by chance were associated with

these eight metabolic processes, which represents the most prominent

finding of the study. Most gene ontology categories were relatively

broad, for example, such as cellular macromolecule metabolic process,

nucleobase-containing compound metabolic process, heterocycle meta-

bolic process, or cellular aromatic compound metabolic process

(Table S2, Supporting information); however, upon closer inspection,

many of them seemed to point to nucleotide metabolism. Modulation

was also found in processes functionally linked to defense as well as to

cell and tissue regeneration, yet to a much lesser extent than in

metabolism (Fig. 2).

Comparing the P-values of differentially expressed genes with the

findings from five previous aging transcriptomics studies yielded Spear-

man rank correlation coefficients from 0.44 to 0.72. The overlap in the

direction of the fold change of each gene ranged from 65% to 100%

per gene (Table 2, Fig. S1, Supporting information). One specific gene,

namely LRRN3 (Leucine Rich Repeat Neuronal 3), was identified to be the

most significantly regulated gene by all studies including the present

one. LRRN3 was consistently found to be downregulated in older and/or

LLI.

eQTL and genotype–age (G3A) interaction analysis of the

differentially expressed genes

After quality control, 636 904 SNPs were used for the eQTL analysis in

the German sample. The cis-eQTL analysis identified 8757 statistically

significant cis-eQTLs associated with 1200 differentially expressed genes

(Fig. 3, Table S3, Supporting information). A subsequent G9A analysis

showed that 599 of these 1200 genes displayed an additional G9A

interaction (Table S4, Supporting information). An exemplary gene

exhibiting G9A interaction is shown in Fig. 3A and an example for a

gene with no GxA and no significant eQTL finding is shown in Fig. 3B.

The analysis of the frequency of the variants revealed that the majority

(25th to 50th percentile) of significant eQTL signals are found in 20–50%

of all individuals (Fig. 3C).

Integrating the identified biological processes with the transcriptome

and genotype data results in a complex hierarchical organization. To

illustrate this architecture, the complexity was reduced by including only

biological processes that contain 150 or more eQTL genes. We found

that 5119 variants influence 722 genes (eQTLs), further contributing to

40 biological processes that can be grouped into four major biological

categories, all of them affecting the longevity phenotype (Fig. 4).

Finally, comparing our eQTL findings with previously published

genetic variants associated with age-related diseases (GWAS catalog),

we did not observe an enrichment of these variants in our set of

identified eQTLs, keeping in mind that our experimental setup may not

be suitable to capture the enormous genetic variability of this trait.

Technical validation of selected differentially expressed

genes

We replicated our results from the differential expression analysis by

measuring the expression levels of 80 candidates (selected based on fold

change, significance of differential expression, and eQTL P-value,

Table S6, Supporting information) employing RT-qPCR in the German

samples (53 LLI and 70 CI; five samples were excluded due to lack of

RNA). Of the 80 genes, 74 were detectable, of which 50 were

significantly differentially expressed between LLI and CI. Moreover, these

50 genes were regulated in the same direction as in the transcriptome

sequencing data. A permutation analysis revealed that by chance, one

would have expected 0.042 of the 80 genes to be differentially

expressed; therefore, finding 50 differentially expressed genes

corresponds to a high validation rate, as reflected by a low probability

of detecting 50 genes by chance (Fisher’s exact test P-value=

7.57 9 10�17).

Biological validation of differentially expressed genes and

cis-eQTLs

The 6075 differentially expressed genes in Germans were subjected to

further validation in the Danish samples (34 older individuals [83–

92 years], 34 younger individuals [58–60 years]). Of these genes, 5183

were regulated in the same direction as in the German dataset, with

1661 of those showed a Benjamini-Hochberg corrected P-value ≤ 0.05

and a FDR ≤ 5%. This concordance is significantly higher than expected

by chance (Fisher’s exact test, expected overlap vs. observed overlap; P-

value = 2.4 9 10�13). A gene ontology analysis of these 1661 genes

found that nine of the 25 most significant biological processes were

functionally linked to metabolism, which is in concordance with the

findings in the German samples.

