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 Abstract—Objective: The challenging task of heart rate (HR) 
estimation from the photoplethysmographic (PPG) signal, during 
intensive physical exercises is tackled in this paper. Methods: The 
study presents a detailed analysis of a novel algorithm (WFPV) 
that exploits a Wiener filter to attenuate the motion artifacts, a 
phase vocoder to refine the HR estimate and user-adaptive post-
processing to track the subject physiology. Additionally, an offline 
version of the HR estimation algorithm that uses Viterbi decoding 
is designed for scenarios that do not require online HR monitoring 
(WFPV+VD). The performance of the HR estimation systems is 
rigorously compared with existing algorithms on the publically 
available database of 23 PPG recordings. Results: On the whole 
dataset of 23 PPG recordings, the algorithms result in average 
absolute errors of 1.97 and 1.37 BPM in the online and offline 
modes, respectively. On the test dataset of 10 PPG recordings 
which were most corrupted with motion artifacts, WFPV has an 
error of 2.95 BPM on its own and 2.32 BPM in an ensemble with 2 
existing algorithms. Conclusion: The error rate is significantly 
reduced when compared with the state-of-the art PPG-based HR 
estimation methods. Significance: The proposed system is shown 
to be accurate in the presence of strong motion artifacts and in 
contrast to existing alternatives has very few free parameters to 
tune. The algorithm has a low computational cost and can be used 
for fitness tracking and health monitoring in wearable devices. 
The Matlab implementation of the algorithm is provided online.  
 

Index Terms—Photoplethysmographic, spectrum estimation, 
heart rate, Wiener filter, phase vocoder, Viterbi decoding.   

I. INTRODUCTION 

EARABLE devices have gradually increased their 
functionality over the last decades. Modern wearable 

devices are equipped with a number of internal and external 
sensors and can offer many useful fitness tracking features such 
as counting steps, calories, tracking sleep, etc. 
Photoplethysmography (PPG) based heart rate (HR) monitoring 
during physical exercise is one of these features [29, 30]. 
Implemented in smart-watches or wristbands, HR monitoring 
can guide exercisers to adapt their training load and better 
match their training goals [26]. PPG signals have become a 
popular alternative to traditional Electrocardiography (ECG) 
based HR estimation which measures the bio-potential 
generated by electrical signals that control the expansion and 
contraction of heart chambers. However, ECG requires the 
presence of ground and reference sensors that must be attached 
to the chest. PPG-based HR monitoring at the peripheral 
 
The preliminary results of this study have been presented at EMBC 2015 [20]. 
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positions such as earlobes, fingertips or wrists is seen as a much 
more convenient solution.  

The PPG signals [29, 30, 1-3] come from PPG sensors which 
are embedded in these wearable devices. A PPG sensor emits 
light to the skin and measures the changes of intensity of the 
light which is reflected or transmitted through the skin. The 
periodicity of these measurements in most cases corresponds to 
the cardiac rhythm, and thus, HR can be estimated from the 
PPG signal. 

Motion artifacts (MAs) are known to be a limiting factor that 
prevents the straight-forward usage of PPG, especially in free 
living conditions. MAs are considered to result from sensor-
tissue motion and sensor deformation. Strong movements 
during physical exercise make the HR estimate inaccurate as 
shown in Fig. 1. Due to motion the sensors might situate far 
enough apart from the skin that the true HR peak is absent in 
the PPG spectrum. A number of methods have been proposed 
to detect, remove or attenuate MAs in PPG signals, including 
adaptive filtering [4, 5, 22, 25], independent component 
analysis [6], empirical mode decomposition [7, 23] or other 
decomposition models [3, 27], spectral subtraction [8, 21, 24], 
and Kalman filtering [9].  

A three-stage TROIKA method has recently been proposed 
to estimate HR from PPG signals for scenarios where MAs are 
strong [2]. The method was based on signal decomposition, 
sparsity-based high-resolution spectrum estimation, and 
spectral peak tracking and verification. The average absolute 
error of 2.34 beats per minute (BPM) was reported on 12 PPG 
recordings. The TROIKA method was enhanced in [3] where 
the spectra of PPG and acceleration signals were jointly 
estimated using a common sparsity constraint on the spectral 
coefficients (JOSS). This was achieved by means of a multiple 
measurement vector model [10]. The error was reduced to 1.28 
BPM when evaluated on the same 12 PPG recordings.  

For the IEEE Signal Processing Cup 2015 the database of 23 
PPG recordings of people running on a treadmill or doing 
intensive physical exercises was made public 
(http://zhilinzhang.com/spcup2015/data.html). The evaluation 
rules and metrics are defined which facilitates the comparison 
between different approaches. In the period since the provision 
of this dataset, several HR estimation algorithms have been 
designed and tested [2, 3, 21-25]. However, the reported 
improvements in performance are usually accompanied with 
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the increased number of free parameters which may be a sign 
of overfitting given the fixed size of the dataset on which the 
algorithms are both designed and tested.  

