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Abstract: Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite 
and subsequent food intake. The ghrelinergic system has therefore received considerable attention 
as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions 
of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone 
becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and 
peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the 
ghrelin system for appetite modulation remains elusive although some promising effects on 
metabolic function are emerging. This is due to many factors, ranging from the complexity of the 
ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and 
heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not 
least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-
mediated appetite regulation without encroaching on the various peripheral functions attributable 
to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, 
body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to 
penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain 
regions, particularly within the mesolimbic reward circuitry. 

Keywords: ghrelin; desacyl-ghrelin; appetite; GHSR-1a; obesity; cachexia; food reward; mesolimbic 
reward circuitry; blood brain barrier 

 

1. Introduction 

Food intake is one of the most deceptively complex of all mammalian behaviours, being 
regulated by a variety of homeostatic and external factors [1]. One of the key hormones regulating 
food intake is ghrelin, a 28 amino acid (aa) peptide synthesized and secreted by gastric oxyntic cells [2]. 
Blood levels of this hormone exhibit circadian fluctuation which are aligned with mealtimes, spiking 
pre-prandially followed by rapid post-prandial reductions [3]. These have positioned ghrelin as a key 
regulator of meal initiation, stimulating a cascade of events to prepare the body for an impending 
meal. All of the above has led to the designation of ghrelin as the “hunger hormone” [3], although 
recent findings provide evidence for compensatory mechanisms in ghrelin knockouts [4]. To date 
however, it remains the only known peripheral hormone with orexigenic effects via a centrally 
mediated mechanism [5–7]. The genes and cellular mechanisms involved in the synthesis, cleavage 
and octanoylation of ghrelin have been extensively described [8–11]. Briefly, the addition of an acyl 
functional group to the serine-3 of ghrelin is essential for its binding to and activity on its receptor, 
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the growth hormone secretagogue receptor (GHSR-1a) [2]. The neuronal pathways underlying 
ghrelin’s appetite-stimulating effects centre around activation of the GHSR-1a, which is abundantly 
expressed in the hypothalamus [12,13]. The arcuate nucleus is the main hypothalamic locus for 
ghrelin’s orexigenic effect. GHSR-1a-mediated activation of arcuate nucleus neuropeptide  
Y/agouti-related peptide neurons serves to stimulate orexigenic activity through Y1 receptors, while 
concomitantly inhibiting satiating pro-opiomelanocortin neurons [14]. Furthermore, ghrelin 
contributes to the regulation of body weight by potently stimulating growth hormone (GH) secretion 
from the pituitary, increasing adiposity and reducing energy expenditure [10,15]. Goldstein and 
Brown showed that ghrelin-stimulated GH secretion is critical to protecting the body from starvation-
induced hypoglycaemia [16]. Ghrelin has also been shown to be involved in reward processes, mood, 
memory and learning, and stress response [17–19], while peripheral functions span gastric motility, 
glucose homeostasis, immune function, cardiac output and bone formation [20–25]. 

1.1. Ghrelin and Appetite-Related Disorders 

In appetite and food intake, ghrelin’s role can be subdivided into two distinct, yet overlapping 
areas of homeostatic and non-homeostatic feeding [26–30]. The term “non-homeostatic” encompasses 
both motivation and incentive salience applied to food rewards, but also the inherent palatability or 
“hedonic” aspect of eating in itself. The ghrelin system not only acts as a barometer for energy balance 
[5,10], but also contributes to the drive for eating beyond metabolic demand and the consumption of 
palatable foods [28,29]. Therefore, ghrelin and the GHSR-1a receptor, have been extensively 
investigated as potential therapeutic targets to tackle metabolic, eating- and appetite-related 
disorders by virtue of the unique position which the ghrelinergic system occupies at the interface of 
homeostatic and hedonic feeding. 

1.2. Homeostatic Feeding 

The ghrelinergic system has received considerable focus as a target in maladaptive changes to 
homeostatic energy balance [10,31,32]. This is achieved through manipulating a number of 
physiological mechanisms resulting in a net anabolic effect in the body [14,33]. The normal ageing 
process yields a number of physiological changes which lead to a reduction in appetite and 
appropriate nutritional intake [34,35]. Declining ghrelin levels contribute to this reduction in food 
intake and lean body mass [34]. Furthermore, ageing population demographics translate to a greater 
incidence of chronic conditions such as cardiovascular disease, respiratory disease and cancer [36]. 
Chronic diseases compound a weakening ghrelin axis by increasing systemic inflammation and 
cytokine output [37]. Cytokine-mediated activation of anorexigenic neuron populations in the 
hypothalamus causes a cascade of metabolic changes resulting in loss of lean and fat mass, and the 
development of cachexia [34,35,38]. Thus, a metabolic backdrop is created which antagonises 
ghrelin’s somatotrophic effect [37–39]. Age-related malnutrition and under-eating following chronic 
diseases results in prolonged hospital stays, decreased independence and poorer response to 
treatment, leading to a greater burden on global health infrastructures and poorer clinical outcomes 
[34,35,40]. 

1.3. Non-Homeostatic Feeding 

Further to its role as a key mediator of the energy balance “set point”, ghrelin is also implicated 
in incentive salience and motivation to eat, and consequently has become a therapeutic target for 
development of therapies for overeating and obesity [41,42]. The need for anti-obesity therapeutics is 
highlighted by the global increase in incidence of obesity in recent years. In 2014, more than 1.9 billion 
adults (39% globally) were overweight [43] and obesity continues to rise to epidemic proportions.  
In Western society particularly, consumption of readily available high-fat and high-sugar meals, 
together with increasingly sedentary lifestyles, has led to a rise in the “metabolic syndrome”. This is 
a condition associated with weight gain, hyperglycaemia, insulin resistance, hypercholesterolaemia 
and a general inflammatory phenotype [44,45]. In addition to homeostasis, neuronal pathways also 
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exist which promote the consumption of palatable, calorie-dense foods beyond the metabolic 
demands of the organism [46]. This is thought to be an evolutional mechanism that promotes over-
eating of calorie-dense foods in preparation for times of food deprivation. Needless to say, this is 
redundant in the western world where there is an abundance of food. The mesolimbic dopaminergic 
pathway in the brain is known to be a key mediator in this primitive drive [47–49]. Overconsumption 
of palatable foods is thought to be triggered by hyperactivity of the reward system [50,51]. 
Furthermore, the late Bart Hoebel and colleagues in Princeton proved that sugar in itself can share 
many of the properties of addictive substances [52,53]. In fact, palatable foods are now known to 
share the same reward pathways as non-psychostimulant drugs of abuse [54]. It should be noted that 
although the concept of food addiction has gained significant ground, it has many heuristic 
limitations [55,56]. 

Increases in circulating levels of endogenous ghrelin, following periods of food restriction, signal 
an increase in appetite and hunger and are correlated with a general increase in both “liking” and 
“wanting” of food [57,58]. Interestingly, the elevated endogenous ghrelin levels have been associated 
with an increased dopamine output in the brain [59], while functional magnetic resonance imaging 
in human subjects has shown that ghrelin administration enhances the activation of the central 
reward circuitry in response to images of pleasurable foods [60,61]. Subsequently, ghrelin’s role in 
increasing the incentive valuation of food at the level of the mesolimbic circuitry has come to the fore 
in recent reviews [57,62]. 

1.4. Stress, Impulsivity and Cognition 

Dopaminergic activity in the mesolimbic reward circuitry not only increases perceived 
rewarding value of food, but also results in increased impulsive action [63]. Impulsivity can be 
defined by characteristic motor disinhibition and impaired decision-making, and a strong correlation 
exists between impulsiveness and food reward behaviour [64–66]. Furthermore, a relationship 
between increased ghrelin levels and impulsive behaviour has recently been elucidated [67]. 
Therefore, dysregulation of ghrelin-dopamine signalling is thought to contribute to the development 
of an addictive-like relationship with food. Additionally, numerous groups have published on the 
ghrelin system linking stress, mood and food reward. Food intake and choice of food are closely 
linked with how we deal with stress [68–70]. This is becoming increasingly pertinent in modern 
society due to the combination of readily available high-calorie foods, and the exposure to chronic 
stressors [71,72]. Ghrelin is known to play a role in stress-induced food intake and the phenomenon 
of “comfort eating” [18,73,74]. A combination of low impulse control and increased incentive to eat 
palatable foods synergistically contribute to the development of obesity [75]. 