We further correlated the transcriptome and genotype data from the

68 Danish samples to validate the cis-eQTLs found in the German

dataset. Of the 1200 genes, which exhibited a significant association

with cis-variants in the German sample, 374 genes showed significant cis

association in the Danish dataset as well. In total, we found 3332

statistically significant cis-eQTLs associated with these 374 genes, of

which 2017 were unique to the Danish dataset.

Heritability estimation of gene expression

Of the 24 934 genes described in the annotation file (hg19), 15 640

were expressed in more than 95% of the blood samples of monozygotic

(MZ) and dizygotic (DZ) twins from Denmark (Appendix S2, Supporting

information, raw FPKM-values for all detected genes: Supplemental raw

data, Danish samples). Of these, 3029 genes are controlled by a heritable

component, which ranges from approximately 30% to 99% (Table S5,

Supporting information). Combining this with the above-mentioned

eQTL results (German dataset), an overlap of 334 genes was found:

These genes were differentially expressed and associated with a genetic

variant in cis, while at the same time also exhibited heritable transcrip-

tional activity. By chance, one would have expected 182 genes to

overlap. The observed 1.8-fold enrichment was highly significant

(Fisher’s exact test, P = 1.90 9 10�36).

Discussion

Understanding the nature of human longevity is a challenging task, as

this heterogeneous phenotype is influenced by both genetic and
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Fig. 1 Genes differentially expressed with chronological age. (A) Hierarchical clustering of the top 50 genes, exhibiting the strongest correlation with chronological age.

Each column represents an individual, while each row represents a transcript that is labeled with the corresponding gene symbol. Column dendrograms display similarities

between samples and row dendrograms display transcript similarities. The orange column on the far right, which classifies genes by their involvement in metabolism,

illustrates the downregulation of metabolism-associated transcripts with age. For the top ten mRNA transcripts with positive or negative correlation with chronological age,

please refer to Fig. S4 (Supporting information). (B) Differentially expressed genes identified vs. individuals included in the study setup, exemplified for the German cohort

(max. n = 128 individuals). Randomly selected individuals were added to the analysis to estimate the resulting number of significantly differentially expressed genes (adjusted

P-value ≤ 0.001). For better visualization, a curve fit was added. In addition, three previously published genes (LRRN4, CD248, and ABLIM1) and the strongest pathway signal

(GO-term) are displayed with their significances (�log10P-value).
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environmental components. Conservative genetic approaches in long-

evity research have resulted so far in only very few associations that were

consistently replicated in various samples (Sch€achter et al., 1994; Willcox

et al., 2008; Flachsbart et al., 2009; Nebel et al., 2011; Deelen et al.,

2014). The majority of genetic findings could not be verified indepen-

dently (Christensen et al., 2006), suggesting that a large number of

different variants may lead to the same phenotypic outcome and

rendering it difficult to identify susceptibility factors shared by several

populations. To overcome the limitation of a purely genetic study design,

some investigations focused on the transcriptome of LLI that reflects

both environmental and genetic influences. In the present study, this

approach was expanded by integrating, for the first time in longevity

research, RNA-sequencing data from blood samples of 244 LLI and

younger controls with genotype information from the same individuals,

followed by a heritability analysis in twins. Employing this setup, the

study’s objective was to identify biological processes associated with

longevity and to assess the genetic and nongenetic contribution to

those.

In contrast to previous studies, a substantial higher number of genes

were observed to be differentially expressed. This observation may be

mostly attributed to the high dynamic range of the applied RNA-

sequencing technology (Zhao et al., 2014). The top candidates identified

here (LRRN3, P = 5.40 9 10�20; ABLIM1, P = 2.50 9 10�11; CD248,

P = 1.50 9 10�23, see Table S1, Supporting information) were in

agreement with previously published findings (Hong et al., 2008; Harries

et al., 2011; Passtoors et al., 2012; Van den Akker et al., 2014; Peters

et al., 2015), which confirms the validity of our setup (Table 2, Fig. S1,

Supporting information). The overlap between previous findings with the

results presented here is illustrated in Fig. S2 (Supporting information).