In this paper a new approach to HR estimation which is based 
on Wiener filtering and the phase vocoder is detailed. In 
contrast to the previously presented systems, the proposed 
solution does not rely on a set of heuristic rules and thresholds 
and requires very few parameters to be tuned. The noise 
signature is estimated from accelerometer signals and the 
Wiener filter is used to attenuate the noise components in the 
PPG signal. The phase vocoder is exploited to overcome the 
limited resolution of the discrete Fourier transform and to refine 
the initial dominant frequency estimation. A user-adaptive post-
processing step is introduced and additionally an offline version 
of post-processing which is based on Viterbi decoding is 
proposed that requires no tunable parameters.  

The main contributions of this study are:  
1) A detailed description of the HR estimation algorithm 

(WFPV) including the proposed user-adaptive post-processing  
2) An offline version that uses Viterbi decoding is designed 

(WFPV+VD) for applications where online HR monitoring is 
not required (e.g. for fitness trackers for swimmers or offline 
fitness statistics). A significantly higher performance is 
obtained by trading online monitoring for accuracy.  

3) The performance of the most accurate alternatives 
published to date is summarised and thoroughly compared with 
both the online WFPV and offline WFPV+VD. 

4) Benefits of combining different HR estimation algorithms 
are discussed and an ensemble is designed. Its superior 

performance is presented for the first time.  
5) The Matlab implementation of the designed HR estimation 

algorithms is made available through online resources.  
The paper is organized as follows. The developed system is 

described in detail in Section II. Section III describes the 
database, metrics and the performance assessment routine used 
in the study. The results on the provided data are presented in 
Section IV and conclusions are drawn in Section V.  

II. HEART RATE ESTIMATION ALGORITHM 

The flowchart of the developed system is shown in Fig. 2. 
The system consists of 4 main blocks – pre-processing, signal 
de-noising to attenuate the influence of MAs, HR estimation, 
and post-processing. The examples of signal transformations 
carried out at each stage are illustrated in Fig. 3.  

A. Preprocessing 

During the preprocessing stage, the two PPG signals and three 
accelerometer signals are filtered with a 4th order Butterworth 
band-pass filter (0.4-4 Hz) as shown in Fig. 3(a). The two PPG 
signals are then normalized to zero mean and unit variance (z-
score normalization) and averaged. The averaged PPG signal 
and the 3 accelerometer signals are down-sampled from 125 to 
25Hz for further processing. The signals are then subjected to 
the Discrete Fourier Transform (DFT) with the number of bins 
set to 1024. Fig. 3 (b) shows the spectral envelope of the PPG 
signal for HRs ranging from 60 to 180 BPM. This range of HRs 
is chosen based on the specifics of database used in this study 

Fig. 2.  The flowchart of the developed HR estimation system.  

PPG 
Accelerometer 

Pre-processing: 
Filtering, Scaling, 

Segmentation 

De-noising:  
Wiener Filter 

HR estimation: 
Phase Vocoder 

Post-processing: 
Smoothing, Viterbi 

 

 

 

 
 

Fig. 1.  The challenge of HR estimation during physical exercises. Plot (a) shows a spectrogram of a 5min PPG recording. Plots (b) and (d) show examples of a 
PPG signal from the spectrogram in (a). Plot (c) and (e) show the spectral envelopes of the PPGs in (b) and (d), respectively. The true HR is denoted with a circle. 
In the presence of MAs, plots (b) and (c), the highest peak of the spectral envelope does not coincide with the true HR. Best viewed in color.  
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which will be explained in Section III and can be changed 
accordingly for other corpuses. Overall, the pre-processing 
stage in this work repeats that of other papers that report results 
on this dataset [1, 3, 6]. 

B. De-noising using Wiener filtering 

The Wiener filter is a common tool to estimate a desired 
signal by linear time-invariant filtering of an observed noisy 
process [15, 31]. Assuming known stationary signal and 
additive noise spectra, the Wiener filter performs the minimum 
mean square error estimation of the desired signal given another 
related process. Causal Wiener filtering is applied here to 
estimate the clean PPG signal from the observed PPG signal. 
The noisy PPG signal, X(f), is assumed to be corrupted by 
additive MA noise: 
 
���� � ���� � ���� (1) 
 
where S(f) and N(f) are the spectra of the clean PPG signal and 
the MAs, respectively. The estimation of the clean signal can 
then be obtained as:  
 

�	��� � ���� 
 ���� � �1 
 ���
����� ���� � �������� (2) 

 
For a signal observed in uncorrelated additive random noise, the 

frequency-domain Wiener filter is given as: 
 

���� � �������������
������

� ������
�������������

 (3) 

 
where PSS(f), PNN(f) and PXX(f) are the power spectrums of the 
clean signal, noise and observed signal. The filter convolution 
in time domain is equivalent to multiplication in frequency and 
thus the Wiener filter acts as an adaptive signal-to-noise 
dependent attenuator, where frequencies which are more 
affected by the noise are given less importance.  

