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Abstract

In this paper, we propose a method for real-time anomaly
detection and localization in crowded scenes. Each video is
defined as a set of non-overlapping cubic patches, and is
described using two local and global descriptors. These
descriptors capture the video properties from different as-
pects. By incorporating simple and cost-effective Gaussian
classifiers, we can distinguish normal activities and anoma-
lies in videos. The local and global features are based on
structure similarity between adjacent patches and the fea-
tures learned in an unsupervised way, using a sparse auto-
encoder. Experimental results show that our algorithm is
comparable to a state-of-the-art procedure on UCSD ped2
and UMN benchmarks, but even more time-efficient. The
experiments confirm that our system can reliably detect and
localize anomalies as soon as they happen in a video.

1. Introduction
The definition of an anomaly depends on what context is

of interest. A video event is considered as being an anomaly
if it is not very likely to occur in the video [6]. Describing
unusual events in complex scenes is a cumbersome task,
often solved by employing high-dimensional features and
descriptors. Developing a reliable model to be trained with
such descriptors is quite challenging and requires an enor-
mous amount of training samples; it is also of large compu-
tational complexity. Therefore, this might face the so-called
“curse of dimensionality”, in which the predictive power of
the trained model reduces, as the dimensionality of the fea-
ture descriptors increases.

In recent work, one or a set of reference normal models
are learned from training videos, which are then applied for
detecting an anomaly in the test phase. Such methods usu-
ally consider a test video as being an anomaly if it does not
resemble the learned model(s). In order to build these ref-
erence models, some specific feature descriptors should be
used. In general, features usually are extracted to represent
either (1) trajectories or (2) spatio-temporal changes. For

instance, [8] and [19] focus on the trajectories of objects in
videos, in which each object is to be labeled as an anomaly
or not, based on how they follow the learned normal trajec-
tory. These methods could not handle the occlusion prob-
lem, and are also computationally very expensive, for the
case of crowded scenes.

To overcome these weaknesses, researchers proposed
methods using low-level features such as optical flow or
gradients. They learn the shape and spatio-temporal rela-
tions using low-level features distributions. As an example,
[13] fits a Gaussian mixture model as the features, while [1]
uses an exponential distribution.

Clustering of test data using low-level features is ex-
ploited in [16]. In [2, 9, 10, 22], the normal patterns were
fitted to a Markov random field, and [14, 18] apply latent
Dirichlet allocations. [11] introduces a joint detector of
temporal and spatial anomalies, where the authors use a
mixture of dynamic textures (MDT) model.

In recent studies, sparse representations of events [6, 7,
12] in videos is being heavily explored. Notably, the pro-
posed models in [6, 7, 11, 14, 15, 12] achieve favorable per-
formance in anomaly detection, however they normally fail
in the task of anomaly localization. All these methods, ex-
cept [12], are not designed for real-time applications and
commonly fail in real-world anomaly detection problems.

In this paper, we propose to represent videos from two
different aspects or views, and thus two partially indepen-
dent feature descriptors. Then, we introduce an approach
for integrating these views in a testing step to simultane-
ously perform anomaly detection and localization, in real-
time. Unlike previous work, instead of using low-level fea-
tures, we propose to learn a set of representative features,
based on auto-encoders [17].

Our detection framework identifies an anomaly in a real-
time manner. Our anomaly detection method has high true-
positive and low false-positive rates which make it quite re-
liable. We evaluate our anomaly detection and localization
framework on popular datasets and report the running time
for the whole procedure. The comparison with state-of-the-
art methods shows the superiority of our method, both in
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terms of performance and running time.
The main contributions of our work are as follows:

(1) Presenting a feature learning procedure for describing
videos for the task of video anomaly localization. This
method is time-consuming for training, but the learned fea-
tures are very discriminative to model the normal patches.
(2) Introducing a descriptor-based similarity metric be-
tween adjacent patches for detecting sudden changes in
spatio-temporal domains. (3) Representing video patches
from two different aspects or views. Both local and global
feature sets are used for each view. In the final decision,
these views support each other. (4) Modeling all normal
patches with Gaussian distributions. For a test video, the
Mahalanobis distance is used to figure out its relevance for
the normal patches. (5) Being real-time, we are able to de-
tect and localize anomalies soon after they occur in a test
video or stream.
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Figure 1. The scheme of our algorithm (left to right): Input
frames, two views of patches (global and local), modeling the data
using Gaussian distributions, and making the final decision

The overall scheme of our algorithm is shown in Fig. 1.
We achieve 25 fps processing power, and with enduring
some bit errors we reach up to 200 fps using a PC with 3.5
GHz CPU and 8G RAM in MATLAB 2012a.