The top three genes, prominently identified by all previous studies, are

shown with their cross-sectional mRNA expression in Fig. S3 (Supporting

information, ABLIM1, CD248, LRRN3). An earlier blood-based eQTL

meta-study (Westra et al., 2013), despite its large sample size, is not

suitable to display longevity effects, as the samples were composed of

continuous age-ranges, excluding extremely long-lived individuals.

Consequently, the previously observed effects reflect mostly aging,

while the results presented here are likely to be a combination of both

Fig. 2 Biological processes in longevity are controlled by genetic and nongenetic factors. For better readability, only processes with at least 150 genes are
displayed. A strong depletion of processes associated with metabolism (orange) is the most prominent finding, while the effects on defense (blue) and cell
and tissue regeneration (green) are less dominant. Processes that are not part of these three categories are displayed in grey. The contribution of

age–genotype interaction (dark shading, inner circle) represents a part of the genetic contribution (cis-eQTL, middle circle), while the remaining effects
(environment, epigenetics etc.) are labeled nongenetic contribution (light shading, outer circle). The y-axis is arranged by process category, while the x-axis
illustrates the degree of enrichment or depletion of the individual processes (�log10P). The ten depleted metabolism-associated processes are (orange, top
left section, from left to right): cellular macromolecule metabolic process, regulation of metabolic process, macromolecule metabolic process, nucleobase-
containing compound metabolic process, cellular aromatic compound metabolic process, heterocycle metabolic process, organic cyclic compound metabolic
process, cellular nitrogen compound metabolic process, protein metabolic process, and phosphorus metabolic process.

Table 1 Overview of study participants

Number of

individuals

Age range

(years)

Gender

(f/m) Country

Long-lived

individuals (LLI)

55 90–104 40/15 GER

Control individuals (CI) 73 20–55 45/28 GER

Long-lived twins (LLT) 48 (28 DZ, 20 MZ) 83–92 32/16 DK

Control twins (CT) 48 (24 DZ, 24 MZ) 58–60 32/16 DK

Unrelated LLI 10 83–92 8/2 DK

Unrelated CI 10 58–60 4/6 DK

Country: Germany (GER), Denmark (DK).

DZ: dizygotic, MZ: monozygotic.
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aging and longevity. To critically assess the power of our analysis, we

conducted a permutation-based power estimation, illustrating that the

study setup selected is appropriate to deliver significant results and

therefore appropriate to support our conclusions (Fig. 1B). Similarly, the

successful technical validation of selected genes by quantitative real-time

PCR documents that RNA-sequencing is a precise method for identifying

differentially expressed genes as indicated by the low probability of our

results being validated by chance (P-value = 7.57 9 10�17). In the same

context, the biological validation of findings from the German study

population in Danes showed a high concordance (P-value of this overlap

not occurring by chance: 2.4 9 10�13).

Quantitative data from whole blood are known to be influenced by

altered cell compositions, yet focusing on only one selected cell

population in blood might not be sufficient to create a broad picture

of longevity-associated transcriptome patterns, as it is unclear which cell

type contributes dominantly to these patterns. Moreover, whole blood

has been shown to reflect the age-related molecular changes seen in

other tissues quite well (Passtoors et al., 2008). The presented approach,

that is, omitting all genes that show a high correlation with specific

blood cell types (Palmer et al., 2006), introduces a degree of robustness,

because it removes all signals which are likely to fluctuate as a result of

age-related cell composition changes.

Further analysis revealed that about 20% of the identified

differentially expressed genes were influenced by cis-variants (Table

S3, Supporting information), while about half of those exhibited an

additional genotype–age interaction: The same genotype exerts a

different effect at different ages (Table S4, Supporting information,

exemplified in Fig. 3A). Interestingly, we could not find an enrichment

of genetic variants associated with age-related phenotypes such as

Parkinson’s disease, type II diabetes, or others in our group of

cis-variants.

Monitoring rare or private variants in longevity is not possible with the

setup presented here. Consequently, our approach can focus only on

shared effects: The majority of eQTL signals occur in 20 to 50% of all

individuals (Fig. 3C). This is in concordance with a previous large-scale

eQTL study by the GEUVADIS consortium, employing 462 transcriptomes

with corresponding genomes, where the majority of eQTLs identified

were shared as well (Lappalainen et al., 2013).