The filter (Eq. 3) requires separate estimates of the noise and 
signal power spectrums. The noise spectrum can be directly 
estimated from the accelerometer signals which is done by 
averaging the spectrum of the 3 accelerometer signals. The 
clean PPG spectrum, PSS(f), can be estimated as a subtraction of 
the noise signal from the observed signal, PXX(f) – PNN(f), or 
recursively from previous filter outputs. Depending on how the 
power spectrum of the clean PPG signal is estimated, two 
Wiener filters are implemented, with frequency domain filter 
coefficients given as:  

 

����, �� � 1 
 �����,��
�
 ∑ ����",#�$

"%$& '�
 (4) 

 

 

Fig. 3.  Signal transformation in the developed WFPV system. Plot (a) shows z-score normalised PPG from two channels, average PPG, and three 
accelerometer signals after filtering; (b) shows the spectral envelopes of PPG and noise, measured as average accelerometer signals, and the peak frequency 
of the PPG, (c) shows the processed spectral envelope and its maximum after MAs were attenuated with Wiener filtering; (d) shows the maximum of the 
spectral envelop before and after the phase vocoder.  

(a) 

(c) (d) 

(b) 
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�(��, �� =
�
 ∑ )*�+,������+,��$&�"%$& �

 ∑ )*�+,������+,��$&�"%$& �����$,#� (5) 

 
where w(t,k) is the weight of the k-th frequency bin at time, t. 
The power spectrums of noise and PPG in Eq. 5 and Eq. 6 are 
normalized by their maximum values to be commensurable. It 
can be seen that in both equations the power spectrum of the 
observed signal is averaged over the past C spectral envelopes 
(C=15, in this work). In Eq. 4, the power spectrum of the clean 
PPG signal is estimated by subtracting the observed noise from 
the observed PPG signal. If C=1, then the Wiener filter in Eq. 4 
performs a simple version of spectral subtraction [16, 17]. In 
Eq. 5, the spectrum of the clean PPG signal is computed 
recursively by averaging the previous filtered signal outputs.  

The spectral envelop of the cleaned PPG signal is then 
obtained by multiplying the spectral envelope of the observed 
signal, PXX(t,k), with the calculated filter coefficients, w(t,k). It 
can be seen that in the current implementation the Wiener filter 
requires only one parameters to be specified, C.  

The spectral envelopes processed with the two designed 
filters are scaled by their standard deviation because unlike w2, 
w1 can have negative values, when the scaled power of observed 
noise is larger than the scaled power of the observed signal for 
certain frequencies. The resultant signals are averaged to give a 
final spectral envelope of the cleaned PPG signal. The dominant 
frequency (the frequency with the highest magnitude) is 
converted to the HR estimate in BPM as shown in Fig. 3(c).  

C. HR Estimation and Refinement using Phase Vocoder.  

In this work, the phase vocoder technique [32, 11–13] is 
employed to refine the initial HR estimate through the 
estimation of the instantaneous frequency as the rate of change 
of phase angle at time [33]. For signals that are not truly 
sinusoidal or for nonstationary signals one needs to account for 
the time-varying nature of the process and that can be done with 
estimation of the instantaneous frequency.  

The effective frequency resolution (the minimum frequency 
that can be estimated, the Rayleigh frequency) of the data is 
limited by the size of the window of the analyzed data (8s) and 
equals to 1/8*60 = 7.5 BPM. Zero-padding before DFT is used 
to interpolate the spectral envelope to other frequencies thus 
decreasing the frequency spacing between neighboring DFT 
bins. This does not create new information but allows for a 
better revelation of the existing information in the signal.  

The phase vocoder is the technique that is used in audio 
processing to manipulate audio length without changing its 
pitch or to change its pitch without affecting its length, by 
preserving the coherence of phase information. The phase 
vocoder uses a polar representation of the DFT and the 
instantaneous frequency estimation is computed as a discrete 
derivative of the phase. When analyzing the signal with 
multiple overlapping windows the individual signal 
components (sinusoids) will be correlated in time and spread 
over multiple adjacent DFT frequency bins (spectral leakage). 
The deviation of the true frequency from the bin center 
frequency is encoded in phase changes of two consecutive 
frames, so that the instantaneous frequency can be given as:  

 

���� = �
(,

-.���
-�  (6) 

 
The DFT phases, θ2, θ1, from the current and previous 

frames, of the chosen frequency peak in the magnitude 
spectrum, �, are used to refine the initial frequency estimation:  

 

argmin
5

6�	�7� − �8 ;	�	�7� = �.*�.��(,5�
6(,��*����8 , ∀7 ∈ = (7) 

 
where n is a positive integer, t2, t1 are the time stamps of the two 
frames, here t2-t1 = 2s which is the window shift. The series, 
�	�7�, is computed for several n using Eq. 7, and the value of 
�		which is closest to the initial frequency estimation, �, is 
chosen. As a result, the previous dominant frequency value is 
refined to the new value, � ← �	. This is illustrated in Fig. 3(d), 
where the estimated DFT HR of 161.3 BPM was refined to 
158.2 BPM, with the true HR being of 159.1 BPM.  