The rest of the paper is organized as follows. The pro-
posed approach is introduced in Section 2, where we first in-
troduce the overall schema, and then we focus on global de-
scriptors, local descriptors, anomaly classification scheme,
and finally anomaly detection through feature learning, one
after the other. Experimental results, comparisons, and
analysis are presented in Section 3. Ultimately, Section 4
concludes the paper.

2. Proposed System
Overall Scheme. To represent each video, first each

video is converted into a number of non-overlapping cubic
patches; a sketch of this video representation is shown in
Fig. 2. Generally, every video has one or a set of dominant
events. Thus, one expects that normal patches have similar
relations with their adjacent patches and a high likelihood of
occurrence in the video. Therefore, these anomaly patches
should meet three conditions:

Figure 2. Video representation: Each video is represented through
a number of non-overlapping cubic patches, covering the whole
space-time in the video.

1. The similarity between the anomaly patches and their
adjacent (i.e., defined by spatial changes) patches does
not follow the same pattern as from normal patches to
their adjacent patches.

2. It is most likely that the temporal changes of an
anomaly patch would not follow the pattern in the tem-
poral changes of normal patches.

3. It is obvious that the occurrence likelihood of an
anomaly patch is less than that of normal patches.

It can be easily inferred that the above conditions 1 and
2 are characterized locally. Therefore, they can be encoded
by local feature descriptors, and condition 3 is analogous to
the global nature of the scene. In other words, conditions 1
and 2 consider the relation between a patch and its adjacent
patches, and condition 3 describes the overall appearance
of patches in the video. As a result, the first two conditions
are corresponding to the spatio-temporal changes, while the
latter one is different. Therefore, we model a combination
of 1 and 2 through a local representation, and 3 by a more
global one. On the other hand, in order to avoid the so-
called “curse of dimensionality”, we model these two as-
pects independently.

So far, we have defined two different aspects that we ap-
proach the problem, leading to two independent models. In
order to make a final decision, we aggregate the decisions
from both models. If both models reject a patch it is con-
sidered to be an anomaly. This leads to a system with bet-
ter performance in terms of true-positive and false-positive,
since this way of combination of the two models guarantees
a concrete selection of a patch as anomaly if both models
agree on its being an anomaly.

In summary, the input videos are represented in two dif-
ferent aspects. Then, these representations are fitted to a set
of Gaussian distributions and a decision boundary is calcu-
lated for each of them. Finally, based on global and local
model results, a decision is reached about a patch being
an anomaly or not (detection). The localization could be
then easily inferred, based on which patches throughout the
video are classified as anomaly. In the subsequent sections,
the two sets of features (global and local) are introduced.



Figure 3. Summary for learning the global features using an auto-encoder. Left: The step for learning features uses raw normal patches;
components (1), (2), (3), (4), and (5) are needed; the aim is to reconstruct the input paths with adjustingW1 andW2 using gradient descent.
Middle: Auto-encoder structure. Right: Representing the y patch using the W1 weights (y ×W1); (1), (2), and (3) are just used; this is a
multiplication of two matrixes, so it is very fast

Global descriptors. A video global descriptor is a set
of features that describes the video as a whole and therefore
is best able to describe the normal video patches. In [21] it
is argued that classical handcrafted low-level features, such
as HOG and HOF, may not be universally suitable and dis-
criminative enough for every type of video. So, unlike pre-
vious works, that use low-level features, we use an unsuper-
vised feature learning method based on auto-encoders. The
structure of the auto-encoder is depicted in Fig. 3.

