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Purpose In this study, we investigated fluorine-18
fluoromethylcholine (18F-FCho) PET and contrast-enhanced
MRI for predicting therapy response in glioblastoma (GB)
patients according to the Response Assessment in Neuro-
Oncology criteria. Our second aim was to investigate which
imaging modality enabled prediction of treatment
response first.

Materials and methods Eleven GB patients who
underwent no surgery or debulking only and received
concomitant radiation therapy (RT) and temozolomide were
included. The gold standard Response Assessment in
Neuro-Oncology criteria were applied 6 months after RT to
define responders and nonresponders. 18F-FCho PET and
MRI were performed before RT, during RT (week 2, 4, and 6),
and 1 month after RT. The contrast-enhancing tumor volume
on T1-weighted MRI (GdTV) and the metabolic tumor
volume (MTV) were calculated. GdTV, standardized uptake
value (SUV)mean, SUVmax, MTV, MTV×SUVmean, and
percentage change of these variables between all time-
points were assessed to differentiate responders from
nonresponders.

Results Absolute SUV values did not predict response.
MTV must be taken into account. 18F-FCho PET could

predict response with a 100% sensitivity and specificity
using MTV×SUVmean 1 month after RT. A decrease in GdTV
between week 2 and 6, week 4 and 6 during RT and week 2
during RT, and 1 month after RTof at least 31%, at least 18%,
and at least 53% predicted response with a sensitivity and
specificity of 100%. As such, the parameter that predicts
therapy response first is MR derived, namely, GdTV.

Conclusion Our data indicate that both 18F-FCho PET and
contrast-enhanced T1-weighted MRI can predict response
early in GB patients treated with RTand temozolomide. Nucl
Med Commun 38:242–249 Copyright © 2017 Wolters Kluwer
Health, Inc. All rights reserved.
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Introduction
Glioblastoma (GB) is the most malignant and most

common glioma type in adults, accounting for 60–70% of

all malignant gliomas, and has a high morbidity and

mortality rate [1]. For newly diagnosed patients with a

good performance status, the standard of care includes

maximal surgical resection, followed by combined

external beam radiation therapy (RT; 60 Gy in 30 frac-

tions) and temozolomide (TMZ; 75 mg/m2 for 6 weeks),

and maintenance TMZ (150–200mg/m2/day× 5 days,

every 28 days for six cycles) [2–4]. Even with optimal

treatment, the median survival is only 12–15 months [1].

Several prognostic factors have been identified in

patients with GB, such as age, Karnofsky performance

status, neurological status, WHO tumor grade, tumor

location, extent of surgery, genetic and molecular bio-

marker status, and concomitant TMZ [5,6].

Until 2010, mainly MacDonald criteria were used for

assessing response to therapy in high-grade glioma. The

criteria are based on two-dimensional tumor measure-

ments on computed tomography (CT) or MRI, in addi-

tion to a clinical assessment and corticosteroid use and

dose [7]. However, in 20–30% of patients, pathological

contrast enhancement subsiding without any change in

therapy is shown on the first postirradiation MRI. This

phenomenon, known as pseudoprogression, likely results

from transiently increased permeability of the tumor vas-

culature from irradiation and complicates the determina-

tion of tumor progression immediately after the

completion of radiotherapy. In addition, it is worth men-

tioning that pseudoprogression is more frequently

encountered since the introduction of TMZ in the treat-

ment protocol for GB [1,7]. In an attempt to more accu-

rately assess treatment response, new response criteria

for Response Assessment in Neuro-Oncology (RANO)

were introduced in 2010, including the tumor size (in

two-dimensional) as measured on T2-weighted and

Fluid Attenuated Inversion Recovery (FLAIR) – weighted
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images in addition to the contrast-enhancing tumor part

