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Nederlandse samenvatting
–Summary in Dutch–

X-stralen tomografie werd oorspronkelijk ontwikkeld als een medische beeldvor-
mingstechniek, maar kende al sinds de uitvinding van de eerste X-stralen CT-
scanner door Hounsfield een brede waaier aan toepassingen buiten dit gebied in
verschillende onderzoeks- en industrietakken, met als doel het niet-destructief vi-
sualiseren van de interne structuren in een object. Samen met zijn partners in het
SBO1 TomFood project heeft het ‘Centrum for X-stralen tomografie van de Uni-
versiteit Gent’ (UGCT) kunnen onderkennen dat het niet-destructieve karakter van
X-stralen CT een belangrijke, toegevoegde en innovatieve waarde in de voedings-
middelenindustrie kan hebben. Hierbij wordt specifiek aandacht besteed aan CT
als enerzijds een onderzoekstool, voor het verbeteren van de kwaliteit van voeding
en de productieprocessen ervan, maar anderzijds als een middel om de kwaliteit
van voedingsmiddelen op te volgen, bij voorkeur aan een transportband met een
hoge doorvoersnelheid.

Om de haalbaarheid van een dergelijke transportbandtoepassing van X-stralen
CT voor kwaliteitscontrole te bepalen, wordt er in dit werk een alternatieve CT-
geometrie voorgesteld. Met een vaststaande X-stralen bron en detector, brengt
deze zogenaamde ‘transportbandgeometrie’ een object in beeld door voor dit ob-
ject een gecombineerde translatie- en rotatiebeweging te beschouwen, langs en
respectievelijk rond twee loodrecht op elkaar staande assen. Een theoretische ana-
lyse toont aan dat een transportbandgeometrie met dit traject in staat is om ac-
quisities te genereren die voldoen aan de Tuy-Smith voorwaarde en dus exacte
CT-reconstructies kunnen opleveren. De voorgestelde geometrie kan ook zonder
meer ingebouwd worden in een bestaande transportbandconfiguratie, maar hier-
bij is het vooral belangrijk dat de doorvoersnelheid gerespecteerd wordt en dat
het uiteindelijk ontwerp dan ook afgesteld wordt op deze doorvoersnelheid. Het
CT-beeldvormingsproces moet dus snel verlopen, doch voldoende beeldkwaliteit
voorzien om een accurate kwaliteitscontrole van een product toe te laten. De beeld-
kwaliteit wordt in dit werk gekwantificeerd door de grootte van de kleinst detec-
teerbare details in een beeld vast te leggen door middel van Fourier gebaseerde
resolutiecriteria, namelijk via ‘Fourier-schil-correlatie’ en de ‘spectrale signaal-
ruis-verhouding’. De ontwerpsparameters voor een toestel gebaseerd op de trans-

1Strategisch Basis onderzoek
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portbandgeometrie, vooral met betrekking tot diens afmetingen en snelheid waar-
mee deze beelden produceert, kunnen vastgelegd worden door de detailgrootte uit
te zetten in functie van de doorvoersnelheid. Finaal blijkt uit deze analyse dat kwa-
liteitscontrole met X-stralen CT op een transportband weldegelijk mogelijk is aan
een respectabele resolutie en doorvoersnelheid, afhankelijk van welke producten
er precies in beeld worden gebracht.

De afweging tussen beeldkwaliteit en doorvoersnelheid werd uiteindelijk toe-
gepast op echte data afkomstig van een demonstratieopstelling die het gedrag
van een transportbandgeometrie nabootst, maar in eerste instantie werden voor
de transportbandgeometrie echter gesimuleerde beelden geproduceerd. Hiervoor
werd een eerste orde model voor X-stralen radiografie geı̈mplementeerd op een
grafische rekeneenheid (GPU), met bijzondere aandacht voor de fysische betrek-
kingen die het poly-chromatische en ruisachtige karakter van een radiografie be-
schrijven. Door deze ‘radiografie simulator’ vervolgens te combineren met een
flexibele en intuı̈tieve manier om aan alle CT scanner componenten een arbitraire
oriëntatie toe te kennen, wordt het ook mogelijk om volledige CT acquisities te
simuleren in arbitraire en ongebruikelijke geometrieën, zoals de transportbandge-
ometrie.

Deze arbitraire geometrieën werden tevens opgenomen in een Python-recon-
structiemodule, die een GPU-implementatie van de iteratieve ‘Ordered Subset’
(OS) reconstructietechniek voorziet, via een nauwe koppeling met CUDA C-code.
Deze iteratieve aanpak is vooral interessant, omdat deze het toelaat een nauwkeu-
riger model van de voorwaartse projectie en/of extra a priori informatie over het
in-beeld-gebrachte object in rekening te brengen tijdens de iteraties. In dit werk
werden de projectie en terug-projectie operatoren van de OS-techniek aangepast,
opdat reconstructies overweg zouden kunnen met lokale, niet-rigide vervormingen
in een object, die zouden kunnen plaatsvinden gedurende de CT-acquisitie ervan.
Deze vervormingen kunnen afgeleid worden door strategisch gekozen acquisities
op elkaar te registreren, waarvoor verschillende algoritmen ter beschikking zijn.
De ‘Demons’, ‘optical phase flow’ en ‘B-spline’ registratiemethodes werden in
deze thesis bestudeerd en geëvalueerd in de context van enerzijds de CT acquisitie
van een dynamische in-situ compressie van een aluminiumschuim en anderzijds
de in-situ rijs van brooddeeg aan een gecontroleerde temperatuur. De B-spline
methode leverde over de gehele lijn de meest consistente en robuuste resultaten,
zelfs bij grote vervormingen. Dit is dan ook de methode bij uitstek om vervor-
mingsvelden af te schatten, die dan op hun beurt kunnen opgenomen worden in
het reconstructieproces. Uit de aluminiumschuim- en brooddeegapplicaties is ver-
der gebleken dat deze combinatie weldegelijk de aanwezige bewegingsartefacten
kan reduceren en in sommige gevallen zelfs volledig kan elimineren. Het suc-
ces van deze registratieaanpak opent ook nieuwe deuren naar een doorgedreven
integratie van de X-stralen CT-beeldvormingstechniek met een geavanceerde nu-
merieke modellering van de dynamische processen, die via de techniek in beeld
worden gebracht. Met deze aanpak kan X-stralen CT verheven worden van een
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techniek die louter de attenuatie van een object visualiseert, tot een volledige 3D
in-situ materiaal karakterisatie van het object.

De rode draad doorheen dit werk, die ook terug te vinden is de hierboven ver-
melde ontwikkelingen, is snelle beeldvorming met ongebruikelijke X-stralen

CT geometrieën protocollen met als doel:

• X-stralen CT te gebruiken voor niet-destructieve kwaliteitscontrole op een
transportband (‘in-line CT’).

• het verbeteren van de visualisatie van dynamische processen, die betrekking
hebben op lokale en niet-rigide structurele wijzigingen binnenin het bemeten
object(‘4D-CT’).





English summary

Ever since Hounsfield invented his ‘EMI-scanner’, X-ray computed tomography
has been taken out of its medical context as a way to non-destructively image the
interior of objects in a wide variety of research and industry branches. Together
with its partners in the TomFood project, the ‘Ghent University Centre for X-ray
Tomography (UGCT) recognised that the non-destructive character of X-ray CT
can create an added and innovative value in the food industry. Specifically, CT
could be used as an inspection and engineering tool, with the goal of controlling
and improving the quality of both food products and their production processes,
preferably in an in-line setting.

As a cornerstone to the work presented here, and the TomFood project as
whole, the feasibility of applying X-ray CT to an in-line production setting as a
quality inspection tool was studied by introducing an alternative CT geometry. In
this so-called ‘conveyor belt CT geometry’, the sample’s trajectory combines a
translation and a partial rotation about an axis that is perpendicular the translation
axis, as it passes in between a fixed X-ray source and detector. Through a theo-
retical analysis, it can be shown that this trajectory produces Tuy-Smith compliant
acquisitions, that lead to exact CT reconstructions. By following this design, the
conveyor belt geometry would be amendable to a direct implementation into an
existing conveyor belt configuration, but more importantly the design has to be
tuned towards maintaining the production line’s throughput. In other words, the
imaging process has to be fast, while still producing images that are good enough
to be useful in a product quality assessment. To find the ideal design parameters
for the conveyor belt geometry, a methodology was devised which quantifies the
CT image quality in terms of a minimally detectable feature size, as determined by
Fourier Shell Correlation and Spectral Signal to Noise Ratio resolution metrics. By
setting out these feature sizes as a function of the inspection device’s throughput,
it can be concluded that in-line CT is indeed possible at a respectable resolution
and throughput, depending on the type of sample that is being imaged.

Before testing the design methodology discussed above on real life data pro-
duced by a hardware mock up, it was first applied to a series of simulated con-
veyor belt CT datasets. Thus, as an important prerequisite to the feasibility study,
an accurate and fast radiography simulation tool had to be developed. For this, an
established first order physics model for X-ray radiographs, including their poly-
chromatic and noise laden nature, was implemented on a ‘Graphical Processing
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Unit’ (GPU), and was supplemented with a flexible and intuitive way to define ar-
bitrary configurations of the CT scanner components. As a result, CT acquisitions
can now be simulated in arbitrary, non-standard geometries, such as the conveyor
belt geometry.

These arbitrary geometries were also included in a Python-CUDA reconstruc-
tion tool, that provides a GPU based implementation of the Ordered Subset iter-
ative reconstruction algorithm. This iterative approach is particularly interesting
because it allows for improved versions of the forward projection model and a pri-
ori information on the imaged object to be incorporated in the iterative loop. In
this work, the projection and back projection steps in the Ordered Subset recon-
struction tool were altered, to account for an object that is locally and non-rigidly
deforming during a CT acquisition. These deformations can be inferred through
an algorithm that registers strategically chosen reference acquisitions, which can
for example be given by the short scan sub-acquisitions of a standard single rota-
tion cone beam scan. Several registration algorithms were evaluated, namely the
Demons, optical phase flow and B-spline methods, by looking at their performance
on CT data acquired from an in-situ aluminium foam compression experiment and
the in-situ heating of a leavening dough sample. The B-spline method provided
the most consistent and robust results up to very large deformations, making it the
preferred method to estimate deformation fields. As demonstrated throughout the
applications for this topic, the motion blurring artefacts can effectively be elim-
inated by incorporating these deformation fields into the iterative reconstruction
algorithm. The effectiveness of this registration approach, also opens up the new
prospect of combining X-ray CT imaging and a thorough numerical modelling of
an imaged dynamic process, not specifically limited to mechanical deformations,
with the final goal of elevating the X-ray CT technique from a way to image an
object’s attenuation to a 3D in-situ material characterisation.

Bringing together all of the above, the unifying premise of this work is fast

CT imaging using non-standard geometries and protocols, with the goal of

• bringing X-ray CT to an in-line setting as a non-destructive quality inspec-
tion tool, i.e. in-line CT, and

• improving the visualisation of dynamic processes, specifically pertaining to
local and non-rigid structural changes of an imaged object, i.e. 4D-CT.
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1
Introduction

Ever since Röntgen discovered X-rays in 1895, they have been used extensively to
image the interior of objects without physically cutting them open, i.e. in a non-
destructive way. Particularly in medicine, long before the advent of ultrasound
and magnetic resonance (MR) imaging, X-ray radiographs have been used to im-
age the interior of the human body to non-invasively infer a diagnosis for internal
afflictions. Indeed, 2D radiography could be seen as the first real medical imag-
ing technique but it was not until Hounsfield invented his EMI-scanner in 1972
that a 3D image of the human body could be visualised through the process of
‘computed tomography’ (CT). While X-ray CT is commonly placed in a medical
context, it is widely applied in a great variety of research branches and also for
non-destructive testing and evaluation in industry. The challenges posed by this
diversification have led to a continuous development and improvement of the X-
ray CT technique at an ever increasing pace, in both laboratory and synchrotron
facilities, with a strong focus on improving the spatial resolution. Nowadays, state
of the art lab-based facilities are able to produce CT images at the micron scale, i.e.
perform a micro-CT scan (μCT), on a routine basis in a matter of minutes, or even
at the sub-micron scale (nano-CT) in the moderate time of approximately one hour.

One of the facilities, focussing on laboratory based X-ray μCT imaging, is the
‘Ghent University Centre for X-ray Tomography (UGCT)’. UGCT was founded
in 2006 as a collaborative effort between the Radiation Physics (RP) group from
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the Department of Physics and Astronomy, and the SGIG1 group at the Depart-
ment of Geology. Later in 2009, the UGCT was joined by the laboratory for Wood
Technology (Woodlab) at the Department of Forest and Water Management. The
work presented here is performed at the RP group, whose goal is to provide the
best μCT images for any application, made possible through its expertise on every
step of the imaging work flow and its underlying physics, from scanner design and
acquisition protocols to CT reconstruction and image analysis.

As an expert in and advocate of X-ray CT, UGCT had the opportunity to par-
ticipate in the SBO TomFood project, collaborating with the KULeuven based
MeBios and Lab4Food groups, VisionLab from the University of Antwerp and the
Flemish Institute for Agricultural and Fisheries research (ILVO). The TomFood
project recognised the value and novelty of X-ray CT as an inspection and engi-
neering tool in the food industry, a sector which up to this day is still the largest
manufacturing sector in the EU, see Figure 1.1. A strong focus was put on the char-
acterisation of the micro-structural properties of food, how they are influenced by
production and storage processes, and how they impact quality, in particular for
fruit and vegetables, and dairy and farinaceous products. In fact, quality improve-
ment and control are the pillars in TomFood, which also motivate the application
of X-ray CT to an in-line production setting as one of the most important mile-
stones of the project.

Food & drink 
15

Automotive
12

Coke & petroleum
9.7

Machinery & equipment
8.9

Others
54.4

(± 1k billion euro)

Share of turnover in the EU manufacturing industry (2012,%)

Figure 1.1: According to the annual report with ‘Data & Trends of the European Food and
Drink Industry’, the food and drink industry is still the largest manufacturing sector in the

EU [1].

A significant portion of the work presented here has led to a better understand-
ing on how feasible in-line quality inspection with X-ray CT, so-called ‘in-line

1nowadays the Pore-scale Processes in Geomaterials Research group (PProGRess)
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CT’, really is within the conditions put forward by a production setting. In partic-
ular, the imaging process itself should not constitute a bottle neck and should be
able to keep up with the nominal throughput in a production chain. Therefore, the
imaging process needs to be fast, which leads to a degradation of image quality. In
other words, investigating the feasibility of in-line CT is essentially equivalent to
balancing out the trade-off between image quality and scanning speed.

A similar trade-off occurs when X-ray CT is used to image an object which
is undergoing a dynamic process, causing its absorption characteristics, normally
assumed to be fixed, to change during the course of an acquisition. Fortunately,
X-ray μCT has matured to the point where it is now possible to image dynamic
processes within micro-structures in 3D with a sufficient temporal resolution to
follow the micro-structural changes caused by these processes through time, com-
monly referred to as ‘4D-CT’.

The premise of this work is fast CT imaging using non-standard geometries

and protocols, with the goal of

• bringing X-ray CT to an in-line setting as a non-destructive quality inspec-
tion tool, i.e. in-line CT, and

• improving the visualisation of dynamic processes, specifically pertaining to
local and non-rigid structural changes of an imaged object, i.e. 4D-CT.

The challenges presented by in-line and 4D-CT are tackled by exploiting the
tight synergy between the acquisition level, where alternative CT geometries and
protocols are explored, and the reconstruction level, where information on a sam-
ple’s deformation will be inferred through local, non-rigid registration to be incor-
porated in the CT reconstruction algorithm. The applications presented here are
non-standard in the sense that they would be considered difficult if not impossible
to be properly imaged in a normal circular CT geometry.

1.1 Main contributions

The main contributions of the author to the field of X-ray CT in general, and in-line
and 4D-CT in particular, are:

• a GPU2-accelerated implementation of a first order X-ray attenuation model,
enabling the fast simulation of X-ray radiographs,

2Graphical Processing Unit
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• a flexible and intuitive parametrisation for the geometrical configuration of
X-ray CT scanner components, allowing X-ray CT acquisitions to be simu-
lated on arbitrary, non-standard trajectories.

• the development of a GPU reconstruction tool, based on a combination of
Python and CUDA, which can handle the reconstruction of CT data acquired
in the aforementioned arbitrary geometries, with SIRT3, SART4 and more
generally OS5.

• a strategy to reconstruct large CT volumes on a GPU, by asynchronously
balancing out copying and computation GPU work loads.

• a framework to assess the quality of CT reconstructions by using Fourier
based resolution metrics, such as the SSNR6 and FSC7.

• an implementation of this framework to an in-line CT conveyor belt ge-
ometry, that combines a sample rotation and a lateral translation, in both a
simulated and hardware mock-up form.

• establishing the feasibility of in-line CT with the proposed conveyor belt
geometry.

• the development of an in-situ temperature control stage.

• a thorough case study evaluation of several local, non-rigid registration al-
gorithms, namely the Demons, B-spline and optical phase flow approaches.

• a simple GPU accelerated motion corrected version of the SART.

• new CT protocols,that can tolerate a significant degree of sample motion,
given the aforementioned motion correction approach.

1.2 Outline

Chapter 2 introduces the basics of X-ray CT with a particular focus on the acqui-
sition process. For this process, a first order model, including the polychromatic
and noisy nature of X-ray radiography, is presented, working towards its imple-
mentation on a GPU architecture. The resulting GPU-accelerated ‘radiography
simulator’ is calibrated to accurately reflect the properties of the X-ray tubes and
detectors on the UGCT scanner systems, several of which are discussed in this

3Simultaneous Iterative Reconstruction Technique
4Simultaneous Algebraic Reconstruction Technique
5Ordered Subsets
6Spectral Signal to Noise Ratio
7Fourier Shell Correlation
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chapter. In a next step, the simulator is supplemented with a flexible and intuitive
description of the geometrical configuration of X-ray CT scanner components.
Through this geometrical description, the simulator can produce X-ray CT data
on arbitrary, non-standard trajectories, such as the in-line CT geometry presented
throughout chapter 4.

Chapter 3 gives an overview on some common CT reconstruction algorithms
by classifying them under the analytic and iterative categories. For the latter type, a
reconstruction tool was implemented on the GPU by combining Python code with
CUDA C. Apart from the fact that this tool can handle the reconstruction of CT
data acquired in arbitrary geometries, chapter 3 also explains how it is able to ac-
commodate very large reconstruction volumes by balancing out GPU copying and
calculation operations. The usefulness of the resulting ‘chunk swapping’ approach
is also illustrated through the challenging example of iterative reconstruction on
a helical dataset. Chapter 3 closes by underlining the flexibility of iterative CT
reconstruction towards adopting advanced forward projection models, and a priori
information on the imaged object. A short outlook and overview explains how
these advanced models and the a priori information can be placed in a more gen-
eral framework of regularised optimisation.

In chapter 4, the radiography simulator and the Python-CUDA reconstruction
tool are combined in the study of an in-line X-ray CT inspection device, the so-
called ‘conveyor belt’ CT device. Through a theoretical analysis it can be shown
that a sample’s trajectory in this device, which combines a translation with a par-
tial rotation of the sample about an axis perpendicular to the translation axis, is
able to produce acquisitions, that lead to exact CT reconstructions. Also in this
chapter, the FSC and SSNR resolution metrics are introduced as a way to evaluate
a CT image’s quality, specifically as a function of the CT acquisition and conveyor
belt design parameters. As a result, the scan duration and the conveyor belt de-
vice dimensions can be tuned towards an optimised trade-off between inspection
throughput and image quality. This trade-off was investigated on both simulated
and real life data, coming from a hardware mock-up, that was realised as an exten-
sion to one of UGCT’s scanner systems.

The fifth and final chapter discusses how X-ray CT can be used to image dy-
namic processes, which change a sample’s structure or more generally its attenu-
ation properties during the course of an acquisition. To explore and improve this
4D-CT imaging of dynamic processes, the UGCT acquired and developed sev-
eral devices to control or initiate these processes. Chapter 5 discusses a uniaxial
tensile-compression stage and a temperature control stage, which are used for the
in-situ compression of an aluminium foam and for heating a leavening bread dough
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sample in the applications section. In both of these cases, the dynamics of the pro-
cesses lead to an excessive deformation of the sample during the acquisition, which
results in motion blurring artefacts at the reconstruction level. In order to track this
deformation, which is local and non-rigid in nature, three registration approaches,
namely the Demons, B-spline and optical phase flow methods, are discussed and
evaluated on the dough and aluminium foam acquisitions. Most importantly, this
chapter explains how the deformation fields, inferred through registration, can be
incorporated in a SART algorithm to produce motion corrected reconstructions.
Finally, the chapter closes with an outlook to how X-ray CT imaging and a thor-
ough modelling of the imaged dynamic process, can benefit from each other, with
the final goal of elevating the X-ray CT technique from a way to image a object’s
attenuation to a 3D in-situ material characterisation.

