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Abstract
The drastic increase in urbanization over the 

past few years requires sustainable, efficient, and 
smart solutions for transportation, governance, 
environment, quality of life, and so on. The Inter-
net of Things offers many sophisticated and ubiq-
uitous applications for smart cities. The energy 
demand of IoT applications is increased, while IoT 
devices continue to grow in both numbers and 
requirements. Therefore, smart city solutions must 
have the ability to efficiently utilize energy and 
handle the associated challenges. Energy man-
agement is considered as a key paradigm for the 
realization of complex energy systems in smart 
cities. In this article, we present a brief overview 
of energy management and challenges in smart 
cities. We then provide a unifying framework for 
energy-efficient optimization and scheduling of 
IoT-based smart cities. We also discuss the energy 
harvesting in smart cities, which is a promising 
solution for extending the lifetime of low-pow-
er devices and its related challenges. We detail 
two case studies. The first one targets energy-effi-
cient scheduling in smart homes, and the second 
covers wireless power transfer for IoT devices in 
smart cities. Simulation results for the case stud-
ies demonstrate the tremendous impact of ener-
gy-efficient scheduling optimization and wireless 
power transfer on the performance of IoT in 
smart cities. 

Introduction
Smart city solutions use communication and net-
working technologies for dealing with the prob-
lems precipitated by urbanization and growing 
population. The Internet of Things (IoT) is a key 
enabler for smart cities, in which sensing devices 
and actuators are major components along with 
communication and network devices. The sens-
ing devices are used for real-time detection and 
monitoring of city operations in various scenarios. 
It is projected that in the near future, common 
industrial, personal, office, and household devic-
es, machines, and objects will hold the ability to 
sense, communicate, and process information 
ubiquitously [1]. However, it is challenging to 
design a fully optimized framework due to the 
interconnected nature of smart cities with dif-
ferent technologies. Further, smart city solutions 
have to be energy-efficient from both the users’ 
and environment’s points of view.

These challenges have forced network design-
ers to consider a wide range of scenarios in differ-
ent conditions for IoT-enabled smart cities. Thus, 
efficient deployment of sensors and an optimized 
operational framework that can adapt to the con-
ditions is necessary for IoT-enabled smart cities. 
In other words, smart city solutions have to be 
energy-efficient, cost-efficient, reliable, secure, and 
so on. For example, IoT devices should operate in 
a self-sufficient way without compromising quality 
of service (QoS) in order to enhance the perfor-
mance with uninterrupted network operations [2]. 
Therefore, the energy efficiency and life span of 
IoT devices are key to next generation smart city 
solutions.

We classify the energy management in smart 
cities into two main types: energy-efficient solu-
tions and energy harvesting operations. This clas-
sification along with a few examples of research 
topics are shown in Fig. 1. Energy-efficient solu-
tions for IoT-enabled smart cities include a wide 
range of topics such as lightweight protocols, 
scheduling optimization, predictive models for 
energy consumption, a cloud-based approach, 
low-power transceivers, and a cognitive manage-
ment framework [3–5]. Energy harvesting allows 
IoT devices to harvest energy from ambient 
sources and/or dedicated RF sources. The aim of 
energy harvesting is to increase the lifetime of IoT 
devices. The research topics included within both 
types of energy harvesting are energy harvesting 
receiver design, energy arrival rate, placement of 
a minimum number of dedicated energy sourc-
es, scheduling of dedicated energy sources, and 
multi-path energy routing [2, 6].