1.5. Current Status and Implications 

Consequences of over- and under-eating constitute ever-expanding health problems that remain 
unanswered in modern society, despite education, public health campaigns and pharmacotherapy 
[76,77]. Thus, there is an impetus to understand the physiological mechanisms underlying central 
appetite regulation and food intake in order to design novel treatment strategies for eating disorders. 
However, despite almost 20 years since it is discovery by Kojima and colleagues, no specific ghrelin 
targeting anti-obesity drug or cachexia therapeutics are on the market for clinical use [2].  
The literature on ghrelin illustrates a plethora of information, yet we are still faced with a paucity of 
success. As knowledge on ghrelin increased, the role of the hormone shifted from the key protagonist 
in feeding initiation to be considered as part of a spectrum of diverse physiological processes.  
The peripheral and central distribution of the GHSR-1a and the heterogenous nature of GHSR-1a 
signalling result in pleiotropic actions of ghrelin, many of which are still being investigated. 

In this review we discuss the distribution and heterogenous signalling of the GHSR-1a, and its 
relevance to ghrelin’s action. Furthermore, we review the pharmacokinetics and pharmacodynamics 
of both native ghrelin and synthetic ghrelin ligands used clinically to date, and propose that 
augmenting their blood brain barrier (BBB) penetrability would better target the GHSR-1a at the level 
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of feeding and reward centres in the brain, thus increasing specificity for appetite-modulation and 
limiting off-target peripheral tissue effects. 

2. Growth Hormone Secretagogue Receptor (GHSR-1a) Receptor—Biodistribution  
and Signalling 

2.1. Pleiotropic Pharmacodynamics 

The target for ghrelin and ghrelin ligands is the GHSR-1a receptor, a 7 transmembrane G-protein 
coupled receptor (GPCR). The GHSR-1a receptor is expressed both in the central nervous system 
(CNS) and peripherally in the body, and binding of acyl-ghrelin leads to receptor activation [2]. The 
distribution of the GHSR-1a receptor is of paramount importance as it is the executor of ghrelin’s 
function. Indeed, it is the peripheral (exclusive to non-CNS tissue) and central (exclusive to the CNS) 
distribution of the GHSR-1a which is responsible for the plethora of physiological effects which 
ghrelin exerts (Figure 1). The GHSR-1a is densely expressed in the hypothalamic nuclei which sends 
neuronal projections to other appetite regulating centres [13,78]. Peripherally, GHSR-1a is located on 
vagal afferents, pancreatic cells, spleen, cardiac muscle, bone, adipose, thyroid, adrenal glands and 
on immune cells [13,79]. Therefore, given the ubiquitous expression of the receptor, any instance of 
exogenous ghrelin or ghrelin ligand administration leads to a combination of downstream effects. 
Neither exogenous ghrelin nor ghrelinergic compounds can effectively target centrally-controlled 
food intake, without affecting a multitude of other central and peripheral outputs [7,42].  
The non-specific tissue effects of peripheral ghrelin administration may be further complicating an 
intricate metabolic balance and need to be considered. 

 
Figure 1. This combines the documented methods of ghrelin’s action after its release from the 
stomach, or exogenous administration. Ghrelin travels via the circulation to activate the growth 
hormone secretagogue receptor (GHSR-1a) in the arcuate nucleus and the nucleus tractus solitarius 
(NTS) after circumventing the blood-brain barrier (BBB), denoted by the red arrow. Peripheral signals 
are conveyed to the central nervous system (CNS) via vagal afferents also. Activation of the GHSR-1a 
leads to a multitude of centrally and/or peripherally mediated effects. 
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2.2. Central GHSR-1a Signalling 

Food intake, adiposity and energy homeostasis are centrally controlled functions of ghrelin and 
the GHSR-1a which have been extensively described in the literature [5,10,14]. Chronic central 
administration of ghrelin induces adiposity in rodents by reducing the utilization of fat as an energy 
substrate [10]. Further work confirmed this central action, with expression of mRNA for fat-sparing 
enzymes fatty-acid synthase, acetyl-CoA carboxylase α, stearoyl-CoA desaturase-1, and lipoprotein 
lipase all being increased with chronic intracerebroventricular infusion of ghrelin. In addition, mRNA 
expression for carnitine palmitoyltransferase-1α, involved in fat utilisation is decreased while lipid 
mobilization is reduced following ghrelin treatment, as shown by an increase in respiratory exchange 
ratio in vivo [80,81]. Furthermore, ghrelin stimulates lipid deposition in human visceral adipose 
tissue in a dose-dependent manner [82]. Acute ghrelin administration consistently stimulates food 
intake across species [3,41,58,83–88]. In recent years however, research has proven that ghrelin may 
not be the critical regulator of food intake it was once heralded to be. 

Studies in knockout mice have confirmed the ghrelin peptide is not a key mediator of food intake 
or growth [89]. In contrast with predictions, ghrelin knockout mice are neither undersized nor 
hypophagic; their behavioural phenotype for food intake and physical attributes are 
indistinguishable from wild-type littermates [4,89]. Ghrelin-null rodents also display normal 
responses to starvation and diet-induced obesity [89]. Furthermore, ablation of ghrelin in adulthood 
failed to elicit effects on food intake, body weight, or resistance to diet-induced obesity [4]. 
Interestingly, both germline ghrelin-deficient and ghrelin cell-ablated mice display a profound 
hypoglycaemia following prolonged calorie restriction. Overall however, the phenotype in  
ghrelin-knockouts is suggestive of a non-critical role for ghrelin in food intake and growth. 

Despite the apparent compensatory mechanisms that exist in the absence of ghrelin, exogenous 
ghrelin or ghrelin ligands have the potential to significantly modulate appetite, most likely via central 
GHSR-1a signalling. Recently it was shown through neuronal-specific ablation of the GHSR-1a that 
receptor signalling within the CNS is a crucial regulator of energy metabolism. This is important to 
consider in the context of the high constitutive activity of the GHSR-1a, which does not require 
ghrelin in order to become activated [90,91]. Zigman and colleagues, amongst others, have 
demonstrated that GHSR-1a-null mice are resistant to diet-induced obesity [92–94]. Neuronal GHSR-
1a is also essential for ghrelin-induced meal initiation and maintenance of body weight in conditions 
of caloric deficit [95]. Central GHSR-1a signalling therefore seems to be critical for not only acute 
initiation of food intake, but also is a key mediator of body weight. Supporting this, a genetic 
mutation in GHSR-1a that allows ghrelin binding but prevents activation of the receptor, leads to the 
condition of familial short stature [96]. 

Consistent with the notion of a multifunctional role for ghrelin, the GHS-R1a receptor is also 
expressed in several non-hypothalamic brain areas. In-situ binding studies have demonstrated the 
existence of the GHSR-1a in the midbrain dopamine system, particularly the main mesolimbic reward 
circuitry structures; the ventral tegmental area (VTA) and its primary projection site, the nucleus 
accumbens [12,17,97]. The VTA projects GHSR-1a-expressing dopaminergic neurons which 
terminate in the nucleus accumbens (NAcc), a hotspot for dopamine release which is critically 
associated with promoting incentive value of drugs of abuse and natural rewards, including food 
[98]. Further projections from the VTA to the medial prefrontal cortex, an important part of the 
reward system which also encodes the genes for the GHSR-1a, are described as part of this pathway 
[99–101]. Consequently, the GHSR-1a located in the midbrain dopaminergic pathway may be a driver 
for the decision to eat palatable, calorie-dense foods, irrespective of metabolic need. 

GHSR-1a receptor is also expressed in areas associated with memory, emotional arousal and 
cue-potentiated feeding [7,102,103]. For example, GHSR-1a in the hippocampus is known to play a 
role in synaptic plasticity, increasing hippocampal spine density and enhancing long-term 
potentiation, an important phenomenon in learning and memory consolidation [102]. Activation of 
hippocampal GHSR-1a in vivo increased performance and retention of memory-dependent  
tasks [19,102]. Furthermore, the GHSR-1a is densely expressed in several sub-nuclei of the amygdala 
and is associated with amelioration of anxiety-like behaviours in food scarcity [104]. Altogether, the 
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above is supportive of a broader, non-homeostatic function for GHSR-1a signalling in higher brain 
functions dependent on metabolic status, for example, heightened salience and increased memory 
consolidation in times of hunger to remember where food can be obtained [102]. Critically, although 
ghrelin peptide mRNA is not found in the brain, it’s expression is noted peripherally, suggesting 
multiple potential autocrine or paracrine roles of the hormone [13,105,106]. Indeed, direct actions of 
ghrelin in the periphery have been reported in several organ systems. 

