View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Ghent University Academic Bibliography

Distributed Service Orchestration: Eventually Consistent Cloud Operation and
Integration

Merlijn Sebrechts, Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Bruno Volckaert and Filip De Turck
Department of Information Technology, Ghent University - iMinds
Tech Lane Ghent Science Park Campus A, 15, 9052 Ghent, Belgium
Email: merlijn.sebrechts@intec.ugent.be

Abstract—Both researchers and industry players are facing
the same obstacles when entering the big data field. Deploying
and testing distributed data technologies requires a big up-
front investment of both time and knowledge. Existing cloud
automation solutions are not well suited for managing complex
distributed data solutions. This paper proposes a distributed
service orchestration architecture to better handle the complex
orchestration logic needed in these cases. A novel service-
engine based approach is proposed to cope with the versatility
of the individual components. A hybrid integration approach
bridges the gap between cloud modeling languages, automation
artifacts, image-based schedulers and PaaS solutions. This
approach is integrated in the distributed data experimentation
platform Tengu, making it more flexible and robust.

I. INTRODUCTION

Big data is a fast-moving research field that has resulted in
an explosion of distributed data technologies. The distributed
nature and the complexity of these data technologies creates
a lot of operational overhead. Deploying, managing and
monitoring big data solutions is a very time-consuming and
knowledge-intensive task. Hiring the right people to manage
such an infrastructure is hard because of the data skills short-
age [1][2]. The DevOps movement has spawned a number of
tools that help reduce the operational overhead and empower
small teams to manage complex cloud infrastructure.

There are a number of operational challenges specific
to distributed data technologies that are not addressed in
the state of the art cloud automation tools. The first issue
lies in the orchestration of multiple components. The cen-
tralized and monolithic nature of most orchestration tools
cannot handle the complex orchestration logic needed for
deploying and managing distributed technologies. The sec-
ond challenge resides in the management of an individual
component. The current state-machine based approach for
automating the management of an individual component is
not flexible enough to meet the needs of adaptable services.
The last issue addressed in this paper lies in the integration
between model-based orchestrators and existing automation
artifacts. There is a need for integrating a variety of existing
PaaS and SaaS solutions, configuration management tools
and model-based orchestrators.

This paper further explores these three challenges and
propose a novel architecture to tackle them. Section II

describes where existing state of the art techniques fall short.
The distributed service orchestrator is explained in section
III. Section IV goes into details about the Service Agent
and Service Engine. Section V proposes the novel hybrid
integration approach. Finally, Section VI reflects on the work
and gives a peek into future work.

II. STATE OF THE ART
A. Orchestration

With IT infrastructure growing ever-more complex, the
dependencies between individual components are becoming
hard to manage. One of the key properties of an orchestrator
is that it enables isolation of components and autonomic
management of dependencies between these components.
The conventional way of orchestrating large clouds includes
a central orchestrator such as seen in the OASIS standard
Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) [3]. Research at Google has shown that
orchestrating and scheduling a datacenter from a central
monolith becomes too complex to maintain [4]. The Omega
and Mesos [5] meta-schedulers are proposed as a solution
for this complexity, implementing a decentralized scheduling
approach. Their orchestrating capabilities, however, are not
as extensive as needed for cloud modeling languages such
as TOSCA or Ubuntu Juju'. The decentralized orchestrator
proposed in this paper solves the complexity issues of a
centralized approach while still maintaining the full features
of a cloud modeling language.

B. State machines and lifecycles

Individual components in TOSCA are described using a
lifecycle described by a state machine [6]. This approach
has the disadvantage that it is quite inflexible because
all possible states and transitions have to be known at
design time. Moreover, the state machine of a component
can become very complex when a component can have a
number of different relationships with other components.
Each possible combination of those relationships needs its
own state. The amount of states needed to model such
a tool grows exponentially in function of the number of

Uhttps://jujucharms.com/

https://core.ac.uk/display/84043458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

possibilities. This is especially relevant in the distributed
data field where components such as an Extract, Transform,
Load (ETL) tool can have a number of different relationships
to a multitude of data sources and to many different data
stores. The service engine proposed in this paper addresses
the complexity problem of state machines.