Both academia and industry are focusing on 
energy management in smart cities. The IEEE in 
partnership with the International Telecommuni-
cation Union (ITU) has a smart cities community 
with the aim to provide assistance to municipal-
ities for the transition to smart cities. Fujitsu sug-
gested an approach to energy management for 
companies and has introduced an energy man-
agement system for smart buildings as cloud 
service [7]. In addition, companies such as IBM, 
Cisco, Honeywell, Intel, and Schneider Electric 
are involved in various energy-efficient solutions 
for smart cities. There have been various proj-
ects on energy-efficient smart cities sponsored 
by the Seventh Framework Programme (FP7) for 
research of the European Commission in the past 
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few years. For example, the main objectives of the 
“Reliable, Resilient, and Secure IoT for Smart City 
Applications” project are to develop, evaluate, 
and test a framework of IoT-enabled smart city 
applications in which smart objects can operate 
energy-efficiently [8]. The “ALMANAC: Reliable 
Smart Secure Internet of Things for Smart Cities” 
project focuses on IoT-enabled green and sus-
tainable smart solutions [9]. Likewise, energy-sav-
ing solutions are developed for smart cities under 
the projects “Planning for Energy Efficient Cities 
(PLEEC)” and “NiCE — Networking Intelligent Cit-
ies for Energy Efficiency.”

In this article, we consider energy management 
for IoT in smart cities. An illustration of smart cities 
with the focus on smart homes is shown in Fig. 2. 
Our contributions can be summarized as follows:
•	 We provide an optimization framework for 

research in IoT-enabled smart cities. We 
present the objectives, problem type, and 
solution approaches for energy manage-
ment.

•	 We cover energy-efficient solutions for 
IoT-enabled smart cities. A case study is 
presented to show the performance gains 
achieved by scheduling optimization in smart 
home networks.

•	 Next, we devote a section to energy harvest-
ing for IoT-enabled smart city applications. A 
case study is provided to investigate the per-
formance gains achieved by the scheduling 
of dedicated energy sources.

•	 Finally, the conclusions are drawn, and we 
provide future research directions for energy 
management in IoT-enabled smart cities.

Energy Management and Challenges for 
Smart City Applications

An urgent need for energy management has 
emerged all over the globe due to a continuous 
increase in consumption demands. Global warm-
ing and air pollution are serious threats to future 
generations. This is caused by the emission of 
fumes with volume increased with the increase 
in energy demand. On the other hand, according 
to the statistics provided by Cisco, there will be 
more than 50 billion IoT devices connected to the 
Internet by 2020 [10]. This explosion in devices 
will pose serious energy consumption concerns; 
thus, it is imperative to manage energy for IoT 
devices so that the concept of smart cities can be 
better realized in a sustained manner. Following 
are a few examples where we can reduce energy 
consumption by effective management.

Home Appliances: Home appliances are the 
major sources of energy consumption. Demand 
management is a key for customizing energy use 
by managing the lighting, cooling, and heating 
systems within residential units. On the other 
hand, the intelligent operation of activities can 
also facilitate the optimized management and 
operation of energy.

Education and Healthcare: Considering the 
importance of educational and healthcare ser-
vices, it is difficult to dematerialize them. How-
ever, it is possible to demobilize services for the 
reduction of energy consumption; for example, 
exploiting remote healthcare by visualizing sen-
sors and mobile phones, and distance education 

can create a significant reduction in energy con-
sumption.

Transportation: The energy use for transpor-
tation includes public transport, daily commuting 
to work in personal vehicles, leisure travel, and so 
on. In addition to the energy consumed by pub-
lic transport and personal vehicles, they are also 
a major cause of pollution in cities. IoT-enabled 
solutions can be employed for energy manage-
ment, such as traffic management, congestion 
control, and smart parking. This can significantly 
reduce energy consumption as well as CO2 emis-
sion.

Food Industry: Energy consumption in the 
food industry is not only related to the storage, 
purchase, and preparation of food; it also includes 
diners moving into restaurants in search of food. 
IoT-enabled solutions can be used here for mak-
ing optimized choices in terms of food availability. 
On the other hand, the transportation of the food 
can also be optimized by incorporating intelligent 
means of transportation.