[7]. However, increased enhancement after the admin-

istration of gadolinium and FLAIR/T2 hyperintense

signal abnormalities can also occur because of treatment-

related inflammation, postsurgical changes, subacute

irradiation effects, and radiation necrosis [7,8]. As is the

case for the MacDonald criteria, the RANO criteria also

do not take into account changes in tumor biology, which

may precede anatomical changes of the tumor volume

[1,9]. To visualize changes in tumor biology, functional

imaging techniques assessing for example proliferative

activity or hypoxia are needed [10]. Fluorine-18 fluor-

odeoxyglucose (18F-FDG) PET, estimating glucose

metabolism of (tumor) cells, enables monitoring ther-

apeutic response in brain tumors with a greater specificity

than CT or MRI [1]. However, a major disadvantage of
18F-FDG is its high uptake in normal brain tissue,

decreasing the sensitivity of 18F-FDG PET for detecting

recurrent or residual glioma [1]. Delayed 18F-FDG PET

imaging may, however, overcome this problem [1,11].

Our group showed that 18F-FDG PET imaging at a

delayed interval (300 min injection) better distinguishes

tumor from normal gray matter than imaging at conven-

tional intervals (60 min after injection). Spence et al. [12]
performed kinetic modeling and found that this was

because of a faster tracer clearance from normal brain

tissue than from tumor [1,11,12]. Fluorine-18 fluor-

oethyltyrosine (18F-FET) PET is also a promising tool

for treatment monitoring of brain tumors [13–15], with
18F-FET being able to detect tumor progression earlier

than MRI [8]. Also, 18F-FDOPA PET identified treat-

ment responders (R) to antiangiogenic therapy as early as

2 weeks after treatment initiation [16]. In the present

study, we investigated fluorine-18 fluoromethylcholine

(18F-FCho) PET and MRI for response prediction in a

homogeneous population of GB patients treated with the

Stupp regimen [3]. In our study, we performed PET and

MRI scans before the start of treatment (before RT),

during RT (2, 4, and 6 weeks), and 1 month after the

completion of RT (after RT). Our first aim was to

investigate whether therapy response can be predicted

by 18F-FCho PET and MRI. Second, we investigated

which imaging modality enables prediction of therapy

response first.

Materials and methods
Patients and treatments

A homogeneous population of 11 GB patients was

included in this study. There were three women and

eight men. Inclusion criteria were as follows: (a) histo-

pathologically proven GB, (b) no surgery or debulking/

submaximal resection only, and (c) treatment with con-

formal external beam RT (60 Gy in 30 fractions) and

TMZ (75 mg/m2 for 6 weeks). The study was approved

by the local ethics committee and all patients provided

written informed consent. Detailed patient characteristics

are shown in Table 1.

Response assessment

Taking into account a median survival of 12–15 months

in GB patients receiving optimal treatment, RANO cri-

teria were applied arbitrarily 6 months after the comple-

tion of RT to divide the patients into two categories: R

[including partial responder (PR) and complete respon-

der (CR)] and nonresponders [NR, including stable dis-

ease (SD) and progressive disease (PD)] (Tables 1 and

2) [7].

PET imaging with 18F-FCho
18F-FCho PET scans were acquired before the start of

concomitant RT and TMZ treatment (before RT), dur-

ing RT (at weeks 2, 4, 6), and 1 month after RT. Missing

data are shown in Table 1. The brain PET scans were

acquired using a PET Allegro system (Philips

Healthcare, Cleveland, Ohio, USA), which consists of a

gadolinium oxyorthosilicate full-ring PET scanner with a

spatial resolution of 5.0 mm (full-width at half-max-

imum). The system can acquire the whole brain using

one bed position [field of view (FOV), Z-axis= 18 cm].

PET images were acquired with a voxel size of

2× 2× 2 mm in a matrix of 128× 128. The PET system

also includes cesium sources for transmission scanning.

The patients had fasted for at least 6 h before 18F-FCho

was administered to avoid competition effects on
18F-FCho transport across the cell membrane. A trans-

mission scan of the head was performed first.