2.3. Peripheral GHSR-1a Signalling 

The GHSR-1a is responsible for several peripheral mechanisms modulated by ghrelin including, 
but not limited to, cardiac contractility, bone formation and reproductive function. Firstly, GHSR-1a 
is expressed on rodent and human immune cells, including monocytes and T cells [13,20]. Ghrelin 
and ghrelin agonists have shown a protective effect under acute endotoxaemia, enhancing the 
effectiveness of immune response through tissue infiltration in vivo [22,23], leading to decreased 
mortality. Ghrelin is also known to directly reduce the expression of inflammatory cytokines [20]. 
Secondly, protective effects have also been attributed to ghrelin in rodent cardiomyocytes [24,107]. 
The cardioprotective mechanisms underlying this have been described in detail elsewhere [108]. The 
ghrelin agonist, hexarelin, was shown to increase cardiac output in rodents and humans [85,109]. 
Thirdly, ghrelin and the GHSR-1a receptor are expressed in rat and human testis [13,110,111] and in 
females both have been documented to be expressed in ovary, hilus cells (leydig cells) and corpora 
lutea, all of which are hormone secreting cells which play roles in the female reproductive cycle [25]. 
Ghrelin plays a crucial role in the regulation of the hypothalamic-pituitary-gonadal axis mainly 
through reducing secretion of hypothalamic gonadotropin-releasing hormone and stimulating local 
luteinizing hormone and follicle stimulating hormone secretion. 

2.4. Complementary Signalling: Gastrointestinal Motility, Glucose Homeostasis and Visceral Pain 

All of the above have discussed distinct centrally-mediated and non-central autocrine or 
paracrine functions of GHSR-1a. In certain instances, central and peripheral ghrelinergic signalling 
appear to be complementary, as is the case for regulation of gastrointestinal motility, glucose 
homeostasis and visceral pain. The role of ghrelin and the GHSR-1a in the regulation of 
gastrointestinal tract motility has already been reviewed [112]. The GHSR-1a receptor is located in 
the mucosa and myenteric plexus of rodent and human gastrointestinal tract, reinforcing the local 
neural role for ghrelin in gut motility [113–115]. In vitro, this notion was supported by contractility 
studies showing that ghrelin directly activates both cholinergic [114,116,117] and tachykinergic 
excitatory neurons in fundus and antrum. In vivo, peripheral administration of ghrelin accelerates 
gastric emptying in a dose-dependent manner [117–120]. In humans, ghrelin infusion stimulates 
gastric emptying in healthy participants and ameliorates symptoms of gastroparesis [121]. However, 
central administration also displays a pronounced effect on gastrointestinal tract motility [122,123]. 
Vagotomy or chemical deactivation of the vagus were shown to abolish the observed effects of 
peripherally administered ghrelin [116,124]. Ghrelin’s effects in respect of gastrointestinal motility 
thus seem to be vago-vagal in origin—meaning that it results from reciprocal vagal communication 
between the gut and the dorsal vagal complex of the brain. Similar to food intake and adiposity above, 
gastric emptying is unaffected in ghrelin knockout rodents, suggesting the existence of compensatory 
mechanisms [112]. Critically, it has been suggested that local mechanisms become operational under 
abnormal conditions such as vagal denervation or pharmacological stimulation [122].  
Supporting this, it was shown that downregulation of GHSR-1a in the small intestine delays transit 
in vagotomised mice [125]. Overall, evidence suggests that ghrelin acts from the periphery in a remote 
fashion to modulate gastrointestinal function from the CNS via the vagus nerve, however the 
gastrointestinal distribution of the GHSR-1a paves the way for local activity which may be 
heightened by pharmacological stimulation [122]. The motilin receptor has also been characterized 
in the human gastrointestinal tract [126] and displays close structural homology and a functional 
compensatory role with the GHSR-1a in gastrointestinal motility [127]. 
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Interacting central and peripheral GHSR-1a signalling is evident in the physiology of glucose 
homeostasis. Many peripheral hormones act in a central manner to regulate energy metabolism and 
glucose balance, including glucagon, glucagon-like peptide 1 and insulin [128–131]. However, the 
GHSR-1a is expressed in pancreatic α and β cells [113,132–134], and peripheral ghrelin acts directly 
on the receptor in pancreatic islets to modulate the release of insulin [132,135,136]. In humans, Broglio 
and colleagues found that acute administration of acyl-ghrelin in the fasted state significantly 
reduced plasma insulin while promoting hyperglycaemia, however, a continuous infusion 
stimulated insulin secretion secondary to elevated glucose levels [137,138]. Supporting this, several 
studies have consistently shown that ghrelin administration promotes hyperglycaemia [139]. Central 
administration of ghrelin also regulates plasma insulin in rodents [140–143]. Somewhat confusingly, 
it seems that central GHSR-1a signalling exerts an insulinotropic effect, versus the inhibition of 
glucose-stimulated insulin secretion by peripheral GHSR-1a activation [135,142], meaning that the 
receptor may play distinct roles in glucose homeostasis depending on the site of action. Furthermore, 
administration of acyl-ghrelin into the portal, but not the femoral vein inhibited glucose-stimulated 
insulin secretion. Hepatic vagotomy attenuated this inhibition suggesting indirect central control 
over insulin secretion via neural signalling [144,145]. Critically, fasting decreases insulin levels in 
both wild type and ghrelin knockouts, as well as producing comparable responses to both  
hypo-caloric and hyper-caloric situations. Hence, compensatory pathways seem to exist for glucose 
homeostasis, however GHSR-1a knockout leads to reduced glucose levels under calorie- deprivation 
[89,146]. Later work from the same group used GHSR-1a-null mice to show reduced adiposity and 
insulin resistance [147]. A body of evidence thus exists to support the indirect central control of 
GHSR-1a signalling over glucose homeostasis. Furthermore, it seems that metabolic status is a key 
determinant of the regulatory action of central ghrelin on peripheral glucose homeostasis [143].  
A recent review summarized the complex interrelationship that exists between ghrelin, insulin and 
glucose [148]. The ability of insulin and glucose levels to appreciably impact on appetite [149] means 
that indiscriminate targeting of the GHSR-1a without due consideration of the effects on peripheral 
glucose and insulin metabolism may ultimately decrease efficacy of appetite modulation  
therapy [150,151]. 

Ghrelin and the GHSR-1a has also been the subject of investigation in the modulation of pain 
transmission [152]. Originally, ghrelin’s role in pain sensitivity was thought to be through a 
combination of central and peripheral GHSR-1a signalling [153,154]. Chronic peripheral ghrelin 
administration has been shown to attenuate neuropathic pain in rats [155]. Ghrelin treatment resulted 
in elevated levels of anti-inflammatory cytokines in vivo in a rodent model of inflammatory  
pain [156]. It has also been shown that central and peripheral ghrelin administration prevents the 
pain response response caused by intraplantar insult [157]. Furthermore, mRNA for GHSR-1a is 
found in pain-processing centres including the sensory motor cortex and the dorsal horn of the spinal 
cord [154,158–160]. Current opinion seems to agree that ghrelin’s analgesic effect is conveyed mainly 
through central mechanisms, via interactions with the opioid system [152,157,161,162]. Therefore, 
ghrelin and the GHSR-1a may have communicating peripheral and central pathways in the 
modulation of pain sensitivity. 

2.5. Heterogenous Action—GHSR-1a as a Promiscuous Target 

Further to the distribution of GHSR-1a and the consideration of central and peripheral effects, 
the receptor is known to display heterogenous signalling cascades, downregulation/internalization 
and heterodimerization—all of which are akin to other GPCR’s and constitute important 
considerations for appetite modulation therapy [163]. Downstream effects of the GHSR-1a via 
coupling to different G-proteins have been reviewed in detail elsewhere [26]. Importantly, it is worth 
emphasising that the GHSR-1a displays heterogenous functions dependant on the location of the 
receptor expression in the body. For example, in neurons of the arcuate nucleus, ghrelin acting on the 
GHSR-1a induces orexigenic neuropeptide Y release through N-type voltage-gated Ca2β channels via 
cyclic adenosine monophosphate (cAMP) increases in the cell [164]. In pituitary cells responsible for 
effecting somatotrophin release, GHSR-1a mainly acts via Gαq coupled G-protein to trigger calcium 
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release from intracellular stores [165]. These signalling pathways are both excitatory—interestingly, 
in the periphery, ghrelin binding to GHSR-1a in pancreatic β cells leads to an inhibition of cAMP and 
hyperpolarization of the cell [166]. 