As each gene can potentially interact with all the detected variants

(730 525 SNPs) in trans, we categorized all non-cis interactions as

nongenetic: In any given experimental setup, trans-interactions are

almost undetectable, despite their presence and potential relevance. We

are aware that categorizing the remaining 80% as nongenetic is likely to

be an overestimation due to the contribution of trans-regulatory effects.

Keeping this in mind, the conclusion that 80% of the genes were not

under cis-regulation still supports the notion that longevity is influenced

to a large extent by nongenetic factors (Talens et al., 2012).

Fig. 3 Age-associated transcripts and influence of genetic variation. One under genetic control (A, ETV7) and one independent of genetic control (B,

SARNP), while ETV7 shows an additional age–genotype interaction. Frequencies of eQTL variants (C) are shown color-coded with the corresponding P-value
(-log10P).

Fig. 4 Hierarchical organization of eQTL effects on longevity. Four
different layers are represented with their hierarchical connections: 5119
variants influencing the longevity-associated mRNA expression of 722
genes, contributing to 40 biological processes, which are grouped in four
categories. The graph is based on biological processes that contain at least
150 genes significantly associated with longevity (corresponding to Fig. 2).

For better readability, the number of displayed connections between two
hierarchical levels was limited to a maximum of 200. The y-axis
corresponds to the hierarchical level, while the x-axis represents the
genomic location of genes and variants.
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The genetic influence observed here was further emphasized by the

subsequent heritability analysis revealing that only 19% of all genes are

influenced by detectable heritability (Table S5, Supporting information).

Moreover, the variation in those heritable genes was explained by

heritability in a range from 30% to 99%. This highlights that most genes

with a heritable component are under additional control of nongenetic

factors, while the majority of genes show no heritable influence.

Consequently, it appears there is no biological process that is indepen-

dent of a nongenetic contribution.

Interestingly, about one-third of the genes that were influenced by

cis-variants also displayed a significant heritable component in an

independent set of samples, which is substantially more than expected

by chance (enrichment P-value P = 1.90 9 10�34). In contrast to that,

several genetic variants might require additional environmental or

genetic effects to display a functional impact on mRNA expression,

explaining why a large number of genes that were influenced by cis-

variants did not show a heritable component. Finally, our observations

on the heritability on the molecular level are in concordance with

previous findings on the phenotype level of familial aggregation of

longevity as reviewed in Murabito et al., 2012.

As a primary result of the subsequent gene ontology analysis, we

found 107 biological processes associated with longevity, most of which

were assigned to one of the three categories: metabolism, tissue and cell

regeneration as well as immune system and defense. Within this, the

most prominent finding is the significant depletion of processes

functionally linked with metabolism (Fig. 2), which dominates by

number of genes per process (median: 1103) as well as by significance

(min. P = 3.5 9 10�24). Keeping the limitations of pathway-analysis

approaches in mind, the unusually large number of genes associated

with the individual metabolic process (1085–1555) further increases our

confidence in this finding. Here, the large number of metabolism-

associated processes identified might indicate a key role of this process

category in longevity. Modulations in cell and tissue regeneration and in

defense processes were significant as well, yet less dominant as the

number of genes contributing to these observations was substantially

lower. The depletion of metabolic processes resulted mostly from a

downregulation of metabolism-associated genes in both the German

and Danish LLI. The downregulation may point to an existing reduced

(resting) metabolic rate that in turn has been linked with increased

lifespan in humans (Ruggiero et al., 2008; Rozing et al., 2010).

Unfortunately, no metabolic rate data were available for our study

participants.

Our results support the hypothesis that a subgroup of individuals,

exhibiting patterns of reduced metabolism (whether due to genetic and/

or environmental factors), is more likely to reach old age in a healthy

state. An interesting question that arises in this context is if these

patterns in LLI are a consistent feature throughout their lives or are they

restricted only to advanced age? The approach applied here using cross-

sectional data does not allow us to address this issue. If the former was

the case, the younger individuals that cluster with the LLI based on

downregulation of metabolism-associated genes (highlighted in Fig. 1A)

might represent good candidates for people living up to their nineties

and beyond.