Subsequently, the patients received an intravenous

injection of 296–370MBq (8–10 mCi) of 18F-FCho that

was synthesized using the method of Slaets et al. [17].
The PET images were reconstructed using a three-

dimensional (3D) row action maximum likelihood algo-

rithm provided by the manufacturer. Attenuation and

scatter correction were applied. A 5-min image acquired

25–30 min after injection was used for the analysis.

Semiquantitative PET analysis

Standardized uptake values (SUVs) were calculated using

PMOD software (version 3.405; PMOD Technologies,

Zürich, Switzerland). The SUV reflects the ratio of the

decay-corrected activity in tissue per milliliter and the

injected activity per patient body weight. In PMOD,

the metabolic tumor volume (MTV) was defined using

an automatic method applying a fixed threshold of 40%

of the maximum SUV value (SUVmax) [18]. The 40%

threshold was used because it corresponded best to the

visually metabolically active tumor on the 18F-FCho

PET images. In addition, because it only makes sense to

investigate treatment response (because of RT) within

the tissue volume that received irradiation, the 40%

threshold was applied within the 95% isodose of the RT

plan (Fig. 1). The 95% isodose reflects the volume that

received at least 95% of the prescribed irradiation dose. It

is worth mentioning that none of the patients showed

increased 18F-FCho uptake beyond the 95% isodose.

Thus, first, 18F-FCho PET and planning CT scans were
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imported into PMOD. PET-CT coregistration was per-

formed automatically using the rigid matching tool

(mutual information algorithm). The 95% isodose for

every patient was extracted from the RT plan using the

software system Eclipse (Varian Medical Systems, Palo

Alto, California, USA) and was transferred onto the PET-

CT fusion. Within the 95% isodose, a threshold of 40% of

SUVmax was applied, defining MTV automatically

(Fig. 1). For tumors located adjacent to the lateral ven-

tricle, physiological uptake of 18F-FCho in the choroid

plexus [19] was excluded manually from the MTV. The

mean and maximum SUV within the MTV were calcu-

lated (SUVmean and SUVmax) in all repeat scans and the

percentage change of these parameters between every

time point was assessed.