The auto-encoder learns sparse features based on gradi-
ent descent, by modeling a neural network. Suppose that we
have m normal patches with the dimensions (w, h, t), cre-
ating a data structure of xi ∈ RD, D = w × h× t (the raw
data). The auto-encoder minimizes the objective defined in
Eq. (1) by re-reconstructing the original raw data:

L =
1

m

m∑
i=1

‖xi −W2δ(W1xi + b1) + b2‖2

+

w·h·t∑
i=1

s∑
j=1

(W 2
ji) + β

s∑
j=1

KL(ρ‖ρ′j)
(1)

where s is the number nodes in the auto-encoder’s hidden
layer, W1 ∈ Rs×D and W2 ∈ RD×s are the weight matri-
ces, which map the input layer nodes to hidden layer nodes,
and hidden layer nodes to the output layer nodes, respec-
tively. Wji is the weight between the jth hidden layer node
and the ith output layer node, and δ is equal to the sigmoid
function. Furthermore, b1 and b2, are the bias of the output
layer and the hidden layer, respectively. KL(ρ‖ρ′j) is a reg-
ularization function and is set to enforce the activation of the
hidden layer to be sparse. KL is based on the similarity be-
tween a Bernoulli distribution with ρ as parameter, and the
active node distribution. The parameter β is the weight of

the penalty term (in the sparse auto-encoder objective). We
can efficiently optimize the above objective with respect to
W1 via the stochastic gradient descent approach.

Local descriptors. To describe each video patch, we
use a set of local features. The similarity between each
patch and its neighboring patches are calculated. As for
the neighbors, we consider nine spatial neighboring patches
and one temporal neighboring patch (the one right behind
the patch of interest when arranged temporally), yielding
to 10 neighbors for each single patch. For temporal neigh-
bors, we only consider the patch before the patch of interest
(not the next one), as we aim to detect the anomaly soon-
est possible, even before the next video frames (and there-
fore patches) in the video stream arrive. We use SSIM for
computing the similarity between two patches, which is a
well-known image-quality assessment tool [4]. Further, as
a second type of local descriptor, we calculate the SSIM of
each single frame with its subsequent frame in the patch
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Figure 4. Illustration of our local descriptor: Similarities of each
patch on interest with its neighboring patches (top), temporal inner
similarities of each patch of interest (bottom).
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Figure 5. Large patch anomaly detection using feature learning. (A) Input video. (B) Selected test patch (e.g., 40×40×5) is divided into
16 small patches. (C) W1× small patch. (D) Pooling all feature vectors (16 vectors). (E) Computing the mean of each feature and create
one feature vector. (F) Classifying with the learned classifier using 10×10×5 patches.

of interest. Figure 4 illustrates our local feature assess-
ment through the spatio-temporal neighboring. The local
descriptor would be the combination of the SSIM values,
i.e., [d0 · · · d9, D0 · · ·Dt−1].

Anomaly Classifier. To model the normal activities in
each video patch, we incorporate two Gaussian classifiers
C1 and C2. For classifying x′ patches, as described, we
use two partially independent feature sets (global and lo-
cal), and compute the Mahalanobis distance f(y). If f(y)
is larger than the threshold then it is considered to specify
an abnormal patch, where y equals W1 × x′ in the global
classifier, and [d0 · · · d9, D0 · · ·D3] for the case of the local
classifier. To avoid numerical instabilities, density estimates
are avoided. As a result, the C1 and C2 classifiers are de-
fined as follows:

Ci(x) =

{
Normal f(x) ≤ threshold

Anomaly otherwise
(2)

with
f(x) = (x− µ)T Σ−1(x− µ) (3)

where µ and Σ are mean and covariance matrix, respec-
tively. Selecting a “good” threshold is important for the per-
formance; it can be selected based on training patches. As
mentioned before, if bothC1 andC2 classifiers label a patch
as being an anomaly, it is considered to be an anomaly, but
if one or neither of them considers the patch as being an
anomaly, our algorithm classifies it as being a normal patch.
A summary of these criteria is shown as F function in the
following equation:

F (x) =

{
Normal if C1 = Normal ∧ C2 = Normal

Anomaly otherwise (4)

Anomaly detection using feature learning. We learn
the features from raw training data, and classify the video
patches as specified in the previous section. But based on
the idea in [3], using both small patches and large patches
usually leads to increased values of false-positive rate and

decreased value of true-positive rate, respectively. When
the patches become larger, the input dimension of the auto-
encoder increases, so the number of weights in the network,
which need to be learned, will also increase.