IoT devices are generally battery operated and 
have limited storage space. Concerning these fun-
damental limitations of sensors, it is difficult to 
realize the IoT solutions with prolonged network 
life. In order to efficiently utilize the limited sensor 
resources, an optimized energy-efficient frame-
work is of paramount importance. It will not only 
reduce energy consumption, but also maintain 
the minimum QoS for the concerned applications.

A typical optimization framework for IoT-en-
abled smart cities is given in Fig. 3. This frame-
work provides details of the objectives, problem 
types, and corresponding optimization techniques 
for energy management. For example, an optimi-
zation problem for minimizing the cost of elec-
tricity usage is presented in [11]. The authors 
developed an optimization-based residential ener-
gy management scheme for energy management 
of appliances. The authors in [12] presented an 
optimization framework for smart home sched-
uling of various appliances and assignment of 
energy resources. This results in a mixed integer 
combinatorial problem which is transformed into 
a standard convex programming problem. The 
goal of this study is to minimize cost and user 
dissatisfaction. In [13], the authors presented an 
energy-centered and QoS-aware services selec-

Figure 1. Classification of energy management for IoT in smart cities.
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tion algorithm for IoT environments. The objective 
is to minimize energy consumption while satisfy-
ing QoS requirements. Similarly, the objectives 
shown in Fig. 3 can be considered, and the frame-
work can be used as a guideline to solve the opti-
mization problems.

Energy-Efficient Solutions for 
Smart Cities

With the increase in IoT applications for smart 
cities, energy-efficient solutions are also evolving 
for low-power devices. There are some energy-ef-
ficient solutions that can either reduce energy 
consumption or optimize resource utilization. Fol-
lowing are some main research trends for ener-
gy-efficient solutions of IoT-enabled smart cities.

Lightweight Protocols: Lightweight means 
that a protocol causes less overhead. IoT-enabled 
smart cities have to use various protocols for 
communication. There are several existing pro-
tocols in the literature such as Message Queue 
Telemetry Transport (MQTT), Constrained Appli-
cation Protocol (CoAP), Extensible Messaging 
and Presence Protocol (XMPP), Advanced Mes-
sage Queue Protocol (AMQP), 6lowPAN, and 
Universal Plug and Play (UPnP) IoT. MQTT and 
CoAP are the most popular protocols. MQTT 
is a lightweight protocol that collects data from 
IoT devices and transmits to the servers. CoAP is 
designed for constrained devices and networks 
for web transfer (See [14] for IoT protocols). Each 
of these protocols is designed for specific sce-
narios and applications in which it performs well. 
In addition, protocol conversion is an important 
building block for IoT, which may require that the 
IoT devices be from different manufacturers or 
using different protocols. 

Scheduling Optimization: Scheduling optimi-
zation for IoT-enabled smart cities refers to the 
optimization of resources with the aim of minimiz-
ing energy consumption and subsequently reduc-
ing electricity usage. In this regard, demand-side 

management (DSM) is of prime importance; it 
refers to the manipulation of residential electric-
ity usage by altering the system load shape and 
consequently reducing the cost. Broadly speaking, 
DSM comprises two main tasks: load shifting and 
energy conservation, where load shifting refers 
to the transfer of customers’ load from high-peak 
to low-peak levels. By adopting this, electricity 
can be conserved and provide room for other 
customers.

Predictive Models for Energy Consumption: 
Predictive models for energy consumption in 
IoT-enabled smart cities are indeed of vital impor-
tance. They refer to the wide range of applica-
tions in smart cities, including predictive models 
for traffic and travel, predictive models for con-
trolling temperature and humidity, and so on. Var-
ious prediction models such as neural networks 
and Markov decision processes can be incorpo-
rated here. Exploiting the predictive models will 
not only reduce the significant energy consump-
tion but also lead to many societal benefits.