It can be seen that the phase vocoder technique requires no 
parameters to set.  

D. Post-processing  

1) Online post-processing with heuristic rules and thresholds 
The post-processing steps include history tracking and 

smoothing. The history of the past HR estimation is preserved 
and used to guide the search range for the maximum DFT 
magnitude in the current frame. For instance, if the past HR 
estimation was 125 BPM, then the current HR is expected to be 
within a certain range around 125 BPM. Here it is set to the 
maximum absolute HR difference between consecutive HR 
estimates, ����, observed so far for this user: 

 
?+ = max	{|���� − ��� − 1�|: � < � < E − 1} (8) 

 
The search range, ± ?+ , � ≤ � is initialized to be wide enough 

(±25 BPM) for the first 30s – 1 min of each recording, and then 
adapts to the specifics of the user’s physiology. This eliminates 
the need to tune another threshold in the post-processing.  

For the final smoothing, the weighted average between the 
current estimate and its prediction using linear regression is 
computed if the difference between the current and previous HR 
estimates is above 5 BPM: 
 
�	 = H	� + �1 − H�	�I+5JKL (9) 
 
where �I+5JKL is a prediction given by a regression line which is 
fitted over the past 6 HR estimates using a least-squares error, 
and H= 0.8. 

E. Offline post-processing with Viterbi decoding 

The offline version of WFPV substitutes the original post-
processing steps with a probabilistic framework using Viterbi 
decoding [28]. The time-frequency plane (spectrogram) of a 
complete recording which is composed of DFT magnitudes 
after Wiener filtering is considered as a N-by-T state-space map 
of emission probabilities, B, for N states (discrete values of HR) 
and T observations (time windows), where bjt is a magnitude 
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value of the j th DFT bin for the tth time window. The N-by-N 
matrix of transition probabilities, A, where aij represents the 
probability of changing from the i th HR to the j th HR, is 
estimated from the ground truth automatically by counting the 
transitions using the leave-one-recording-out procedure. In this 
manner, the ground truth of the testing recording is never used 
but the ground truths of all other recordings are used to estimate 
the transition probability matrix. The process of estimation of 
the transition probability matrix is fully automatic, data-driven 
and requires no user-tunable parameters. 

The Viterbi algorithm is then applied to recursively estimate 
the most likely path (the path with the highest cumulative 
probability) through the time dimension, t, using emission and 
transition probability matrices, B, A: 

 
M��N� � argmax

�O+O
PQ����E�R+ST,	 (10) 

 
where Q��N� = max�O+OPQ����E�R+STUS� , 2 ≤ � ≤ W,	 
1 ≤ N ≤ �, Q��E� = X+U+�, 1 ≤ E ≤ �	, and πi are the prior 
probabilities. After the recursion is computed the state sequence 
is backtracked as:  

 
EY = argmax

�O+O
ZQY�E�[,	 (11) 

E� = M����E����, � = W − 1, W − 2,… ,1  
 
The state sequence is converted to HR estimates which are 

then smoothed with a non-causal (central) moving average 
filter. The Viterbi decoding effectively performs the post-
processing in a threshold-free probabilistic manner. 

The Matlab implementation of the online and offline WFPV 
HR estimators along with the main results are available online 
(https://github.com/andtem2000/PPG). 

III.  DATABASE &  METRICS 

A. Database  

The data used were provided for the IEEE Signal Processing 
Cup 2015 and are detailed in Table I. The dataset consists of 23 
5-min recordings which were collected from 18 to 58 years old 
subjects performing various physical exercises. For each 
subject, the PPG signals were recorded from the wrist using two 
PPG sensors with green LEDs (wavelength: 515nm). The 
acceleration signal was also recorded from the wrist using a 
three-axis accelerometer. Both the PPG sensors and the 
accelerometer were embedded in a comfortable wristband. The 
ECG signal was recorded simultaneously from the chest using 
wet ECG sensors. All signals were sampled at 125 Hz and sent 
to a nearby computer via Bluetooth.  

Three types of activities were performed. Type 1 (T1) activity 
involved walking or running on a treadmill for intervals 0.5-1-
1-1-1-0.5 min with the speed of 1-2 km/h, 6-8 km/h, 12-15 
km/h, 6-8 km/h, 12-15 km/h, 1-2 km/h, respectively. The 
subjects were asked to use the hand with the wristband to pull 
clothes, wipe sweat on forehead, and push buttons on the 
treadmill. Type 2 activity included various forearm and upper 
arm exercise which are common in arm rehabilitation (e.g. 

shake hands, stretch, push, running, jump, and push-ups). Type 
3 activity consisted of intensive forearm and upper arm 
movements (e.g. boxing).  