References

[1] Food & Drink Europe. DATA & TRENDS EUROPEAN FOOD AND DRINK
INDUSTRY. http://www.fooddrinkeurope.eu/.
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X-ray CT imaging & simulation

This chapter describes how X-rays and their interaction with matter can be used
to image the interior of an object, going from a single 2D radiographic projec-
tion to a full 3D tomographic, digital representation of the object, by following
the three step process of acquisition, reconstruction and visualisation (and/or anal-
ysis). After a short look into several of UGCT’s CT systems, the remainder of
this chapter focusses on the acquisition and specifically those physical aspects of
the imaging process most relevant to the realistic and efficient simulation of X-ray
radiographs. With a view to in-line CT as a cornerstone to this work, a realistic
radiography simulator, which

• models the X-ray physics in a fast and accurate (to first order) way,

• allows for an intuitive and flexible description of the CT geometry, and

• runs on a Graphical Processing Unit (GPU),

was developed to both optimise existing CT setups and protocols, and explore
how novel CT geometries and the underlying acquisition physics impact the image
quality, in a cost effective way. Indeed, building a hardware setup versatile enough
to mimic the quasi infinite combinations of CT geometries and tube-detector as-
semblies is not tractable.
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2.1 The X-ray CT imaging process

2.1.1 Acquisition

Cone beam CT

The essential components of a CT setup are schematically depicted in Figure 2.1(a),
next to the real life high energy CT system, ‘HECTOR’, built at the UGCT (Fig-
ure 2.1(b)). From a small focal spot, micron sized in the case of μCT, an X-ray tube
emits a broadband spectrum of X-rays in all directions. Most of these X-rays are
stopped in a collimator, giving the beam a conical shape directed towards the flat
panel detector. This type of CT setup is thus referred to as a ‘cone beam CT’ setup,
although generally, the cone illuminates the entire detector surface, such that the
convex hull of the relevant X-rays, i.e. the ones that strike the detector, is actually
pyramidal in shape. Only the X-rays emitted within the solid angle spanned by
this cone are relevant to the formation of a radiograph, which essentially registers
the shadow cast by an object placed within the X-ray cone.

flat panel detector

focal spot

rotating sample

X-Ray source

(a)

X-Ray source

rotation
stage

flat panel detector

(b)

Figure 2.1: The essential components of an X-ray cone beam CT setup in the schematic (a)
can also be recognised in a real setup (b). Here UGCT’s High Energy CT scanner

Optimised for Research (HECTOR) is shown [1].

A single point of view radiograph represents a 2D projection of the object,
measuring how strongly this object attenuates the X-rays passing through it. On
such a 2D projection all of the object’s internal features are superimposed, making
it impossible to unambiguously separate one feature from the other. To compute
a digital slice, i.e. a tomogram, through an object and locate its internal features
in 3D, a series of radiographs, taken from different directions, needs to be mea-
sured through a CT acquisition. In other words, a CT acquisition is formed by
a series of radiographs, taken from an object performing a relative motion with
respect to the source-detector assembly. In most cases this relative motion is cir-
cular, i.e. either the object (cfr. figure 2.1) or the source-detector assembly (the
gantry) rotates around a fixed axis near the object’s centre, leading to a so called
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circular cone beam CT acquisition. The circular motion is often combined with a
(simultaneous) translation, resulting in ‘circle + line’ trajectories and helical CT,
a common protocol for medical CT scanners. These compound trajectories are
primarily conceived to optimise the sampling directions towards an exact recon-
struction of the object (as explained in section 2.1.2), but can also be used to tailor
the setup towards an implementation in an in-line conveyor belt environment (see
chapter 4).

From electrons to X-rays and back again

A detailed account on the working principles and technical aspects of the differ-
ent types of lab based X-ray tubes and flat panel detectors can be found in [2, 3].
In short, X-ray tubes accelerate electrons by means of a high voltage a high volt-
age between a cathode filament and an anode target in a vacuum cavity. As these
electrons rapidly decelerate during their collision with the target material, they
emit bremsstrahlung X-ray photons and occasionally knock out electrons from the
anode material, followed by the emission of characteristic X-rays as the excited
anode atoms relax to their ground state. After passing through the imaged ob-
ject and hitting the detector, the X-ray photons are essentially converted back to
electrons. More precisely, electron-hole pairs are formed, either directly, e.g. in
a CdTe based photodiode, or indirectly through an intermediate conversion of the
X-ray photons to visible light photons in a scintillation material (e.g. Gadox or
CsI), which can subsequently be converted to an electrical signal by conventional
(amorphous) silicon photodiodes or CCD sensor. A pixelated flat panel detector is
formed when these sensors are configured into a 2D array, making it possible to
acquire a digital radiograph.

Lambert-Beer law

The attenuation measured by a radiograph can physically be described through the
Lambert-Beer law, which in its monochromatic form, i.e. for a single X-ray photon
energy, is given by

Id = I0e
−μd. (2.1)

This law states that an incoming X-ray flux (I0) exponentially decays to a transmit-
ted flux (Id) as it propagates through a material, in this case over a distance d. The
exponential factor μ, known as the linear attenuation coefficient, is proportional
to the probability for an X-ray photon to interact with the propagation medium,
commonly expressed per unit of length (cm−1). Since electrons are involved in all
of the relevant interactions which stop X-ray photons from penetrating a material
(see Figure 2.3), the linear attenuation coefficient indirectly relates to the electron
density, which in turn depends on the physical material density and its chemical
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cathode filament anode target

X-Ray tube flat panel detector

scintillator photodiode

ADC ADU

Figure 2.2: The principle of photon generation and detection in a lab-based X-ray CT
setup. An X-ray tube accelerates electrons towards a collision with a target material,

where they produce a spectrum of bremsstrahlung and characteristic X-ray photons. These
photons are converted to an analog electrical signal by a (flat panel) detector containing

an array of photodiodes or a CCD sensor, either directly or through an intermediate
scinitillation. Finally, the analog signal is converted to a digital one by the

analog-to-digital converter (ADC).

composition. As a result the linear attenuation coefficient may vary significantly
for a given material at different densities, unless it is normalised by the material’s
density to give the mass attenuation coefficient (cm2/g)

μ

ρ
=

τ

ρ
+

σ

ρ
+

σr

ρ
+

π

ρ
(2.2)

This expression for the mass attenuation coefficient also reflects the additive
contribution of the individual interaction mechanisms, listed in order of impor-
tance with respect to the X-ray energy range relevant to lab-based CT:

• the photoelectric effect (τ ),

• Compton scattering (σ),

• Rayleigh scattering (σr), and

• pair production (π),

where pair production is generally negligible in the context of lab-based X-ray
μCT. It is important to recognise that all of these interactions strongly depend on
the energy of the incident photons (see Figure 2.4), which leads to a more general
polychromatic form of the Lambert-Beer law

Ij =

∫ Emax

0

I0(E)Qeff(E) exp

[
−
∫ tj

t0

μ
(
�l(t), E

)
dt

]
dE (2.3)
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Figure 2.3: Schematic representation of the interaction mechanisms between atomic
electrons and an incident X-ray photon [4].

Next to the local fluctuations of the attenuation coefficient along the integra-
tion path l, in most cases a straight line, equation (2.3) also incorporates the poly-
chromatic nature of the imaging process through an energy dependency of μ, the
incident photon flux, which reflects the source’s photon emission spectrum (see
equation 2.10), and the detection efficiency (Qeff). Indeed, an ideal X-ray detector
which linearly converts all of the energy carried by the X-ray photons crossing
the detection plane to a usable signal does not exist, and also in a lab-based CT
setup the X-ray sources produce incident spectra (I0(E)) with a large bandwidth
(see Figure 2.5), up to a maximal energy (Emax) determined by its high voltage.
Apart from the schematic overview in Figure 2.3, it is not the goal here to provide
a detailed description of the interaction physics, for which the reader is referred
to [4–6].

2.1.2 Reconstruction

The computational process which converts a series of 2D radiographs to a 3D dig-
ital distribution of an object’s linear attenuation coefficient, is called a reconstruc-
tion. This section introduces the Tuy-Smith condition as a minimal mathematical
requirement for an accurate reconstruction, and describes how the Lambert-Beer
law links the radiographic measurements to the linear attenuation. The algorithms
facilitating these reconstructions, traditionally classified as analytical or iterative,
are described in a separate chapter (see chapter 3).
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Figure 2.4: Energy dependency of the mass attenuation coefficient for soft tissue according
to [7], decomposed according to the different electron-photon interaction mechanisms.
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Figure 2.5: Lab-based CT imaging is polychromatic in nature as can be seen on these
graphs for (A) the photon energy impinging on a flat panel detector, which will eventually
be detected, multiplied with the detector’s quantum efficiency, and (B) a typical spectrum

produced by a lab-based X-ray tube.
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From pixels to voxels

In order to obtain a digital representation of the 3D attenuation distribution, it is
generally assumed that the object is contained within a rectangular prism, which in
turn can be subdivided into a regularly stacked grid of smaller rectangular prisms,
called voxels (see Figure 2.6). Most of the time, these voxels are considered to be
cubes with a side length pv , which in principle can be chosen freely. Though a sen-
sible choice, is to match the voxel’s projection onto the detector plane with respect
to the X-ray source point, to the detector’s pixel size pd following a geometrical
magnification (M )

pd = pv
SDD
SOD

= pvM (2.4)

3D 
reconstruction 
volume 2D 

reconstruction  
slice

Radiography

Figure 2.6: The radiographs are used to reconstruct the linear attenuation coefficient into
a digitised grid of voxels, with pitch pv following a geometrical demagnification of the

detector pixel size pd. (SDD : Source Detector Distance, SOD: Source Object Distance)

where SDD is the Source Detector Distance, and SOD the Source Object Distance.
For typical magnification factors ranging between 10 and 100, a detector pixel size
of 100 μm leads to a voxel size in the micron range. As the voxel size shrinks down
to the range of the X-ray tube’s spot size ps, it becomes important to consider the
fact that ps is indeed finite, and can thus influence the spatial resolving power. By
taking into account a finite ps, a better estimate for the voxel size can be derived,
also on a geometrical basis,
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pv =
pd
M

+ (1− 1

M
)ps. (2.5)

As illustrated in Figure 2.7, the finite spot size causes a geometrical unsharpness
around the edges of a feature projected in a radiograph. Furthermore, the spot
size forms an intrinsic limit to the spatial resolution of lab-based cone beam CT,
specifically at high magnifications, according to equation (2.5). The spot size de-
pends on the type of X-ray tube, going from ±5 μm in directional tubes down
to ±400 nm in some transmission tubes [1, 8], and is intrinsically determined by
how good the electrons can be focussed onto the target, and through which extent
these electrons get scattered in the lateral direction. In practice however, the spot
size is limited by the minimal area required for an adequate dissipation of the heat
deposited in the target by the electrons hitting it. The smallest X-ray spots can
thus only be attained for low X-ray fluxes, resulting in longer measuring times to
obtain comparable image statistics.

SDD

SOD

source object detector plane

Figure 2.7: Geometrical unsharpness caused by a finite X-ray spot size ps

As a final note on the voxel size, it is important to note that (2.5) is only a
geometrical estimate for an X-ray CT system’s spatial resolving power and is often
(wrongly) reported as a measure for resolution. First of all, (2.5) does not take
into account the detector’s point spread function, whose width is generally about
1.8 times the size of pd, but for each individual detector is best determined by
measuring its Modulation Transfer Function (MTF). Furthermore, resolution is
actually measured in line pairs per mm, such that 1/(2 pv) might be considered a
good estimate for it. In section 4.4.1, some alternative methods to calculate a fair
estimate for the resolving power and resolution will be introduced.

Radiographs measure line integrals

A standard reconstruction is based upon the inversion of the Lambert-Beer law,
which in its monochromatic, ideal form can be rewritten as follows (cfr. equa-
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tion (2.3))

pj = − ln

[
Ij
I0,j

]
=

∫ sp,j

s0,j

μ(lj(s)))ds (2.6)

representing the line integral of the linear attenuation coefficient along the ray path
that connects the X-ray source point (�xs,j = lj(s0,j)) to the centre of detector pixel
j (�xj = lj(sp,j)) for a particular orientation of the object. Here, the index j runs
over all of the pixels in the complete series of radiographs each representing an
individual measurement. Most importantly, equation 2.6 shows that the transmis-
sion values measured by the radiographs, or to be precise their negative logarithm,
can be accurately modelled by line integrals through an object’s linear attenuation
function.

The Tuy-Smith condition

Formulated in a more general way, a reconstruction is mathematically equivalent
to inferring a spatially distributed quantity μ(�x) (where �x = [x, y, z]T ) from a
series of line integrals taken across this distribution. This, in turn, is very similar
to inverting the Radon transform (R) of μ(�x), defined by

R{μ}(�θ, r) =
∫

μ(�x)δ(�x · �θ − r)d�x (2.7)

which integrates μ(�x) across the plane with unit normal �θ and distance r from the
origin [9], see also Figure 2.8. An important prerequisite to the exact inversion
of this transform is that for all of the (�θ, r)-pairs a unique Radon value has to be
defined. For a CT acquisition, this condition translates to the Tuy-Smith condi-
tion [10], which states that an object’s attenuation function (μ(�x)) can be recon-
structed exactly only when each plane intersecting the object’s support1 contains
at least one X-ray source point, or in other words each of these planes should inter-
sect the source trajectory at least once, and of course be measured by the detector.

It is immediately clear that a circular source trajectory does not conform to
the Tuy-Smith condition, as the attenuation value for any point situated in a plane
parallel to the one containing the source trajectory, and thus not intersecting this
trajectory, will according to the Tuy-Smith condition not be reconstructed exactly.
Although adequate reconstructions can be obtained from a circular cone beam CT
acquisition, the inaccuracies in the attenuation values caused by the violation of
the Tuy-Smith condition, known as cone beam artefacts, do increase further away
from the central plane containing the source trajectory. This central plane, where
the cone is reduced to a fan, does not exhibit the cone beam artefact. With a fan

1The region where its attenuation coefficient is non-zero.
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Radon plane

Figure 2.8: Radon transform of a sphere. In the Radon space of all (�θ, r)-pairs, the plane
integrals are stored at the points r · �θ.

beam CT acquisition the central plane can even be reconstructed exactly if the
circular trajectory covers at least an angular range of

180° + 2γ (2.8)

where γ is half the opening angle of the X-ray fan spanning the object’s circumfer-
ence (see Figure 2.9). For off-centre planes, the cone beam artefact can be elim-
inated completely by considering other trajectories, as in helical and ‘circle+line’
CT (see Figure 2.10).

Artefacts: Beam hardening & motion blurring

The Tuy-Smith condition is a geometrical requirement which leads to mathemat-
ically exact reconstructions in the light of equation (2.6), and as mentioned be-
fore, violating this condition leads to cone beam artefacts. In general, any dis-
crepancy between the real imaging physics and geometry, and those assumed by
equation (2.6) will lead to errors in the reconstruction, called artefacts. A survey
on most of these artefacts and what causes them can be found in [13, 14]. In the
context of this work it is interesting to consider the fact that the linear attenuation
coefficient is actually a function of the X-ray energy (see Figure 2.5)

μ ∼ μ(�x,E)



X-RAY CT IMAGING & SIMULATION 2-11

source trajectory

sample circumference

Figure 2.9: Tuy-Smith condition in a fan beam CT geometry.

(a) (b)

Figure 2.10: A cross-shaped vertical section through a simulated reconstruction of the
Defrise phantom, illustrating (a) how the cone beam artefact distorts the reconstruction in

a circular cone beam geometry, and (b) how they are eliminated in a helical cone beam
geometry [11, 12].

causing the polychromatic tube spectrum to shift towards higher energies as it
propagates through a sample, simply because X-ray photons with a higher energy
are attenuated less (see Figure 2.11). As a result, an X-ray beam passing through a
thick slab of material will on average measure a lower attenuation coefficient than
those passing through a thin slab of the same material. This effect, called ‘beam
hardening’, is most prominently expressed through the cupping artefact in a CT re-
construction, making the outer edges of a (homogeneous) samples appear brighter
than its centre (Figure 2.12). Beam hardening is a clear illustration of how the
energy dependencies in the imaging process can have a significant impact on a CT
image. As such, with the pretence to construct a tool which can produce realistic
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simulation of a CT scan, the polychromatic nature of the acquisition, as conveyed
through the plots in Figure 2.5, needs to be modelled accurately (see secion 2.3).

1012

1010

108

0 60 120

through vacuum

Photon flux  [ ]

Photon energy [ ]

through 1 cm of Al

Figure 2.11: The tube spectrum shifts towards higher energies, as the emitted X-rays
propagate through a material, here a 1 cm slab of aluminum.
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Figure 2.12: The beam hardening process expresses itself through a brightening of the
outer edges of a sample, here a simulated reconstruction (cfr. section 2.3) of a phantom for
apple tissue with dense inclusions of varying size. This cupping artefact is clearly visible

in both the CT reconstruction and a gray value profile across the line indicated on the
reconstruction.

Another source of artefacts is the temporal variation of the linear attenuation
coefficient during a CT acquisition,

μ ∼ μ(�x,E, t)
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As a result, the gray values obtained through a standard reconstruction algorithm
and/or scanning protocol will reflect the temporally averaged behaviour of the time
varying linear attenuation, leading to blurred images. In general, this temporal
variation in μ can be caused by any change following a dynamic process within
the sample, e.g. stress induced internal deformations, temperature related phase
changes, imbibition of fluids in micro-pores etc. When the temporal change is at-
tributed to a displacement or deformation of the sample, the resulting artefact is
specifically referred to as a ‘motion artefact’. An example of a reconstruction of
an apple rolling to its side is shown in Figure 2.13. The motion artefacts can be
eliminated if the object’s displacement is taken in to account during the reconstruc-
tion. Determining the correct displacement mode, going from global rigid to local
non-rigid deformation, is however not straight forward. Chapter 5 explains how
displacements can be registered and implemented in a reconstruction algorithm to
rid the CT images of motion artefacts, but also as a diagnostic tool enabling 3D
material characterisation.

(a) (b)

Figure 2.13: Vertical slice through a reconstruction of an apple (a) staying perfectly still,
(b) performing a tilt of 20°during an acquisition. The reconstruction in (b) shows severe
motion blurring artefacts. The tilt was artificially induced by moving the reconstruction

grid, which is completely equivalent to a tilt of the apple.
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2.1.3 Visualisation & Analysis

As a third and last step in the CT imaging chain the data produced by a reconstruc-
tion need to be interpreted. Often the 3D digital reconstruction volumes are stored
as a stack of 2D images, each representing one slice perpendicular to the objects
vertical axis (cfr. Figure 2.13). While these images are a first qualitative indication
of how an object is built up internally, a true 3D visualisation has to be rendered
through dedicated software tools. Next to commercial viewers (e.g. VG Studio
and Avizo), there are many open source rendering alternatives such as VolView
and 3D Slicer based on VTK [15] and Drishti [16]. A rendering with Drishti of
the same apple as in Figure 2.13 is shown in Figure 2.14. The 3D renderings evi-
dently require a human interpretation if any information on an object’s structure is
to inferred from them, and still this only provides a qualitative evaluation.

The CT reconstructions also form a rich source of quantitative information
on the internal structure of an object, that can be extracted in an automated way
through dedicated analysis procedures, often starting with the segmentation of a
structure or phase of interest. As an example, in Figure 2.15 the pores in a phar-
maceutical pill are segmented and coloured according to their equivalent spherical
diameter with the commercial Octopus Analysis software (InsideMatters, Ghent,
Belgium). This is just one of many results attainable through proper image analy-
sis, which in itself is a broad classification for all digital image manipulations and
calculations involved in more than just visualisation. Despite its broad nature there
are many open source initiatives which are actively maintained and bundle most
of the established and bleeding edge image analysis algorithms, e.g. ITK [17],
OpenCV [18], scikit-image [19] and Fiji [20].
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Figure 2.14: Rendering of an apple dataset together with a virtual cross section in the
frontal direction. The colouration is produced through a mapping of the original gray

scale (attenuation) values to a set of colours chosen to mimics (i.e. not exactly represent)
the apple’s real colour. These images were rendered with Dristhi [16].

500 μm

pore volume (equivalent diameter)

110 μm0 μm

Figure 2.15: The pores in the matrix of a pharmaceutical pill (gray value rendering) are
coloured according to their volume expressed in terms of equivalent diameter (courtesy of

Matthieu N. Boone from [2]).
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2.2 UGCT scanner systems

A first glimpse of one of the CT scanner systems built and commissioned at the
UGCT was already shown in Figure 2.1(b), in this case the high energy HECTOR
system. All of the scanners at the UGCT have a similar anatomy, containing at
least one source and detector, and an actuation system to change the relative orien-
tation of the sample with respect to the source and/or detector. The UGCT today
manages up to 5 CT systems, one of which in close collaboration with the X-ray
Micro-spectroscopy and Imaging (XMI) group of the Ghent University. However,
the remainder of this section only discusses the specification of the three systems,
most relevant to the work presented in this dissertation.

2.2.1 HECTOR - The High energy scanner

HECTOR, in full the High Energy CT scanner Optimised for Research (see Fig-
ure 2.1(b)) [1], was commissioned in 2012, with the specific goal of enabling
qualitative CT acquisitions of large and highly attenuating objects. Not being re-
stricted to these types of samples, HECTOR, due to its versatile tube settings and
broad magnification range, up to now is responsible for almost all of the CT scans
performed at the UGCT down to the 4 μm mark, on a day to day basis.

X-ray source

A 240 kV directional X-RAY WorX source is fixed on a granite stabilising block.
This open-type tube, with a liquid-cooled target, is able to focus up to 280 W into
a variable spot size, which is automatically regulated to prevent excessive heating
and pitting damage to the target. At a target power of 10 W the focal spot size
can be brought down to 4 μm, which sets the intrinsic resolution limit to the CT
images produced by this system.