It is not unlikely that the downregulation of metabolism-associated

genes illustrates the lifestyle of the LLI when compared to younger

controls, attributed to moderate food intake and reduced physical

activity (Von Wurmb-Schwark et al., 2010). In this context, it is

important to mention the hypothesis of longevity being linked to caloric

restriction, which is supported by several prominent observations: For

example in Okinawans, caloric restriction and traditional functional food

were suggested to play a role in extended lifespan (Willcox & Willcox,

2014). Similarly, caloric restriction has been proposed to have beneficial

effects for age-related outcomes in the CALERIE cohort (Ravussin et al.,

2015). While our findings seem to further support this hypothesis, our

data do not allow creating a direct link to caloric restriction, as we have

demonstrated a depletion of metabolic processes without measuring

metabolic rates or caloric intake.

Considering that the majority (~80%) of the observed depletion of

metabolic processes is independent of genetics, one could assume that

this is indeed the result of longevity. In contrast to this, the genetic

contribution (~20%) to this depletion allows a second implication:

Individuals with a given genetic setup will have an altered metabolic

pattern, resulting in a higher probability of reaching old age. Therefore,

our eQTL findings support the concept that longevity is not only a

consequence of environmental factors, but also driven by genetics.

Moreover, the complexity of the genetic contribution is further increased

by the fact that some variants have different impacts at different ages, as

demonstrated by our findings on genotype–age interaction (Fig. 3).

It is important to note that the observed depletion of metabolic

processes has limited predictive value for other samples: The cross-

Table 2 Overlap with previous studies in aging/longevity transcriptomics

Hong Harries Passtoors Akker Peters

Study year 2008 2011 2012 2014 2015

Overlap 100% 100% 98% 65% 73%

Overlap P-value 3.2 9 10�14 3.8 9 10�51 6.9 9 10�154 <1.0 9 10�300† <1.0 9 10�300†

SRCC 0.73 0.62 0.60 0.44 0.61

Shared genes in top 10 FCGBP

LRRN3‡

NRCAM

PDGFRB

ABLIM1

CCR7

CD248

FAM102A

LRRN3‡

NELL2

ABLIM1

CAMK4

CD248

LRRN3‡

NOG

LRRN3‡

NELL2

ABLIM1

CD248

FAM102A

LRRN3‡

NELL2

The following publications were used to generate this table: Hong (Hong et al., 2008), Harries (Harries et al., 2011), Passtoors (Passtoors et al., 2012), Akker (Van den Akker

et al., 2014), and Peters (Peters et al., 2015). The overlap was calculated based on how many identified genes were significantly regulated and concordant in their regulation

direction. Spearman rank correlation coefficient (SRCC) was calculated using all genes identified in the corresponding study. Shared genes in top 10 describes which genes

were found in both studies to be among the top 10 most significantly regulated transcripts, ranked by false discovery rate (Van den Akker) or by P-value (all others).
†Fisher’s exact test P-value could not be calculated (P < 1.0 9 10�300).
‡LRRN3 (Leucine Rich Repeat Neuronal 3) was identified as the most significantly regulated gene by all studies including the present one.
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sectional study design employed here may overestimate this depletion by

reflecting differences between birth cohorts, yet the correlation between

altered expression and increasing chronological age (Fig. 3A, Fig. S4,

Supporting information) supports a noncohort-specific effect. This is

facilitated by the large age windows covered by our cohorts (see also

Fig. S4, Supporting information); our study setup neither allows nor aims

at monitoring aging effects but instead is designed to identify charac-

teristics of long-lived individuals. In contrast to that, an alternative

longitudinal setup suffers similar limitations as findings in longitudinal

studies potentially have validity only for the birth cohort investigated.

Keeping the limitations of the cross-sectional study design in mind, the

integration of stable genomic data with dynamic transcriptome data

from different age windows allows us to illustrate the functional

consequences of genetic variations. As the SNPs observed in the eQTLs

cannot be the result of longevity, this approach offers the unique

opportunity to identify potentially causative factors contributing to the

phenotype.

