Molybdenum(VI) Dioxo Complexes Supported on stable Ring-type Periodic Mesoporous Organosilicas

Mei Hong, Sander Clerick, Els De Canck, Pascal Van Der Voort*
Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.

In the past decades, high-valence oxomolybdenum complexes have proven to be excellent catalysts for the reduction and oxidation of organic compounds [1-3] but can also act as a Lewis acid [4]. We report the synthesis of a heterogeneous molybdenum dioxo-catalyst with high selective catalytic performance, by grafting a molecular molybdenum dioxo-precursor onto a Periodic Mesoporous Organosilica (PMO) (Scheme).

A 100% monoallyl ring-type PMO [5] was functionalized with acetylacetone via a radical reaction. A molybdenum dioxo complex, using the solvent adduct [MoO₂Cl₂(THF)]₂ was then immobilized on the allyl bearing PMO material in order to prepare a new molybdenum (VI) based heterogeneous catalyst. Structural analyses by X-ray powder diffraction, nitrogen sorption and transmission electron microscopy showed an ordered mesostructure while characterization by infrared and X-ray photoelectron spectroscopy demonstrated molybdenum (VI) active centers supported on the PMO material. The catalytic activity of the supported catalyst was tested in the aerobic oxidation of 5-hydroxymethylfurfural (HMF).

\[\text{Scheme} \quad \text{Schematic representation of the anchoring of MoO}_2\text{Cl}_2(\text{THF})_2 \text{onto the monoallyl ring PMO.} \]

E-mail: Pascal.VanDerVoort@UGent.be;