Detector

The images in this system are produced by a 2048 by 2048 flat panel detec-
tor containing pixels with a 200 μm pitch on a column-shaped CsI scintillator
(PerkinElmer 1620 CN3 CS). With its variable gain and exposure time (between
266 ms and 2000 ms), both the very high tube fluxes, generated by the high tube
power, and low fluxes, transmitted through large and highly attenuating objects,
can be acquired within the detector’s dynamic range.

Motion actuation

The detector stage is mounted on a magnification axis, which can set an SDD up
to 1.8 m. In practice, the SDD is bounded towards mediating cone artefacts, i.e.



X-RAY CT IMAGING & SIMULATION 2-17

minimally 1 m, and excessively long measuring times, as the X-ray flux captured
by the detector decreases quadratically with the SDD. Furthermore, the detector
can be translated in-plane with its vertical and horizontal actuators to enable tiling
and extended Field Of View (FOV) imaging.

The angular position of the sample can be set very accurately, with a position-
ing error well below 3 μm, by the air-bearing rotation stage, which can support
up to 80 kg. The sample stage can also be translated in the magnification and
vertical direction, allowing for both circular and helical CT trajectories. Finally,
to remotely and automatically centre a sample’s Region Of Interest on the axis of
rotation, an XY-Piezo stage was recently installed on the rotation stage.

2.2.2 EMCT - A gantry based CT scanner

In the Environmental CT system, or EMCT [8], the source and detector are mounted
on a gantry. The gantry assembly rotates around the scanned object, very similar
to a medical CT device, though in a horizontal plane (see Figure 2.16). With this
setup, a sample can be imaged by continuously rotating around it, without risking
that any of the external wires or tubes to external equipment could be caught up
in the rotational movement. Although the EMCT’s gantry rotates relatively slowly
as compared to for instance HECTOR’s rotation stage, the continuous scanning
approach makes it possible to produce CT data for samples with a dynamically
evolving internal structure, as result of undergoing an in-situ dynamic process.
This is why the EMCT is the preferred system for the studies in this work, which
are related to dynamic and fast imaging.

Figure 2.16: A top view on the gantry assembly of the Environmental CT scanner
(ECMT), with an X-ray source on the left and a flat panel detector on the right.
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X-ray source

To facilitate a gantry based design, a compact 130 kV X-ray source was chosen
(Hamamatsu L9181), which is of the closed, directional type. Again the tube
power is regulated with respect to the focal spot size, going from a maximum of
39 W to 4 W at a lower bound focal spot size of 5 μm. Nevertheless, JIMA pattern
(www.jima.jp) line pairs below 4 μm have been resolved with this tube.

Detector

The detector, a Xineos1313 flat panel with a CsI scintillator, is installed at a fixed
SOD from the source. 30 full frames of 1300 by 1300 pixels with a pitch of 100
μm, can be acquired each second. When a two by two (hardware) binned frame
or a ROI are read out, frame rates of 50 fps and 300 fps, respectively, can even be
achieved.

Motion actuation

Next to the fast detector, the dynamic imaging capabilities of the EMCT are made
possible through the continuously rotating gantry, which also relatively fast (12
seconds per rotation). While this is fast for a gantry based μCT system, the ro-
tation speed does constitutes a technical limitation to the temporal resolution for
CT imaging with the EMCT. On the other hand, given the limited flux produced
by the low power tube, the image quality can not be sustained at scan times much
lower than this 12 seconds, during which an adequate SNR can barely be acquired.

A mechanical brace, holding the source and detector at a fixed SDD, is mounted
on a linear magnification stage, which in turn is mounted on the rotating gantry.
Contrary to the medical gantry based systems, the EMCT can thus set a variable
magnification, making it a quite unique system. With a vertical translation axis,
fixed to the stationary support, a sample, and its connections to peripheral equip-
ment, can be transported upwards through a 19 cm bore hole in the gantry’s granite
stabilizing block, where it is introduced into the FOV.

2.2.3 Medusa - A multi detector system

The very first setup built at the UGCT [21] was refurbished in 2014 with a com-
pletely new, more accurate and more flexible actuation system. The system has
evolved from a dual tube to a single transmission tube setup with multiple detec-
tors, which can be automatically exchanged through a simple translational move-
ment (see Figure 2.17). Depending on the attenuation properties and size of a
sample, a particular detector can be chosen for CT imaging, down to a 1 μm res-
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olution. As explained in chapter 4, Medusa was also upgraded with an add-on
module to emulate an in-line CT geometry fitting to an industrial setting.

Figure 2.17: The Medusa system currently has three detectors mounted on a translation
stage which can accurately align each detector on the optical axis of an open type

transmission tube. The complete system is mounted on an actively damped and levelled
table. Note that the Varian detector on the left is shielded in a led box, when the other

detectors are used.

X-ray source

The X-rays in this system are produced with a transmission tube of the open type
(Feinfocus FXE160.51), accelerating electrons through a high voltage of up to
160 kV . The electromagnetic lenses can efficiently focus the electrons into spots
smaller than 2 μm, although JIMA patterns of ±0.7 μm have been visualised using
this tube. This lower limit is strongly affected by the target material and thickness
[3], which can be changed from a diamond backed 5 μm thick tungsten target to a
diamond backed molybdenum one with four quadrants of varying thickness (i.e. 1
μm, 3 μm, 6 μm and 8 μm). The high thermal conductivity of the diamond backing
allows for a dissipation of up to 10 W of power in the tube’s target.

Detectors

On the Medusa system three detectors are mounted on a translation stage, which
can accurately align each detector with the optical axis. For larger (± 1 cm) and
denser samples, Medusa is equipped with two CsI flat panel detectors with a pixel
pitch of 127 μm, and an active pixel matrix of 1516 by 1900 and 1152 by 1152,
respectively (Varian PaxScan 2520 and Varian PaxScan 1515). The latter is a part
of an add-on module for in-line CT geometries and serves as a temporary substitute
for the older Varian PaxScan, which was inherited from the original dual-tube
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setup. As an upside to the newer Varian’s smaller active area, it can be read out
much faster, i.e. 28 fps as opposed to 7.5 fps. The smaller, less attenuating samples
are imaged with a CCD Photonic Science VHR camera with a pixel pitch of 9 μm,
mounted on the right hand side of the translation stage, as viewed from the source
(see Figure 2.17).

Motion actuation

To guarantee a precise and vibrationless angular positioning of the sample, its ro-
tation is carried out by an air-bearing stage, supported by a vertical axis, which
can move the sample in and out of the FOV. Both this vertical axis, holding the
rotation stage, and the detector translation stage are mounted on a magnification
axis, as such the SDD and SOD can be adjusted separately, allowing for an X-
ray propagation distance of up to 1.4 m. Additionally, a sample’s centre of mass
can be accurately aligned with the rotation axis by using the XY-Piezo position-
ing system installed on top of the rotation stage. Finally, the complete system is
assembled on an actively damped and levelled table, to prevent external vibrations
from distorting high resolution measurements.

2.3 Simulating X-ray radiographs

2.3.1 Radiography/CT simulation in literature

As mentioned in the introduction to this chapter, the GPU based realistic radio-
graphy simulator, which adopts the first order model described in the following
section, was developed to optimise both existing CT setups and protocols, and ex-
plore how novel CT geometries and the underlying acquisition physics impact the
image quality. Indeed, a radiography simulator can serve as a cost effective tool
to study and validate conceptual designs for new CT geometries, before actually
building a real life implementation for these geometries.

UGCT is not the only research group active in the field of X-ray radiography
simulation. A non-exhaustive overview of several X-ray radiography and CT sim-
ulation codes is given in table 2.1. Unfortunately, while some of these tools could
be a valuable substitute for the radiography simulator described in this work, most
of them are either not freely available, no longer maintained or are tailored to a very
specific application, e.g. breast mammography [22, 23] and CT metrology [24].
It should also be mentioned that ASTRA, also in table 2.1, is actually a CT re-
construction toolbox, which due to its readily accessible projection operator can in
fact be used as a (monochromatic) X-ray radiography/CT simulator. Given the fact
that a CPU implementation of the first order model described below was already
available at the UGCT, it was an evident choice to reimplement this code in porting
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it to a GPU. By doing this, UGCT can fully control the back-end implementation
of, and the physics related features that are implemented in the radiography sim-
ulator. A thorough account on the details of this radiography simulator, dubbed
‘Arion’, can also be found in [25].

2.3.2 First order modelling of the acquisition physics

The energy dependency of the imaging process was briefly touched through equa-
tion (2.3). Discretizing the integrals in this equation with respect to the energy and
spatial coordinate is the first step towards simulating a radiograph. The number
of photons acquired by one of the detector pixels (index j) can be modelled as
follows (cfr. equation (2.3))

Nj =

n∑
i=0

N0,j,iTj,iQeff,i =

n∑
i=0

Nj,i (2.9)

where both the emitted (I0,i) and detected (Ij,i) X-ray beam spectra were ex-
changed for the effective number of photons emitted by the source towards pixel
j (N0,j,i), and those detected by it (Nj,i). Indeed, both quantities are linearly
proportional to one another, according to

N0,j,i [#photons] = Ne− · Ωj ·ΔEi · I0,i
[
#photons per e−

keV · Str
]

(2.10)

given the solid angle of the pixel (Ωj), the width of the discrete energy bin (ΔEi)
and the number of electrons hitting the target to produce X-rays (Ne− ). equa-
tion (2.9) stipulates that the number of photons detected by a pixel can be calcu-
lated independently for each term representing one out of n energy bins, and that
each term is composed out of three factors which reflect the polychromaticity of
the X-ray tube spectrum (N0,j,i), the sample’s transmission properties (Tj,i) and
the detector’s quantum efficiency (Qeff,i). In the following, these three contribu-
tions are discussed in an order which reflects the travelling direction of an X-ray
photon, i.e. in an order relevant to the photon’s generation in the X-ray tube, its
interaction with the sample and its detection with a flat panel detector, respectively.

X-ray emission spectra

The number of photons of a particular energy (Ei) emitted by the X-ray tube tar-
get in a unit solid angle and per electron hitting the target, i.e. the X-ray emission

spectrum (I0,i), is assumed to be known or calculated, e.g. through Monte Carlo
simulations, which are commonly accepted as the most accurate method in re-
solving stochastic particle based radiation transport [34, 35]. Dhaene et al. [25]
calculated the spectra using the BEAMnrc Monte Carlo code [36, 37], and devised
a clever way to accurately approximate the emission spectra with a small number
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of energy bins, leading to a significant reduction in the time needed to compute
a result for equation (2.9). This binning technique singles out the characteristic
peaks and the edges attributed to the tube’s target and exit window materials (see
Figure 2.18). The remaining continuum Bremstrahlung spectrum can then be ap-
proximated by a small number of bins, which being interleaved with bins dedicated
to describing the peaks and edges in the spectrum, do not necessarily have an equal
width. As a result, the tube emission spectra are encoded at a series of irregularly
spaced energies (Ei) at the centres of ΔEi-wide bins, each containing I0,i ×ΔEi

photons of energy Ei emitted per unit of solid angle and per electron hitting the
tube target. A notable difference between the spectra in Figure 2.5(b) and Fig-
ure 2.18, both pertaining to a similar tungsten target X-ray tube, is the presence of
the characteristic peaks at ±18 keV , generated within the first tube’s molybdenum
aperture.

10-1

10-3

10-5

10-7

0 50 100
Photon energy [ ]

Photons per target electron [ ]

original spectrum

continuum

peaks

Figure 2.18: After extracting the peaks and edges, characteristic to the tube’s target
material (tungsten in this case), the smooth continuum Bremstrahlung spectrum can be

approximated with a limited number of bins (Courtesy of Jelle Dhaene, adapted from [25]).

Ray tracing

One of the crucial assumptions made for the radiography simulator is that the X-
rays do indeed behave like ‘rays’, connecting the focal source point to the centres
of the detector pixels through straight paths. The probability for X-ray photons
with an energy Ei to be transmitted through an object can be found by tracing this
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ray as it passes through the object. Following Lambert-Beer’s law, the transmis-

sion factor in equation (2.9) is given by

Tj,i = exp

(
−

L∑
l=0

μ(�xl, Ei)Δt

)
(2.11)

where the linear attenuation coefficient is sampled at equidistant position along the
intersection of the ray j with the support of μ(�x), where tl ∈ [tin, tout], as shown
in Figure 2.19.

�xl = �Os + �dj · (tl + tin) (2.12)

with

�dj =
�xj − �Os∥∥∥�xj − �Os

∥∥∥
tl = l ·Δt

This simple ray tracing approach is very efficient if μ(�xl, Ei) is parametrised and
discretised in an appropriate way. Several options with a varying degree in ac-
curacy and computational cost are thoroughly described in [11, 38], referred to
as ‘splatting’ techniques in literature. However, the obvious and simplest choice,
with the prospect of an efficient implementation on a GPU and compatibility with
CT reconstructions, is to distribute μ(�xl, Ei) on a voxelised grid, cfr. section 2.1.2.
Furthermore, the radiography simulator labels each voxel with an index to a look
up table listing all of the materials contained within the object. In other words,
the object is digitally represented by a phantom volume composed out of material
labels. These labels link to their material’s energy dependent attenuation curve,
as retrieved from the XCOM Photon Cross Sections Database (www.nist.gov,
cfr. Figure 2.4). Each time an X-ray intersects one of the voxels, the attenuation
curve for the material contained within this voxel is interpolated at the current bin
energy (Ei). This approach economises the amount of memory necessary to store
a digital phantom in CPU or GPU RAM, because the material labels can be en-
coded through fairly low bit depth unsigned integers, e.g. 8 bit unless the object is
composed out of more than 256 different materials.

The detector’s quantum & energy conversion efficiency

When an X-ray photon finally reaches the detector, its detection is subject to a se-
ries of events, each with a finite probability of actually occurring (cfr. Figure 2.2).
Namely, whether or not the X-ray photon induces a scintillation, the resulting lu-
minescence reaches the photodiode, and finally creates electron-hole pairs. It is
quite difficult to model all of these effects even through Monte Carlo simulations.
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flat panel detector

sample
X-Ray tube

Figure 2.19: 2D analog of a simple ray tracing technique. As the ray progresses from the
X-ray tube’s focal spot to the centre of a detector pixel, the linear attenuation coefficients
are sampled and accumulated at equidistant positions along the ray-object intersection.

The object’s attenuation distribution is encoded on a voxelised grid, similar to a CT
reconstruction volume.

This is why it is implicitly assumed here that a detector’s output is proportional to
the X-ray energy deposited in the scintillator. In other words, not all of the conver-
sion effects are considered, such that the energy deposit can be estimated through
a Monte Carlo simulation, which approximates a detector as a layered structure
composed out of an entrance window, a reflective foil, a scintillator and an a-Si
photodiode [3, 25]. The detector response as a function of energy is then charac-
terised by the probability for a photon to be detected, i.e. the quantum efficiency

(Qeff), and how much of a detected X-ray photon’s energy is effectively deposited
in the scintillator, i.e. the effective energy deposit (Deff, see Figure 2.20). It
is sufficient to consider the product of these quantities (cfr. Figure 2.5(a)) when
only the average energy deposit in each pixel has to be calculated, while an ac-
curate model for the noise distribution in a radiograph requires them to be treated
separately, as described in the next paragraph.

Noise

When addressing the noise in radiographic images an important distinction has to
made between unintended spatial variations in the image, e.g. when the pixels
in a detector have slightly different responses to an identical input, and temporal
variations in a detector’s output within each individual pixel. The radiography sim-
ulator neglects the noise contributions attributed to non-idealities of the detector,



2-26 CHAPTER 2

1

Photon energy [ ]

0.5

Quantum efficiency, [ ]

0 80 160

0

(a)

0 80

160

Photon energy [ ]

0

80

Effective energy deposit, [ ]

160

(b)

Figure 2.20: The energy dependency of a detector response can be characterised through
(a) a quantum efficiency, and (b) the mean energy a detected photon effectively deposits in

the detector photodiodes.

by assuming a uniform response across all of its pixels, for which the output is not
subject to any electronic noise. The dominant noise component is caused by quan-
tum fluctuations in the detected number of photons, which follows the Poisson
distribution.

P(k|N) =
e−N ·Nk

k!
(2.13)

In particular, this distribution holds for the photons counted in a pixel j for each
individual energy bin i, leading to a variance of

σ2
j,i = Nj,i (2.14)

on this count. If Nj,i > 20, which is almost always the case, the Poisson distribu-
tion can be accurately approximated by a Gaussian one

P(k|Nj,i) ∼ N (k|Nj,i,
√
Nj,i)

However, rather then a number of photons the flat panel detector’s output is ac-
tually determined by the energy deposited in it. Luckily, following the effective
energy deposit (cfr. Figure 2.20(b)), the energy detected in each bin (Ed,i) is also
proportional to the number of photons detected by each pixel on a per bin basis,
which can be summed over i to obtain the integral energy deposit.

Ed,j =

n∑
i=0

Ed,j,i =

n∑
i=0

Deff,i ·Nj,i (2.15)

A flat panel detector finally converts this energy deposit to an analog-to-digital
unit (ADU, Uj), through its photodiodes and ADC, which can to a first order be
modelled as a linear process.

Uj = κEd,j (2.16)
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The gain factor κ, expressed in units of ADU per eV, incorporates the conversion
from photon energy to electron charge, the amplification of this charge to a voltage,
and finally the digitisation of this voltage to an ADU. κ serves as a calibration
factor to tune the radiography simulations towards a particular detector and its
gain settings. A good rule of thumb is that each ADU level can hold no more
than one or two photons of approximately 30 keV, which by design corresponds to
the mean energy of the X-ray transmission spectra measured for most moderately
absorbing samples (e.g. soft tissue in medical CT). By combining equations 2.14
to 2.16, the variance on the ADUs can be calculated through

σ2
u,j = κ2

n∑
i=0

D2
eff,i ·Nj,i (2.17)

where the individual energy bins are described by independent Gaussian distribu-
tions. As such, the ADUs in pixel j (uj) are distributed according to

P(uj) ∼ N (Uj , σu,j) (2.18)

The first order simulation model

To finalise the first order simulation model for X-ray radiographs, the number
of electrons (Ne− ) and the solid angle of a pixel (Ωj), as introduced in equa-
tion (2.10), need to be defined. In the context of X-ray μ-CT, the target electron
load is commonly reported as the product of the tube wattage (Pt) and the expo-
sure time (texp) at a certain tube high voltage (Vt), rather than units of mAs, as in
medical CT. The number of electrons hitting the tube target is then given by

Ne− =
Pttexp
Vte−

where e− is the elementary charge. The solid angle of a pixel as viewed from the
source can be approximated by (see Figure 2.19)

Ωj = − p2d∥∥∥�xj − �Os

∥∥∥2 �dj · �n (2.19)

In summary, the equations throughout this section can be combined to yield a
statistical estimate for the ADUs in pixel j by sampling the Gaussian distribution
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N (Uj , σu,j) for which

Uj = κ ·
n∑

i=0

Deff,i ·Nj,i (2.20)

σ2
u,j = κ2 ·

n∑
i=0

D2
eff,i ·Nj,i (2.21)

Nj,i = Ne− · Ωj ·ΔEi · I0,i ·Qeff,i · exp
(
−

L∑
l=0

μ(�xl, Ei)Δt

)
(2.22)

2.3.3 Secondary effects in radiographic image formation

In the model described throughout the previous section some implicit assumptions
have been made, aimed at bypassing secondary physical effects, which in reality
are almost certainly present but do not have a significant or unmanageable quanti-
tative impact on the simulated radiographs. The most relevant secondary effects,
which are discussed in this section, relate to the fact that (1) X-rays do not neces-
sarily follow straight paths, and (2) do not originate from a singular point in space.
These effects were not incorporated in the radiography simulator, however in ex-
plaining their origin during the course of this section, some opportunities towards
implementing them in future versions of the radiography simulator, are discussed.

Scattering

Through equation 2.2, it was established that the linear attenuation coefficient is
determined by a combination of interactions between atomic electrons and the X-
ray photons. Equation 2.22 states that the number of photons travelling along the
path l exponentially decreases at a rate which is dictated by the total attenuation
coefficient. However, only the photons undergoing a photo electric interaction
actually disappear from l as they are absorbed, while the Compton and Rayleigh
interactions force the photons to be scattered away from their straight ray paths.
Although equation 2.22 reflects the correct attenuation behaviour, it does not treat
scattered photons, which can still be registered on a completely different detector
pixel (not j). Photons can even undergo multiple scattering interactions, making
them difficult to simulate, in particular when the photon’s energy is not conserved,
cfr. Compton interactions.