Under the condition of limited training examples, learn-
ing of features from large patches is impractical (for exam-
ple 40×40×5), to overcome these challenges, we learn the
features from (small) 10×10×5 patches. To create a model
using these features, in the test phase the large patches
(40×40×5) are considered. Because the learned classi-
fier is adapted for 10×10×5 patch representations, we con-
volve the learned feature (W1) in 40×40×5 patches, with-
out overlapping, and pool the 16 extracted feature vectors
from the 40×40×5 patches. So, we use mean pooling to
achieve a representation of 40×40×10 patches that can be
checked with the learned classifier using 10×10×5 patches.
This procedure is shown in Figure 5.

3. Experimental results and comparisons

We compare our algorithm with state-of-the-art meth-
ods on Ped2 UCSD1 and UMN2 benchmarks. We empir-
ically demonstrate that our approach is suitable to be used
in surveillance systems.

Experimental settings. Feature learning is done with
10×10×5 patches. Training and testing phases in anomaly
detection is done with 10×10×5 and 40×40×5 patch sizes,
respectively. In anomaly detection, the size 40×40×5 is
exploited. Feature learning is done with an auto-encoder
with 0.05 sparsity. Each 10×10×5 patch is represented by
a 1000-dimensional feature vector. Before feature learning,
normalization is performed to set the mean and variance to
0 and 1, respectively.

UCSD datasets. This dataset includes two subsets, ped1
and ped2, that are from two different outdoor scenes. Both
are recorded with a static camera at 10 fps, with the resolu-
tions 158× 234 and 240× 360, respectively. The dominant

1www.svcl.ucsd.edu/projects/anomaly/dataset.htm
2mha.cs.umn.edu/Movies/Crowd-Activity-All.avi



mobile objects in these scenes are pedestrians. Therefore,
any object (e.g., a car, skateboarder, wheelchair, or bicy-
cle) is considered as being an anomaly. We evaluate our
algorithm on ped2. This subset includes 12 video samples,
and each sample is divided into training and test frames. To
evaluate the localization, we utilize the ground truth of all
test frames. We compare our results with state-of-the-art
methods using receiver operating curve (ROC) and equal
error rate (EER) analysis, similar to [13]. We use two eval-
uation measures, one at frame level and the other at pixel
level. In addition to these, we define a new measure for the
accuracy of anomaly localization, called dual pixel level.
These measures are defined as follows:

Frame level measure: If one pixel detects an anomaly
then it is considered as being an anomaly.

Pixel level measure: If at least 40 percent of anomaly
ground truth pixels are covered by pixels detected by the
algorithm, then the frame is considered to be an anomaly.

Suppose that the algorithm detects some region as being
an anomaly, and just one of these regions has an overlap
with anomaly ground truth; the number of false regions is
not considered in the two former measures. Such a region
is called a “lucky guess”. For considering the “lucky guess”
regions, we introduce the dual pixel level. This measure is
sensitive to a “lucky guess”.

Dual pixel level: In this measure, a frame is considered
as being an anomaly if (1) it satisfies the anomaly condi-
tion at pixel level and (2) at least β percent (i.e., 10%) of
the pixels detected as anomaly are covered by the anomaly
ground truth. If, in addition to the anomaly region, irrele-
vant regions are also considered as being an anomaly, then
this measure does not identify the frame as being positive.
Figure 6 shows an example for the different measures of
anomaly detection.

Performance Evaluations. Figure 7 shows a qualita-
tive comparison with other methods.3 This figure indicates
that our algorithm has the best performance in comparisons

3 Our results are available at http://mahfathy.iust.ac.ir/.
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Figure 6. Measure of anomaly evaluation. The blue and red rect-
angles indicate the output of the algorithm and anomaly ground
truth, respectively. (a) Frame-level. (b) Pixel- level evaluation: 40
percent red (ground truth) is covered with blue (detected). (c) Dual
pixel-level: Evaluates that 40 percent of red is covered by blue, but
at least β percent of blue is not covered by red. (d) Dual-pixel level

Figure 7. Example of anomaly detection from three scenes. First
row to 7th row show Temporal MDT, Spatial MDT, MPPCA, So-
cial force, Optic flow, Our method (feature learning only), an Our
method (combined views)

with all the competing algorithms. For the run-time com-
parisons, see Table 1.