C. Integration

Integration between model-driven cloud management and
configuration management is key to automate every aspect
of the management of a service [7]. Wettinger et al. propose
two approaches to integrate model-driven cloud manage-
ment and configuration management: direct integration and
transparent integration. For direct integration, the service
orchestrator has to have knowledge about the particular
configuration management tool. Transparent integration can
be accomplished using generic ‘script’ artifacts that trans-
late generic calls of the orchestrator into configuration-
management-specific calls. Wettinger et al. note that al-
though the transparent integration approach is more portable,
the direct integration makes it possible to fully leverage all
features of the configuration management tool. To get the
full benefits of both approaches, Wettinger et al. propose a
combined approach. This however has the downside that it
requires some code duplication and that it requires rigorous
testing to ensure that both methods will yield the same result.
This paper proposes a hybrid approach that combines the
best of direct and transparent integration without the added
complexity and duplicated code.

III. DISTRIBUTED ORCHESTRATION

To tackle the issues encountered in centralized, monolithic
orchestrators, this paper proposes a novel decentralized
service orchestration architecture. This architecture enables
very complex orchestration logic without the complexity of a
monolith. Moreover, this decentralized approach also tack-
les the scalability and fault-tolerance issues of centralized

Service orchestration layer

/ il Service Agent
Service | Service __ Service | Service
engine KB engine KB

¥ ¥

Configuration Configuration @

manager manager
| |
Container
Figure 1. Decentralized service orchestration architecture.

orchestrators. The orchestration layer consists of a number
of service agents and a number of peer-to-peer relationships
between them as shown in Figure 1. Each service agent is
responsible for a particular service. Using the relationships,
service agents communicate to achieve higher-level goals.
An example is a Apache Hadoop? cluster. The namenode,
datanode and slaves each have their own service agent. The
service agents communicate with each other to setup and
configure the Apache Hadoop cluster.

Service agents operate event-driven and transactional, re-
sulting in an eventually consistent model [8]. Service agents
communicate by sending relationship events to each other.
Each relationship event updates the knowledgebase shared
between the two services. When a service agent receives a
relationship event, it queues the event on a FIFO queue.
One by one, each relationship event gets applied to the
knowledgebase and is processed by the service engine in a
transactional manner. The service engine can call a config-
uration manager to update the service or send events to the
peers of the service agent. The event-driven approach allows
for complex dependencies. Service agents can negotiate with
each other on topics such as how the services should be
configured and what libraries should be installed.

IV. THE SERVICE ENGINE

The actual management of the service and the communi-
cation with other service agents happens in the service en-
gine. In a conventional configuration management approach,
the operator requests a certain state and the configuration
manager takes the correct actions to get into that state. This
proactive approach requires the desired state to be known be-
forehand. In the presented approach, actions handle changes
in the state of the service and its surroundings. The service
agent monitors changes and executes the required actions
(handlers) to react to those changes. Each handler modifies
a small part of the service state, causing other handlers to be
executed. When no more handlers are executed, the service
has reached a consistent state, which causes the service agent
to go back into monitoring mode until it detects another
change. When a handler fails, a rollback of the transaction
is issued and the service engine retries the processing of
the relationship event. This convergence-based approach, as
proposed by Wettinger et al. [9] eliminates the need for
idempotency and convergence, and is more fault tolerant.

The state of the service is represented as a set of facts in
a local knowledge base. The heart of the service agent is the
service engine. The service engine contains a set of handlers
and decides which handlers should be executed based on
the facts in the knowledge base and the preconditions of the
handlers. A handler can add facts to the knowledge base,
communicate with related service agents and change the
service state. There are four types of preconditions that a

Zhttps://hadoop.apache.org/

1. execute handler
s, DO00@O0
3. update knowledgebase
4. retest queue
. OO0
1.
4. l 4. 5.
L HEn
3.
2.
\4
Knowledgebase
Configuration
Manager
Figure 2. A service engine run. After the handler updates the knowl-

edgebase, the queue is retested and handlers with false preconditions are
removed. Handlers that react to events are automatically removed from the
queue after execution. Handlers whose preconditions are met, are added
to the queue. A handler that has an event precondition that is not active
(greyed out) cannot be added to the queue.

handler can specify: a relationship fact, a relationship event,
an internal fact and an internal event.