With the pretence of predicting the 3D distribution of radiation dose across an
object, Freud et al. have recognised that scattering needs to be taken into account,
and they have devised a first-order deterministic method to accurately account for
the scattering contributions [27]. On the level of a radiograph however, the effects
of scattering are averaged out and are expressed through a global low frequency
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offset, with a footprint which disperses across the image as the scattered photons
travel a longer distance from the object to the detector (Object Detector Distance,
ODD). The scattering footprint can have a visible effect on a radiograph when the
ODD is small enough (see Figure 2.21(a)), depending on the scattering properties
of the object. A simple, although crude way of levelling out this offset, is to
perform a deconvolution with a large, predetermined kernel, cfr. a Richardson-
Lucy deconvolution [39] where the non-scattered direct signal can be modelled by
Dirac or an estimate for the point spread function of the detector. For example,
in Figure 2.21(b) a uniform kernel with a size roughly matching the extent of the
projected object, was used. Despite its efficacy, this deconvolution approach is
an ad hoc correction which needs to be visually assessed. As such, the inverse
process of convolving a simulated radiograph with a broad kernel is by no means
a good approach towards modelling a process like scattering, which is very object
dependent. While the method described by Freud et al. is proficient in predicting
scattering contributions, the overall low impact of scattering on a radiograph does
not justify the added computational burden of implementing this method in the
radiography simulator presented here.
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Figure 2.21: X-ray scattering in an apple. At a small ODD (± 24 cm) the contribution of
the scattered X-rays can be visualised through the line profile indicated on a flat field

normalised radiograph of the apple. The curved profile in (a) reveals a surplus intensity
caused by scattered photons. (b) Using a broad uniform kernel, the profile can be flattened

through a Richardson-Lucy deconvolution.
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Phase contrast

Similar to scattering, X-rays can be put off their course by refracting at material
inhomogeneities. While in essence the refraction process is rooted in a spatial vari-
ation of scattering properties at the atomic level, it is easier to understand through
a wave interpretation and the ray optics derived from it. The interaction between
an electromagnetic wave, with a wavelength λ, and its propagation medium can be
described by the complex refractive index

n(�x, λ) = 1− δ(�x, λ) + iβ(�x, λ)

where δ is called the refractive index decrement, and β refers to the extinction
coefficient. As a monochromatic plane wave u0(x, y) (wavevector �k = (0, 0, kz =

2π/λ)) propagates through a medium in the z-direction according to,

u(�x) = u0 · exp
(
i

∫
kzndz

)
= u0 · exp

(
ikz

∫
dz

)
· exp

(
ikz

∫
δ(�x)dz

)
· exp

(
−kz

∫
β(�x)dz

)
its phase front is transversely modulated through a phase factor containing the
refractive index decrement, which only has an effect on the square modulus inten-
sity (I(x, y) = |u(x, y)|2) when these phase fronts are allowed to propagate over
a certain distance [2, 11]. Moreover, the wave field’s amplitude decreases expo-
nentially at a rate β, which corresponds to the Lambert-Beer law when looking at
the intensity, with

μ = 2 · kz · β.
According to the ray optical approach it can be shown that the ray trajectories �x(s),
which are orthogonal to the wave fronts, should satisfy the following differential
equation [40]

d2

ds2
�x(s)− d

ds

[
δ(�x)

d

ds
�x(s)

]
= −∇δ(�x) (2.23)

This equation implies that straight ray paths are only possible in a homogeneous
medium, wherein δ(�x) ≡ δ and d2�x/ds2 = 0. While this clearly illustrates how
refraction is induced through spatial variation in δ, it is more interesting to look
at how the phase effects contribute to a radiograph. Figure 2.22 schematically de-
picts how refraction distorts the intensity profile of a high-δ object on a detector.
In a radiograph, this distortion is expressed through an accentuation of the con-
trast around the object’s edges, also know as phase contrast edge enhancement.
In transmission based CT, phase contrast is sometimes classified as an artefact,
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because the edge enhancement may lead to false conclusions on the material con-
stitution at the edges of an object, or other features might be obscured by it [2, 41].
In most cases however, phase contrast is seen as a powerful new imaging modal-
ity, yielding information on the refractive index decrement and even subresolution
scattering structures (dark field imaging), particularly when it is induced through
gratings [42].

incoming X-Rays diffracted X-Rays

normalised intensity profile [a.u.]
1

high-
object

normalised radiography

Figure 2.22: The principle of phase contrast. The X-rays, refracted at the edges of an
object, are registered on the detector as an enhancement of the object’s contour (based

on [43]).

An accurate model for the phase contrast contribution can be derived by con-
sidering how the X-ray beam intensity is transported between the object and a
detector. It can be shown that the beam intensity at a distance z = d from the exit
plane situated at z = 0 behind the object, can be approximated by the second-order
transport of intensity (TIE) equation [2, 43, 44]

Id(x, y) =
I0
M2

e−Tμ

[
1− d

M
∇2

⊥Tδ +
d

M
∇⊥Tμ · ∇⊥Tδ

]
(2.24)

with a magnification M and gradient operator ∇⊥, evaluated in the plane perpen-
dicular to the propagation direction. The transmission thickness T along a ray path
�l(t) through an object is given by

Tδ =

∫ tout

tin

δ
(
�l(t)
)
dt (2.25)

Tμ =

∫ tout

tin

μ
(
�l(t)
)
dt

for the refractive index decrement and the attenuation coefficient, respectively. In
many cases, even a first-order approximation is justified, since the second term in
equation (2.24) is rather small.
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Id(x, y) ≈ I0
M2

e−Tμ

[
1− d

M
∇2

⊥Tδ

]
(2.26)

Equation (2.26) presents a simple opportunity towards the incorporation of phase
contrast in the radiography simulator, by calculating the transverse Laplacian of
the integrated refractive index decrement (equation (2.25)) for each pixel. How-
ever, to visualise phase contrast in a lab-based CT setup, both a high temporal and
spatial coherence is required from the X-ray source. A high temporal coherence
is attained through a small bandwidth X-ray spectrum, which is poorly satisfied
for most lab-based sources. A high spatial coherence on the other hand, can be
reached by increasing the ODD with respect to the spot size (ps), in order to im-
prove the lateral coherence length

lc =
λ · ODD

ps

which represents the maximal distance between two correlated points in a complex
wave front. This formula underlines the fact that a phase contrast profile needs to
propagate over certain distance to be fully developed, which may lead to impracti-
cal measuring distances (e.g. up 200 metres at some synchrotron facilities), if the
spot size becomes to large. With a view to industrial applications, where large spot
sizes are common, the implementation of phase contrast models is not relevant to
the radiography simulator.

Finite spot size

Through Figure 2.7 it was already established that the X-ray source is not a singu-
lar point in space, and that its finite extent causes an inherent blurring of an object’s
projection in a radiograph. Especially when the magnified spot size is larger than
the point spread function of the detector, which according to most detector MTFs
is about 1.8 times the detector pixel size,

1.8 · pd ≤ ps
ODD
SOD

the blurring effect can no longer be ignored, and has to be modelled to obtain a
correctly simulated radiograph. A straight forward approach would to model a
finite spot as a collection of discrete source points, each contributing to the ra-
diograph according to their weight and relative intensity in the source spot’s area.
However, since the computational effort for this approach increases linearly with
number of subdivision points, it is not particularly attractive. An other more effi-
cient approach is to mimic the blurring effect through a convolution of the simu-
lated radiograph with a blurring kernel, which serves a point response of the finite
spot to a representative point in the object’s volume. On geometrical grounds it
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is clear that this blurring kernel can vary across the detector plane, and strongly
depends on the shape of the source spot, which in turn depends on the type of X-
ray source (directional or transmission) and its target load settings. Due to its lack
in generic applicability, the kernel approach was not pursued any further as part
of the radiography simulator, but can always be implemented as a post-processing
measure.

Heeling

Heeling is a secondary effect which specifically occurs when a directional X-ray
source is used. It is also related to the finite size of a source spot, which extends
not only across the surface of an X-ray target, but also towards the depth direction
of the target bulk. Due to the directional target’s inclination, some of the photons
generated within the bulk of the target will have travelled a longer way towards the
surface than others. As result, one side of the radiograph will be illuminated with
a less intense and more beam hardened spectrum (see Figure 2.23(b)). Heeling is
typically more persistent at the higher tube voltages, because high energy electrons
can penetrate deeper into the anode as they are converted to X-ray photons [3].
The X-ray spot can also be dislocated by geometrical aberrations on the target
surface, leading to an increased expression of heeling, e.g. when the electrons
hit the inclined flanks of a small hole in the target as a result of thermal damage
(‘pitting’).

1

0.7

0.85

0 20001000

pixel index [-]
normalised
intensity [-]

(a)

0 20001000

pixel index [-]

target X-Ray spot

detector

(b)

Figure 2.23: Heeling in a directional X-ray source. As the epicentre of the X-ray
generation shifts towards the bulk of the target anode from (a) to (b), heeling becomes

more persistent in the non-uniform illumination of the detector. In this case, the heeling
effect is induced by pitting damage (Heeling profiles courtesy of Amelie De Muynck).
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Although heeling is complicated by its dependence on the tube high voltage
and various causes like pitting, next to the target’s inclination, it can be modelled
by considering a virtual source with a gradually varying spectrum. This spectrum
depends on the direction in which the photons are emitted from the inclined target,
predominantly changing with respect to the angle about the axis of inclination (i.e.
parallel to the plane in Figure 2.23). It is actually this lateral variation in the beam
spectrum that produces artefacts similar to beamhardening, i.e. a sample volume
is imaged with different spectra thus leading to different effective μ-values. The
lateral drop in the detected intensity on the other hand can easily be eliminated
through normalisation.

2.3.4 GPU acceleration

The process of calculating a simulated X-ray radiograph is a typical example of
a single instruction which is performed on multiple data elements (single instruc-
tion, multiple data, SIMD). In this case, a ray tracing operation is performed for
each pixel element in and each position of the detector, across multiple energy
bins. GPUs in particular excel at data-parallel processing by mapping this SIMD
paradigm to a large set of concurrent threads, with the goal of optimising the ra-
tio between arithmetic operations and memory access operations. As a result,
GPUs are able to hide the data access latencies through a high arithmetic intensity,
rather than using big data caches or complicated flow control, as is the case for
CPUs [45]. GPUs also provide some more advanced caching schemes (texturing),
which are optimised towards graphical applications, and allow for highly efficient
one, two and three dimensional linear interpolation. Coincidently, it is the high end
3D graphics in the gaming industry that boosted the success of the GPU, through
its mass production. As a result, the scientific computing community now has ac-
cess to an ever increasing performance at a very low cost (Figure 2.24).

The implementation of the radiography simulation case, which is obviously
very SIMD and graphical in nature, on a GPU with texturing capabilities, has led
to an order in magnitude speed-up of the calculation, going from ±20 ms on a CPU
to ±600 μs for a single 500 by 500 frame [25]. This brings the computation time
for a simulation of multi-energy and multi-projection CT scans to a range suitable
for large scale studies. Similar speed-ups can be achieved for CT reconstruction
algorithms, as was already demonstrated by [11]. Some new developments, with
respect to the implementation of iterative CT reconstruction schemes on the GPU,
will be discussed in chapter 3.
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SP

DP

Figure 2.24: Comparison between the theoretical peak performances of GPUs versus
CPUs. More and more, GPUs are vastly outperforming CPUs in terms of theoretical
performance. Moreover, with the advent of the new Pascal architecture a leap in GPU
performance has been achieved [46–48]. In this figure, SP and DP refer to Single and

Double floating point operations, respectively.

2.4 Describing a cone beam CT geometry

2.4.1 Global versus component reference frames

A radiographic cone beam setup is a projective geometry composed out of three
essential components, namely:

1. a source point,

2. a projected volume of interest (VOI),

3. and a flat panel detector.

To describe this geometry in a flexible way, and enable an arbitrary spatial con-
figuration of the components, a local reference frame is attached to each one of
them (see Figure 2.25). A parametrisation of this spatial configuration leads to
15 degrees of freedom, when only rigid transformations are considered, and when
the source is effectively represented by a singular point. As explained, in the next
sections this is a redundant representation, which allows users to intuitively define
the orientations and locations of the components with respect to a global reference
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frame of their choosing. On the other hand, to facilitate a GPU implementation
which uses texture memory for efficient ray tracing interpolations, it is favourable
to parametrise the rays in the projected volume’s local frame. Using these na-
tive object coordinates, a rigid projective geometry can be described with only 9
degrees of freedom, and 15 degrees of freedom when global volume scaling and
shears are accounted for (see sections 2.4.2 and 2.4.3).

Figure 2.25: Reference frames in a cone beam projective geometry. An arbitrary global
reference frame is chosen to define the orientation and position of the local reference

frames attached to the source point S = {�0s}, the volume of interest
V = {�0v, �Xv, �Yv, �Zv}, and the flat panel detector D = {�0d, �Xd, �Yd, �Zd}.

2.4.2 Rigid motion - Rotation & Translation

First consider rigid motions, composed out of translations and rotations of the
individual components. The most intuitive way of defining a scanner component’s
orientation is to define its rotational transform with respect to the origin of the
global reference frame, followed by a translation to its final position in space.
There are many ways to compose a rotation transform, 24 to be precise, but they
are all defined by three rotation angles, α, β and γ (SO(3)). Here, a definition is
used which conforms to the CT nomenclature, where rotations about the Y -axis,
X-axis and Z-axis are referred to as tilts, slants and skews, respectively. It is
also in this particular order that the components are rotated about the global axes
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towards their final orientation, according to a set of so-called extrinsic Tait-Bryan
angles [49, 50], which leads to the following 3D rotation transform

R(α, β, γ) = RZ(γ) ·RX(α) ·RY (β)

composed out of the three elemental rotations, e.g. about the Z-axis,

RZ(γ) =

⎡⎣cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎤⎦
and similar matrices for the X and Y -axes. The final goal is to convert the coordi-
nates of the detector pixels (�xj) and the source point ( �Os), which together define a
single ray (see equation (2.12)), from a representation in the detector frame

�xj = xj,d · �Xd + zj,d · �Zd

to representation in the volume’s frame of reference

�xj = xj,v · �Xv + yj,v · �Yv + zj,v · �Zv.

This can easily be achieved by first rotating the detector coordinates to the global
frame, according to the prescribed detector angles, followed by a translation to its
correct position. ⎡⎣Xj

Yj

Zj

⎤⎦ = Rd(αd, βd, γd) ·
⎡⎣xj,d

0
zj,d

⎤⎦+ �Od

Finally, a global coordinate transform is performed, which realigns the volume’s
position and orientation with the global coordinate axes. The result is a composite
transform which links the local detector to the volume coordinates, expressed as⎡⎣xj,v

yj,v
zj,v

⎤⎦ = Rd,v ·
⎡⎣xj,d

0
zj,d

⎤⎦+ �Od,v (2.27)

where

Rd,v(αd,v, βd,v, γd,v) = RT
v ·Rd (2.28a)

�Od,v = RT
v ·
(
�Od − �Ov

)
(2.28b)

�Os,v = RT
v ·
(
�Os − �Ov

)
(2.28c)

The equations in (2.28) reveal how a rigid projective geometry can be parametrised
by three rotation angles, combined with both the detector and source positions
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with respect to the volume reference frame ( �Od,v and �Os,v), yielding 9 degrees
of freedom in total. In summary, all of the ray tracing operations are handled
in the volume’s orthogonal reference frame, by transforming the native detector
coordinates through an intermittent conversion to the global frame. This approach
is very similar to the ‘model-view’ principle introduced in OpenGL [51].

2.4.3 Affine motion - Scaling & Shear

The model-view transform is further complicated when a volume is subjected to a
uniform stretch or shear. These modes of motion can be relevant in CT when an ob-
ject is undergoing a global deformation during an acquisition. This normally leads
to motion blurring artefacts in the reconstructions, unless the deformations are
somehow estimated and properly compensated for [52–54]. While in some appli-
cations an object’s deformation can be approximated by uniform stretches and/or
shears, better results can be obtained through local, non-rigid descriptions of defor-
mation, often based on registration techniques (see chapter 5) [55, 56]. Nonethe-
less, with a view to their application in CT reconstruction, uniform stretches and
shears are a first order approach towards incorporating some notion of object de-
formation at a small computational overhead.

By including stretches and shears, 6 extra degrees of freedom will be intro-
duced to the model-view transform. Indeed, the volume’s reference frame is now
affine, and has to undergo an orthogonalisation procedure (Gram-Schmidt) to be
realigned with the global frame. Before this orthogonalisation, the affine frame
can be translated to the global frame’s origin, and can be rotated in such a way
that its Xv-axis is parallel to the global frame’s X-axis and its Yv-axis lies within
the global frame’s XY -plane (Figure 2.26). When the affine frame is aligned in
this way, the orthogonalisation can be described as a 2 step process, in which the
three remaining �Yv and �Zv-components are eliminated, followed by a normalisa-
tion of the three volume frame axes. In terms of transformation matrices this can
be written as

S−1
v = Sc−1 · Sh−1 =

⎡⎣1/ax 0 0
0 1/ay 0
0 0 1/az

⎤⎦ ·
⎡⎣1 −σxy −σxz

0 1 −σyz

0 0 1

⎤⎦ (2.29)

with

ax =< �X, �Xv >, ay =< �Y , �Yv >, az =< �Z, �Zv >

σxy =
< �X, �Yv >

ay
, σyz =

< �Y , �Zv >

az
, σyz =

< �X, �Zv >

az
− σxy · σyz.
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The scale-shear transform does not preserve orthogonality, and more importantly
it changes the metric in the sense that distances are no longer the ones perceived
in the original frame. For the ray tracing formula (2.11) this implies that for each
individual ray the distance Δt should be scaled according to

Δ̃t =

∥∥∥Rd,v · (�xj − �Os)
∥∥∥∥∥∥S−1

v ·Rd,v · (�xj − �Os)
∥∥∥Δt. (2.31)

It is also important that the pixel solid angle (Ωj) is evaluated before the orthog-
onalisation, in a frame where angles are preserved. In summary, the model-view
previously described by (2.28) is extended towards a fully affine transform, and is
now defined by ⎡⎣xj,v

yj,v
zj,v

⎤⎦ = Ad,v ·
⎡⎣xj,d

0
zj,d

⎤⎦+ �Od,v (2.32)

with

Ad,v = S−1
v ·Rd,v (2.33a)

�Od,v = S−1
v ·RT

v ·
(
�Od − �Ov

)
(2.33b)

�Os,v = S−1
v ·RT

v ·
(
�Os − �Ov

)
(2.33c)

keeping in mind the metric change attributed to the scales and shears. A projective
geometry, including a geometrical distortion caused by scales and shears, can thus
be parametrised with 15 degrees of freedom.

During the discussion above the scale and shear modes were mathematically
factorised out of the complete affine transform. From the user’s perspective, defin-
ing the shears and scales directly in this factorised form is not the most intuitive
way to prescribe a sample’s deformation. It is easier to look at the modes in their
respective principal frames, where the scale and shear matrices effectively take on
a form similar to the ones in (2.29). In other words, the user can provide frames
in which the stretches and shears are operating in well defined directions, which
means that their matrices are subjected to an orthogonal matrix transform of the
form,

Ŝ′
v = RT · Ŝv ·R

rotating back and forward between the original volume frame and the principal
frame, where Ŝv is diagonal or triangular for the scale or shear modes, respectively.
The redundancy in this parametrisation allows user to intuitively prescribe each of
the individual affine deformation modes for an object.



2-40 CHAPTER 2

rotate & translate scale & shear
(orthogonalise)

Figure 2.26: Realigning a volume’s affine reference frame with the global orthogonal
frame. After aligning the XY -planes of both frames, such that �Xv ‖ �X and �Ov = O, the

scales and shears can be eliminated through a Gram-Schmidt orthogonalisation.

2.4.4 Defining CT trajectories

A CT scan is essentially a large collection of radiographs, each acquired at a differ-
ent relative orientation and/or position of the components in the cone beam setup.
The sequence, which defines the component orientations, is called a CT trajectory,
and links a 15 parameter entry to each radiograph in the CT scan. As mentioned
before, the radiography simulator extracts the 15 parameter representation form a
redundant parametrization of the projective configuration, where

• the source is defined by its position (3 parameters),

• the volume by its position, orientation, and scale and shear in their respective
principal frames (18 parameters),

• and the detector by its position and orientation (6 parameters).

The radiography simulator also implements some standard trajectories, for which
the component orientations and positions can be generated with just a few pa-
rameters, such that e.g. the source and detector travel along a helical or circular
trajectory.

2.5 An example: simulated CT scans of fruit

2.5.1 A fruit phantom

In the context of the TomFood project, the radiography simulator was used as a
cost effective tool to evaluate alternative X-ray CT approaches for in-line quality
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control on food products. Hence, in this section we demonstrate the capabilities of
the radiography simulator, using a digital phantom of an Elstar apple. The same
phantom will be used in the simulation based branch of the feasibility study on the
in-line conveyor belt trajectory, discussed in chapter 4.

The digital phantom was based on a high quality X-ray micro-CT scan (voxel
size 64 μm) of an Elstar apple. The 8-bit gray values in the reconstruction of this
scan serve as a measure for the density of the apple tissue, which can be modelled
as a soft tissue material when it comes to the mass attenuation coefficient (see Fig-
ure 2.4) [7]. In other words, each voxel in the digital phantom volume is set to
contain soft tissue at a density which is linearly mapped to the gray values in the
CT reconstruction of the high quality scan. In this mapping, air, with a density of
1.2 · 10−3 g/cm3 [57], is represented by the lowest gray value, while the attenua-
tion average taken across the bulk of the apple tissue μbulk = 0.29 cm−1, is asso-
ciated to the measured mass density of the apple tissue, i.e. ρapple = 0.84 g/cm3.
To calculate the latter, the apple is weighed on a mg-scale, and the bulk tissue
of the Elstar apple was digitally segmented (excluding the core air space) to ob-
tain an accurate tissue volume estimate. In summary, the digital apple phantom is
represented by a 3D regular grid of voxels each containing one out of 256 labels,
referring to a soft tissue material with a linearly scaled density (see Figure 2.27).