Cloud-Based Approach: Cloud computing has 
reshaped the computing and storage services, 
which can be used to provide energy-efficient 
solutions for IoT-enabled smart cities. More pre-
cisely, the cloud-based approach helps in man-
aging the massive data center flexibility and in a 
more energy-efficient manner.

Low-Power Transceivers: Since the IoT devices 
in smart city applications operate on limited batter-
ies, a low-power design architecture or operation 
framework is of superior importance for address-
ing the energy management in IoT-enabled smart 
cities. Mostly, the existing application protocols 
for IoT devices are not in accordance with the 
energy efficiency perspective. More specifically, 
the radio duty cycle for IoT devices is an import-
ant factor in energy efficiency, and researchers 
are exploring methods of reducing the radio duty 
cycle of IoT devices and subsequently to achieve 
the energy-efficient architecture.

Cognitive Management Framework: IoT 

Figure 2. An illustration of smart cities focused on smart homes.
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devices are heterogeneous in nature, and the 
associated services are unreliable. Therefore, it is 
important to investigate a cognitive management 
framework that adopts intelligence and cognitive 
approaches throughout the IoT-enabled smart 
cities. The framework should include reasoning 
and learning in order to improve decisions for IoT 
networks. A context-aware cognitive management 
framework was presented in [4], which made 
decisions regarding IoT devices (when, why, and 
how to connect) according to the contextual 
background.

Case Study on Smart Home Networks

Smart home networks enable home owners to 
use energy efficiently by scheduling and manag-
ing appliances. In addition, to reduce electricity 
bills, smart home networks offer better lifestyles, 
customized day-to-day schedules, and so on. The 
smart grid has provided the ability to keep the 
electricity demand in line with the supply during 
the peak time of usage. This is called demand-side 
management. DSM reduces the electricity cost by 
altering/shifting the system load [5]. Generally, 
DSM is responsible for the demand response pro-
gram and load shifting. In the demand response 
program, a customer’s load can be reduced in 
peak hours by shifting it to off-peak hours. This 
helps to provide more electricity at less cost.

Home appliances are becoming smart with 
added features of connectivity that enable con-
sumers to take advantage of the demand response 
program. The electric utility can contact consum-
ers to reduce/shift their electricity consumption 
in return for certain monetary benefits. In smart 
home networks, appliance load can further be 
categorized into manageable and unmanageable 
loads. Here, we focus on the energy management 
of manageable appliance load in smart homes 
since it has high energy consumption and pre-
dictability in operations. The manageable load is 

further divided into shiftable load (e.g., washing 
machine, dishwasher), interruptable load (e.g., 
water heater and refrigerator), and weather-based 
load (e.g., heating and cooling). An illustration 
of the smart home network model for appliance 
scheduling is given in Fig. 2.

We consider a smart home network in which 
NA is the set of load types, An is the set of appli-
ances in the nth load type, and A is the set that 
is a union of all appliances. We define T, Ct, and 
Pt

na as number of time slots in a day, tariff/cost 
in dollars in time slot t, and Pt

na power of the nth 
load type’s ath appliance in time slot t, respec-
tively. We formulate a problem for scheduling 
of smart home appliances while considering the 
tariffs and peak load. The overall objective is to 
schedule the appliances in such a way that total 
cost is minimum, that is, minimize the xt

naCtPt
na for 

whole set of NA, A for all T time slots, where xt
na is 

a binary variable with value 1 when the nth load 
type’s ath appliance in time slot t is on; otherwise, 
0. We consider practical constraints on time occu-
pancy and time consecutiveness that need to be 
satisfied for realistic execution of appliance sched-
uling. The constraints ensure that each appliance 
should not occupy more time slots than required, 
and the time slots for shiftable loads are consecu-
tive. The optimization problem here is integer pro-
gramming; such problems are generally NP-hard 
and require very efficient algorithms. We solved 
the optimization problem using an efficient heu-
ristic algorithm.