The GHSR-1a not only exhibits site- and ligand-dependant signalling; it demonstrates an ability 
to “cross-talk” with other neuroendocrine GPCRs [167]. The receptor has been shown to pair or 
dimerize with other receptors, leading to either attenuation or augmentation of signalling. GHSR-1a: 
melanocortin-3 receptor protomers have been described; melanocortin-3 receptor is an important 
downstream signalling receptor in the homeostatic control of food intake [168]. Rediger and 
colleagues showed that the signalling modalities of one GPCR was dependent on the conformational 
activity of the other. In essence, ghrelin-induced GHSR-1a activation is attenuated by interaction with 
the melanocortin-3 receptor [169]. We previously demonstrated the existence of GHSR-1a: Serotonin 
2C dimers in vitro, hypothesizing novel pharmacological targets for drug treatment based on the 
involvement of serotonin 2C receptor in satiety signalling [167,170–172]. Furthermore, GHSR-1a: 
Dopamine D2 receptor co-expressed on neurons leads to attenuated dopaminergic response upon 
administration of a GHSR-1a antagonist in vivo [173]. Critically, it is the allosteric interaction of the 
GPCR protomer which results in the observed cross-talk, rather than the net effect of independent 
neuroendocrine signalling [173]. More recently, it was shown that hippocampal-dependent synaptic 
plasticity is modulated by GHSR-1a: Dopamine D1 heterodimerization [103]. Moreover, an 
inactiveisoform of GHSR-1a receptor, the GHS-R1b, is worthy of mention here though it is not a major 
focus of review. GHSR-1b is a truncated, 5-transmembrane receptor [174]. The GHSR-1b receptor 
exhibits widespread tissue distribution and exhibits an ability to co-localize with the GHSR-1a 
receptor causing a subsequent attenuation of activity through an increased internalization of the 
active receptor. This is potentially significant in the backdrop of ghrelin signalling as the GHSR-1a 
exhibits high constitutive signalling in the absence of its native ligand [90,91,175]. 

As well as heterogenous signalling and neuroendocrine cross-talk, the expression of the GHSR-
1a on the cell membrane is critical to it being a successful therapeutic target. However, GPCRs are 
known to downregulate via receptor internalization or endocytosis causing a subsequent attenuation 
of effect [176]. Unsurprisingly, the GHSR-1a receptor has been shown to downregulate in response 
to various stimuli, including ghrelin- and ghrelin-ligand mediated activation [177–179]. After binding 
of ghrelin to GHSR-1a, the complex is internalised in clathrin-coated pits, from which the receptor 
needs to be recycled back to the surface of the cell [178]. In vitro growth hormone release is rapidly 
desensitized after exposure to a ghrelin agonist, MK-0677, and in vivo response in beagles was 
reduced to 25% after 4 days of daily administration [180]. In line with this, growth hormone release 
declines rapidly upon repeated ghrelin administration in humans [181]. There is a dearth of 
information in the literature to suggest an ability of ghrelin to sustain elevated food intake in animals 
or humans upon long-term administration, and it is feasible that downregulation would contribute 
to a decline in orexigenic effects over time. One study showed no overall effect on food intake in rats 
after chronic administration of acyl-ghrelin [81]. A limited number of clinical studies have failed to 
show an appreciable difference in food intake with chronic administration of ghrelin [182] or the 
synthetic agonist growth hormone releasing peptide-2 [86]. However, in acute situations consistently 
pronounced orexigenic effects are reported in both animals and humans [58,87,183,184]. Conversely, 
GHSR-1a has been shown to upregulate, in the hypothalamus at least, during fasting [90]. Hence, 
GHSR-1a expression levels, and subsequent effect of receptor modulation, are heavily dependent on 
the metabolic state. To further confirm this, it has been noted that leptin-deficient Zucker rats, 
characterized by profound hyperphagia, display a heightened expression of the GHSR-1a and a 
corresponding increased sensitivity to ghrelin and ghrelin agonists [185]. 

In summary, the above described heterogeneity of the GHSR-1a in terms of distribution, 
downstream signalling, tachyphylaxis and neuroendocrine communication paints a complex picture. 
This complexity has hindered development of an effective GHSR-1a targeting therapy for appetite 
modulation. It seems that the effect of GHSR-1a modulation hinges on the metabolic backdrop in 
which the therapy is delivered, hence the indiscriminate targeting of the GHSR-1a with non-specific 
systemic delivery of varying ligands may be one of the reasons for a lack of efficacy to date. The 
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widespread nature of the receptor in the body leads to GHSR-1a activation in off-target sites, 
potentially leading to local effects which can ultimately inhibit the intended benefit. 

3. Ghrelin and Ghrelin Ligands: Pharmacokinetic Perspectives 

On the whole, central action seems to be critical for GHSR-1a-mediated appetite modulation and 
energy balance. Understanding the pathway by which peripheral ghrelin acts centrally, after either 
endogenous release or exogenous administration, is critical to achieving therapeutic exploitation. As 
mentioned earlier, the question of whether ghrelin peptide is expressed in the brain is controversial 
and the subject of debate. Ghrelin immuno-reactive cells have been reported in the hypothalamus in 
some studies [14,186], while the existence of ghrelin-producing cells was reported in the arcuate 
nucleus of the hypothalamus [187]. Recent evidence seems to refute these claims and now it is thought 
ghrelin is only present in these areas due to access of circulating ghrelin from the periphery 
[57,106,188]. The main pathways by which ghrelin is thought to exert its orexigenic effect after it is 
released from the stomach have been extensively reviewed [42]. 

3.1. Blood Brain Barrier Penetration 

The orexigenic effects of ghrelin have immediate onset, with food intake increasing 10 min after 
systemic administration [3,188]. It follows therefore that ghrelin must have ready access into the 
brain. In fact, ghrelin can directly cross the blood brain barrier (BBB) at areas which are not highly 
protected, and subsequently convey its effect via neural projections from the site of entry to various 
feeding centres [78,189]. This is supported by the suggested “leaky” nature of the BBB surrounding 
the circumventricular organs of the brain [190–192]. The fenestrated endothelia surrounding the 
hypothalamus are supplied by capillaries which confer a rich blood supply, allowing the 
hypothalamus to sample the contents of the systemic circulation [193]. This affords many central 
nervous system (CNS) active peptides, including ghrelin, access to the CNS while still retaining 
effective and selective barrier function for the brain [12,194]. Furthermore, the blood—cerebrospinal 
fluid (CSF) barrier which exists at the choroid plexus also has been shown to allow ghrelin access to 
the arcuate nucleus. This is composed of a differentiated layer of cells that surround a core of 
capillaries in some brain ventricles and produce CSF, and/or the hypothalamic tanycytes, a 
specialized layer of bipolar ependymal cells that line the floor of the third ventricle and bridge the 
CSF and the capillaries of the median eminence [195,196]. Other circumventricular organs such as the 
area postrema, a part of the dorsal vagal complex, affords ghrelin diffusive access to the abundance 
of GHSR-1a’s in the nucleus tractus solitarius and dorsovagal nucleus. The nucleus tractus solitarius 
(NTS) is a relay hub for appetite regulation with a complex network of efferent and afferent 
connections. The NTS converts humoral responses into neuronal communication [197]. 

3.2. Vagus Nerve Signalling 

The NTS is also important to the other described route by which peripheral ghrelin accesses 
central GHSR-1a; remote modulation from the gut signalling through the vagus nerve and the 
brainstem [42,113]. Indeed, several gastrointestinal hormones such as cholecystokinin (CCK), peptide 
YY, and glucagon-like peptide 1 (GLP-1), transmit orexigenic and satiating signals to the brain, at 
least in part, via vagal afferents [198–200]. Feeding-related information can travel directly to the 
dorsal vagal complex and NTS, where signals are converted from humoral to neural format and 
further relayed to higher brain levels. Indeed, it is known that gut derived peptides such as the 
satiating CCK exert their central action via vagal afferents from the gastrointestinal tract [201]. Early 
studies using c-Fos expression as a marker of neuronal activation showed that peripheral 
administration of a ghrelin mimetic increased Fos protein in the NTS [202]. The NTS provides a direct 
noradrenergic projection to the hypothalamus which is believed to be important for neural regulation 
of energy balance and food intake [203]. Date and colleagues demonstrate that peripheral ghrelin 
signalling reaches the NTS by either blood or neural mechanisms and relays noradrenergic stimuli to 
the hypothalamus to increase feeding [113,204,205]. Transections above the level of the NTS, or 



Int. J. Mol. Sci. 2017, 18, 273  10 of 38 

 

specific ablation of dopamine β-hydroxylase (the noradrenaline synthesizing enzyme), abolished 
peripheral ghrelin-induced feeding [205]. Moreover, it has been reported that the orexigenic action 
of ghrelin is attenuated in humans who underwent gastric surgery involving complete or partial 
vagotomies [206]. Vagotomy also abolishes the orexigenic activity of ghrelin in rats [113]. Another 
preclinical study however, reports that ghrelin’s orexigenic effect remains intact after a 
subdiaphragmatic vagal deafferentiation. The authors argue that a bilateral vagotomy, as described 
in Date’s work, would indiscriminately remove both afferent and efferent vagal innervation, thereby 
severing a multitude of other physiological processes, including satiating signals [207]. It is thus 
stated that subdiaphragmatic vagal deafferentiation is a more representative model for ablating the 
vagal afferent connection as it is less invasive to other vagally-mediated physiological parameters 
such as heart rate and respiration. However, the dose of ghrelin used in this study was substantially 
higher than that used in the original work by Date therefore results cannot be directly compared. 
Critically, it points to the fact that vagal signalling is not essential to relay ascending orexigenic 
messages, likely due to the fact that the area postrema can facilitate diffusive access of ghrelin from 
the bloodstream to the NTS, enabling ascending signalling even without vagal innervation of the 
NTS. This is supported by the fact that intravenous ghrelin administration stimulates growth 
hormone secretion in vagotomised patients [208]. Taken together, all of the above information 
strongly suggests an interlinked role between blood and neural pathways for conveying ghrelin’s 
signal from the periphery to the CNS. 