141
(mask average)

high resolution scan

0
tissue density

256 gray values
phantom

gray value

sample
Elstar apple linear density scaling

radiograph
simulation

(bulk tissue)

(air)

Figure 2.27: Procedure for constructing a digital apple phantom, as an input to the
radiography simulator. The gray values from an X-ray μCT scan (voxel size 64 μm) of an
Elstar apple are used to represent 256 apple tissue classes, which are modelled by a soft

tissue mass attenuation curve and a density linearly scaled to their gray values.

2.5.2 Testing the simulator

Real versus simulated

In Figure 2.28, a radiograph taken from the high quality acquisition, which forms
the basis for the digital phantom, is compared to a simulated radiograph of the
phantom at comparable tube and detector setting (see table 2.2). Both the radio-
graphs and the selected line profile indicate a good agreement between the simula-
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tions and the original base line scan. The small differences are caused by a slight
misalignment of the phantom volume with respect to the real objects position. The
output of the radiography simulator is also validated in chapter 4, where a similar
comparison is made between the radiographs acquired in an in-line conveyor belt
mock-up and its simulated counterpart.

transmission [-]
0.21

simulationreal
simulation

real

Figure 2.28: Comparison between a real and simulated radiograph of the Elstar apple and
its derived digital phantom, respectively. A good agreement is seen in both the radiographs

and the indicated line profiles.

Table 2.2: Tube and detector settings for the circular cone beam scan, which forms the
basis for the digital Elstar apple phantom.

Tube Feinfocus FXE160.51 with tungsten target
Tube voltage (Vt) 120 kV
Tube power (Pt) 8 W

Detector Varian PaxScan 1515DXT
Exposure time (texp) 1668 ms
Detector size (W,H) (575,575) -
Binned pixel size (Pd) 254 μm
Binning (-) 2 by 2 -

Geometry Circular cone beam
Source Detector Distance (SDD) 1030.2 mm
Source Object Distance (SOD) 520.1 mm
Number of projections (Np) 1400 -

Reconstruction SART
Voxel pitch (Pv) 64 μm
Voxel grid (W,H,D) (512,512,376) -
Iterations (-) 1 -
Relaxation (-) 0.5 -

It also important to note that the radiography simulator adequately mimics the
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noise behaviour of a real radiograph. An estimate for the Signal to Noise Ratio
(SNR) can serve as a measure for the noise behaviour in the radiographs, and is
calculated here by taking a moving average (μ̂) and variance (σ̂2) across a line
profile. The SNR, expressed in dB, can be found with

SNR = 10 · log( μ̂
2

σ̂2
) (2.34)

as illustrated by Figure 2.29, for the line profile in Figure 2.28.

SNR [dB]
70

0

35

pixel position [-]
0 575

simulation
real

Figure 2.29: A good agreement is found between the SNR-profiles in the simulated and
real Elstar radiographs. The moving average and variance were evaluated with 9 pixel

wide kernels.

A final way to compare the simulations to the real data, is through their CT
reconstructions, which prove to be nearly identical (see Figure 2.30). These results
suggest that the methodology for constructing an apple phantom and calibrating its
density, is valid and accurate.

simulationreal

Figure 2.30: Comparison between the reconstruction of a simulated and a real CT dataset,
which prove to be nearly identical.
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Arbitrary orientations

The same phantom can now be used to explore new geometrical configurations, for
which real radiographs were or can not be acquired. The simulated radiographs of
the rotated, compressed and sheared apple are depicted in Figure 2.31.

rotation scaling shear
Figure 2.31: Monochromatic simulations of radiographs taken in arbitrary geometrical

configurations. From left to right, the apple is rotated about the X-axis, compressed in the
X-direction and sheared parallel to the XY -plane.

2.6 Conclusion

The essential steps of the X-ray CT imaging process, i.e. acquisition, reconstruc-
tion and analysis, have been touched in this chapter. A specific emphasis is put
on the acquisition step, how its intricacies are translated to the hardware setups of
the UGCT and how its physics can be modelled to a first order. Working towards
the GPU-accelerated and realistic simulation of radiographs, a so-called ‘radiog-
raphy simulator’ was developed [25]. The flexible and intuitive parametrisation
of the geometrical configurations in which the radiographs are simulated, enable
arbitrary trajectories to be defined for each of the components (source, object and
detector). Moreover, the results of the radiography simulator prove to be valid
and accurate, as demonstrated here through simulated radiographs of a carefully
constructed digital fruit phantom. In summary, X-ray CT acquisitions in arbitrary,
non-standard geometries can now be simulated, with a GPU-accelerated imple-
mentation of a first-order, polychromatic X-ray attenuation model.
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3
CT Reconstruction algorithms

The basic principles of CT reconstruction were already introduced in chapter 2.
In short, the attenuation line integrals measured in each pixel of a radiography
need to be inverted to the attenuation’s spatial distribution, which is supported by
a voxelised volume. The algorithms that implement this inversion, are tradition-
ally classified as ‘analytical’ or ‘iterative’. The iterative methods are historically
the first to be used for CT reconstruction in the 1970s [1], but when large (512
by 512) voxel matrices were considered, their computational requirements soon
became intractable for the computing power available at that time. Only with the
advent of fast, Fourier based filtered-backprojection algorithms, CT reconstruc-
tions of larger voxel matrices became possible. As computing power nowadays is
not an issue any more, the trend from iterative to analytical is reversing, in particu-
lar because the iterative reconstruction techniques are more flexible when it comes
to implementing advanced X-ray physics models or specific a priori knowledge on
the nature or behaviour of the imaged object [2].

As the gold standard approach to CT reconstruction, the relevant equations for
the analytical techniques and their interpretation are briefly discussed in the next
section. For the specifics on their implementation and derivations, the reader will
be referred to the appropriate literature. The remainder and bulk of this chapter is
dedicated to iterative reconstruction (section 3.2). As a part of this work, a hybrid
Python-C GPU code was developed to facilitate the iterative reconstruction of CT
datasets acquired along arbitrary trajectories. Central to this implementation is its
GPU-acceleration and the ability to handle very large reconstruction volumes, not
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limited by the GPU RAM’s size.

3.1 Analytic reconstruction

3.1.1 2D CT

Parallel beam

The parallel beam configuration is the simplest and coincidently the first geometry
to which Cormack and Hounsfield tailored the concept of CT [1, 3, 4]. In this ge-
ometry a pencil X-ray beam and an opposing singular detector element are swept
across a plane through the scanned object, sequentially acquiring the object’s at-
tenuation integrals along a series of parallel lines in a particular direction within
that plane (Figure 3.1). When the source and detector rotate about a fixed point
(the origin) within this plane, the resulting profile of the projected attenuation can
be parametrised by the translation coordinate (r) and an angle (θ), encoding the
relative orientation of the object with respect to the source-detector assembly

Pθ(r) =

∫ ∫
μ(x, y) · δ(r − x cos θ − y sin θ)dxdy (3.1)

equivalent to a 2D radon transform of μ (cfr. equations 2.6 and 2.7) [5, 6].

Figure 3.1: Parallel beam geometry. In this geometry a pencil beam is swept across the
object, parallel to the θ-direction. In this way a profile of the projected attenuation can be

measured.

The Tuy-Smith condition, introduced in section 2.1.2, states that a mathematically
exact reconstruction of the attenuation function μ(x, y) can be obtained from the
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measured line integrals, for all of the points in the support of μ that are contained
within the circular source trajectory. The key to inverting equation (3.1) towards
an explicit expression for μ(x, y), lies in the ‘Fourier slice theorem’, which for the
2D case states that the 1D Fourier transform of a projection profile, acquired at
an angle θ is equal to the 2D Fourier transform of the μ(x, y)-distribution, sam-
pled along the line in Fourier space, which has the same angular orientation θ with
respect to the frequency axes (ξ, η), as illustrated in Figure 3.2. In other words,
by acquiring the projection profiles, the Fourier coefficients of μ(x, y) are gradu-
ally sampled onto a cylindrical grid, which through an inverse Fourier transform
can be converted back to μ(x, y). This inverse transform can be expressed in its
cylindrical (frequency) coordinates (ρ, θ),

μ(x, y) =

∫ 2π

0

∫ ∞

0

F (ρ, θ)ei2πρrρdρdθ (3.2)

where F = F(x,y) [μ(x, y)] is the 2D Fourier transform of μ(x, y), and r and ρ

are defined through Figure 3.2. Moreover, there is an apparent symmetry for the
parallel sampling strategy, between projections acquired at a 180◦ separation,

F (ρ, θ + 180◦) = F (−ρ, θ)

which further simplifies (3.2) to

μ(x, y) =

∫ π

0

[∫ ∞

−∞
F (ρ, θ)|ρ|ei2πρrdρ

]
dθ (3.3)

This also means that μ(x, y) can be reconstructed with data acquired during a rota-
tion of only 180◦, which again reflects the minimal requirements for a Tuy-Smith
sufficient sampling. More importantly, equation (3.3) unveils a three step approach
towards an exact reconstruction for a CT dataset acquired through parallel projec-
tions of the attenuation function:

1. The 1D Fourier transform of the projection profiles is calculated

Sθ(ρ) = F (ρ, θ) =

∫ ∞

−∞
Pθ(r)e

−i2πρrdr (3.4)

2. A filtered version of these profiles is converted back to the spatial domain
through an inverse Fourier transform

Qθ(r) =

∫ ∞

−∞
Sθ(ρ)|ρ|ei2πρrdρ (3.5)

3. The filtered profiles are redistributed, i.e. back projected into the spatial
domain according to

μ(x, y) =

∫ π

0

Qθ(x cos θ + y sin θ)dθ (3.6)
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This analytical procedure is, for obvious reasons, referred to as a ‘filtered back
projection’ (FBP). Mathematically, the ramp filtering kernel G(ρ) = |ρ| in equa-
tion (3.5) is introduced through the Jacobian of the coordinate change, going from
Cartesian to polar coordinates in the Fourier domain. Intuitively, the kernel com-
pensates for the fact that the sampling density is higher near the origin, and de-
creases according to the inverse of the distance to the origin. By reorganising
equation (3.5) as follows,

Qθ(r) =

∫ ∞

−∞
i2πρSθ(ρ)

H(ρ)

2π
ei2πρrdρ (3.7)

where the ‘Hilbert filter’ (H) is defined through,

H(ρ) =

⎧⎪⎨⎪⎩
−i, ρ > 0

0, ρ = 0

i, ρ < 0

Figure 3.2: The Fourier slice theorem in two dimensions. The 1D Fourier transform of
parallel projections is equal to a slice in the 2D Fourier transform of the projected

function, taken along the same direction.

and considering that

Fr [(∂/∂r)Pθ(r)] (ρ) = i2πρSθ(ρ)

equation (3.7) can be interpreted as the Hilbert transform of the Radon transform’s
derivative with respect to r. In the spatial domain this can also be expressed as
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the principal value (PV) of a convolution between the Radon derivative and the
tempered Hilbert distribution.

Qθ(r) = PV
[
kH(r′) ∗ ∂

∂r′
Pθ(r

′)
]
(r) (3.8)

with

kH(r′) =
1

πr′
.

This is a simplified version of the original inversion formula proposed by Grangeat,
in his mathematical framework for cone beam 3D reconstruction [7]. A similar for-
mula arises through Katsevich’s work on helical CT trajectories, as discussed in
section 3.1.2.

With a view to practical implementations of filtered back projection, it is im-
portant to note that the projection profiles are approximately band limited, in the
sense that their highest frequency components are close to negligible. In the
ideal case, there is no overlap between the periodic extensions of Sθ(ρ), and
the integral in equation (3.5) can be restricted to the Nyquist sampling interval
ρ ∈ [−ρmax, ρmax] with ρmax = 1/(2pd). Here, we have implicitly taken into
account the discrete nature of the sampling process, where the pixel positions in a
finite detector of pixel width J are uniformly spaced, according to

rj = jpd with j = −	J/2
 , . . . , �J/2�

For the discretised versions of equation (3.4) to (3.6), the reader is referred to [6].
As a direct result of this discretisation, the ramp filter G in (3.5) is also sampled,
and truncated to a form known as the ‘Ram-Lak’ filter. In other versions of the
ramp filter, the higher frequency components are strategically down weighted, in
order to suppress noise in the reconstructions. With the following practical imple-
mentation,

G(ρ) =
{
|ρ| − 2pdαρ

2 if ρ > 1/(2pd)

0, otherwise

the noise levels can be freely tuned by adjusting the parameter α ∈ [0, 1] (see
Figure 3.3).

Fan beam

The fan beam geometry was already introduced through Figure 2.9, where the
Tuy-Smith sufficiency of this geometry was established. The obvious difference
with the parallel geometry is the oblique propagation of the rays, due to the finite
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Figure 3.3: Ramp filter in the Fourier domain with adjustable modulation of high
frequency components.

distance between the X-ray source point and the object centre (SOD). The fan
based acquisition scheme forms the basis for the second generation of CT scanners
[8], in which an attenuation profile of the object contained within the X-ray fan,
can (almost) instantly be acquired across a multi-pixel line detector. Moreover,
the lateral resolution of the projection profiles is boosted through a geometrical
magnification (see Figure 3.4) with a factor

M =
SDD

SOD
.

When SOD → ∞, there is no magnification and the fan geometry reverts back
to a parallel one, revealing an intricate similarity between both. In fact, the fan
beam reconstruction problem can easily be reformulated to a parallel reconstruc-
tion problem, by reordering the obliquely sampled rays into equivalent sets of
parallel rays. The derivation of the fan beam FBP reconstruction formulae (3.9)
is not within the scope of this work, but can be found in [5, 9, 10]. When a flat
detector (Figure 3.4) is considered, the reconstruction formulae are given by

Sθ(ρ) =

∫ ∞

−∞

SDD√
SDD2 + r′2

Pθ(r
′)e−i2πρr′dr′ (3.9a)

Qθ(r
′) =

∫ ∞

−∞
Sθ(ρ)|ρ|ei2πρr′dρ (3.9b)

μ(x, y) =
1

2

∫ 2π

0

M2
t

M2
Qθ(Mtr)dθ (3.9c)

with
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Mt =
SDD

SOD + t

t = y cos θ − x sin θ

r = x cos θ + y sin θ

These equations are very similar to the ones for a parallel beam FBP reconstruc-
tion. In particular, the same three steps can be distinguished, where now pre- and
post-weighting factors are introduced in to the Fourier transform and back pro-
jection steps, while the filtering step remains unchanged. Note, the magnification
effect is reflected in the conversion between the local object and the detector coor-
dinates (resp. r and r′), i.e. r′ = Mtr. For an exact reconstruction, the integration
in (3.9c) can be restricted to an angular range of π+2γ (cfr. equation (2.8)), lead-
ing to a so-called ‘short scan’. Only if the oversampled ray directions are correctly
weighed with a ‘Parker filter’ [11], high frequency artefacts in the reconstructions,
otherwise introduced by redundant data, can be avoided.

Figure 3.4: Fan beam geometry with a flat detector. The attenuation profile for an object
contained within the X-ray fan, can (almost) instantly be acquired across a multi-pixel line

detector. The source traces a circle with the origin at its centre.
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3.1.2 3D CT

Cone beam CT

With the geometries described above it is theoretically possible to reconstruct a
3D attenuation distribution as a stack of individual 2D reconstructions. This is
however a time consuming effort, which next to the rotational movement requires
a vertical sweep, and in the case of the parallel geometry an extra horizontal sweep
of the beam1. In the same way fan beam geometries eliminated the need for a
horizontal pencil beam sweep, cone beams can suppress the vertical sweep. In
other words, CT acquisition times were drastically reduced with the advent of the
cone beam protocols, where the solid angle spanned by a large (flat) panel detector
is uniformly illuminated by an X-ray source point. The contents of the cone formed
by the detector surface and the source point is instantly projected within a single
2D radiograph. This opens up the perspective of sampling the entire Radon space
in a very efficient way, and it was proven by Grangeat [7] that the Radon transform
can be inverted through proper integration of its derivative. Again, the key to this
inversion is the Fourier slice theorem, where in its 3D form the parallel lines are
exchanged for a set of parallel planes defined by their mutual unit normal vector
(�θ) and their distance r with respect to the origin. According to the Fourier slice
theorem, the Fourier transform of R{μ} (�θ, r) (cfr. equation (2.7)) with respect to
r, forms a slice of μ’s 3D Fourier transform in the �θ-direction in frequency space
(�ξ = [ξ, η, ζ]).

Fr

[
R{μ} (�θ, r)

]
(ρ) = F�x [μ(�x)] (�θ · ρ) (3.10)

The Tuy-Smith sufficiency condition determines whether this inversion will be
exact, and as mentioned in section 2.1.2 this depends on the shape of the source
trajectory.

Circular trajectories - the FDK algorithm

Except for the points enclosed within the source’s 2D circular trajectory (cfr. par-
allel beam and fan beam CT), an exact reconstruction of a cone beam projected
attenuation distribution can not be calculated from a CT dataset acquired in a cone
beam circular geometry (see Figure 3.5). Indeed, any plane parallel to the one of
the source trajectory (the centre plane), can by definition not contain the source
and is thus not Tuy-Smith compliant. The most commonly adapted algorithm,
which can still reconstruct off-centre planes with acceptable accuracy, was devel-
oped by Feldkamp, David and Kress (FDK) [10]. As a heuristic extension to fan
beam reconstruction, FDK can exactly reconstruct the μ-values in the centre plane.

1An exception are, for example, medical beamlines at synchrotrons, which can completely illumi-
nate a small area detector.
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Off-centre values, on the other hand, are subject to a vertical blurring, which de-
teriorates as the distance to the centre plane increases, i.e. a cone beam artefact
arises (cfr. section 2.1.2). Despite this blurring, Rodet et al.have proven that any
straight line integral through an FDK reconstructed volume is exact, even follow-
ing lines parallel to the z-axis. They also provide a particularly handy parametrisa-
tion (3.11) for the FDK formulae [9, 10], from which the fan beam reconstruction
equations (3.9) can be retrieved by setting z = 0.

Sθ(ρ, z
′) =

∫ ∞

−∞

SDD√
SDD2 + r′2 + z′2

Pθ(r
′, z′)e−i2πρr′dr′ (3.11a)

Qθ(r
′, z′) =

∫ ∞

−∞
Sθ(ρ, z

′)|ρ|ei2πρr′dρ (3.11b)

μ(x, y, z) =
1

2

∫ 2π

0

M2
t

M2
Qθ(Mtr,Mtz)dθ (3.11c)

with

Mt =
SDD

SOD + t

t = y cos θ − x sin θ

r = x cos θ + y sin θ

Figure 3.5: A circular cone beam geometry with a flat detector. A source spot casts a X-ray
cone onto a flat panel detector, which acquires an entire 2D radiograph of the illuminated

object. The source spot traces out a circle in the xy-plane with the origin at its centre.
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Helical trajectories - the Katsevich algorithm

Many Tuy-Smith compliant trajectories, which enable an exact reconstruction can
be conceived, but with the prospect of a tractable practical realisation ‘helical’
trajectories [12] have taken the upper hand, next to less popular trajectories, e.g.
‘circle+line’ [13]. Conceptually, helical CT is quite simple and forms an elegant
solution to a complete sampling of the Radon space, by letting the source point
trace out a helical path in space relative to the scanned object, i.e.

�Os(θ) =

[
SOD cos θ, SOD sin θ, zp

θ

2π

]T
,

where zp represents the helical pitch (Figure 3.6). The helix can be spun out over
multiple rotations (θ > 2π), encapsulating a cylindrical region of a large vertical
extent. Moreover, it can be shown that all of the points within this cylindrical re-
gion can be reconstructed exactly. This is particularly easy to grasp for the points
on any straight line that connects two (non-coinciding) points on the helical path,
called a ‘PI-line’. From the following intuitive formulation of the Tuy-Smith suf-
ficiency condition,

μ(�x) can be reconstructed exactly in �x given any source trajectory,

1. that does not intersect �x, and

2. whose endpoints are collinear with �x.

it should be clear that all of the points on a PI-line can be reconstructed exactly
if the source traverses the entire helical segment (a ‘PI-segment) delineated by
the PI-line’s endpoints ( �Os(θt) and �Os(θb)) 2. Furthermore, it can be shown that
there is a unique PI-line intersecting each point �x contained within the cylinder
encapsulated by the helix. Consequently, it is possible to exactly reconstruct the
μ-distribution supported by this cylinder, as long as the relevant PI-segments are
covered. In short, if the PI-segment of �x is traversed by the source, its underlying
μ-value can be reconstructed.

As an other somewhat trivial property, the PI-lines self-project the helical path
onto the detector plane, when the source is positioned in one of the endpoints. If
this is done for a series of consecutive PI-lines (see Figure 3.6(a)), the helical turns
above and below the central source position are projected to a pair of lines crossing
the detector. The area bounded by these lines is called a ‘Tam-Danielsson window’
(TDW) [14, 15], and contains the data relevant to reconstruction, in the sense that
the remaining area outside of this window only measures redundant data. This is
explained best through Figure 3.6(b), where the helical trajectory is considered to

2‘t’ as in ‘top’, ‘b’ as in ‘bottom’
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be the result of a downward screw-like motion of the scanned object relative to a
stationary source and detector. The rays in this figure represent one and the same
PI-line, though depicted in two different rotational states of the object, i.e. θ and
θ� = θ− θt+ θb. In these states, the projections for all of the points on the rotated
PI-line fall respectively onto the bottom and top boundaries of the TDW. Whereas
in between, the PI-line’s points are projected onto individual trajectories through
and always falling inside of the TDW. In fact, following the reasoning above, these
trajectories constitute the Tuy-Smith sufficient CT data.