MRI

The MR examinations were performed on a 3-Tesla

Siemens Trio Tim whole-body scanner (Erlangen,

Germany) using a standard 12-channel phased array head

Table 1 Patient characteristics

PET and MRI acquisitiona

Patients
number Sex

Age
(years) Surgery

Tumor
location

Multifocal
disease

Concomittant
radiation and
chemotherapy

Pretreatment
MTV (40%
SUVmax) (ml) Pre-RT W2 W4 W6 M1

Response
assessment

6 months post-
RTb

1 Male 49 Biopsy Temporal
lobe

− 60Gy
145 mg/day

4.8 ✓ ✓ ✓ ✓ ✓ PD

2 Female 47 Biopsy Temporal
lobe

− 60Gy
150mg/day

37.8 ✓ ✓ ✓ ✓ ✓ PR

3 Male 41 Biopsy Parietal
lobe

+ 60Gy
150mg/day

18.3 ✓ ✓ ✓ ✓ ✓ PD

4 Male 65 Biopsy Frontal lobe + 60Gy
135 mg/day

5.3 ✓ ✓ ✓ ✓ ✓ PD

5 Male 61 Debulking only Frontal and
temporal
lobe

− 60Gy
150mg/day

3.9 ✓ ✓ ✓ ✓ ✓ PR

6 Female 49 Biopsy Temporal
lobe

− 60Gy
125 mg/day

5.5 ✓ ✓ ✓ ✓ ✗ PD

7 Male 64 Debulking only Temporal
lobe

− 60Gy
145 mg/day

2.0 ✓ ✓ ✓ ✓ ✓ PR

8 Male 71 Biopsy Parietal
lobe

− 60Gy
135 mg/day

26.8 ✓ ✓ ✓ ✓ ✓ PD

9 Male 71 Biopsy Frontal lobe − 60Gy
140mg/day

47.6 ✗ ✓ ✓ ✓ ✓ SD

10 Female 64 Debulking only Frontal lobe − 60Gy
140mg/day

13.1 ✗ ✓ ✓ ✓ ✓ PR

11 Male 64 Biopsy Frontal and
parietal
lobe

− 60Gy
75mg/day

20.9 ✓ ✗ ✓ ✗ ✓ PD

aW2, W4, W6 and M1: PET and MRI acquisitions during RT (weeks 2, 4, and 6) and 1 month after the completion of RT (m1).
bPD, progressive disease; PR, partial responder; SD, stable disease, with PD and SD classified as nonresponders (NR) and PR as responder (R). ticks, acquired data;
crosses, missing data; −, multifocal disease absent; +, multifocal disease present.

Table 2 Therapy response assessment using the RANO criteria

Response assessment (RANO)a

Patients number T1 Gd T2/FLAIR signal New lesion Corticosteroid dose Clinical status during treatment Responsea

1 +≥25% Increased − Increased Decline PD
2 −≥50% Decreased − Decreased Improved PR
3 NA NA + Increased Decline PD
4 NA Increased + None Decline PD
5 −≥50% Stable − None Stable PR
6 +≥25% Increased − Increased Decline PD
7 −≥50% Stable − None Stable PR
8 NA NA + Stable Stable PD
9 −<50% but+<25% Decreased − Stable Improved SD
10 −≥50% Stable − None Stable PR
11 +≥25% Increased − Increased Decline PD

PD also occurs when a new lesion is present, making the measurement of the contrast-enhancing lesion expendable (NA, not applicable).
CR, complete responders; FLAIR, Fluid Attenuated Inversion Recovery; Gd, gadolinium; NR, nonresponders; PD, progressive disease; PR, partial responders; R,
responders; RANO, Response Assessment in Neuro-Oncology; SD, stable disease.
aResponse Assessment in Neuro-Oncology criteria were applied 6 months after the completion of RT to divide the patients into two categories: responders, including
partial and complete responders, and nonresponders, including stable and progressive disease. −, new lesion absent; +, new lesion present.
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coil. Structural images were acquired using a 3D

T1-weighted gradient-echo sequence (MPRAGE) with

isotropic voxels (176 sagittal slices, FOV read= 220 mm,

voxel size 0.9× 0.9× 0.9 mm, TR= 1550, TE= 2.39,

TI= 900 ms, matrix size= 256× 256, GRAPPA factor 2)

and a 3D T2-weighted inversion recovery sequence

(FLAIR) with isotropic voxels (176 sagittal slices, FOV

read= 250 mm, voxel size 1× 1× 1 mm, TR= 6000,

TE=421, TI=2100ms, matrix size=256× 238, GRAPPA

factor 2). The MPRAGE sequence was repeated following

the administration of gadolinium contrast.

All 3D image volumes were reconstructed in 3-mm slices

in three orthogonal planes (sagittal, axial, and coronal).

MRI was performed on the same day as the PET scan, or

if not possible, within the same week. The contrast-

enhancing tumor volume (GdTV) was calculated by a

senior neuroradiologist using the IMPAX software (Agfa

Healthcare, Mortsel, Belgium). The sum of products of

the perpendicular diameters of each lesion was calcu-

lated. In one patient with multifocal disease, the two

most voluminous lesions were measured (patient 3).

Statistical analysis

The Mann–Whitney U-test was used to compare SUVs,

MTVs, and percentage change of all the variables

between all time-points in R and NR. For all tests, an α
error up to 5% (P< 0.05) was considered significant.

Receiver operating curve (ROC) analyses were carried

out to determine the cut-off value with the highest

sensitivity and specificity to differentiate R from NR.