3.3. Ghrelin Human Studies 

Normal serum ghrelin levels vary in man and reach 0.2–0.4 pmol/mL in hunger states [58,209], 
with active ghrelin levels peaking at of 0.01–0.035 pmol/mL [210–213]. Intravenous infusions of 1–40 
pmol/kg/min active ghrelin have been used clinically to increase appetite acutely in cachectic states 
[58,121,184,214,215]. From a pharmacological perspective doses in this range are supraphysiological 
and have resulted in several hundred-fold changes in both active and total plasma ghrelin (Table 1). 
Lippl and colleagues administered doses of ghrelin more representative of the levels experienced 
endogenously, resulting in active ghrelin increasing to 0.057 pmol/mL (2.4-fold increase from 
baseline) [216]. This elevation failed to show an orexigenic effect in participants [216]. Critically, 
endogenous active ghrelin reaches similar levels after overnight fasting (0.1–0.35 pmol/mL) 
[58,209,217], predictably stimulating food intake and increasing incentive salience of food [14,58]. 
However, higher levels of plasma active ghrelin (>1.6 pmol/mL) have been required to produce an 
appetite-stimulating effect in clinical studies [58]. This may be indicative of the fact that many studies 
administer ghrelin in fasted states, therefore necessitating a higher dose in order to overcome 
elevated basal ghrelin levels. Indeed, Lippl and colleagues was the only study which administered 
ghrelin in the fed state to patients, and therefore had low basal levels of ghrelin (Table 1). It also may 
be a reflection that many studies fail to account for desacyl-ghrelin. This was originally thought to be 
a pharmacologically inactive breakdown product of active ghrelin but recent evidence has shown 
this is not the case [218].
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Table 1. Pharmacokinetic data available from clinical studies involving ghrelin. 

Status Dose of Infusion (Duration) 
Fed 

Status 
Form Assayed 

Mean Serum Ghrelin 
(pmol/mL) 

Average Fold 
Increase 

Time Post-Dose 
(min) 

Reference 

Acylated 5 pmol/kg/min (180 min) 
Overnight 

fasted 
Total 1.32 Not reported 180 (Tmax) [219] 

Acylated 
300 pmol/kg (Bolus)  
1500 pmol/kg (Bolus) 

Overnight 
fasted 

Total and 
active 

Total: 1.06  
Acylated: 0.447  

Total: 6.598  
Acylated: 3.454 

4.58  
18.7  
28.6  
145.1 

15 (Tmax)  
15 (Tmax) 

[209] 

Acylated 3000 pmol/kg (Bolus) 
Overnight 

fasted 
Total 44.5 61 1 [220] 

Acylated 
5 pmol/kg/min (65 min)  
15 pmol/kg/min (65 min)  
25 pmol/kg/min (65 min) 

Overnight 
fasted 

Total and 
active 

Total: 1.647  
Acylated: 1.170  

Total: 5.139  
Acylated: 3.510  

Total: 8.619  
Acylated: 5.880 

Not reported  
118  

Not reported  
355  

Not reported  
594 

45 (Tmax) [217] 

Acylated 84 pmol/kg (Bolus) + 5 pmol/kg/min (65 min) 
Overnight 

fasted 
Active and 

inactive 
Acylated: 0.579  

Desacylated: 0.350 
44  
17 

30 (Tmax) [217] 

Desacylated 343 pmol/kg + 20.8 pmol/kg/min (65 min) 
Overnight 

fasted 
Active and 

inactive 
Acylated: 0.006  

Desacylated: 4.955 
No change  

233 
Not specified [217] 

Acylated and 
Desacylated 

Acylated:  
84 pmol/kg (Bolus) + 5 pmol/kg/min (65 min)  

Desacylated:  
343 pmol/kg + 20.8 pmol/kg/min (65 min)  

Overnight 
fasted 

Active and 
inactive 

Acylated: 0.495  
Desacylated: 4.644 

54  
272 

Not specified [217] 

Acylated 
1 pmol/kg/min (75 min)  
5 pmol/kg/min (75 min) 

Overnight 
fasted 

Total 
0.725  
1.598 

1.6  
3.6 

45 (Tmax)  
45 (Tmax) 

[58] 

Acylated 
1 pmol/kg/min (120 min)  
5 pmol/kg/min (120 min) 

Not 
specified 

Total 
0.958  
4.087 

3.54  
15.13 

90  
90 

[206] 

Acylated 0.3 pmol/kg/min (300 min) Fed Active 0.057 2.4 210 (Tmax) [216] 

Acylated 
7.5 pmol/kg/min (120 min)  
15 pmol/kg/min (120 min) 

Overnight 
fasted 

Total 
0.300  
0.494 

2  
3 

120  
(Tmax)  
120  

(Tmax) 

[221] 

Acylated 3600 pmol/kg (Subcutaneous) 
Overnight 

fasted 
Total and 

active 
Total: 0.988  

Acylated: 0.355 
5.15  
10.23 

15 (Tmax)  
30 (Tmax) 

[222] 

Acylated 
300 pmol/kg (Subcutaneous)  

1500 pmol/kg  
3000 pmol/kg  

Overnight 
fasted 

Total 
~0.350  
~0.900  
~1.400  

2  
8  
12 

30 (Tmax) [223] 
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3.4. Acyl and Desacyl-Ghrelin—Implications for Therapeutic Approaches 

Both acylated and desacyl-ated forms of the hormone ghrelin are detected in the peripheral 
circulation [224]. Despite this, many studies assessing ghrelin levels in blood fail to specify the 
acylation status of the hormone [225]. In fact, only some preclinical studies have distinguished 
between the effects of acyl- and desacyl-ghrelin [226–228]. Furthermore, it is critical for accurate 
measurement of acyl- ghrelin that blood samples are appropriately stabilized in order to prevent 
desacyl-ation [218,229]. The binding of acyl-ghrelin and subsequent activation of GHSR-1a is well 
established [2,230]. Similarly, the lack of desacyl-ghrelin binding to GHSR-1a is described [2]. 
Desacyl-ghrelin does not compete with acyl-ghrelin for GHSR-1a binding at physiological 
concentrations [231], however, it has been shown to activate the receptor at supraphysiological 
concentrations [142,232]. Desacyl-ghrelin is the most abundant form in the circulation and is 
purported to be the active ligand for additional, as yet unknown, GHSR subtypes [26,218,233]. 

Peripheral acyl-ghrelin administration markedly increases circulating GH, prolactin, 
adrenocorticotrophic hormone, and cortisol levels [233]. This is accompanied by a decrease in insulin 
and a concomitant increase in plasma glucose. Interestingly, although desacyl-ghrelin administration 
had no such effects in isolation, when administered in combination with acyl-ghrelin it was able to 
negate the observed effects on plasma insulin and glucose [233]. Indeed, it has been suggested that 
desacyl-ghrelin should be considered as a hormone distinct from acyl-ghrelin given its ability to elicit 
effects on certain peripheral actions such as cardiovasculature, cell proliferation and certain aspects 
of adiposity [233]. Overnight intravenous desacyl-ghrelin infusion was found to improve glucose 
metabolism and, conversely to acyl-ghrelin, display a glucose-lowering effect [234]. Moreover, 
combined administration of acyl- and desacyl-ghrelin strongly improved insulin sensitivity 
compared to acyl-ghrelin administration alone [235]. Therefore, desacyl-ghrelin can be metabolically 
active in an opposing manner to acyl-ghrelin to improve glycemic control. Furthermore, in vivo work 
has shown that desacyl-ghrelin alone does not alter food intake, but in keeping with the observed 
metabolic effects, attenuates acyl-ghrelin -induced food intake and arcuate nucleus neuronal 
activation [183,236,237]. It has also been suggested that desacyl-ghrelin acts independently of acyl-
ghrelin via the hypothalamus to decrease food intake and gastric motility [9], and central desacyl-
ghrelin administration was reported to increase food intake via activation of orexin neurons in the 
lateral hypothalamus [238]. It has been further demonstrated that intracerebroventricular and 
intravenous injections of desacyl-ghrelin disrupted fasted motor activity in the stomach [239]. For 
further information the reader is directed towards a comprehensive review by Soares and colleagues 
which summarise effects of both isoforms on the various systems and organs [240]. 