Tam-Danielsson window

(a)

PI-line

Projected trajectory of 

(b)

Figure 3.6: Tam-Danielsson window (TDW) and PI-lines in helical cone beam CT. (a) The
projections of the upper and lower segments on a helical path, with respect to a central
source position, form the bounds to the TDW, which contains the non-redundant data

necessary for an exact helical CT reconstruction. (b) The endpoints of a PI-line are always
projected on the TDW boundaries. Other points are projected onto trajectories through

and always falling inside of the TDW.

A last important prerequisite to the reconstruction of helical CT data is the
notion of so-called ‘κ-planes’ and their intersection with the detector plane, the
‘κ-lines’ (Figure 3.7). Each point �x can be associated to a unique κ-plane formed
by the unique PI-line through �x and the source point on the helix halfway between
the PI-line’s endpoints. For a given central source position (θ) all of the κ-planes
are formed by the points �Os(θ), �Os(θ+ψ) and �Os(θ+2ψ)) with ψ ∈]−π/2, π/2[,
and the κ-lines can be expressed in local detector coordinates, as follows [6, 16, 17]

z′κ(θ, ψ) = zp ·M · ψ

2π
·
(
1 +

x′

SDD tanψ

)
. (3.12)

There are many algorithms to reconstruct helical CT data, in an either exact
or approximate way [18, 19]. However, the concepts presented above, all relate to
the FBP approach developed by Katsevich [20], as a specific case of his general
inversion scheme for cone beam CT [21]. Following the parametrisation of Noo et
al. [16, 17], Katsevich’s helical FBP reconstruction formulae are given by
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-line

-plane

Figure 3.7: κ-lines & planes on a flat detector in a helical CT geometry. A κ-plane is
defined by a PI-line and the point on the helix half way between this PI-lines endpoints. A
κ-lines is formed by the intersection of a κ-plane with the detector plane. For a given

detector position each point in the volume can be associated to a unique κ-line.

PD
θ (r′, z′) =

[
∂

∂θ
+

r′ + SDD2

SDD

∂

∂r′
+

r′z′

SDD

∂

∂z′

]
Pθ(r

′, z′) (3.13a)

Qθ(r
′, z′κ) =

∫ ∞

−∞
kH(r′ − r′′)

SDD√
SDD2 + r′′2 + z′′2κ

PD
θ (r′′, z′′)dr′′ (3.13b)

μ(x, y, z) =
1

2π

∫ θt(�x)

θb(�x)

Mt

SDD
Qθ(Mtr,Mtz

∗)dθ (3.13c)

with

Mt =
SDD

SOD + t

t = y cos θ − x sin θ

r = x cos θ + y sin θ

z∗ = z − zp
θ

2π

The main difference between this algorithm and the FDK-algorithm for circular
trajectories (equation (3.11)), is revealed in the filtering step, which is no longer
performed in Fourier space. Indeed, the derivatives of the projection data is explic-
itly calculated and filtered with a Hilbert kernel similar to (3.8). Also, while the
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pre-weighting factor is exactly the same as in the fan beam and FDK algorithms,
the post-weighting factor in the back-projection step is notably different, assuring
a fair weighting for all of the rays sampled while travelling the PI-segment of �x,
θ ∈ [θb(�x), θt(�x)]. Intuitively, the quadratic pre-weighting factor in the fan beam
algorithm reflects the multiplicity in the circular sampling process, which is lifted
by introducing a pitch (zp > 0). The filtering process in (3.13b) also involves a for-
ward and backward resampling between the original detector coordinates (x′, z′)
and the κ-lines (x′, z′κ). In other words, the data is actually filtered along the κ-
lines, and not across the original detector rows as is the case for fan beam and
FDK reconstructions. For a specific implementation of the Katsevich algorithm,
the reader is referred to [6, 16, 22].

3.2 Iterative reconstruction

3.2.1 CT as an algebraic system of equations

As a first step in the iterative reconstruction approach a forward model for the
radiographic projection process needs to be formulated, such as the first order
model introduced throughout section 2.3. In its monochromatic form for a single
energy bin this first order model is based on the Lambert-Beer law, which directly
explains the measured transmissions, cfr. equation (2.6). And with a view to
reconstructing the μ-distribution on a grid of voxels, as in Figure 2.19, the line
integral in (2.6) can be discretised as follows

pj = − ln

[
Ij
I0,j

]
=

L∑
l=0

tjl · μl. (3.14)

True to the ray assumption, the weights tjl can be interpreted as intersection
lengths between rays j with voxels l. A set of algebraic equations can be com-
posed by gathering the data sampled by each ray, which can subsequently be cast
into a matrix form

�p = T �μ. (3.15)

where T represents a (J ×L) weight matrix, linking the J measurements to the L
unknown attenuation values, i.e.

[T ]jl = tjl and [�μ]l = μl.

A reconstruction thus amounts to an inversion of the matrix equation (3.15). Un-
fortunately, T , being a projection operator, is rarely invertible or even square for
that matter, and (3.15) can only be inverted in a least square sense using the normal
equations,
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�μ = (T TT )−1T T �p = T †�p

which minimises the least square norm ‖�p− T �μ‖. Even the least squares approach
is at the grace of a well conditioned Moore-Penrose inverse (T †), which is not the
case for (3.15) describing a CT acquisition. Indeed, many measurements pj stem
from closely positioned and nearly parallel rays, leading to a poor linear indepen-
dence of rows and columns in T TT . In other words, if it exists, the Moore-Penrose
inverse for the CT reconstruction problem is generally ill-conditioned, particularly
when the data is dominated by inconsistencies with respect to equation (3.15), e.g.
in the presence of noise.

However, it is not so much the ill-conditioned nature of (3.15), but rather its
shear size, that complicates the inversion process. For example, a routine high
resolution CT acquisition at the UGCT roughly consists out of 1000 cone beam
projections on a 1000 by 1000 flat panel detector, i.e. 109 single pixel measure-
ments. When these measurements are used to reconstructed a cubic grid of 109

voxels (1000 by 1000 by 1000), the system matrix quickly grows to contain 1018

entries. Storing T would thus require up to 4 exabytes of floating point values,
and even calculating it would literally take ages. These technical challenges are
addressed by the iterative inversion strategies and their GPU implementations, as
explained in the next section. These techniques exploit the inherent sparse struc-
ture of T , for efficient calculations of the matrix-vector product in (3.15), which
do not require the system matrix in its explicit form.

3.2.2 Iterative inversion strategies

The iterative paradigm

The basic idea of any iterative reconstruction scheme (see Figure 3.8) is to calcu-
late a simulated version the CT projection data (�p(0)), starting from an initial guess
for the contents of the reconstruction volume (�μ(0)). The difference between these
simulations and the real radiographs (�p) is subsequently redistributed across the
volume in a back projection step. As such, a new updated version of the volume
(�μ(1)) is obtained, which can be plugged into the next iteration of this projec-
tion/back projection process. The above sequence is repeated over and over until
the difference (�p(k) − �p) only marginally affects the next iterate �μ(k), or in other
words until �μ(k) converges to the fixed point (�μ∗) of the iterative scheme, which in
the ideal case should be equal to the true distribution (�μ∗ ≈ �μ).
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back project

project

stop?

-

measured data

initial volume
(empty)

final volume

yes

no

simulated data

intermediate
volume

Figure 3.8: Basic concept of iterative CT reconstruction. The simulated projections of an
intermediate volume, which is often initialised as an empty volume, are compared to the
measured data. The difference between the simulated and measured data is then back

projected, leading to an update of the intermediate volume. By repeating this process the
volume gradually converges to its final state (Based on [23]).

Kaczmarz & the algebraic reconstruction technique (ART)

The archetype of the iterative CT reconstruction algorithms, aimed at solving large
systems of equations such as (3.15), was introduced by Kaczmarz [24, 25] long be-
fore the concept of X-ray CT was even conceived. To solve (3.15), Kaczmarz pro-
poses an updating strategy in which an initial guess (�μ0) is projected onto a (L−1)-
dimensional hyperplane defined by one of the measurements, and its normal vector
�t0 = [t00, t01, . . . , t0L]

T (equation (3.14)), to form a new estimate for the atten-
uation values (�μ(1)). This process is repeated over and over, including the other
measurement hyperplanes, leading to an update scheme (�t0 = [tk0, tk1, . . . , tkL]

T )
[5, 6, 24]

�μ(k+1) = �μ(k) +
pk − �tk · �μ(k)

�tk · �tk
�tk (3.16)

through which the intermediate attenuation values (�μ(k)) gradually migrate to-
wards a solution of (3.15) at the intersection of these hyperplanes. As mentioned
before, this solution is rarely unique, and inconsistencies such as noise in the mea-
surements only allow for an approximate solution, in the least squares sense, to
be found. For example, in the ideal 2D case the Kaczmarz-algorithm retrieves the
intersection between two oblique straight lines (Figure 3.9(a)). In the presence of
noise however, measurements taken along the same ray vary statistically, spawning
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a series of parallel lines in the (μ1,μ2)-plane, which do not intersect in a singular
point (Figure 3.9(b)).

(a)

Solution space

(b)

Figure 3.9: Kaczmarz algorithm in 2D. (a) An iterative projection of the intermediate
solution from one hyperplane (straight line in 2D) to another eventually converges to a

unique intersection. (b) Noisy measurements along the same ray spawn a series of parallel
lines in the (μ1,μ2)-plane. In this case there is no clear solution to (3.15).

The Kaczmarz algorithm forms the blueprint for the algebraic reconstruction
technique (ART), for which the update equation in a single voxel (index m) is
given by

�μ(k+1)
m = �μ(k)

m + λ
pj −

∑L
l=0 tjl · μ(k)

l∑L
l=0 t

2
jl

tjm (3.17)

The only difference between (3.16) and (3.17) is the presence of a ‘relaxation
factor’ (λ), which dampens the contribution of each individual update. When λ

is chosen to lie within ]0, 1[, its overall effect is to smooth the higher frequencies,
e.g. noise, in the intermediate solutions. While this results in a slower convergence
rate, setting λ to an appropriately small value is also a necessary condition to make
the ART algorithm converge in the first place [26]. During the iterations the index
j is looped over all of the measurements, possibly revisiting several measurements
more than once (when k > J). For an optimally fast convergence, the order in
which the index j is accessed, preferably produces a sequence of updates that pro-
vide complementary, orthogonal information towards the solution of the problem.
Indeed, it is clear from Figure 3.9(a), that the intersection would be reached after
only two iterations if the lines would be orthogonal to one another. The notion of
orthogonality is a favourable trait found in popular approaches such as ‘steepest
descent’ (STP) and ‘conjugate gradient’ (CG), which can also be used as iterative
CT reconstruction schemes. In fact, most iterative CT reconstruction schemes,
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including STP, CG and ART, can be unified through the generalised Landweber
formula [26, 27]

�μ(k+1) = �μ(k) +Λ(k)BT
(
�p− T · �μ(k)

)
(3.18a)

= �μ(k) +Λ(k)BT �q(k) (3.18b)

where Λ is the generalisation of the relaxation factor λ to a diagonal matrix form,
and B represents a back projection operator which redistributes the projection
errors (�q) across the volume, e.g. in the case of ART

[B]jm =
tjm∑L
l=0 t

2
jl

and [Λ]jm = λ · δjm.

Accumulating updates - SART, SIRT and ordered subsets (OS)

While in ART only a single ray is taken into account for updating the volume
at each iteration, most iterative CT reconstruction schemes tend to aggregate the
contributions of multiple rays into one simultaneous update. When an update is
accumulated across a collection of rays, i.e. a so-called ‘ordered subset’ (OS), the
update scheme needs to be revised [28, 29].

�μ(k+1)
m = �μ(k)

m + λ
∑
j∈OS

(
pj −

∑L
l=0 tjl · μ(k)

l

)
Tj

· t̂jm (3.19)

where the subset normalised back projection weights (t̂jl) and the total length
traced by ray j (Tj) are given by

t̂jm =
tjm∑

j∈OS tjm

Tj =

L∑
l=0

tjl

The ordered subsets generally contain all of the pixels within one or more pro-
jections, yielding the ‘Simultaneous Algebraic Reconstruction Technique’ (SART)
[30] and the ‘Simultaneous Iterative Reconstruction Technique’ (SIRT) [31], when
one projection or respectively all of the projection data is used to calculate the
update. As such, it is clear that both SART and SIRT are special cases of the gen-
eral OS reconstruction scheme [28], in which any number of projections can be
incorporated in the update calculation.
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Accessing schemes

For SART in particular, the focus in updating is shifted from single pixel to whole
projection updates, such that the optimal order for accessing the individual pixels
essentially boils down to ordering the projections in a way that promotes conver-
gence. It turns out that a simple sequential accessing strategy, where the SART
updates follow the order in which the projections were acquired, induces a smear-
ing artefact in the reconstructions. This smearing artefact is a remnant of the first
back projections in the SART scheme, which uniformly distribute the projection
errors along straight rays in the initially empty volume. The problem with this
uniform redistribution is that the delineation of the object’s support gets lost, and
can only be restored by updating the volume through an orthogonal projection.
Indeed, as for ART, the orthogonality of the updates is an important prerequisite
to the fast convergence of SART. To artificially enforce this orthogonality, the pro-
jection access order can be guided through a ‘Weighted Distance Scheme’ (WDS),
which updates the volume with the projection situated at 90◦ from the weighted
average of the angular positions already taken up in the updating sequence [32].
WDS produces more accurate reconstructions in situations where only a limited
number of projections are available. However, for a large number of projections,
simpler access schemes, such as the ‘Random Access Scheme’ (RAS), produce CT
reconstructions of a quality similar to WDS (see Figure 3.10). Again, there is an
interesting parallel to be drawn with other iterative numerical schemes, such as
CG and STP. Moreover, random access SART can be seen as a form of stochastic
gradient descent (SGD) [33].

sequential WDSrandom

Figure 3.10: Effect of the projection access pattern on SART based CT reconstructions.
The results for this 500 projection reconstruction of an apple’s cross section are nearly

indistinguishable when a WDS or random access schemes is used. The sequential scheme
on the other hand, clearly produces an unwanted smearing artefact.
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3.2.3 A GPU accelerated SART implementation

The efforts, in this work, pertaining to iterative CT reconstruction are almost solely
based on the SART approach. The advantages of SART, notably:

• its fast convergence, often reached after only one pass over all of the projec-
tions in the CT dataset, and

• its leniency towards a GPU accelerated implementation,

have been thoroughly corroborated in the dissertation work conducted by one of
the author’s predecessors [6]. Some details on the practical implementation of
SART will be revisited in the following sections, with the pretence of providing a
research oriented and development friendly iterative CT reconstruction tool, writ-
ten in a hybrid Python-CUDA code [34]. First, some strategic approximations to
the update term in (3.19) are introduced to simplify and speed up its calculation.
Many of the design choices made here, originally based on [6], are in fact common
in the literature on iterative CT reconstruction, see e.g. [35]. Also, in the introduc-
tion to this chapter, it was mentioned that the upsurge in iterative CT reconstruction
research is partly attributed to increasingly performing computational hardware, in
particular GPU technology. Indeed, GPU acceleration is a crucial aspect to the im-
plementation of iterative CT algorithms, to the extent that any respectable iterative
reconstruction tool should preferably be GPU implemented [36–38].

Fast projections & back projection

The update rule in (3.19) can be broken down into a three step sequence, with:

1. a ‘projection step’ to obtain a simulated estimate for the data,

p̂j =

L∑
l=0

tjl · μ(k)
l (3.20)

2. a ‘correction step’ calculating a length weighted and relaxed version of the
projection error,

cj = λ
pj − p̂j

Tj
= λ

qj
Tj

(3.21)

3. and a ‘back projection step’ which redistributes the previously calculated
correction term across the volume

�μ(k+1)
m = �μ(k)

m +
∑
j∈OS

cj · tjm∑
j∈OS tjm

(3.22)



3-20 CHAPTER 3

The projection and back projection steps are particularly tedious because they in-
volve the calculation of the ray-voxel intersection weights tji. While it was pre-
viously established that storing these weights is not an option, calculating them is
also not a straight forward task. Luckily not all of the weights are always relevant
since the projection and back projection steps are sparse in nature, and depending
on how the interaction between the rays and the voxel elements is modelled only
a very few to none of the weights need to be calculated explicitly. Here, the pro-
jections are simulated through a ‘pixel driven sampling’ approach, by tracing the
rays connecting the source to the pixel centres. The line integrals on these rays are
approximated through an equidistant sampling of the μ-values following Joseph’s
method [39], such that (cfr. (2.11))

p̂j ≈ Δt
L∑

l=0

μ(�xl). (3.23)

in which �xl follows (2.12). In Joseph’s method the sampling interval (Δt) is de-
termined by the voxel grid spacing along the axis which is most parallel to the
ray being sampled. If, for instance, the most parallel axis is the grid’s x-axis (as
depicted in Figure 3.11), Δt will be given by

Δt =
Δx

S cosα
(3.24)

where α is the angle between the ray and the x-axis, and S represents a tunable
oversampling factor (in most cases S ≥ 1). Through the sampling approaches,
described by (3.23), the problem of finding the intersection weights is redefined as
an interpolation problem of finding the μ-values at the �xl-positions. Coincidently,
these interpolation operations can be easily accelerated by storing the volume in
GPU textures, which provide very fast trilinear and nearest neighbours interpola-
tions, through efficient caching schemes [40]. The voxel basis which builds up the
volume is determined by the interpolation scheme, i.e. a 3D hat and cubic indicator
function for trilinear and nearest neighbours interpolations, respectively, and is no
longer relevant for the calculation of the intersection weights when an equidistant
sampling strategy is considered in the projection step.

Other sampling techniques implicitly assume that the voxels have a predeter-
mined shape, e.g. Siddon’s and Köhler’s method [41, 42] for cubic voxels, and
that the extent of this shape can intersect more rays emanating from the finite pixel
area than just the one connected to the centre of a pixel (Figure 3.12). When the in-
tersection weights are explicitly calculated based on an overlap between a voxel’s
shape and a single ray or the ray bundle gathered on the finite extent of a pixel’s
area, a so-called ‘pixel driven splatting’ technique arises.
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Figure 3.11: Joseph’s method for an equidistant sample of μ-values on a ray (cfr.
Figure 2.19). The rays are sampled at equidistant multiples of Δt, which are determined

by the grid spacing (Δx) along the most parallel axis, following (3.24) with S = 1.5.

(a) (b)

Figure 3.12: Calculating intersection weights through pixel based splatting on a cubic
voxel. (a) The intersection weight tjm is determined by a single ray connected to the
centre of pixel pj; (b) The intersection weight is averaged over multiple intersections
between voxel m and a ray bundle connected to equidistantly spaced points within the

finite area of pj (based on [6]).

A similar terminology, i.e. ‘voxel driven splatting’, is used when a projection is
calculated by accumulating the footprints of all of the voxels on the detector plane,
often taking more exotic voxel shapes into account, such as spherical Kaiser-Bessel
basis functions [43, 44]. The voxel and pixel driven splatting approaches can even
be combined in a distance driven approach [45], where the projection weights are
calculated as an overlap between the voxel and pixel footprints projected on a
dedicated plane. As shown in [6], the more advanced splatting techniques only
marginally improve the quality of a reconstructed CT image, while taking a sig-
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nificantly longer time to compute and taking up more CPU memory as compared
to the sampling based techniques. This is why, as mentioned before, the simulated
projections are calculated through a pixel driven sampling technique in this work’s
implementation of SART.

A fast implementation for the back projection step can be obtained, by putting
forward a plausible estimate for the subset averaged back projection weights in
(3.22)

t̂jm =
tjm∑

j∈OS tjm
. (3.25)

It can be argued that within each projection there is approximately one pixel ray
that intersects voxel m, say j = jp, such that tjm ∼ δjjp . This implies that the
sum in the denominator of (3.25) contains only a limited number of entries, i.e.
about one per projection. Given the number of projections per subset Np,OS, the
subset averaged intersection weights can thus be approximated by

t̃m ≈ 1

Np,OS

∑
j∈OS

tjmδjjp

such that

t̂jm ≈ tjm

Np,OSt̃m

Furthermore, if tjm is non-zero its most likely value is precisely t̃m, leading to

t̂jm ≈ 1

Np,OS
(3.26)

which reflects the plausible assumption that each projection equally contributes to
the back projection in a certain voxel. With (3.26) the update rule (3.22) simplifies
to

�μ(k+1)
m = �μ(k)

m +
1

Np,OS

∑
�xs∈OS

c(�xm, �Os) (3.27)

In this update formula, the back projection value c(�xm, �Os) is obtained through an
interpolation of the correction term (3.21) at the intersection between the detector
plane and the line connecting one of the source positions �Os, contained within the
ordered subset of selected projections, to the current voxel position �xm. In other
words, the back projection values are the result of a ‘voxel driven sampling’ in the
detector plane. Again the correction terms can be stored in GPU texture memory,
providing implicit bilinear and nearest neighbours interpolation schemes.
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In summary, fast projection and back projection calculations can be achieved
by respectively using pixel driven and voxel driven sampling strategies. More
importantly, to further accelerate the reconstruction process, these sampling tech-
niques can be readily implemented on GPUs by using their interpolation friendly
texture memory.