The synchronously recorded ECG was used to provide the 
ground truth HR in BPM as described in detail in [2, 3]. The 
ECG-based HRs were calculated for every 8s window with a 2s 
shift. The same window length and shift are suggested for HR 
estimation from PPG to have the same number of HR estimates 
and true HRs. The ground truth HRs were then used to assess 
the performance of the developed algorithms. 

B. Metrics 

The metrics which are usually computed in other studies [3] 
are reported here. The Absolute Error (AE) is used to evaluate 
the accuracy of each HR estimate:  

 
] +̂ = |�K_��E� − ��`aK�E�| (12) 

 
where fest(i) and ftrue(i) denote the estimated and the true HR 
value in the i-th time window in BPM, respectively. The 
following three metrics are used to evaluate the performance of 
the developed algorithm, Average Absolute Error (avAE), 
Standard Deviation of the Absolute Error (sdAE) and Average 
Relative Error (avRA):  
 

Rb]^ = �
∑ ] +̂+c�  (13) 

 

de]^ = f�
∑ �] +̂ − Rb] +̂�(+c�

 

(14) 

 

Rbg^ = �
∑ hi"

�$jkl�"�
+c�  (15) 

 
where N is the total number of estimates (number of windows). 

TABLE I.  
DATABASE OF 23 PPG RECORDINGS FROM IEEE SP CUP.  

Rec 
Subject 

ID 
Activity 
type* 

Age/Weight/Height Sex Healthy? 

1 1 T1 

18-35y/-/- 

M Y 
2 2 T1 M Y 
3 3 T1 M Y 
4 4 T1 M Y 
5 5 T1 M Y 
6 6 T1 M Y 
7 7 T1 M Y 
8 8 T1 M Y 
9 9 T1 M Y 
10 10 T1 M Y 
11 11 T1 M Y 
12 12 T1 M Y 
13 13 T2 20y/64kg/162cm M Y 
14 14 T2 29y/70kg/169cm M Y 
15 15 T2 21y/77kg/188cm M Y 
16 15 T3 21y/77kg/188cm M Y 
17 16 T3 19y/54kg/174cm M Y 
18 13 T3 20y/64kg/162cm M Y 
19 17 T3 20y/57kg/174cm M Y 
20 18 T2 19y/70kg/180cm M Y 
21 18 T3 19y/70kg/180cm M Y 
22 19 T3 21y/73kg/180cm M Y 
23 20 T2 58y/70kg/156cm F N** 

* T1 = walking/running on a treadmill. T2 = rehabilitation arm 
exercises. T3 = intensive arm movements (boxing)  
** Abnormal heart rhythm and blood pressure were noted.  
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These metrics are reported for each of the 23 recordings.  

IV.  RESULTS AND DISCUSSION 

A. Performance assessment 

The performance of the proposed HR estimation system is 
summarized in Table II. On the database of 23 recordings, 
WFPV results in an avAE of 1.97 BPM with sdAE of 2.48 BPM. 
Table II also shows the contribution of each system constituent 
towards the final performance. The Baseline denotes the HR 
estimator as shown in Fig. 2, with all the preprocessing 
(filtering, normalization), DFT, and the post-processing 
(history tracking and smoothing), as described in Section III, 
but without Wiener filtering and the phase vocoder. The 
baseline is the system that takes the maximum DFT magnitude 
to determine the HR and has no routine to compensate for the 
presence of MA. The Baseline performance reaches an avAE of 
13.11 BPM. If a simple spectral subtraction is added (Eq. 4, 
C=1), then the performance improves to 5.08 BPM (B&SS, 
Table II). Using the Wiener filter as described in Eq. 4 (WF1) 
improves the performance to 4.19 BPM. Using the recursive 
implementation of the Wiener filter (WF2) reduces the error 
from 5.08 to 3.30 BPM, and the combination of both filter, WF1 
and WF2, results in an error of 2.21 BPM. A refinement 
introduced by the phase vocoder reduces the error to 1.97 BPM. 
A similar reduction in sdAE is observed.  

Fig. 4 shows the correlation (a), Bland-Altman plot (b) and 
the distribution of HR in the database. Interestingly, Fig. 4(b) 
indicates that the largest errors (the points outside the limit of 
agreement area) occur more frequently in the low HR region, 
centered at ~80 BPM. At the same time, the most frequent HR 
according to Fig. 4(c) is much higher, ~140 BPM, but the 
algorithm makes fewer large errors in that region. This indicates 
the range of HR which are mostly affected by MA. Fig. 5 shows 
an example of the true and estimated HR for recording 9 – the 
recording with the best performance achieved.  

Table III details the HR scores for each of the 23 recordings 

in the database, for avAE and avRE metrics, and also 
summarizes the performance for a group of recordings. It can 
be seen that the error in HR estimation heavily depends on the 
type of physical activity. Running on a treadmill results in an 
avAE of 1.02 BPM, whereas arm exercises and intensive arm 
exercises result in an avAE of 3.01 BPM, respectively.  