The statistical tests were performed using the SPSS

software (version 20; IBM, Armonk, New York, USA).

Results
Response evaluation

Applying the RANO criteria 6 months after the com-

pletion of RT, 4/11 patients (36%) were classified as R

(PR) and 7/11 patients (64%) were classified as NR (SD

and PD) (see also Table 2). PD was present in 6/11

patients (55%), showing a new lesion in 3/11 patients

(27%) and an increase of tumor volume of at least 25% on

contrast-enhanced T1-weighted MRI in 3/11 patients

(27%). SD was present in 1/11 patients (see Fig. 2 for

examples of PR, SD, and PD).

Semiquantitative PET analysis

Absolute SUV, MTV, and GdTV values
Absolute SUVmean and SUVmax values were not sig-

nificantly different between R and NR at any time-point

(data not shown). An overview of all variables sig-

nificantly different between R and NR (P< 0.05) is

shown in Table 3. Only parameters highly significantly

different between R and NR (P≤ 0.01) are further dis-

cussed. Only MTV× SUVmean 1 month after RT was

significantly higher in NR than in R (P= 0.010); see

Fig. 3. In addition, it is worth mentioning that in three

NRs, SUVmax decreased over time, whereas MTV

increased.

Change in SUV, MTV, and GdTV values
On the basis of PET, only the change in SUVmean

between week 4 during RT and 1 month after RT was

significantly higher in R than in NR (P= 0.010). For

MRI, GdTV changes between week 2 and 6 (P= 0.010),

week 4 and 6 (P= 0.006), and week 2 and 1 month after

RT (P=0.010) were significantly higher in R than in NR

(Fig. 3a).

ROC analysis
A 100% sensitivity and specificity to differentiate R from

NR was achieved 1 month after RT applying a cut-off

value of 7.6 ccm for the PET-derived parameter

MTV× SUVmean. Differentiation between R and NR was

also achieved with 100% sensitivity and specificity by

applying a decrease of at least 9% between week 4 during

RT and 1 month after RT for SUVmean. For GdTV,

response prediction is feasible with a 100% sensitivity

and specificity by applying a decrease of at least 53%

between week 2 during RT and 1 month after RT, a

decrease of at least 31% between week 2 and 6 during

RT, and a decrease of at least 18% between weeks 4 and

6 during RT. As such, the parameter that predicts

response first is MR derived, namely, GdTV.

Fig. 1

Automatic delineation of the metabolic tumor volume (MTV) on a 5 min
PET image acquired 25–30min after injection applying a threshold of
40% maximum standardized uptake value (purple) within the 95%
isodose (orange) (patient 4).
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Discussion

In this study, we investigated 18F-FCho PET and

contrast-enhanced MRI for response assessment in 11

GB patients who were not good candidates for (maximal)

surgery and received therapy according to the Stupp

protocol [3]. 18F-FCho PET was used because enhanced

choline metabolism is a hallmark of malignancy and

increased 18F-FCho uptake is associated with oncogen-

esis and tumor progression [20–24]. 18F-FCho PET has

been shown to identify the boundaries of high-grade

glioma because accumulation in surrounding normal

brain tissue is low, making it a promising tool for diag-

nosis, image-guided biopsy, and therapy response

assessment in primary and recurrent high-grade glioma

[19,23,25,26]. In a recent review, the authors stated that
18F-FCho uptake by a brain tumor reflects tumor meta-

bolism, but that there is no strong correlation between

tumor grade and choline uptake [19,23,26].

For therapy response monitoring in glioma, promising

results have been reported for 18F-FET PET [8,13,14].

In a study by Piroth et al. [13], the authors defined early

treatment response in GB patients as a decrease in the

maximal tumor-to-brain ratio of at least 10% between the

start of RT and 7–10 days after the completion of RT.