Performance Analysis

For illustration purposes, we consider only four 
types of appliances: washing machine, dryer, 
dishwasher, and electric vehicle. Figure 4a shows 
the tariff, and slot time for appliances with (thick 
slots) and without DSM (thin slots). It is consid-
ered that a dryer cannot be activated before a 
washing machine. It is evident that with DSM the 

Figure 3. A typical optimization framework for IoT in smart cities.
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appliances are activated when the tariff is low. 
However, without DSM, there is no scheduling 
for appliances, and they can be activated at any 
time. For instance, all the appliances are sched-
uled at the time when the tariff is low with DSM. 
In contrast, only the dryer is activated when the 
tariff is low in the absence of DSM. Similarly, Fig. 
4b shows that the total load is less in the case of 
optimum energy management when the tariff is 
high. It is important to notice that at some times 
the total load for both optimum energy manage-
ment and no energy management is the same. 
This is because there is no shiftable load at this 
time.

Energy Harvesting in Smart Cities
Energy harvesting is considered as a potential 
solution to increase the lifetime of IoT devices in 
smart cities. Energy harvesting can generally be 
classified into two categories: 
•	 In ambient energy harvesting, IoT devices 

harvest energy from ambient sources such 
as wind, RF signals in the environment, vibra-
tion, and solar. However, harvesting from 
ambient sources depends on their availabili-
ty, which is not always guaranteed.

•	 In dedicated energy harvesting, the energy 
sources are intentionally deployed in the sur-
roundings of IoT devices.
The amount of energy harvested by each IoT 

device depends on the sensitivity of harvesting cir-
cuits, the distance between an IoT device and an 
energy source, the environment, and so on. Thus, 
the success of energy harvesting for IoT devices in 
smart cities has to face several challenges, which 
are discussed below.

Energy Harvesting Receiver Design: The 
harvesting circuit design is the primary issue in 
RF-based energy harvesting. The sensitivity required 
for the harvesting circuit is higher than for tradi-
tional receivers, which can result in fluctuations 
in energy transfer due to the environment and 
mobility (energy source and IoT devices). There-
fore, efficient and reliable harvesting circuit design 
is required to maximize the harvested energy. In 
addition, RF-to-DC conversion is the fundamental 
ingredient of RF energy harvesting. Hence, circuit 
designers should enhance the efficiency of RF-to-
DC conversion using advanced technologies.

Energy Arrival Rate: The level of uncertain-
ty of the energy arrival rate is higher in energy 
harvesting from ambient sources than in dedicat-
ed energy harvesting. This is because the former 
uses renewable energy sources, whereas the latter 
uses dedicated energy sources the location of 
which is set by network designers based on the 
harvesting requirements of IoT devices. Accurate 
and detailed modeling of the energy arrival rate is 
indispensable in order to analyze the performance 
of energy harvesting systems in smart cities. 

Placement of a Minimum Number of Dedicat-
ed Energy Sources: IoT devices that are spatially 
distant from energy sources can result in uneven 
energy harvesting. This can result in energy deple-
tion of devices that are far from dedicated energy 
sources and thus reduce the lifetime of the net-
work. We can ot do much in the case of ambient 
energy sources; however, optimal placement and 
number of dedicated energy sources are crucial 
issues in dedicated energy harvesting.

Scheduling of Energy Transmitters: Energy 
consumed by dedicated energy sources can be 
reduced by introducing task-based energy harvest-
ing, where energy transmitters can be scheduled 
for RF power transfer based on the harvesting 
requirements of IoT devices. This requires a certain 
level of coverage and sufficient time to harvest. 
Therefore, scheduling of energy transmitters with 
guaranteed coverage and duration is vital for the 
energy efficiency of dedicated energy harvesting.

Multi-Path Energy Routing: Multi-path energy 
routing collects the scattered RF energy from dif-
ferent sources with the help of RF energy routers. 
Then these energy routers can transfer energy 
via an alternative path to IoT devices. Multi-path 
energy routing is based on the idea of multihop 
energy transfer in which relay nodes are deployed 
near IoT devices. This will help to reduce path loss 
between the relay node and the IoT devices, and 
also improve the RF-to-DC conversion efficiency.