B. Comparison with existing alternatives 

Table III also provides the performance of alternative HR 
estimation algorithms tested on the same dataset or a part of it. 
Apart from TROIKA [2] and JOSS [3] the results are reported 
for several methods that have been recently published in 
journals such as: a time-varying spectral filtering algorithm for 
reconstruction of motion artifact (SpaMa, [21]), an algorithm 
based on ensemble empirical mode decomposition (EEMD, 
[23]), a HR estimation algorithm based on asymmetric least 
squares spectrum subtraction and Bayesian decision theory 
(Spectrap, [24]), an iterative method with adaptive thresholds 
(IMAT, [25]), and a multi-channel spectral matrix 
decomposition method [MC-SMD, 27].  

The first 12 (T1 activity) of the 23 recordings of the dataset 
were used in [2] where the scores of 2.34, 1.82, and 2.47 BPM 
were reported for avAE, avRE, and sdAE, respectively. 
Subsequently, on the same dataset the avAE and avRE were 
reduced to 1.28 and 1.01 BPM, with an increased sdAE of 2.61 
BPM in [3]. Evaluating on the same 12 recordings, the 
developed system obtains scores of 1.02, 0.81 and 1.25 BPM 
for avAE, avRE, and sdAE, respectively, which corresponds to 

  
Fig. 4. (a) Pearson correlation between the estimated HR and the ground truth HR, (b) Bland-Altman plot, (c) the distribution of the HR in the DB. 
Correlation coefficient of the WFPV algorithm is 0.9908. 
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TABLE II.   
PERFORMANCE OF WFPV. 

  B 
B& 
SS 

B& 
WF1 

B& 
WF2 

B&WF1  
&WF2 

B& 
WF&PV 

All 
avAE 13.11  5.08 4.19 3.30 2.21 1.97 
sdAE 10.13 7.13 5.39 4.70 2.61 2.48 

 

 
Fig. 5. The true and estimated heart rate for recording 9. 
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a relative error reduction of 20% and 52% for avAE and sdAE. 
It can be seen that the error was significantly reduced for the 
worst performing recordings in the dataset which is reflected in 
the lower sdAE. The correlation coefficient was 0.997, as 
compared to 0.993 in [3]. On the first 12 PPG recordings the 
WFPV algorithm outperforms all of the listed approaches with 
the exception of SpaMa [21].  

On the last 10 PPG recordings (rec. 14-23), WFPV also 
outperforms all the listed approaches including SpaMa [21] 
with the exception of Spectrap [24] which employs non-causal 
smoothing and cannot be seen as an online algorithm. Because 

most studies do not report results for rec. 13, the majority of 
approaches can be compared using the average of the results for 
rec. 1-12 and 14-23. With an avAE of 1.90 BPM, the proposed 
approach outperforms all the listed alternatives.  

Looking at the performance of the offline version 
(WFPV+VD), it can be seen that the incorporation of Viterbi 
decoding and non-causal smoothing has a significant effect on 
the performance, reducing the avAE from 1.97 to 1.37 BPM, 
outperforming all the listed methods including the offline 
Spectrap [24]. This indicates that the performance comparison 
is only sensible among the algorithms that perform either 

TABLE III.   
COMPARISON OF THE HR ESTIMATION ERRORS ON 23 PPG RECORDINGS OF VARIOUS ALGORITHMS PROPOSED IN THE LITERATURE.  

Rec Activity  
TROIKA*  

[2] 
JOSS*  

[3] 
SpaMa 

[21] 
EEMD 

[23] 
Spectrap 

[24] 
(Offline) 

IMAT 
[25] 

MC-SMD 
[27] 

WFPV 
This study 

WFPV+VD 
This study 
(Offline) 