Finally, our results might also partially explain why replication of

genetic longevity associations is a challenging task. We observed a

hierarchical structure, where a large number of heterogeneous heritable

and nonheritable, genetic and nongenetic components potentially lead

to altered pathway patterns, which finally may result in longevity. The

heterogeneity of factors contributing to the same phenotype, as

illustrated in Fig. 4, might explain why some genetic associations appear

to be valid only in a specific population. Moreover, the independent

cohort from Denmark we employed to biologically validate our findings

in German individuals displayed the same modulation in metabolic

pathways, yet the genes and variants of origin did only partially overlap

between Danes and Germans. This provides further support for the

concept of a hierarchical structure, where different genetic variations

lead to the same phenotype.

Taken together, our systems biology-based analysis on unique

longevity samples illustrates, for the first time, how human longevity is

associated with a depletion of metabolic pathways in a genotype-

dependent and independent manner. At the same time, our eQTL

findings indicate that those processes are, to some extent, also a driving

force of longevity rather than only a consequence of old age.

Experimental procedures

Study populations

This study included a total of 244 whole blood samples from LLI and

control individuals (CI) (Table 1). The samples of the German subjects

were collected with the support of the biobank PopGen, as previously

described (Nebel et al., 2005). The Danish individuals were recruited

from two population-based and nationwide twin surveys conducted at

the Danish Twin Registry: the Longitudinal Study of Middle-aged Danish

Twins and the Longitudinal Study of Aging Danish Twins (Skytthe et al.,

2013) (Table 1). All participants signed a written informed consent.

Approval for the study was received from the Ethics Committees of Kiel

University and the Regional Scientific Ethical Committees for Southern

Denmark.

Sample processing

Total RNA was extracted for all 244 individuals from frozen blood

samples using the PAXgene Blood miRNA kit (Qiagen) according to the

manufacturer’s protocol. Paired-end libraries were prepared with the

Illumina TruSeq RNA Sample Preparation Kit, multiplexed with four

samples per lane and sequenced on an Illumina HiSeq 2000.

For the German study population, DNA was extracted from EDTA

whole blood using the Invisorb Blood Giga Kit following the manufac-

turer’s instructions. DNA samples from all German individuals (55 LLI and

73 CI) were subjected to genotyping employing the HumanOmniExpress

BeadChip (Illumina) that monitors 730 525 SNPs. For the Danish

population, DNA was extracted by a salting-out procedure either

performed manually or with the AutoPure LS instrument (Qiagen). One

individual from each of the 22 MZ pairs (LLT = 10 pairs and CT = 12

pairs) as well as 52 DZ twin individuals (LLT = 14 pairs and CT = 12 pairs)

and 20 unrelated individuals (10 LLI and 10 CI) were selected for

genotyping.

Data analysis

The sequencing reads that failed the Illumina chastity filter (chastity

threshold = 0.6) were removed with the Illumina CASAVA-1.8 FASTQ

filter v0.1. Subsequent alignment to the UCSC Homo sapiens reference

genome (build hg19) was performed with TopHat v2.0.4 (Trapnell et al.,

2009). The aligned reads were assembled into transcripts and gene-level

abundance in terms of fragments per kilobase of exon per million

fragments mapped (FPKM) was estimated by Cufflinks v2.0.2 (Trapnell

et al., 2010). After quantile sample-to-sample normalization, the

FPKM estimates from the German samples were used to identify the

differentially expressed genes. Only genes with a log2 FPKM > 0 in more

than 5% of the samples were subjected to further analysis, while

differential expression was determined using a nonparametric Wilcoxon

rank sum test. Genes with a corrected P-value ≤ 0.001 (employing

Benjamini and Hochberg’s correction) and a false discovery rate (FDR)

≤ 0.1% based on a Westfall and Young permutation of the fold changes

were considered to be significantly differentially expressed. Differentially

expressed genes that highly correlated (r ≥ 0.8) with blood cell counts

(Palmer et al., 2006) were omitted from further analysis.