The difference between events and facts is that an event
is only relevant during a single moment in time while a fact
remains true until a handler changes it. An example of an
event is a file change. When a file changes, all handlers that
react to that event get queued to execute. After all events are
queued, the event becomes inactive again. An example of a
fact is the state of a package: installed or uninstalled. This
means that if a handler reacts to two facts and one event,
it will only get queued if both facts are true at the moment
the event is fired. Queued handlers are retested after each
handler run to ensure that their preconditions based on facts
are still true as seen in Figure 2. Preconditions based on
events are not retested.

The difference between internal and relationship is that
relationship events are processed as a transaction. When a
relationship change or event happens, the service engine
starts a run. Relationship changes that happen during such a
run get queued until the run completes. From the outside per-
spective, this run happens during a single moment in time.
This means that the relationship information is guaranteed
to be consistent, but not current. However, the queuing of
relationship events guarantees eventual consistency over all
service agents.

This eventually consistent model works great if the goal
is to let the infrastructure converge to a globally consistent
state. Where this falls short is when the actions of a service
agent depend on the real-time current state of another service
agent. An example of this would be a inter-cluster data copy
between two Hadoop clusters using distcp. For this tool to

work, both clusters need to be ready when the distcp is
started. Since the state a service agent sees is not necessarily
the current state, but could have been a current state in the
past, a service agent cannot reliably orchestrate the start
of a distcp. Future work will expand this architecture with
distributed locking capabilities to tackle this challenge.

V. HYBRID INTEGRATION

The distributed orchestrator allows for a novel approach to
integrate cloud modeling languages, configuration manage-
ment tools, image-based orchestrators and PaaS solutions.
This approach can be called hybrid integration since it
combines the best of direct- and transparent integration
without the downside of duplicated code and without the
added complexity. This solution is portable, yet able to fully
leverage advanced features of the configuration management
tool. Service agents communicate using generic language-
independent interfaces, making the implementation of a ser-
vice agent transparent to other service agents. The internals
of a service agent, namely a service engine, can however
directly integrate into configuration management tools. This
allows them to leverage the full capabilities of the specific
tool. Existing automation artifacts can be easily encapsulated
in a service agent allowing for reuse of the expertise in
existing code. Figure 3 shows an example of a Chef? script
encapsulated in a service agent. This service agent can
communicate with other service agents independent of the
underlying configuration management tool.

This approach is tested by applying this architecture to
Tengu, a distributed data experimentation platform [10].

3https://www.chef.io/

Service orchestration layer

2. send IP and port

Service engine Service engine

<
<

3. set IP and port 1. getIP and port

ﬁj [J
¢ Chef Databag Python Script

4. retrieve IP and port

Chef Zero

5. update service

WSO? ESB Kafka

Figure 3. The distributed service orchestration layer handles the com-
munication between service agents. The service engine translates the
received information into a format the Chef Zero configuration manager
can read: a Chef Databag. Chef then updates service configuration to enable
communication from the ESB to Kafka.

Tengu is built to give researchers an easy way to spin up
distributed data environments. The first version of Tengu
was built using the configuration management tool Chef.
The complexity of the dependencies between individual
services caused Tengu to be very inflexible. Adding a service
orchestration layer to Tengu, turned it into a flexible and
composable big data experimentation platform*.