The pharmacokinetic parameters of infused acyl-ghrelin, desacyl-ghrelin, or a combination 
thereof in healthy subjects have been reported. The plasma half-life of acyl-ghrelin was 9–11 min after 
an intravenous infusion, whereas the half-life of total ghrelin (acyl-ghrelin + desacyl-ghrelin) was 35 
min, indicating that desacyl-ghrelin has a slower clearance than acyl-ghrelin [217]. Similar estimates 
of half-lives have been reported elsewhere [209,212]. It is estimated that the ratio of des-acylated: 
acylated form of ghrelin in the plasma exceeds 9:1 [241–243]. However, during an infusion of acyl-
ghrelin, the ratio of desacylated: acylated is 2:1. Interestingly, it was also shown that acyl-ghrelin 
infusion is responsible for an absolute increase in circulating plasma levels of desacyl-ghrelin [217]. 
This indicates that upon entry to the circulation, acyl-ghrelin is de-acylated, hence leading to an 
increase in desacyl-ghrelin which potentially counters the effects of acyl-ghrelin. Interestingly, in 
Prader-Willi syndrome, patients with an elevated ratio of acyl- to desacyl-ghrelin show pronounced 
hyperphagia and weight gain compared to those patients who display a normal acyl:desacyl ratio 
[244]. Therefore, acyl-ghrelin and desacyl-ghrelin not only exhibit different clearance rates from the 
circulation, but acyl-ghrelin is de-acylated in plasma. It is estimated that acyl-ghrelin accounts for 
only half of the increase in total ghrelin levels after dosing of acyl-ghrelin [209]. In this respect, active 
de-acylating enzymes have been identified in the circulation [245]. The ratio of desacyl-ghrelin: acyl-
ghrelin can also change pending the metabolic state ie hunger can increase circulating acyl-ghrelin 
[229,246]. Given the proposed opposing effects of acyl- and desacyl-ghrelin, and the variable 
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information in the literature vis-à-vis pharmacokinetic disposition, due consideration is warranted in 
the interpretation of trials to date. 

3.5. Synthetic Ghrelin Ligands 

It would appear therefore that the short half-life of acyl-ghrelin, the ubiquitous expression of 
GHSR-1a and the often overlooked presence of a functional antagonist in desacyl-ghrelin, leads to an 
unpredictable relationship between the pharmacokinetics and pharmacodynamics of ghrelin. 
Numerous synthetic ghrelin ligands have been developed over the years, all of which are more stable 
and exhibit a longer duration of action than native acyl-ghrelin [247,248]. From a pharmacokinetic 
perspective, increased half-life of synthetic compounds will lead to increased penetration into tissues 
and activation of the GHSR-1a for prolonged periods due to greater stability. In addition, synthetic 
derivatives are not converted to desacyl-ghrelin and avoid any potential counter effects.  
This therefore should lead to more predictable relationships of pharmacokinetics with 
pharmacodynamic effect. 

Pharmacokinetic data is sparse for synthetic ligands, with many trials solely reporting on 
pharmacodynamic outcomes (Table 2). This is largely due to the focus of the field of research on 
ghrelin shifting over time. The first clinical studies mainly focus on ghrelin and ghrelin ligands as 
growth hormone (GH) secretagogues, thus solely measuring GH response and failing to measure 
serum ghrelin [249,250]. Indeed, it must be borne in mind that ghrelin had yet to be discovered for 
certain studies [251–256]. Originally, compounds such as Growth Hormone Releasing Peptide 6 
(GHRP-6) and GHRP-2 were developed as somatotrophin secretagogues with the aim of treating GH 
deficiency syndromes such as pituitary dwarfism [251,252,255–261]. At the time of ghrelin’s 
discovery, focus shifted towards the possibility of exploiting these compounds for disorders of 
appetite [14,42,262,263]. With the increased appreciation of the role of ghrelin, research shifted to 
investigate its effects on the mesolimbic reward circuitry [29,264–266]. More recently, ghrelin agonists 
have been explored as gastrointestinal prokinetics to treat idiopathic and diabetic gastroparesis, as 
well as post-operative ileus [112,267,268]. Preclinical studies are thus difficult to directly compare due 
to variable approaches to dosing and vastly different experimental setups and outcome. 

Nevertheless, the physiological mechanisms of appetite stimulation, body weight and other 
parameters for synthetic ligands (Table 2) are mediated through interaction with the GHSR-1a, and 
thus are broadly similar to ghrelin itself. Unfortunately, given the sparsity of comprehensive 
pharmacokinetic studies, many of parameters in Table 2 were taken from preclinical study data. No 
GHSR-1a antagonists or inverse agonists have been used clinically and there is a paucity of 
pharmacokinetic data available, hence they were not included in the scope for Table 2, however the 
reader is directed to a recent review for further information on these compounds [248]. Additionally, 
it is unwise to utilise pharmacodynamic outcomes as a surrogate measurement to compare ligand 
efficacy, due to heterogenous receptor-ligand interaction as discussed above [269]. For example, GH 
output is poorly correlated with orexigenic effect or body weight gain in vivo—stimulation of GH 
without affecting food intake has been demonstrated [258]. The agonist ulimorelin fails to elicit any 
GH release after both central and peripheral administration [270]. Anamorelin displays three times 
the potency of endogenous ghrelin in activating the ghrelin receptor in vitro [271]. However, it is 
noted this greater potency does not translate to greater in vivo levels of GH response [271]. Even 
minimal structural modifications of GH releasing peptide analogs affect the behavioural (food intake) 
but not GH-releasing properties of the analog [258]. Paradoxically, there have even been a number of 
reported GHSR-1a antagonists which display orexigenic effects. Although the antagonist BIM-28163 
blocks ghrelin-induced GHSR-1a activation, and prevents GH secretion in vivo as a result, the 
compound elicits increases in food intake and body weight. However, this is thought to be potentially 
due to action at a receptor other than the GHSR-1a [272,273]. Furthermore, GSK1614343 also 
increased food intake and body weight in vivo, but knockout of the GHSR-1a abolished this effect, 
confirming that the antagonist was working via this receptor [274]. Antagonists with agonistic 
properties in vivo may be explained by biased agonism [275]. Vodnik and colleagues review several 
ligands which display biased agonism [248]. Individual drug-receptor interactions therefore 
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determine distinct pharmacodynamic outcomes [276,277]. Different ligands can activate signalling 
cascades which may be more desirable and have the potential to be exploited for the development of 
more selective therapeutics [275]. This has led to examination of ligands, including inverse agonists, 
with selective effects for certain outputs. For example agonists for treating osteoporosis through GH 
secretion may have the adverse effect of increasing body weight [275]. Antagonists for GHSR-1a may 
be developed with the ability to decrease centrally-mediated food intake and adiposity, without 
inhibiting GH secretion. The potential of utilising biased agonism to achieve improved therapeutic 
efficacy warrants further investigation. 

Table 2. Ghrelin agonists used clinically. The half-life, oral bioavailability and centrally-mediated 
effects have been summarised. To date, no GHSR-1a antagonists have reached clinical trials.  

Agonist 
Class of 

Compound 
Oral Bioavailability 

(Species) 
Half Life 

Centrally Regulated  
Parameters Reported 

Growth Hormone 
Releasing Peptide 6 

(GHRP-6)  

Synthetic 
peptide 

0.3% (Human) 
[247,278]  

0.3 h [247] 

Food intake [262],  
Body weight [262,279],  
Gastric emptying [119],  

Growth hormone [251,279] 

Hexarelin 
Synthetic 
peptide 

<0.3% (Human) [280] 
1.15 h 

[257,280] 
Food intake [258],  

Growth velocity [281–283] 

Pralmorelin (GHRP-2) 
Synthetic 
peptide 

Not reported, but has 
been dosed orally 

[284] 
0.52 h [285] 

Food intake [86,259],  
Growth hormone [284,285] 

Alexamorelin 
Synthetic 
peptide 

Not reported 
Not 

reported 
Growth hormone [286] 

Ipamorelin 
Synthetic 
peptide 

1%–6% (Rat, Dog) 
[287] 

2 h [288] 
Growth hormone [287,289],  

Body weight [287],  
Gastointestinal motility [290] 

Capromorelin 
Small 

molecule 
65% [291] (Rat) [292] 2.4 h [291]  

Growth hormone [291,293],  
Body weight [294],  

Gastric emptying [119] 

Relamorelin 
Synthetic 
peptide 

Not reported 19.4 h [295] 
Growth hormone [296],  

Food intake, Body weight [297–299], 
Gastric emptying [300,301] 

Macimorelin 
Small 

molecule 

Not reported, but has 
been dosed orally 

[302,303] 
3.8 h [304] Growth hormone [302,305] 

Tabimorelin 
Synthetic 
peptide 

30%–35% (Rat) 
[253,306] 

20.8 h 
[307,308] 

Growth hormone [306–308]  
Body weight [253] 

Anamorelin 
Small 

molecule 

Not reported, but has 
been dosed orally 

[309–311] 
7 h [309] 

Growth hormone [309,312],  
Food intake [271,310–312] 

Ibutamoren (MK-0677) 
Small 

molecule 
>60% (Dog) 

[254,313,314] 
6 h [180] 

Growth hormone [254,313,315], 
Body weight [316],  
Fat free mass [314] 

Ulimorelin 
Synthetic 
peptide 

24% (Rat) [270] 
1.6 h  

[317–319] 

Growth hormone (no effect), Food 
intake, Gastrointestinal motility 

[270,317,319–322] 

Enhancing efficacy through BBB penetration. 