3.2.4 Handling large CT reconstruction volumes

A drawback to the SART is that all of the voxel values are indirectly correlated
through the system matrix, and that it is impossible to reconstructed a single voxel
on its own, contrary to the analytical reconstruction techniques. As a result, the
entire 3D volume needs to be stored in GPU memory for the projections and back
projections to be correctly computed. If this volume does not fit into the GPU
RAM, techniques to relax or redistribute the storage requirements have to be con-
sidered.

Multi GPU

When multiple GPUs are available, the volume can be evenly split up among these
individual devices (see Figure 3.13), which then independently calculate the for-
ward projection of their respective sub-volumes. The projection results are sub-
sequently gathered on the host device into a single correction image, which is
redistributed to all of the GPUs before they are back projected into each GPU’s
local sub-volume. The final reconstruction is obtained by reassembling the sub-
volumes into one volume on the host device. The obvious disadvantage of a multi
GPU implementation is that it requires multiple GPUs, and while their combined
RAM could cover the needs for most CT reconstructions, there is still a limit to
the available memory. More importantly, messages passed across their intercon-
nection bus in order to synchronise the state of the correction images, are likely to
form a bottleneck in the SART iterations.

Multiresolution reconstruction

To structurally overcome the GPU memory limitations, De Witte et al. have
devised a ‘multiresolution reconstruction’ scheme which can be run on a single
GPU [46]. In this scheme, a high resolution sub-volume, with densely spaced vox-
els covering a small portion of the entire volume, is embedded within a larger low
resolution representation of the entire volume with a relatively low amount of vox-
els (Figure 3.14). The idea is that both of these volumes can be stored in a single
GPU, which first performs a reconstruction of the CT data onto the coarse repre-
sentation of the volume. This coarse reconstruction can then serve as approxima-
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Figure 3.13: Multi GPU implementation of an iterative CT reconstruction scheme. Using
multiple GPUs large volumes can be reconstructed with iterative techniques, while in the

mean time reducing the reconstruction times (courtesy of Yoni De Witte [6]).

tion to the μ-distribution which surrounds the high resolution sub-volume, leading
to more accurate simulations and updates for the latter. The problem with this
approach is that it is approximative in nature, since the simulated projections are
mainly calculated from a coarse low resolution version of the entire volume. This
discrepancy can be minimised by repeating the sub-volume reconstruction until
the entire volume is covered in an overlapping manner, and possibly revisiting cer-
tain sub-region multiple times, but can never be entirely eliminated.

Chunk swapping

On a single GPU the projections and back projections for a large volume could
also be calculated exactly by sequentially swapping chunks of the entire volume
between the CPU and GPU memory. Unfortunately, these copying operations are
dreadfully slow, and as such introduce an unacceptable overhead in the OS it-
erations. However, a GPU does not necessarily need to remain idle in terms of
computing during the time memory buffers are copied back and forward between
the CPU and GPU. Indeed, there is a mechanism which allows a GPU to asyn-
chronously perform computing and copying tasks at the same time, handled by
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Figure 3.14: A multi resolution framework to reconstruct large CT volumes on a single
GPU. High resolution sub-volumes, with densely spaced voxels, are embedded within a

larger low resolution representation of the entire volume (courtesy of Yoni De Witte [6]).

their ‘compute and copy engines’, respectively [47]. The idea of the approach de-
veloped in this work is to increase the ‘arithmetic intensity’ of the chunk swapping
technique, which is a technical formulation for hiding the swapping overhead by
simultaneously performing computations. To this end, at least two buffers, dubbed
‘buffer 1’ and ‘buffer 2’, have to be allocated in GPU memory, which can each
hold an equally large chunk of the volume, and take up the opposing roles of ei-
ther being a compute or copy buffer (see Figure 3.15). While a projection or back
projection operation is performed on buffer 1, the CPU copies data to or from
buffer 2. When both of these tasks are finished, the buffers exchange their com-
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puting and copying roles, such that the chunk in buffer 2 can be projected or back
projected, while the next chunk is exchanged between the CPU and GPU in buffer
1. In the ideal case, as illustrated for the projection case in Figure 3.15(a), the copy
operations take about the same time as for a complete subset of projections to be
simulated, reducing the copying overhead to the time it takes for one chunk to be
transferred to the GPU. In contrast, the back projection queue in Figure 3.15(b)
does not ideally hide the copying tasks through computing, leaving the GPU idle
during a large part of the copy operations. The copying tasks in the back projec-
tion case take longer, because these computations alter the contents of the loaded
buffers, which thus need to be saved back to the CPU before their contents are
overwritten with the data of the next chunk. In other words, in the back projection
step the copy operations are effectively doubled. The extra copying overhead can
be overcome by increasing the computational load, e.g. by gathering a higher num-
ber of projections in each subset, assuming this higher number of projections can
be stored on the GPU next to the copy and compute buffers. Through a numerical
experiment, the graphs in Figure 3.16 illustrate how in a multi chunk approach,
with a large subset size, the projections and back projections can asymptotically
reach the same speed as their single volume counter parts, for which the entire
volume is preloaded beforehand. The graphs compare the time it takes for a single
projection or back projection to be computed in the single volume case (τsingle),
with the timings for a two chunk case (τchunked), by setting out their ratios, i.e.

relative speed [-] =
τsingle
τchunked

The computations were performed on the phantom volume described in section
2.5, which was discretised to a voxelised grid of 508 by 532 by 543 in width,
height and depth, respectively. Clearly, the chunking approach can not beat the
single volume case, but as more and more projections are taken up in a subset,
the copying overhead time gets filled up through computations, such that the time
spent per projection in a subset effectively decreases. Increasing the number of
chunks does not affect the computational speeds, since all of the involved oper-
ations, i.e. copying, projecting and back projecting, approximately scale linearly
with the size of a chunk. This implies that the ratio between copying and compu-
tation time remains approximately constant, whatever the chunk size might be. To
conclude, the chunk swapping approach is particularly interesting for OS recon-
structions with large subset sizes (e.g. SIRT). Typically however, these large subset
reconstructions require a higher amount of iterations, as compared to SART, which
only needs about one or two passes through the whole projection dataset. Thus,
for large CT volume reconstructions, there is an optimal subset size, which min-
imises the chunk swapping overhead, while converging in an acceptable number
of iterations.
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Figure 3.15: Copy and compute queues to handle large volume iterative CT
reconstructions through chunk swapping. (a) The projection computation only need to hide

one copy operations to increase the arithmetic intensity. (b) Since the back projection
alters the contents of a buffer, an extra copy operation is necessary to save the results back
to the CPU. The non-dashed arrows in this figure indicate how the task queues for both of

the buffers are filled up.

3.2.5 A Python-CUDA iterative CT reconstruction tool

As a part of this work an iterative reconstruction tool was developed, which can
perform OS reconstructions of CT data acquired along arbitrary source trajecto-
ries. The tool’s interface is implemented in Python, while the bulk of the heavy
reconstructive calculations are offloaded to a GPU with the help of the open source
Python module ‘PyCUDA’ [34]. Key features of this module are the seamless in-
tegration of a GPU memory class with CPU based Python Numpy arrays [48], and
more importantly its ability to compile Python string templates of C code ‘Just In
Time’ (JIT) to be loaded on and executed by a GPU. With this last feature, lower
level C code can thus be formatted through higher level Python instructions. A
concept called ‘metaprogramming’, which together with the Numpy array integra-
tion extends the ease of coding in Python towards developing code for a GPU.
An added advantage of the tight Python-CUDA integrations is the vast reposi-
tory of freely available Python modules, notably SimpleITK [49, 50] and scikit-
image [51], which can aid in the pre- and post-processing of CT datasets.
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Figure 3.16: Speed of the chunk swapping technique as a function of the subset size. As the
number of projections in a subset increases, the chunked projection and back projection

sequences (using 2 chunks) asymptotically reach the speeds of their single volume
counterparts. For reference, the absolute speeds of the projection and back projection
operations in the single volume case were 3.08 ms and 44.03 ms, on the workstation

specified in appendix A.

Apart from building a fast and flexible reconstruction tool, the main goal was
to enable the reconstruction of CT data acquired in arbitrary geometrical configu-
rations, other than simple circular cone beam acquisitions. The reconstruction tool
attaches a geometrical configuration or ‘view’ to each radiograph in a CT dataset,
based on the parametrisations discussed throughout section 2.4. The ability to re-
construct these arbitrary trajectories is an indispensable prerequisite to the feasibil-
ity study performed on in-line CT in chapter 4, and also in handling more common
trajectories through iterative reconstruction, e.g. a helix (see section 3.2.6).

In summary, the notable features of the iterative reconstruction tool are:

• the ability to perform GPU based reconstructions with all types of OS schemes,
going from SART to SIRT and all of the in between,

• based on CT data acquired in arbitrary geometrical configurations, with

• methods to easily define the geometrical views for all of the projections as
parametrised throughout section 2.4, and

• a careful mapping between these geometrical views and GPU data buffers,
with a future outlook to handling multi-source and poly-energetic CT recon-
structions,

• a flexible and development friendly implementation through the metapro-
gramming and JIT paradigms, with PyCUDA [34],
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• a fast pixel driven ray sampling and voxel driven back projection through
GPU texture interpolation, with

• the capability of reconstructing large CT volumes, not limited by the GPU’s
memory, by using the chunk swapping approach discussed in section 3.2.4,

• techniques to handle ROI reconstructions and acquisitions, through a virtual
geometrical extension of the CT volume [6], and an aperture weighting of
the CT projections [52, 53],

• and finally, built-in functions to perform non-rigid registration of 3D vol-
umes with spline based [54], demons [55, 56] and phase based wavelet tech-
niques [57] (see also chapter 5).

There is also a great variety of CT reconstruction tools available in literature.
Even more so, most of them are open source and provide highly efficient GPU or
distributed CPU implementations. A non-exhaustive overview on a selected num-
ber of these toolboxes is given in table 3.1. UGCT also has a long running track
record of developing CT reconstruction code with the first versions of ‘Octopus’
dating back to 1999. Nowadays, Octopus is further developed and distributed by
one UGCT’s spin-offs ‘InsideMatters’ (www.insidematters.eu). Octopus
does not however allow the reconstruction of CT data coming from arbitrary ge-
ometries, and it being a production code with a tight integration to a user interface,
makes it difficult to rapid prototype novel and flexible reconstruction approaches.
This why in this work the choice was made to reimplement the iterative recon-
struction component in the PyCUDA JIT framework, to accommodate arbitrary
CT geometries, but more importantly to obtain a more developer friendly imple-
mentation, that is resilient to a constant adaptation, typical for a research environ-
ment.

3.2.6 An example: iterative helical CT reconstruction

This section illustrates the capabilities of the OS reconstruction tool through the
challenging example of iterative helical CT. As mentioned before, a drawback to
iterative techniques is the fact the whole CT volume needs to be stored in mem-
ory, and for helical CT in particular this volume can become very large due to the
sample’s long vertical extent, making it an ideal testing case for the chunk swap-
ping technique discussed in section 3.2.4. Moreover, the helical trajectory forms a
convenient stepping stone towards reconstructing more general alternative trajec-
tories with iterative techniques, while still providing a analytical alternative (e.g.
Katsevich) for validation purposes.

The dataset presented here was acquired as one of many helical CT scans
performed by Van den Bulcke et al. from the Ghent University laboratory for
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Wood Science, to measure tree-ring features as key elements in dendrochronologi-
cal studies [65]. Typically, the tree drill cores used in this study have a high aspect
ratio shape with a long vertical extent of up to 15 cm, which explains the need
for a helical scan to obtain a respectable voxel pitch. The helical scan, performed
according to the settings in table 3.2, took approximately 70 minutes to complete,
and resulted in both iterative and analytical reconstructions on a 912 by 912 by
4500 grid with a voxel pitch of ± 35 μm. For the iterative reconstruction, this grid
size leads to a staggering 14 GB of GPU storage requirement, markedly higher
than the 6 GB mounted on an NVIDIA GeForce Titan GTX (see appendix A),
one of the highest capacity GPUs available at the time this work was performed.
A chunk swapping approach is thus necessary, and following the argument with
respect to the graph Figure 3.16 that the ratio between copying and computation
time is a constant (depending on the work station’s specifications) the number of
projections in each ordered subset can be set to 20. However, larger subset sizes
tend to smooth out the volume updates, such that a higher number of iterations is
required to clearly resolve fine structures in the reconstructions. As a compromise,
the subset size was set to 6, since for higher subset sizes the performance gain
through asynchronous chunk swapping is only marginal. With this subset size
a single iteration, looping over all 5398 projections in the dataset, took approxi-
mately two hours. As a convergence measure, the central slice’s histogram based
entropy 3 is monitored up until the point where its relative iteration-to-iteration
change drops below 0.1 percent. This leads to a total of 10 iterations, and thus
8997 subset updates over the course approximately 20 hours. This might seem
slow, but it should be noted that during each of the 8 second subset update, a 14
GB volume is projected and back projected 6 times, which is a respectable timing
for a single GPU iterative approach on a volume of this size. This aside, the an-
alytical Katsevich algorithm [6, 21] vastly outperforms the OS technique in terms
of speed, by realising a excellent quality reconstruction (see Figure 3.17) of the
entire volume, in less than 30 min.

Although the analytical approach is clearly superior here, this case demon-
strates the capability of the OS technique to handle alternative trajectories and the
very large volumes, which tend to arise in day to day μCT applications. The itera-
tive techniques will specifically have their merits, in particular for smaller datasets,
when a more elaborate forward model or a priori information on the imaged object
is incorporated in the reconstruction process.

3Chosen here for its simplicity, the histogram based entropy is only one of many metrics to quantify
the sharpness of an image [66].
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Table 3.2: Scan settings of the helical tree-ring analysis dataset.

Tube Hamamatsu L9181
Tube voltage (Vt) 70 kV
Tube power (Pt) 9 W

Detector Varian PaxScan 2520
Exposure time (texp) 700 ms
Detector size (W,H) (912,602) -
Binned pixel size (pd) 254 μm
Binning (-) 2 by 2 -

Geometry Helical cone beam
Source Detector Distance (SDD) 440.0 mm
Source Object Distance (SOD) 62.7 mm
Helical Pitch (zp) 34 mm
Number of projections (Np) 5398 -
Source per turn (SPT) 1000 -

Reconstruction Ordered Subsets
Voxel pitch (pv) 35 μm
Voxel grid (W,H,D) (912,912,4500) -
Iterations (-) 10 -
Subset size (-) 6 -
Relaxation (λ) 0.5 -
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Figure 3.17: Analytical (left) and iterative (right) reconstructions of a helical CT
acquisition, imaging a set of tree drilling cores. While the quality of these coronal slices is

comparable for both reconstruction techniques, the iterative reconstruction took a
significantly longer time to complete.
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3.3 An outlook to more advanced iterative algorithms

The forward model in iterative reconstruction algorithms is an explicit part of the
iterative loop, it can thus be readily replaced by a more extended version. These
extended forward models can be veered towards a better representation of the un-
derlying X-ray physics [2], such as the poly- energetic model described throughout
section 2.3 and in literature [67, 68], or the noisy Poisson nature of the X-ray pho-
tons, included through likelihood expectation maximization [69, 70]. Addition-
ally, extra information on the precise constitution of the imaged object or the way
it evolves through time can be included in the algorithm. To put this in a general
framework, the CT reconstruction problem is best interpreted through the ‘Bayes
Probability Theorem’,

P(�μ|�p) = P(�p|�μ)P(�μ)

P(�p)
(3.28)

where the denominator, also known as the ‘evidence’ for a particular data set �p,
serves as a constant normalization factor, such that

P(�μ|�p) ∼ P(�p|�μ)P(�μ) (3.29)

This expression states that the ‘a posteriori belief in �μ’ is proportional to the prod-
uct of respectively ‘�p’s likelihood’ and the ‘a priori knowledge about �μ’. As an
example, a solution for �μ can be found by assuming that both the measurements,
encapsulated by the likelihood, and the a priori knowledge on the μ-values are
independently and normally distributed

P(�μ|�p) ∼ exp

⎛⎝−γp
2

∑
j

(pj − Tjlμl)
2

⎞⎠ exp

(
−γμ

2

∑
l

μ2
l

)

Taking the negative logarithm of this expression brings about a more familiar rep-
resentation of the reconstruction problem in the form of a cost function, hiding the
possible solution for �μ at its minima

�μ� = arg min
�μ

⎛⎝∑
j

(pj − Tjlμl)
2
+ α
∑
l

μ2
l

⎞⎠ , (3.30)

Equation (3.30) represents a so-called Tikhonov regularised least squares solution
to the CT problem [71]. The regularization parameter α =

γμ

γp
reflects the cred-

ibility of the a priori information w.r.t. the data, and prevents excessively large
μ-values in the final reconstruction. While the Tikhonov regularisation is a sim-
ple and comprehensive example to illustrate the transition from a probabilistic to
a cost function interpretation, it is not a popular form of a priori knowledge in CT
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reconstructions. A more prevalent example is that of ‘Prior Image Constrained
Compressed Sensing’ (PICCS) [72], which combines information on the initial
state of a reconstruction volume, e.g. obtained through a preliminary FBP re-
construction, with the concept of ‘Total Variation Minimization’ (TV) [73]. The
latter places the CT reconstruction problem in the ‘Compressed Sensing’ frame-
work [74], which aims at a reduction of the problem’s complexity by promoting a
sparse representation of the reconstruction volume, or a transformed version of it.
In the case of TV, the regularization term enforces small spatial derivatives with
an L1-norm (‖·‖1),

�μ� = arg min
�μ

(
‖�p− T �μ‖2 + α ‖∇�x�μ‖21

)
,

leading to a smooth nearly piecewise reconstruction for �μ. In TV, the gradient
operator acts as a so-called sparsifying transform, reducing the number of un-
knowns in the problem. Other transforms expand �μ in an alternative basis of e.g.
wavelets [75] or an overcomplete dictionary of image patches, which are carefully
chosen to represent recognisable feature in the final reconstructions [76, 77]. Most
of these techniques are developed in a medical context and show very promising
results for reconstruction with a small number of projections and thus low X-ray
doses. The regularization terms do however introduce an extra complication in the
optimization procedure, but can be handled with ‘iterative shrinkage threshold-
ing’ [78, 79] or ‘splitting’ algorithms [80, 81], with an evident surplus in compu-
tation.

In this work, reconstruction regularization, or in the broader sense, the inclu-
sion of a priori information is primarily studied in the context of dynamic pro-
cesses, which alter the μ-distribution during the course of a CT acquisition. To
improve the reconstruction of these dynamic processes, the considered a priori in-
formation attempts to model the temporal evolution of the μ-distribution, caused
by the dynamic processes. The precise nature of this a priori information is often
based on a simple understanding of processes taking place, e.g. distinguishing a
fixed from a time evolving phase. However, the difficulty resides in the ability
to cast this information into a mathematical formulation (cfr. TV) which models
the interaction between the dynamics of the process and the imaged quantity, here
the X-ray attenuation coefficient. This concept is nicely illustrated by Myers et
al. [82, 83], where the a priori information is meant to model fluid displacements
in a fixed matrix of porous rock. In chapter 5, a dynamic non-rigid deformation
of a sample’s micro-structure is considered, and an estimate of this local defor-
mation serves as a priori knowledge to compensate for motion blurring upon its
integration in a SART reconstruction algorithm.
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3.4 Conclusion: analytic or iterative?

First of all, it should be noted that the iterative and algebraic algorithms are math-
ematically not that different from each other. Both techniques sequentially update
the volume through the back projection of a derivative, resembling a gradient de-
scent direction in the former case, and the result of a Ram-Lak filter in the latter
(cfr. equation (3.8)). Moreover, there are hybrid reconstruction schemes which
mimic the behaviour of the algebraic techniques in an FBP setting through care-
fully designed filters [35]. The differences between both techniques are however
more compelling.

For one, the example in section 3.2.6 clearly demonstrates that analytical re-
construction techniques are difficult to beat in terms of reconstruction speed, at
least when very large volumes are considered. However, the analytic reconstruc-
tion algorithms reduce the radiographic projection process to the mathematical
concept of a Radon transform acting on the scalar μ-distribution. This Radon
transform, which is essentially a collection of line or plane integrals, can thus be
seen as the forward model for the projection process, and any physical process
deviating from this integral formalism is likely to cause imaging artefacts in the
analytical reconstructions. Furthermore, apart from pre-processing the projection
data or post-processing the resulting reconstruction volumes, there are no direct
mechanisms to incorporate an other forward model or any other information on
the imaged sample into the analytical algorithms. Coincidently, this is where it-
erative algorithms excel, by allowing improved versions of the forward model to
be incorporated in the iterative loop, or by including a priori information for regu-
larization purposes (see section 3.3). The choice between both techniques is thus
reduced to a choice between speed and extensibility, which is generally dictated
by the application.