Gene expression data from the Danish twins were used to estimate

the heritability of transcriptional activity. Only genes that were expressed

(i.e., log2 FPKM > 0) in more than 95% of the samples were subjected

to heritability estimation that assessed additive genetic effects. An ACE

model (A: additive genetics, C: common environment, E: unique

environment) was fitted using biometric modeling (R package mets

v0.1-13) and was allowed to compete with the parsimonious nested

models, namely AE, CE, and E. The best fitting model was chosen based

on the Akaike information criterion (AIC) (Akaike, 1974) for non-nested

models and the likelihood ratio test for nested models. The final

heritability estimate was obtained from the best fitting model.

Genes that were differentially expressed between LLI and CI (German

dataset) were subjected to cis-eQTL analysis. Only variants located within

a 1-Mb up- and downstream of the starting and end points of the gene

were included in the analysis. SNPs with minor allele frequencies below

1%, call rate below 95%, and Hardy–Weinberg equilibrium testing P-

value ≤ 0.0001 were filtered out. The eQTL analysis for the German

samples was performed with PLINK v1.07 (Purcell et al., 2007). The

obtained cis-eQTLs were adjusted using a Benjamini and Hochberg

correction for multiple testing at an a level of 5%. Furthermore, the SNPs

that exhibited significant association with gene expression (cis-eQTLs)

were compared with genetic variants from GWAS catalog (https://

www.ebi.ac.uk/gwas/) to examine whether there is an enrichment of

variants associated with age-related diseases in our identified eQTLs. To

assess the frequency of variances per gene, all significant eQTL findings
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were binned according to their occurrence in the German study

population.

To assess the genotype–age interaction (G9A), only differentially

expressed genes with at least one significant cis-eQTL were considered.

The G9A interaction for each gene and the most significant cis-eQTL

were investigated by employing a linear mixed model as described

previously (Glass et al., 2013).

The overlap with previous studies (Hong et al., 2008; Harries et al.,

2011) was assessed by transforming the observed P-values to �log

(P,100), multiplied with the sign of the fold change, to properly reflect

the direction of regulation. For one study (Harries et al., 2011), only the

false discovery rate data were available which was used equivalently.

Subsequently, the transformed P-values of the genes that were found in

both our study and the previous one were subjected to a correlation

analysis using the Spearman rank correlation. The expected overlap

between studies was based on the number of identified genes in each

study, assuming a genomewide approach. The overlap P-value was

calculated employing a Fisher’s exact test comparing observed vs.

expected overlap.

Functional analysis: gene ontology

Gene ontology analysis was performed by associating genes of interest

to gene ontology terms (retrieved from http://www.geneontology.org),

followed by a two-sided Fisher’s exact test to determine significance of

enrichment or depletion. Finally, resulting P-values were adjusted

employing a Benjamini and Hochberg’s correction for multiple testing.

Technical validation of differential gene expression by

real-time PCR

Eighty candidate genes were selected based on the ranks of their fold

changes, P-values, and regulation of their expression by cis-eQTLs and

were subjected to validation in the German samples. Real-time PCR

(TaqMan) was performed according to the manufacturer’s instructions

(Applied Biosystems) on a 7900HT real-time PCR system. Gene expres-

sion levels were quantified relative to the median of three genes (RER1,

E2F4, BFAR) that showed minimum variation in the expression levels

across the samples. Differences between LLI and CI were determined

with the Wilcoxon rank sum test and the P-values were corrected using

Benjamini and Hochberg’s method.

Biological validation of differential gene expression and

cis-eQTLs using Danish samples

In total, 68 individuals were included in the validation set (10 unrelated

LLI, 10 unrelated controls, and 48 individuals selected from 48 twin pairs:

22 MZ and 26 DZ – Table 1). The RNA-sequencing-based transcriptome

data from these 68 samples were analyzed as described above to identify

and validate the differentially expressed genes detected in the German

dataset. As the validation dataset was smaller than the German sample,

the genes with a corrected P-value ≤ 0.05 and a FDR ≤ 5% were

considered to be significantly differentially expressed. The genotype and

gene expression data were analyzed using PLINK.
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