BBB penetration per se does not seem to be a key criterion for effecting changes to the centrally- 
mediated processes of appetite stimulation, growth hormone output or adipogenesis. This is 
probably due to a hijacking of the endogenous mechanisms of transport for ghrelin across the BBB 
and is in line with the literature on mechanism of CNS access of ghrelin discussed in the earlier parts 
of this review [188,190]. Despite its non-centrally penetrant action, anamorelin is in phase 3 trials for 
the treatment of cancer-anorexia-cachexia syndrome [323,324]. The compound elicits an orexigenic 
effect pointing to a central mechanism much in line with ghrelin’s homeostatic action, with a lack of 
traditional CNS penetration. This is also the case for other non-centrally penetrant compounds 
[258,259]. Given the expression of the GHSR-1a in less accessible brain areas, particularly in relation 
to incentive salience, there is an impetus to investigate BBB penetrability of ghrelin ligands further. 
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Preclinical work has already shown the potential benefits of BBB penetrant ghrelin agonists in 
other therapeutic areas. Activation of GHSR-1a in the spinal cord activates colonic motility. In the rat, 
severing the spinal cord at a thoracic level prevented defecation induced by the centrally penetrant 
agonist CP464709 [325]. Critically, this stimulation of colorectal activity was evident after peripheral 
administration of the ghrelin agonist, indicating a direct action on GHSR-1a in lumbosacral 
defecation centres. Furthermore, the lack of effect of peripheral ghrelin on the colon in vivo 
demonstrates the importance of BBB penetration [118]. GSK 894281 is an orally bioavailable BBB-
penetrant ghrelin agonist which causes a prompt and dose-related output of faecal pellets after 
administration [326]. HM01 is another such agonist in preclinical trials as a colokinetic; again, its 
prokinetic action is attributed to its ability to cross the BBB and act on GHSR-1a’s present in the nerves 
of the lumbar section of the spinal cord [327–330]. 

Centrally penetrant GHSR-1a antagonists reduced body weight in diet-induced obese (DIO) 
mice when administered for 10 days, while also improving glucose tolerance [331,332]. Conversely, 
a non CNS-penetrating antagonist demonstrated comparatively mild effects on body weight, while 
retaining an effect on the peripherally regulated glucose tolerance. It has been postulated that the 
efficacy of these compounds on food intake and body weight appears to be correlated with their 
ability to antagonize central vs. peripheral GHSR-1a’s in different animal models [333]; YIL 870 and 
YIL 781 are quinazolinone-derived GHSR-1a antagonists which differ mainly in their ability to 
traverse the BBB. YIL 870 produces greater anorexigenic and weight reducing effects in diet-induced 
obese mice vs. the non-penetrant YIL 781, while both yielded a comparative improvement in glucose 
tolerance which has a peripheral element to its regulation [331]. Robust evidence thus shows that for 
antagonists to be effective in regulating body weight they need to cross the BBB. Pharmacological 
evaluation in obesity-induced rats revealed that a BBB penetrant inverse agonist for the GHSR-1a 
effectively reduced weight gain [334]. Ad libitum food intake was also reduced in mice treated with 
a BBB-penetrant inverse agonist (AZ-GHS-38) while a lack of efficacy was obtained in mice treated 
with a non- BBB-penetrant inverse agonist [335]. Therefore, a crucial determinant of the anti-
obesogenic potential of GHSR-1a inverse agonists and antagonists is their ability to traverse the BBB. 

The effect of ghrelin antagonists on the mesolimbic dopaminergic pathway has been 
investigated in the context of addictive-like behaviour. JMV 2959 is a centrally active GHSR-1a 
antagonist found to effectively reduce rewarding properties of addictive substances [336–338]. 
Systemic administration of JMV attenuated ghrelin-induced motivation to work for sugar pellet 
reward [338] in an operant conditioning paradigm. It was found that cocaine and amphetamine-
induced place preference and extracellular accumbal dopamine were attenuated by administration 
of JMV 2959. This demonstrates a role for the GHSR-1a in the pathogenesis of addiction, while also 
suggesting the importance of ligand access to less accessible brain areas. These findings also 
generalise to opioid-induced dopamine release [336,339]. Notably, Jerlhag and colleagues have also 
concluded that BBB penetrant GHSR-1a antagonists may have potential in alcohol use  
disorders [340]. 

3.6. Hunger Is the Best Sauce—Targeting the Mesolimbic Reward Circuitry 

The old adage that “hunger is the best sauce” may provide a potential novel approach for 
appetite modulation therapies—food becomes more appealing the hungrier we are [57]. This is an 
evolutionally-procured mechanism for survival in order to promote food intake beyond the 
immediate metabolic demand, to compensate for times of food scarcity [341]. The unravelling role of 
ghrelin and the expression of GHSR-1a in a number of brain areas associated with reward, meant that 
it became implicated in food-reward directed behaviour [264,265,338]. Consequently, the GHSR-1a 
may be a driver in the decision to eat palatable, calorie-dense foods, often beyond metabolic need. 
The role which ghrelin is purported to play at the interface between homeostatic and hedonic food 
intake regulation has been reviewed [26,28,29]. We have previously summarised recent experiments 
examining ghrelin’s effect on rewarding food intake and preference [26]. It is now generally accepted 
that food intake is the result of an integrated multi-process neuro-circuit, involving the cortex and 
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critically, the mesolimbic dopaminergic system—therefore, targeting GHSR-1a in the midbrain 
reward system, with BBB-penetrant ligands, may hold novel therapeutic potential. 

One of the key areas expressing the GHSR-1a in this respect is the ventral tegmental are (VTA). 
The importance of dopaminergic VTA outputs in feeding has been well established [342–344]. Central 
ghrelin administration recruits dopaminergic neurons in the VTA and results in an elevated 
dopaminergic tone in the nucleus accumbens (NAcc) of mice, while more targeted intra-VTA 
administration robustly increases the intake of both standard chow [17,345] and palatable food 
[265,346]. Incidentally, ghrelin administration into the medial prefrontal cortex also induces 
palatable-reward seeking behaviour in rats [347]. Microdialysis and electrophysiological studies in 
rodents have shown that peripheral ghrelin enhances dopaminergic neuronal firing, synapse 
formation and dopamine turnover in the NAcc. In animals, peripheral ghrelin treatment has 
increased locomotor activity and motivation to work for food, while also shifting food preference 
towards calorie dense and palatable foods [29,74,264,265,338,348]. Kawahara and colleagues showed 
that hunger in the absence of food creates an aversive neurocircuit in the reward pathway—
dopamine outflow in the NAcc shell increased when food was present after injection, however 
decreased when no food was present [266]. Intraperitoneal administration of ghrelin decreases the 
firing of dopaminergic neurons in the VTA in food-deprived Wistar rats [349]. Therefore, peripheral 
ghrelin induced bimodal effects on the mesolimbic dopamine system depending on the food-
consumptive status [266]. For further detailed discussion of the preclinical studies in this area the 
reader is guided towards recent reviews [57,62]. 