Case Study: Scheduling of Energy Sources in 
Dedicated Energy Harvesting for IoT devices

We consider a network in smart cities with ded-
icated RF energy transmitters that consists of NI 
IoT devices (each device is equipped with a har-

Figure 4. Load pattern: a) appliances starting and ending times with and with-
out DSM; b) load pattern of appliances while minimizing total electricity 
cost and tariff.
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vesting circuit) and NE energy transmitters, as 
shown in Fig. 5. It is assumed that energy trans-
mitters have continuous power supply, and they 
can satisfy the requirements of all IoT devices 
in the area. The IoT devices can request power 
transfer from a harvesting controller, which is 
considered as task k. The harvesting controller 
is considered as a cloudlet controller, which is a 
centralized resource pool with information about 
the location of IoT devices and energy transmit-
ters. The controller can assign multiple tasks from 
K (K is a set of tasks) to the energy transmitters. 
The transmit power of the eth energy transmitter 
is denoted by Pe. The energy transmitter e can 
transfer power to a task k  K if the requesting 
IoT device is in the harvesting range of e. The 
harvesting range is denoted by fet, which is 1 if 
task k is in the harvesting range of e and 0 oth-
erwise. Let the energy consumption of the eth 
energy transmitter in active mode be xe,A and in 
sleep mode xe,S.

We propose a scheduling scheme for energy 
transmitters in dedicated energy harvesting for IoT 
devices, as shown in Fig. 5. IoT devices request 
power transfer from the controller by sending a 
request if their residual energy is less than a pre-
set threshold xTh. The threshold is set while con-
sidering that the node has sufficient energy for 
critical operations. The request packet contains 
the requesting node’s ID, the controller’s ID, and 
energy harvesting requirements. Here, we adopt 
the RF-medium access control (RF-MAC) proto-
col proposed in [15]. A sensor node with residual 
energy less than a preset threshold can send RFP 
for instant charging through an access priority 
mechanism (for details about this mechanism, see 
[15]), which ensures that the node with residu-
al energy ≤ xTh gets channel access before data 
transmission by other sensor nodes. The nodes 
that have data to transmit are forced to freeze 
their backoff timers as data transmission is not 
possible at this time. The controller receives this 
packet and processes it to activate the energy 
transmitter(s). The harvesting controller receives 
this request for task k and calculates fet for all 
energy transmitters. An energy transmitter can be 
activated for harvesting the target IoT device(s) if 
and only if task k is within the harvesting range of 
e, that is, fet = 1; and task k is scheduled/activat-
ed on e. We define a binary variable ψe, which is 
1 if the energy transmitter e is scheduled/activat-
ed and 0 otherwise.

The objective here is to activate the minimum 
number of energy transmitters to minimize the 
energy consumed by dedicated energy transmit-
ters, that is, ψexe,A + (1 – ψe)xe,S. This is subject 
to constraints on coverage fet, duration of ener-
gy harvesting de, and target harvesting energy —EC. 
One way to get an optimal solution is to enumer-
ate over all possible combinations of ψe, which 
is computationally expensive and unrealistic for 
a large number of energy transmitters and tasks. 
Therefore, we consider a branch and bound algo-
rithm for the scheduling of dedicated RF energy 
sources. Once the activation of energy sources is 
optimized at the controller, a grant for a power 
transfer packet is sent to the energy transmitters 
that are selected for RF power transfer. Finally, the 
energy source(s) send the acknowledgment pack-
et to the IoT device(s) that requested the power 

transfer. This packet has the information of the 
central frequency of the energy transmitter and 
the duration of energy charging. 