The threshold also yielded a good discriminative power

to separate prognostic groups in terms of progression-free

and overall survival [14]. Hutterer et al. [27] reported a

decrease of 45% of MTV to define metabolic response in

recurrent high-grade glioma patients treated with bev-

acizumab and irinotecan. For 18F-FLT PET, more than

25% reduction in tumor SUV uptake was defined as a

metabolic response in patients with recurrent malignant

gliomas treated with bevacizumab and irinotecan [28].

Only a few papers have investigated 18F-FCho PET for

therapy response assessment in malignancies. Parashar

et al. [29] suggested that there was a good correlation

between a change in SUVmax of the tumor during RT and

Fig. 2

Fluorine-18 fluoromethylcholine (18F-FCho) PET and contrast-enhanced T1-weighted MRI in patient 2 (a), patient 9 (b), and patient 4 (c). (a) A
47-year-old female patient diagnosed with GB in the right frontal and temporal lobe. According to the RANO criteria, the patient is categorized as a
partial responder. A 60% decrease in SUVmax and SUVmean is observed from before RT to 1 month after RT. (b) A 71-year-old male patient diagnosed
with a bifrontal GB. According to the RANO criteria, the patient was categorized as having stable disease. From before RT to 1 month after RT,
SUVmax decreased 17%, whereas SUVmean remained more or less stable. (c) A 66-year-old male patient diagnosed with multifocal GB. A new lesion
was visible on follow-up MRI, categorizing the patient as having progressive disease. From before RT to 1 month after RT SUVmax and SUVmean
decreased 52% and 59%, respectively, whereas MTV increased with >300%. GB, glioblastoma; RANO, Response Assessment in Neuro-Oncology;
RT, radiation therapy; SUV, standardized uptake value.
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Table 3 ROC analysis of variables significantly different between R and NR

Variable Time-point n Mann–Whitney U one tailed (P-value) ROC cut-off value ROC area under curve Sensitivity (%) Specificity (%)

Absolute values
PET-based MTV W4 11 0.042 6.03 0.893 75 86

MTV W6 10 0.019 6.91 0.958 100 83
MTV M1 10 0.019 14.56 0.958 100 83

MTV×SUVmean W6 10 0.019 17.66 0.958 100 83
MTV×SUVmean M1 10 0.010 7.55 1.000 100 100

MR-based GdTV W4 11 0.042 50.22 0.893 86 100
GdTV W6 11 0.042 52.51 0.893 86 100
GdTV M1 11 0.024 30.88 0.929 100 75

Change between two time-points (%)
PET-based MTV Pre-m1 8 0.071 −16.05 1.000 100 100

MTV W2-m1 9 0.032 0.01 0.950 100 80
MTV×SUVmean Pre-m1 8 0.071 −23.46 1.000 100 100
MTV×SUVmean W2-M1 9 0.016 −33.25 1.000 100 100

SUVmax W4-w6 10 0.038 7.64 0.917 100 78
SUVmean W4-m1 10 0.010 − 8.53 1.000 100 100

MR-based GdTV Pre-m1 9 0.056 −42.70 1.000 100 100
GdTV W2-m1 10 0.010 − 52.71 1.000 100 100
GdTV Pre-w6 9 0.056 −41.60 1.000 100 100
GdTV W2-w4 10 0.019 −13.99 0.958 83 100
GdTV W2-w6 10 0.010 − 31.04 1.000 100 100
GdTV W4-w6 11 0.006 − 17.70 1.000 100 100

Bold indicates parameters that are highly significantly different (P≤0.01) between R and NR.
Italic indicates parameters that predict response first.
GdTV, contrast-enhancing tumor volume; M, month after the completion of radiation therapy; MTV, metabolic tumor volume; NR, nonresponders; Pre, pretreatment; R,
responders; ROC, receiver operating curve; SUV, standardized uptake value; W, week after initiation of treatment.