Method Time (second per frame)
Xua et al. [20] Offline
Li et al. [11] 1.38

Ours 0.04

Table 1. Run time comparison

In Figure 8 (Left), the frame-level ROC of our method is
compared with other methods on the ped2 dataset. It shows
that our method is comparable to other methods. For this
measure, the EER for frame level for different methods is
shown in Table 2. This confirms that our method has a good
performance in comparison to others. We outperform all of

http://mahfathy.iust.ac.ir/
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Figure 8. Comparison ROC curve (left to right): Frame-level evaluation and pixel- level evaluation

Method Frame-level Pixel-level
SF [14] 42 79

MPCCA [9] 30 82
MPCCA+SF [13] 36 72

Adam et.al [1] 42 76
MDT [13] 25 55

Xua et al. [20] 20 42
Li et al. [11] 18.5 29.9

Ours 19 24
Ours 0.1 — 67.5
Ours 0.05 — 27.5

Table 2. EER for frame and pixel level comparisons

the methods except the one of Li et al. (we are 0.5 percent
below), reported in [11].

Figure 8 (Right) illustrates the ROC with respect to the
pixel-level measure. In Table 1, we compare the pixel level
EER of our approach to that of other approaches. Our
method’s EER is 24 percent where the next best result is
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Figure 9. Comparison between dual pixel localization with β
equal to 0 (pixel- level measure), 0.05, 0.10, and frame-level

29.9 percent reported for the method Li et al. [11]. Our
method is 5.9 percent better than the otherwise best result.
The results show (both ROC and EER) that our algorithm
outperforms the other methods for the pixel-level measure.
We also use a dual-pixel level measure to analyze the ac-
curacy of anomaly localization. Figure 9 shows the effect
of the parameter β on our algorithm. The algorithm has a
good performance, even better than the state-of-the-art, in
pixel level with β=0.05 percent and 0 percent. Figure 9 il-
lustrates comparisons at frame level and pixel level of our
approach; in contrast to all reported algorithms, the pixel
level measure is very close to frame level measure in our
algorithm.

Figure 10. Examples of normal and abnormal crowed activities in
scenes of the UMN dataset. Top: Normal. Bottom: Abnormal

Method EER AUC
Chaotic invariants [19] 5.3 99.4

SF [14] 12.6 94.9
Sparse [6] 2.8 99.6

Saligrama et.al [16] 3.4 99.5
Li et al. [11] 3.7 99.5

Ours 2.5 99.6

Table 3. Anomaly detection performance in EER and AUC



UMN dataset. The UMN dataset has three different
scenes. In each scene, a group of people are walking in
an area, suddenly all people run away (escape); the escape
is considered to be the anomaly. Figure 10 shows examples
of normal and abnormal frames of this dataset.

This dataset has some limitations. There are only three
anomaly scenes in the dataset, and the temporal-spatial
changes between normal and abnormal frames are very
high. This dataset has no pixel-level ground truth. Based
on this limitations, to evaluate our method, the EER and
AUC in frame-level are used. The EER and AUC results
are shown in Table 3. Because this dataset is simple, and
anomaly localization is not important, only the global detec-
tor is used. Previous methods performed reasonably good
on this dataset. The AUC of our method is comparable with
the otherwise best result, and the EER of our approach is
better (by 0.3 percent) than the one of the best previous
method.

4. Conclusions

We presented an anomaly detection and localization
method. In our method, we propose to represent a video
using both global and local descriptors. Two classifiers
are proposed based on these two forms of representation.
Our fusion strategy on the outputs of these two classifiers
achieves accurate and reliable anomaly detection and local-
ization. However, each of the two classifiers has a good
performance for anomaly detection, solely. This is espe-
cially shown on the UMN dataset where the global descrip-
tor achieves state-of-the-art results. We introduced a new
metric for region level anomaly detection for suspicious re-
gions, as well. The performance of our approach on the
UCSD dataset is better compared to recent approaches. It
is also worth noting that we achieve all these good results
in a much better running time than all the competing meth-
ods. Our method enjoys a low computational complexity,
and can be run in real-time. This makes it quite useful for
real-time surveillance applications, in which we are dealing
with live streams of videos.
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