1 T1  2.29 | 2.18 1.33 | 1.19 1.23 | 1.14 1.70 |  - 1.18 | 1.04 1.72 | 1.50 1.16 | 0.91 1.25 | 1.15 0.93 | 0.89 
2 T1  2.19 | 2.37 1.75 | 1.66 1.59 | 1.30 0.84 |  - 2.42 | 2.33 1.33 | 1.30 1.07 | 0.87 1.41 | 1.30 0.82 | 0.73 
3 T1  2.00 | 1.50 1.47 | 1.27 0.57 | 0.45 0.56 |  - 0.86 | 0.66 0.90 | 0.75 0.80 | 0.62 0.71 | 0.59 0.64 | 0.54 
4 T1  2.15 | 2.00 1.48 | 1.41 0.44 | 0.31  1.15 |  - 1.38 | 1.31 1.28 | 1.20 1.13 | 0.84 0.97 | 0.88 0.83 | 0.80 
5 T1  2.01 | 1.22 0.69 | 0.51 0.47 | 0.31 0.77 |  - 0.92 | 0.74 0.93 | 0.69 0.98 | 0.68 0.75 | 0.57 0.50 | 0.38 
6 T1  2.76 | 2.51 1.32 | 1.09 0.61 | 0.45 1.06 |  - 1.37 | 1.14 1.41 | 1.20 1.29 | 0.96 0.92 | 0.75 0.78 | 0.61 
7 T1  1.67 | 1.27 0.71 | 0.54 0.54 | 0.40 0.63 |  - 1.53 | 1.36 0.61 | 0.50 0.88 | 0.65 0.65 | 0.50 0.50 |  0.40 
8 T1  1.93 | 1.47 0.56 | 0.47 0.40 | 0.33 0.53 |  - 0.64 | 0.55 0.88 | 0.80 0.81 | 0.64 0.97 | 0.83 0.67 | 0.56 
9 T1  1.86 | 1.28 0.49 | 0.41 0.40 | 0.42 0.52 |  - 0.60 | 0.52 0.59 | 0.50 0.55 | 0.43 0.55 | 0.48 0.45 | 0.38 
10 T1  4.70 | 2.49 3.81 | 2.43 2.63 |1.59 2.56 |  - 3.65 | 2.27 3.78 | 2.40 3.18 | 1.95 2.06 | 1.29 1.43 | 0.90 
11 T1  1.72 | 1.29 0.78 | 0.51 0.64 | 0.42 1.05 |  - 0.92 | 0.65 0.85 | 0.60 0.79 | 0.51 1.03 | 0.68 0.74 | 0.48 
12 T1  2.84 | 2.30 1.04 | 0.81 1.20 | 0.86 0.91 |  - 1.25 | 1.02 0.71 | 0.50 0.72 | 0.53 0.99 | 0.70 0.75 | 0.53 
13 T2  - - 3.41 | 4.25  - - - - 3.54 | 4.08 2.77 | 3.19 
14 T2  6.63 | 8.76 8.07 | 10.9 7.29 | 9.80 - 4.89 | 6.29  - 9.59 | 12.2 8.68 | 10.9 
15 T2  1.94 | 2.56 1.61 | 2.01 2.73 | 2.21 - 1.58 | 1.98  - 2.57 | 3.16 1.99 | 2.43 
16 T3  1.35 | 1.04 3.10 | 2.69 3.18 | 2.11 - 1.83 | 1.49  - 2.25 | 1.87 1.83 | 1.51 
17 T3  7.82 | 4.88 7.01 | 4.49 3.01 | 2.52 - 3.05 | 2.00  - 3.01 | 1.99 2.22 | 1.49 
18 T3  2.46 | 2.00 2.99 | 2.52 4.46 | 3.23 - 1.62 | 1.36  - 2.73 | 2.29 2.01 | 1.70 
19 T3  1.73 | 1.27 1.67 | 1.23 3.58 | 3.98 - 1.24 | 0.92  - 1.57 | 1.15 1.23 | 0.90 
20 T2  3.33 | 3.90 2.80 | 3.46 1.94 | 1.66 - 2.04 | 2.23  - 2.10 | 2.41 1.53 | 1.78 
21 T3  3.41 | 2.43 1.88 | 1.32 2.56 | 2.02 - 2.49 | 1.81  - 3.44 | 2.45 2.74 | 1.96 
22 T3  2.69 | 2.12 0.92 | 0.74 3.12 | 3.28 - 1.16 | 0.92  - 1.61 | 1.26 1.02 | 0.80 
23 T2  0.51 | 0.59 0.49 | 0.57 1.72 | 1.97 - 0.66 | 0.79  - 0.75 | 0.88 0.51 | 0.59 
         -   

M
ea

n 

T1 
Rec 
1-12 

avAE 2.34 1.28 0.89 1.02 1.50 1.25 1.11 1.02 0.65 
avRE 1.82 1.01 0.65 - 1.12 0.99 0.80 0.81 0.55 
sdAE 2.47 2.61 - 1.79 1.95 - 1.99 1.25 1.00 

- 
T2-T3 
Rec 

13-23 

avAE - - 3.36 - - - - 3.01  2.16 
avRE - - 3.33 - - - - 3.06 2.21 
sdAE - - - - - - - 3.83 2.89 

 
Test 
Rec 

14-23 

avAE 3.19  3.05 3.35 - 2.13 - - 2.95 2.11 
avRE 2.95 3.00 3.27 - 2.77 - - 2.96 2.12 
sdAE 3.61 3.35 - - 2.04 - - 3.71 2.82 

 
Rec 
1-12, 
14-23 

avAE 2.73 2.08 2.01 - 1.79 - - 1.90 1.31 
avRE 2.33 1.91 1.84 - 1.87 - - 1.98 1.26 
sdAE 2.99 2.79 - - 1.99 - - 2.37 1.83 

 
All 
Rec 
1-23 

avAE - - 2.07 - - - - 1.97 1.37 
avRE - - 1.95 - - - - 1.89 1.34 
sdAE - - - - - - - 2.48 1.91 

* The HRs generated by TROIKA and JOSS on recordings 14-23 are obtained from https://sites.google.com/site/researchbyzhang/publications.  