There is thus ample evidence to suggest that peripheral ghrelin is able to exert an effect on less 
accessible brain regions associated with reward and motivation, such as the VTA (Figure 2).  
The mechanism by which peripheral ghrelin achieves access to other subcortical brain areas which 
are spatially separated from the circumventricular organs has been debated. It is now widely believed 
that ghrelin itself is not synthesized in the brain [105,106,188]. Jerlhag and colleagues have shown 
that ghrelin is able to access the VTA [350], while ghrelin has also been demonstrated to access the 
hippocampus [102]. Since these however, tracer studies using radio-labelled ghrelin have only been 
able to show that peripheral ghrelin reaches the arcuate nucleus at the level of the median eminence 
[351], and to a lesser extent the area postrema [106]. An evolutionally developed pathway has been 
argued to allow for selective transport of ghrelin across the BBB [190,352]. In vitro, human ghrelin 
exhibits saturable transport mechanics in the blood-to-brain as well as brain-to-blood directions in a 
rat cerebral microvessel endothelial model [353]. An in vivo mouse model reported findings 
consistent with this [190]. Indeed, many other endogenous substrates have inherited carrier mediated 
transport systems, such as glucose and insulin [354,355]. Furthermore, there is evidence to show that 
access of ghrelin to the brain via diffusion can increase or decrease depending on the 
physiological/metabolic backdrop or state of hunger [352]. Thus serum factors and physiological state 
are important determinants in the extent of the saturable ghrelin transport [352]. Therefore, it seems 
that central access of ghrelin may increase in calorie-deprived states. 

The most likely mechanism of action of ghrelin in less accessible brain areas however, is through 
activation of neuronal populations via the permeable zones of the arcuate nucleus and the area 
postrema. From here, ghrelin acts to stimulate neuronal projections to other appetite centers not 
adjacent to the median eminence, such as the lateral hypothalamus [356,357]. The lateral 
hypothalamus (LH) is a key relay station for neuronal input to the VTA [358], and electrical 
stimulation of the LH induces voracious feeding even in well-fed animals [359]. It receives multiple 
excitatory and inhibitory inputs from both cortical and subcortical structures, however of particular 
note is input from the adjacent arcuate nucleus [360]. Differentially stimulating the neurons 
projecting from the arcuate nucleus to the LH proves that homeostatic energy demands are met by 
arcuate nucleus, but the LH is responsible for driving reward-motivated feeding [359]. VTA 
dopaminergic neurons are modulated by the selectively expressed orexin neuropeptides in the LH 
[361]. Thus, the LH and orexins play an important role in food and drug reward behaviours [362,363]. 
Importantly, elevated peripheral ghrelin levels are known to communicate with the VTA to increase 
the rewarding value of food in an orexin-dependent manner [74,364]. Therefore, in periods of hunger 
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ghrelin is able to access the arcuate nucleus to stimulate homeostatic feeding, while the LH is 
concomitantly activated, aided by its close proximity and connections with the arcuate nucleus. The 
associated hedonic output is distinct from, yet intertwined with homeostatic feeding due to its 
arcuate nucleus-dependant stimulation. 

 
Figure 2. Direct and indirect access of ghrelin to the mesolimbic circuitry; the routes by which ghrelin 
and ghrelin ligands can traverse the blood-brain barrier (BBB). Direct activation of the mesolimbic 
circuitry can be attained by a centrally penetrant ghrelin agonist or by ghrelin which freely diffuses 
across the BBB. Indirect activation of mesolimbic circuitry is attained via the homeostatic mechanism 
through the “leaky” BBB capillaries at the median eminence and the area postrema. Ghrelin signalling 
initiating in the arcuate nucleus increases the rewarding value of food via orexin projections (red 
arrow) to the ventral tegmental area (VTA) from the lateral hypothalamus (LH). The nucleus tractus 
solitarius (NTS) displays connections with the hypothalamus, as well as the parabrachial nucleus 
(PBN), the laterodorsal tegmental area (LDTg) and pedunculopontine tegmental area (PPTtg), all of 
which have confirmed roles in either reward signalling (LDTg and PPTtg, blue arrow) or gustatory 
processes (PBN). Central penetration of ghrelin compounds may act directly on GHSR-1a expressed 
in these regions to modulate incentive salience of food (purple arrow). 

Another brain area of note for appetite regulation is the parabrachial nucleus, which is located 
in the hindbrain near the NTS [365–368]. Like the arcuate nucleus, the NTS is spatially located near a 
permeable or “leaky” area of the BBB and sends glutamatergic signals to the parabrachial nucleus 
(PBN). Recent work has confirmed this region also receives GABAergic input from hypothalamic 
agouti-related peptide neurons [369]. The PBN is an important site for processing of gustatory 
sensory information, with lesions of this area leading to disruption of hedonic feeding and taste-
reactivity patterns [367,370–372]. The PBN projects to several areas, notably the lateral hypothalamus 
and paraventricular hypothalamus, and ventral tegmental area [373–376]. Afferent signals to the 
paraventricular nucleus of the hypothalamus exist which may be involved in tuning the behavioural 
response to rewarding food [377]. Interestingly, the parabrachial nucleus itself expresses GHSR-1a 
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and unsurprisingly this hedonic “hotspot” is therefore responsive to ghrelin treatment [378]. 
Consequently, it is postulated that in periods of hunger plasma ghrelin conveys NTS-dependent 
signalling to the PBN to exert an effect on feeding and reward behaviour [379,380]. 

Other areas such as the laterodorsal tegmental area and pedunculopontine tegmental neurons 
express GHSR-1a and elicit excitatory input to the VTA [350,381]. The pedunculopontine nucleus is 
implicated in the motivational effects of drugs and food [382]. Interestingly, in vitro work has 
demonstrated an excitatory effect of ghrelin on pedunculopontine neurons, suggesting a role in food 
reward [381,383]. The laterodorsal tegmental area increases dopamine output in the nucleus 
accumbens via the VTA, thereby confirming a GHSR-1a dependant role in reward [27,348]. 

3.7. Homeostatic “Gating” of the Reward System 

Two decades of research on the effects of exogenous ghrelin has clearly demonstrated the 
function of GHSR-1a mediated signalling at the level of both homeostatic and non-homeostatic food 
intake. For homeostatic food intake it is clear that ghrelin has ready access to sites involved in feeding 
initiation through permeable brain capillaries and tanycytes [30], as well as vagal nerve 
communication [14,113,204,205]. Hedonic and motivational aspects of food intake have also been 
investigated mechanistically through site-specific administration [59,264,348]. The ability of ghrelin 
to communicate to less accessible GHSR-1a expressing brain areas such as the VTA, lateral 
hypothalamus and parabrachial nucleus suggests an indirect neural mechanism [194]. This is 
indicative of modulation or “gating” of the motivated response for food by systemic signals of energy 
homeostasis [384]. 

The midbrain reward system is thus heavily dependent on homeostatic appetite regulation in 
the arcuate nucleus and NTS, which constitute key “gatekeeping” structures to check the reward 
system under normal circumstances [385]. Perello and colleagues confirmed that neural connections 
between the arcuate nucleus and the VTA were responsible for peripheral ghrelin’s rewarding effect 
[74]. As we have seen however, preclinical and clinical studies have tended to use supra-
physiological doses of ghrelin which may artificially increase delivery across the BBB by saturable 
transport processes [190] and diffusion from the circumventricular organs [188]. Elevated 
endogenous levels of ghrelin are able to elicit the same effects on hedonic aspects of food intake as 
high exogenous doses. This is due to the synergism of many systemic signals in energy-deprived 
states. The administration of high doses of a pleiotropic hormone may thus be leading to confounding 
compensatory mechanisms, particularly in relation to glucose homeostasis [148,364,386]. Directly 
targeting the GHSR-1a expressed in the reward circuitry through enhanced BBB penetration may 
hold therapeutic potential. One could hypothesise that a centrally-penetrant ghrelin agonist may 
affect mesolimbic dopamine levels and incentive valuation of food more directly than non-
penetrating ghrelin agonists, or even ghrelin itself, through direct action on the GHSR-1a expressed 
on the lateral hypothalamus, parabrachial nuclei and the VTA. To the best of our knowledge this 
question has yet to be addressed experimentally. 

4. Conclusions and Future Directions 

Food intake and incentive valuation of food are centrally-mediated processes. Ghrelin or ghrelin 
ligands can access the brain from the periphery by circumventing the BBB at permeable locations 
adjacent to homeostatic appetite centres, and indirectly influence reward centres through neural 
connections stemming from these areas [74,384]. The importance of GHSR-1a signalling in the 
mesolimbic dopaminergic pathway as a barometer for the incentive salience of food has been well 
described. However, the action of GHSR-1a signalling on reward areas is closely intertwined with 
homeostasis, and is regulated in this respect [188,384]. The peripheral metabolic confounders in 
systemic ghrelin therapy, particularly relating to glucose homeostasis, may be contributing to the 
lack of successful preclinical moieties translating to clinical practice [387]. BBB-penetrant ghrelin 
agonists should bypass the homeostatic “gating” at the level of the arcuate nucleus and NTS. This 
means that they would act directly on GHSR-1a in less accessible brain areas associated with 
motivation and incentive valuation of food, such as the LH and VTA. Since the decision to eat is 
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consciously made based on perceived palatability, centrally penetrating ghrelin agonists or indeed 
antagonists, could prove successful in manipulating top-down regulation of food intake. 
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