Performance Analysis: We evaluate the per-
formance of energy-efficient scheduling of energy 
transmitters. We consider omnidirectional ener-
gy transmitters that radiate waves with power 46 
dBm. The proposed schemes can be modified 
to use with directional energy transmitters to 
overcome path losses, which can certainly help 
to improve the charging efficiency. The transmit 
and receive energy for IoT devices are considered 
from MICA2 specifications. We consider NI = 200 
IoT devices, which are randomly distributed in a 
rectangular field of 100 m  100 m.

Figures 6a and 6b illustrate the impact of a 
number of tasks and energy transmitters on ener-
gy consumption, respectively, for an energy-ef-
ficient scheduling scheme (branch and bound, 
exhaustive search, and a traditional wireless sen-
sor network [WSN]). Figure 6a shows that the 
energy consumption is increased slowly with the 
increase in the number of tasks in an energy-effi-
cient scheduling scheme (for a given number of 
energy transmitters, i.e., NE = 10 and 20). This is 
because energy transmitters are activated based 
on the number of tasks and their location instead 
of a total number of energy transmitters. We 
may need a different number of active energy 
transmitters if requesting devices are far from 
or close to each other. The energy consump-
tion in traditional WSNs is constant regardless 
of the number of tasks, that is, all the energy 
transmitters are activated all the time. Thus, the 
energy consumption is doubled when NE = 20 
compared to the case when NE = 10. The energy 
consumption in the proposed scheme is reduced 
at the cost of overhead and delay due to the 
exchange of packets among IoT devices, con-
troller, and energy transmitters. From Fig. 6b, it 
can be noted that the energy consumption for 
efficient scheduling schemes is not much affect-
ed by the increase on energy transmitters NE 
for a given number of tasks (K = 5 and K = 15). 
We consider a small network size for which the 
probability that tasks are spatially nearby is high. 
Thus, for different numbers of tasks, we may 
need to activate the same number of energy 
transmitters based on their location. Therefore, 
curves are superimposed. In contrast, traditional 

Figure 5. A mechanism for scheduling of energy transmitters.
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WSNs in IoT-enabled smart cities activate all the 
energy transmitters regardless of the number of 
tasks, which results in a linear increase in energy 
consumption. Moreover, results of the branch 
and bound algorithm are very similar to exhaus-
tive search with less complexity. 

Conclusions and Future Work
Energy management in smart cities is an indispens-
able challenge to address due to rapid urbaniza-
tion. In this article, we first present an overview of 
energy management in smart cities, and then pres-
ent a unifying framework for IoT in smart cities. 
Energy management has been classified into two 
levels: energy-efficient solutions and energy har-
vesting operations. We cover various directions to 
investigate energy-efficient solutions and energy 
harvesting for IoT devices in smart cities. Further-
more, two case studies have been presented to 

illustrate the significance of energy management. 
The first case study presents appliance schedul-
ing optimization in smart home networks where 
the objective is to reduce the electricity cost. The 
second case study covers efficient scheduling of 
dedicated energy sources for IoT devices in smart 
cities. Simulation results are presented to show 
the advantage of energy management in IoT for 
smart cities. Possible future directions for energy 
management in smart cities are:
•	 Energy-efficient mechanisms for software-de-

fined IoT solutions, which can provide scal-
able and context-aware data and services.

•	 Directional energy transmission from dedicat-
ed energy sources for wireless power trans-
fer.

•	 Energy efficiency and complexity of security 
protocols are crucial aspects for their practi-
cal implementation in IoT; thus, it is import-
ant to investigate robust security protocols 
for energy constraint IoT devices.

•	 Fog computing can lead to energy saving for 
most of the IoT applications; therefore, it is 
important to study energy consumption of 
fog devices for IoT applications.
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Figure 6. Impact of: a) number of tasks K on energy consumption; b) energy 
transmitters (NE) on energy consumption for different numbers of tasks K 
for different numbers of energy transmitters (NE).
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