Fig. 3

Evolution over time of the contrast-enhanced tumor volume (GdTV) (a), metabolic tumor volume (MTV) (b) and MTV×SUVmean (c) in responders (R)
and nonresponders (NR). Mean and standard error of the mean are presented. *Variables highly significantly different (P≤0.01) between R and NR.
M, month; Pre, pretreatment; SUV, standardized uptake value; W, week.
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response. However, only one patient with a malignant

glioma was included in this study. In another 11C-choline

PET study, Li et al. [30] reported that a tumor-to-brain

ratio up to 1.4 might predict a longer overall survival in

patients with suspected recurrent glioma after treatment.

It is, however, noteworthy that in the literature (early),

PET response in malignant glioma is defined as

decreased tracer uptake over time, but that proposed

thresholds vary strongly between studies [13,14,27–30].

Importantly, different PET tracers visualize different

biological processes, which probably (partly) explain the

different threshold values. Also, therapy response is

assessed at different time-points in different studies,

which may also (partly) explain the different threshold

values. In addition, cut-off values are method specific

because they are affected by acquisition parameters, the

choice of reconstruction algorithm, and region of interest

definition [31–33]. All these factors may explain the often

large differences between thresholds and underline the

importance of a validation of the proposed thresholds,

ideally by histology. Despite the lack of a pathological

proof in our study, we studied 18F-FCho uptake before,

during, and after the completion of RT within the

metabolically active tumor part that received at least 95%

of the prescribed irradiation dose (MTV). A 40%

threshold of SUVmax was applied because it corresponded

best with the visually enhanced tracer uptake in the

tumor. Moreover, it is well known that an automatic

threshold technique is the best guarantee that consistent

VOIs are defined on repeat scans as are acquired in our

study [31,34]. Other advantages of automatic threshold-

ing are that the method is user independent as well as

independent of any changes in tumor geometry, which is

of particular relevance in studies that assess therapy

response because tumors may shrink as a result of

effective treatments [35].

We found that absolute SUV values before RT, during

RT, and 1 month after RT did not predict response.

A decrease of at least 9% of SUVmean between week 4

during RT and 1 month after RT differentiated R from

NR with 100% sensitivity and specificity. However,

changes in tracer uptake of 10–20% may be considered

within the range of normal biological variability. More

importantly and as mentioned above, we noted that in

three NRs, absolute SUV values decreased during the

course of the treatment, whereas MTV increased. This

means that MTV must be taken into account. On the

basis of our results, GdTV at week 6 during RT can be

used for early response prediction in GB patients

receiving combined RT and TMZ (Fig. 3). However, this

finding warrants caution because of the possibility of

pseudoprogression occurring within 12 weeks after

treatment in 20–30% of GB patients [7]. On the basis of

our results, an alternative is provided by the 18F-FCho

PET-derived parameter, MTV×SUVmean, which enables

prediction of therapy response as early as 1 month after the

completion of RT. In comparison with the results of other

PET tracers in the literature and in particular 18F-FET,

our results indicate that 18F-FCho PET is not superior to
18F-FET PET, which enables prediction of response as

early as 7–10 days after the completion of treatment [13,

14,36]. On the basis of our and other results in the litera-

ture, inclusion of PET in the RANO criteria might be

useful for early therapy response prediction in high-grade

glioma, particularly in cases diagnosed with pseudopro-

gression on post-treatment MRI. However, this needs to

be confirmed in larger studies. It will also be of interest to

investigate the clinical role of advanced MRI techniques

in combination with (18F-FCho) PET for early therapy

response assessment in GB patients.

Conclusion
Our data indicate that 18F-FCho PET and contrast-

enhanced T1-weighted MRI can predict response

1 month after the completion of RT and 6 weeks after

treatment initiation, respectively. Further studies inves-

tigating the role of multimodality imaging in early ther-

apy response assessment in GB, thereby allowing

patient-tailored therapy are, however, needed.
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