The hybrid integration approach also allows for integra-
tion with image-based deployments such as containers and
virtual machines, cloud schedulers, PaaS and SaaS solutions.
The biggest drawback of image-based deployment is the lack
of flexibility. This can be addressed by creating a service
agent that deploys a prebuilt image. After the deployment,
the service engine changes the configuration of the deployed
image to accommodate the needs of related service agents.
When a related service agent needs information about the
deployed service, the service engine uses introspection to
gather that information from the image. Integration with
PaaS and SaaS solutions is similarly straightforward. The
service agent can communicate to a PaaS or SaaS solution
using an API. A service agent that has an API client as
back-end can be interchanged with a service agent that
has a configuration management tool as back-end if both
service agents implement the same relationship interface.
This allows users to choose the solution that fits their use-
case best, be it self hosted, SaaS or PaaS. As an additional
bonus, this further limits vendor lock-in problems.

VI. CONCLUSION AND FUTURE WORK

The distributed service orchestrator presented in this pa-
per tackles three problems. Its distributed nature reduces
its complexity while maintaining the ability to orchestrate
complex distributed interdependent services. The service
engines allow for orchestrating very versatile service agents
without the need for complex state machines. Lastly, the
hybrid integration makes deep integration possible between
the cloud modeling language and configuration management
tools, image based deployers and PaaS solutions. Future
work will further expand on and evaluate this architecture.
This architecture will be extended with multi-tenant capa-
bilities, a distributed monitoring framework, distributed rea-
soning about higher-level objectives, and real-time locking
of resources.

ACKNOWLEDGMENT

The research described in this paper is partially funded
by the IWT/VLAIO agency through the DeCoMAdS project
grant.

REFERENCES

[1] Gartner, “Gartner Survey Highlights Challenges to Hadoop
Adoption,” May 2015. [Online]. Available: https://www.
gartner.com/newsroom/id/3051717

“https://github.com/IBCNServices/tengu-charms

(2]

(3]

(4]

[5]

[6]

(71

(8]

(9]

[10]

TEKsystems, “Lowered Expectations for IT Budgets
2015 | TEKsystems,” Dec. 2014. [Online]. Avail-
able: https://www.teksystems.com/en/resources/news-press/

2014/teksystems-annual-it-forecast-2015?&year=2014

OASIS, “Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0, Committee Specification
01,” 2013.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: Flexible, Scalable Schedulers for Large
Compute Clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys 13. New
York, NY, USA: ACM, 2013, pp. 351-364.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A Plat-
form for Fine-grained Resource Sharing in the Data Center,”
in Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’'11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 295-308.

P. Lipton, S. Moser, D. Palma, M. Rutkowski,
and T. Spatzier, “TOSCA Simple Profile in YAML
Version 1.0,” Aug. 2015. [Online]. Available: https:

//docs.oasis-open.org/tosca/TOSCA-Simple-Profile- YAML/
v1.0/csprd01/TOSCA-Simple-Profile- YAML-v1.0-csprdO1.
html#_Toc430015763

J. Wettinger, M. Behrendt, T. Binz, U. Breitenbcher, G. Bre-
iter, F. Leymann, S. Moser, I. Schwertle, and T. Spatzier,
“Integrating Configuration Management with Model-driven
Cloud Management based on TOSCA.” in CLOSER, 2013,
pp. 437-446.

P. Bailis and A. Ghodsi, “Eventual Consistency Today: Lim-
itations, Extensions, and Beyond,” Commun. ACM, vol. 56,
no. 5, pp. 55-63, May 2013.

J. Wettinger, U. Breitenbcher, and F. Leymann,
“Compensation-Based ~ vs. Convergent Deployment
Automation for Services Operated in the Cloud,” in
Service-Oriented Computing, ser. Lecture Notes in Computer
Science, X. Franch, A. K. Ghose, G. A. Lewis, and S. Bhiri,
Eds. Springer Berlin Heidelberg, Nov. 2014, no. 8831, pp.
336-350, dOI: 10.1007/978-3-662-45391-9_23.

T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck,
B. Vermeulen, and P. Demeester, “Tengu: An Experimentation
Platform for Big Data Applications,” in 2015 IEEE 35th
International Conference on Distributed Computing Systems
Workshops (ICDCSW), Jun. 2015, pp. 42-47.