TABLE IV.   
THE NUMBER OF USER-TUNABLE PARAMETERS. 

# tunable thresholds TROIKA  
[2] 

JOSS  
[3] 

SpaMa 
[21] 

EEMD 
[23] 

Spectrap 
[24] 

IMAT 
[25] 

MC-SMD 
[27] 

WFPV 
This study 

WFPV+VD 
This study 

De-noising & HR detection* >10 5 6 >10 6 >10 >10 2 2 
Post-processing >10 >10 5 >10 4 >10 >10 4 1 

* The number of parameters does not include the preprocessing parameters such as filter length, cut-off points, down-sampling, etc.  
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offline or online processing.  

C. Analysis 

The approaches reported in [2, 3, 23, 24, 25, 27] rely on a 
number of heuristic rules and thresholds (Table IV). For 
instance, the post-processing step alone in [2, 3, 23, 27] requires 
a dozen parameters to be specified. The relevance of the 
knowledge extracted from the data (in terms of the rules and 
threshold values) is tested on the same data and the best 
achievable results are usually reported. Increasing the number 
of degrees of freedom of the designed system will inevitably 
lead to an improved performance but it comes at the cost of an 
increased risk of poor generalization on the unseen data, 
especially if fine-tuning is performed in the post-processing to 
correct the errors of the core algorithm.  

As can be seen from Table III, some studies report results 
only on the first 12 recordings (T1 activity); others in addition 
report performance on the data that were used as test data in SP 
Cup (rec. 14-23), and only a few report the performance on the 
whole dataset of all 23 recordings. It is worth noting that since 
the ground truth for the whole dataset is available, there is no 
difference between the training and testing data from the 
performance assessment perspective. In this context, the 
number of the free parameters of the developed system is the 
only indicator of the potential overfit. It can also be seen from 
Table III that although the whole database of 23 recordings is 
available since early 2015, several very recent works [23, 25, 
27] still prefer to report results on the ‘easier’ part of the dataset, 
T1 activity only.  

The method presented in this study requires only a few 
parameters to be tuned. The number of frequency bins in the 
DFT was set to 1024 (with zero-padding). Likewise, C=15 was 
used in the Wiener filters. The range of the search space for the 
maximum in DFT magnitudes for the next frame is determined 
adaptively using Eq. 8. Viterbi decoding for the offline 
algorithm does not require any thresholds to tune. The proposed 
algorithm takes under 10s to process the whole PPG dataset of 
23 recordings (Matlab R2013b @ Intel Core E7200 2.5GHz) 
which compares favorably with techniques reported in [2, 3, 22, 
23, 25]. It is reported in [23] that in order to estimate the HR for 
the first 12 recordings TROIKA [2] takes several hours, JOSS 
[3] takes 300s, EEMD [23] takes 200s, and IMAT [25] takes 
several hours as tested in this study using the provided 
implementation.  

Reproducibility is an essential principle of the scientific 
process. The availability of the data and the algorithm code will 
encourage more researchers to explore the area of PPG signal 
processing and build novel technical solutions. Unfortunately, 
among the solutions discussed in Table III only the 
implementation of the IMAT algorithm [25] is available online. 
Reproducibility of results will allow for verification of genuine 
technical contributions.  

D. Combination with other approaches 

It is well known that a better performance can be obtained by 
blending complementary approaches [34]. Table V shows the 
performance of the system that ensembles the TROIKA [2], 

JOSS [3] and WFPV methods by taking a simple average of 
their HR estimates. It can be seen that even a late decision-level 
combination of the HR estimates significantly reduces the error 
in all reported metrics. In fact, Bland-Altman plots that show 
the distribution of errors for a given algorithm (as shown in 
Fig. 4(b) for WFPV) can be used to assess the level of 
complementarity of various approaches – for instance, 
algorithms that produce most errors in the region of high HR 
would be good candidates to form ensemble with WFPV. For 
this purpose, the availability of the algorithms implementation 
for building more accurate solutions is essential. 

V. CONCLUSIONS 

An algorithm based on the Wiener filtering and the phase 
vocoder is proposed. It provides a simple but effective solution 
to the PPG-based HR estimation and can serve as a baseline 
performance for further studies. The algorithm has low 
computational cost and is well suited for fitness tracking and 
health monitoring in wearable devices [18, 19]. An offline 
version of the algorithm with a higher accuracy is proposed that 
utilizes Viterbi decoding to post-process HR estimates. The 
Matlab implementation for both algorithms is provided.  

Future research may concentrate on the usage of other 
spectral estimation methods. The Wiener filter can be applied 
in the time domain to facilitate this option. Additionally, prior 
information available about the user, such as the user weight or 
age may be incorporated to estimate the maximum HR 
expected. The probabilistic framework with Viterbi decoding 
can be adapted to online monitoring with a predefined delay. 
Finally, electric potential wearable sensors can be used to 
complement the PPG ones [35].  
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