In this work, the reconstructions are almost exclusively performed in an itera-
tive way, with a view toward the non-standard trajectory, considered for the in-line
CT study (chapter 4), and the inclusion of local, non-rigid deformation into a mo-
tion corrected SART algorithm (chapter 5).
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4
Simulation and mock up validation of

an alternative in-line CT geometry

As a solution to in-line non-destructive quality inspection in a high throughput
production environment, this chapter presents a simple alternative CT geometry,
referred to as the ‘conveyor belt geometry. On this conveyor belt, the scanned ob-
ject performs a rotational movement, while it translates in between a stationary
X-ray source on one side and a fixed large flat panel detector on the other side.
In section 4.2, this geometry is discussed in detail, showing that it is theoretically
possible to perform a complete angular sampling of the points in an object’s central
plane, and a limited expression of the cone beam artefact in the vertical direction,
as the projections are likely to be acquired at low magnifications and small cone
beam angles. In section 4.3, the geometric design constraints, distilled through-
out the theoretical discussion, form the basis for a simulation and mock-up study
to compare different configurations of the conveyor belt setup, using the realistic
Elstar apple phantom from section 2.5. The focus here is the CT acquisition, with
a particular emphasis on acquiring sufficient photon statistics and accurate spatial
sampling to guarantee qualitative reconstructions with a standard SART recon-
struction technique. The quality of the 3D reconstructions is quantified through
the Spectral Signal-to-Noise-Ratio (SSNR), introduced in section 4.4.1, and set
out against the expected throughput for the configuration at hand. With the result-
ing methodology, which combines the work on radiography simulation (section
2.3) and iterative CT reconstruction (section 3.2), the trade-off between quality
and throughput can be quantified, establishing the feasibility of performing in-line
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CT inspections with the conveyor belt geometry, and providing general guidelines
for its design.

The details on this study can also be found in the peer reviewed publication [1],
which forms the basis for the contents of this chapter.

4.1 Introduction: from 2D to 3D

X-ray transmission imaging has become a valuable tool in many industrial branches
to ensure the quality of a product through non-destructive evaluation. One way to
image a product’s interior is through simple 2D radiographic projection. Unfor-
tunately, all of the scanned object’s 3D features in a radiograph are superimposed
onto one single 2D image, making it difficult to distinguish internal defects that
are shaded by other features on the same line of sight. Nevertheless, radiographs
are a fast way of imaging the interior of a product in-line and have been used as
such in a wide variety of application fields, going from weld and crack inspections
on metallic parts, to soldering inspection in electronics and contaminant detection
in food products [2–6].

A full 3D visualization of an object’s interior provided by X-ray CT can prove
to be successful in applications where 2D radiographs are incapable of detecting
defects. The CT imaging process itself is however a time consuming task, which
might compromise the desired throughput in a production line. In other words, the
image acquisition should be as fast as possible, while preserving enough image
quality to ensure defect detectability. This can be attained by lowering the X-ray
detector’s exposure time, or by acquiring a fewer number projections, at the cost of
a low Signal-to-Noise Ratio (SNR), and possibly an inaccurate reconstruction of
the interesting features in the interior of the scanned object. For the food industry
in particular, some defects, such as browning disorders in fruit, inherently show
low contrast with respect to their surroundings and are often very small, conse-
quently requiring a high contrast and high resolution image to be visible [7]. The
trade-off between a high acquisition speed and a high contrast and resolution im-
age is one of the main reasons why 3D X-ray CT has not yet touched ground as
an inspection tool in food industry. The required throughputs can indeed be very
high, e.g. the current quality inspection and grading systems that sort apples need
to process anywhere between 3 to 10 apples per second [8]. These fast systems are
often based and hyperspectral contour visualisation and classification of external
defects, i.e. they do not provide information about a product’s interior. Neverthe-
less, to be up to par with the throughput of these traditional inspection methods,
a conveyor belt CT system should be able to attain a respectable throughput of
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approximately 5 samples per second, depending on the targeted image quality.

On the other hand, CT is already used in-line or rather at-line in some industrial
branches, primarily as a metrology tool for inspecting the tolerances on manufac-
tured parts, and is also increasingly being used for the detection of explosives and
other potential hazardous items by airport security. Most of these systems can ei-
ther be categorised as batch delivery or pick-and-place systems [9, 10], where the
samples are scanned one by one as shown in the example of Figure 4.1(a) [11].
In other systems, a continuous throughput can be realised by using a helical scan-
ning approach, similar to medical CT equipment, see also Figure 4.1(b) [12, 13].
Helical scanning geometries offer a complete angular sampling of the entire ob-
ject, but are often complex in their implementation. Hence, being a simpler and
possibly low maintenance concept, the conveyor belt geometry presented below is
put forward as a possible competitor to the helical approach. However, the need
for moving parts can be completely set aside in a notable new development where
the rotating gantry is replaced by a series of stationary sources and detectors, that
are placed on a ring around the conveyor belt [14, 15]. There is even a commer-
cially available system, that implements this approach (see Figure 4.1), for airport
security applications, reaching a throughput of 0.5 luggage bags per second at a
resolution of approximately 1 mm.

(a) (b) (c)

Figure 4.1: Several commercially available in-line CT solutions. (a) The pick-and-place
VoluMax system of Zeis [11], (b) The GE speedscan and the micro-vista helical gantry

systems [12, 13], and (c) the Rapiscan RTT system with an electronically fired source ring
and detector ring [15, 16].

While the focus here is on CT acquisition, the imaging process (section 2.1)
does not stop there. First of all, a valid 3D inspection and defect detection requires
the 2D radiographic projections to be reconstructed into a 3D volume. Secondly,
the 3D volumes have to be analysed to extract the relevant information about pos-
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sible defects. The reconstruction and imaging analysis encompass a computational
effort, which has to be addressed with the right computing power and clever algo-
rithms. Improvements in these downstream imaging steps can however be very
application dependent, which does not fit into the general study on the perfor-
mance of the conveyor belt geometry. On the other hand, these improvements
might greatly relax the demands on acquisition, e.g. by significantly lowering the
amount of projections and X-ray dose, and thus the SNR, needed for a good re-
construction of an object’s interior [17–19]. In this work the acquisition is handled
separately, with a particular emphasis on acquiring sufficient photon statistics and
accurate spatial sampling to guarantee qualitative reconstructions with a standard
SART reconstruction technique.

4.2 The conveyor belt CT acquisition

4.2.1 Geometry

Geometrical constraints for an exact conveyor belt acquisition

In figure 4.2 a schematic top view of the conveyor belt setup is shown. An X-ray
source point is kept at a fixed distance (Source Detector Distance, SDD) from a
large flat panel detector. The sample itself performs a translation from the left
to the right at a fixed distance from the source (Source Object Distance, SOD),
parallel to the central row of the detector and in the plane containing both this cen-
tral detector row and the source point. While travelling a horizontal distance (H),
the sample also performs a rotational movement as a supplement to the inherent
change in parallax related to the translational movement. This is most efficiently
realised with a counter clockwise rotation as viewed from the top.

The angle for this rotation has to be chosen such that every point in the sample
is intersected by a source ray over an angular range of at least 180◦, i.e. following
the Tuy-Smith condition [20] introduced in section 2.1.2. Rephrasing the intuitive
formulation from section 3.1.2 on helical CT, the Tuy-Smith condition requires
that relative to any given point in the object the source traces out a trajectory in
space which does not intersect the given point and for which the trajectory’s end
points are collinear with this given point. The resulting trajectory will henceforth
be referred to as ‘complete’. For a conveyor belt geometry, the rotation angle
forming a complete trajectory can be found by considering the object at its central
position between the source and the detector, i.e. halfway its translation where the
central ray cuts the Region Of Interest (ROI) into two symmetric halves (see figure
4.2). For now, the ROI is considered to be circular, but as shown in figure 4.5 its
shape can be extended.
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source

detector

sample

central ray

h+

Figure 4.2: Schematic top view of the conveyor belt geometry. The sample combines a
rotation and a translation over a distance H at a fixed distance from the detector, ODD.

The source is kept stationary at a distance SDD from the detector.

(a) (b)

Figure 4.3: Conditions leading to a complete conveyor belt trajectory. (a) Condition 1: In
point Q, the ROI is tangent to the outer ray, which connects the source point to the

detector edge. (b) Condition 2: The ROI has a tangent source ray in point P .

Any conclusion regarding the covered angular range for a point in the right
half of this ROI w.r.t. its movement on the left side of the source is equivalent to
the symmetric case for a point in the left half w.r.t. its movement on the right side
of the source. Furthermore, it can be shown (see figure 4.5) that the points on the
intersection between the outer rim on the ROI and the central ray, indicated by P

and Q in figures 4.2 and 4.3, will cover the smallest angular range of all points
within the ROI. The fact that these points have to be sampled from at least 180◦

puts forward two conditions connecting the a priori chosen geometrical parame-
ters, in most practical cases the detector length (L), the Object Detector Distance
(ODD), the ROI diameter (DROI ) and the source’s half opening angle (α), to the a
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priori unknown parameters, i.e. the SOD, SDD, the detector run-out (W ) and the
half rotation angle (Θ) as defined by figure 4.3:

1. While moving backward from its central position, the point Q will be the
first point to be projected out of the detector field. At this outer position the
source rays should have covered at least 90◦ around point Q. This condition
occurs when the ROI is tangent to the outer ray in Q as depicted in figure
4.3(a) and relates α to W , Ds and the ODD:

DROI

cos(α)
= W − 2 ODD tan(α) (4.1)

The opening angle itself is given by

L

2 SDD
= tan(α) (4.2)

2. To complete the trajectory for point P there has to be a source ray tangent
to the ROI in P (see figure 4.3(b)). With π/2−Θ being the angle between
this ray and the central source ray, the following condition holds:

H =
1

sin(Θ)
(2 SOD cos(Θ) +DROI) (4.3)

Keeping in mind that
SDD = SOD + ODD (4.4)

and using equation 4.2, equation 4.1 can be reformulated as

H ′ = L−W =
1

sin(Θ′)
(2 SOD cos(Θ′)−DROI) (4.5)

with α = π/2 − Θ′. Finally, equations 4.1 to 4.5 can be combined to form the
following set

SDD =
L

2 tan(α)
(4.6)

SOD = SDD − ODD (4.7)

Θ′

Θ
=

sin(Θ)

sin(Θ′)
· 2 SOD cos(Θ′)−DROI

2 SOD cos(Θ) +DROI
(4.8)

where we have implicitly assumed that

Θ′

Θ
=

H ′

H
(4.9)

which means that the rotation angle is uniformly distributed over the translation
and as such evolves linearly with it. In general, when considering a counter clock-
wise rotation, the rotation angle can follow any continuous mapping along the
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horizontal travel abiding to the restrictions discussed in next paragraph.

Using equations 4.6 to 4.8, the SDD, SOD and Θ can be calculated, given
L, α, ODD and DROI , which fixes the entire conveyor belt geometry. In figure
4.4, the trajectories for the points P and Q are plotted for a situation in which all
of the geometrical parameters comply to equations 4.6 to 4.8, with L = 966 mm,
α = 40◦, ODD = 75mm and DROI = 90mm (corresponding to H = 800mm).
The angular ranges for each point in a rectangular region containing the ROI where
calculated for this specific situation in figure 4.5(a). The contour containing the
points which cover at least 180◦, is indicated by a thick black line. Theoretically,
all the points within this contour can be reconstructed exactly, in particular the
points from the circular ROI considered in this study. From figure 4.5(b), which
plots the angular range along the dashed line in figure 4.5(a), it can be seen that the
points P and Q do indeed cover an angular range of 180◦, while the other points
on the ROI circumference cover a larger range.

Horizontal travel [mm]

Position to source [mm]

Figure 4.4: Trajectories of the points P and Q throughout their conveyor belt movement.
The ROI is drawn at the start of the acquisition, i.e. at the moment condition 2 for a

complete trajectory holds. It should be noted that the object is only mildly rotated, i.e.
111◦ for the specific case depicted here, with L = 966 mm, α = 40◦, ODD = 75 mm

and DROI = 90 mm.

In principle, only the ODD and DROI are known a priori, since the sample should
be contained within the ROI and should not hit the detector plane. Hence, given
the sample’s diameter Ds, the following most hold

DROI ≥ Ds

ODD ≥ Ds

2

L and α have to be chosen but in practice will be dictated by a certain demand in
throughput (see section 4.2.2) and technical limitations such as the detector size
and source’s collimator opening. Moreover, the fixed nature of either one (L or α)
can be interchanged for a specific choice of SDD or SOD, as long as equation 4.6
to 4.8 are fulfilled.
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Distance to source [mm]

Horizontal travel [mm]
(a)

Angular range [°]

Circumferential position on ROI [rad]

(b)

Figure 4.5: (a) The angular range covered by the points in a rectangular region containing
the ROI. The thick black contour contains all of the points which cover at least 180◦,

including the ROI studied here; (b) By following the ROI circumference (dashed line in
(a)) it can be seen that the points P and Q do indeed cover an angular range of 180◦,
while the other points cover a larger range. (cfr. figure 4.4; L = 966 mm, α = 40◦,

ODD = 75 mm and DROI = 90 mm).

Generalised conveyor belt like trajectories

When considering a counter-clockwise rotation, the rotation angle (θ) can follow
any continuous mapping (g) along the horizontal travel coordinate(h), which can
be expressed as follows

g : h → θ h ∈
[
−Hout

2
,
Hout

2

]
Subject to ∣∣∣∣g(±H ′

2

)∣∣∣∣ ≥ Θ′ and
∣∣∣∣g(±Hout

2

)∣∣∣∣ ≥ Θ′

with

Hout = H ′ +
2 DROI

cos(α)
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representing the distance between the extremal position of the sample, where its
ROI is just outside of the detector’s field of view, tangent to the extremal source
rays. In words, the conditions on the function g state that there should be at least
one ray tangent to the ROI for P and Q on both the left and the right side of the
central ray. This opens up a wide range of possible trajectories and embodiments
for a conveyor belt geometry. The one focused upon in this work follows equation
4.9, where both the acquisition and the rotation are initiated at position h = −H/2

as in figure 4.3(b). In a similar implementation the acquisition could be started to-
gether with the translation at h = −Hout/2, while the rotation would only start at
h = −H ′/2, eventually performing an identical rotation of 2Θ′ between −H ′/2
and H ′/2. These trajectories can be realised in practice by attaching a sample tray
to a pinion, which in turn grabs into a linear rack gear, producing a simultaneous
rotation around the pinion’s axis and a linear translation parallel to the rack. It is
clear that all of the conveyor belt like trajectories introduce an additional transla-
tional movement with respect to the traditional circular cone beam acquisitions. To
that end, it is important to note that the projections of some points in the sample,
more than others, may be subject to motion blurring when they are shifted by more
than one detector pixel during the exposure time. Hence, an important question to
be investigated in future work, is whether the generalised conveyor belt like tra-
jectories offer a better reconstruction quality and most importantly whether they
might provide larger reconstruction regions (cfr. figure 4.5(a)) while causing less
motion blurring overall.

4.2.2 Throughput

At first glance there seems to be no apparent reason to choose a large horizontal
travel H , specifically because this requires a larger and thus more expensive detec-
tor. Moreover, the average X-ray flux (Iav) seen by the sample will quickly drop
off for higher H according to

Iav = Iref · SDD2
ref

SDD2 · f(x) (4.10)

given

f(x) =
arctan(x)

x
for x =

H

2SOD
,

where Iref is the X-ray flux on the central ray measured at a reference distance
SDDref from the X-ray source. Indeed, looking at figure 4.2, the distance between
the source point and any given point on the central detector row can be written as
a function of the travel position (h)

R(h) =
√

SDD2 + h2
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As the X-ray intensity decreases quadratically with an increasing distance from
the source point

I(h) = Iref
SDD2

ref

R(h)2
,

the average intensity can be calculated by solving the following integral

Iav = Iref · SDD2
ref ·

∫ HM/2

−HM/2

dh/R(h)2

for a magnification M = SDD/SOD. Following equations 4.6 to 4.8, a larger H
will lead to an on average less favourable SNR performance, primarily because of
the quadratic intensity decrease caused by an increasing SDD, while f(x) remains
practically constant. Hence, in order to maintain a constant SNR, the reference
flux (Iref ) has to be increased, for example by increasing the tube power. A larger
H can however be advantageous considering more samples can be scanned si-
multaneously with a larger detector field. In the limiting case of a parallel beam
(SDD → ∞) the projections of subsequent samples will not overlap, and the num-
ber of samples which can be scanned simultaneously (Ns) is given by

Ns =
L

DROI

However, for a real case, the cone beam can produce overlapping projections at the
edges of the sample’s translation path when the distance between two subsequent
samples is too small. The minimal distance between the samples can be derived
from figure 4.3(b), which depicts the start of a new acquisition. Here, the tangent
ray in point P delineates the edge of a sample’s projection on the detector, and
dictates how close a preceding sample (not depicted in figure 4.3(b)) can be to
the new sample. In other words, the tangent through P forms a mutual tangent
between the ROI’s of subsequent samples at the start of a new acquisition. The
minimal distance between these samples is

Δmin =
DROI

sin(Θ)
,

and thus for the number of samples which can be imaged simultaneously the fol-
lowing holds

Ns =
H

DROI
· sin(Θ)

The effective throughput (Teff ), as in the number of samples which can be scanned
per second, for the conveyor belt setup is then given by

Teff =
Ns

Np · texp

[
samples

sec

]
(4.11)

with Np the number of projections acquired during the scan at an exposure time of
texp seconds for a single projection.
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4.2.3 Detector & X-ray tube settings

Apart from the geometrical aspects, a good detector and X-ray tube are also es-
sential to qualitative CT acquisition. Although their properties have to be tuned to
the application at hand, there are some general guidelines which can be followed
in the case of a conveyor belt setup, making it possible to extrapolate the methods
discussed here to similar setups and other types of samples. First of all, it should
be noted that the conveyor belt setup is meant to be operated in a so called ‘focal
spot demagnification’ regime, meaning that the ODD is typically smaller than the
SOD. The advantages of demagnification are that:

1. the span of the cone beam is larger closer to the detector, and as such more
product samples can be imaged simultaneously.

2. the X-ray spot size will be demagnified by a factor Ms = ODD/SOD, which
allows for larger spot sizes (ps) than the detector pixel size (pd). As a conse-
quence, a higher tube power can be set, and the heat generated in the tube’s
focal spot can be dissipated across a larger area.

Unfortunately, a demagnification of the focal spot also implies that there will
barely be any object magnification (Mo) and that the voxel size of the 3D CT
reconstruction (pv) will be more or less equal and be limited to the detector’s pixel
pitch, according to (cfr. equation (2.5))

pv =
1

Mo
pd +

Ms

Mo
ps (4.12)

where ps ≤ pd/Ms , i.e. the demagnified spot size should be smaller than the
detector pixel size. Hence, choosing a detector pixel size indirectly imposes an
upper limit on the X-ray focal spot size, while the latter limits the power which
can be deposited in the focal spot area. Typically, the target of an X-ray tube can
safely dissipate a maximum of 1kW per mm of focal spot diameter, which leads to
the following coincidental relation between the tube power (Pt) and the detector
pixel size

Pt [W ] ≤ pd [μm]

Ms

The cases discussed in section 4.3.1 use a detector with a pixel pitch of 0.254
mm in a setting where the X-ray focal spot is demagnified by a factor of at most
Ms = 0.23, which implies a maximal focal spot size of approximately 1.1 mm,
and subsequently a maximum tube power of about 1.1 kW. This tube power is
quite large, in the sense that the dynamic range of most detectors will be clipped
well before reaching this limit, even at very low exposure times. As it is implicitly
assumed that the detector is read out as fast as possible in order to reach a high
throughput (cfr. equation 4.11), the tube power is actually determined by the de-
tector’s saturation limit rather than any geometrical restrictions on the focal spot
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size.

The SNR in the resulting CT reconstruction can also be optimised by setting
an optimal tube high voltage. Again this parameter is highly dependent on the type
and size of the sample, but can be estimated by looking at the theoretical attenu-
ation through a slab with a material thickness representative for the sample under
study. The Elstar apple can be modelled as a 6 cm thick slab of soft-tissue with
a density of 0.84 g/cm3 (see section 2.5). The theoretical transmission through
this slab can be calculated across several energy bins covering the complete X-ray
tube spectrum, followed by a back projection of the attenuating mass and its as-
sociated error into a voxel element [21, 22]. The expected SNR, expressed in dB

(see (2.34)), can finally be set out as a function of the X-ray tube’s high voltage for
a fixed tube output power, which clearly shows a maximum at 120 kV (figure 4.6).

120 16020

Tube high voltage [kV]

75

151

0

SNR [-]

Figure 4.6: The estimated SNR on the calculated attenuation value of a 6 cm slab of soft
tissue as a function of the X-ray tube’s high voltage. A maximum for the SNR can be found
at 120 kV, which subsequently serves as an optimal tube voltage for this sample at a given

tube power.

4.3 A simulated & hardware mock up conveyor belt

4.3.1 Real life & simulated acquisitions

As mentioned in paragraph 4.2.1, a conveyor belt geometry is completely fixed
with a specific choice for L, α, ODD and DROI . In most practical cases only
the detector length L or more specifically the travel H will vary, since ODD and
DROI are determined by the sample diameter Ds and α will be limited by the
source collimator opening or by a sensible limit posed upon the detector run-out
W . Hence, in the following we consider H to be the only variable geometrical
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parameter, while the other parameters will be either fixed at a certain value or
calculated through equations 4.6 to 4.8. Given a fixed exposure time (texp), the
number of projections (Np) then completely defines a conveyor belt acquisition,
which together with H leaves two independent variables for the characterization
of the image quality produced by a conveyor belt setup. Although the problem of
characterizing the image quality for conveyor belt scans is now reduced to sweep-
ing a two dimensional (H,Np) parameter space, it is still difficult to do this in a
real life setup, as several other parameters indirectly vary with H through equation
4.6 to 4.8. Nonetheless, an effort has been made to build a flexible mock-up, which
can mimic a conveyor belt acquisition for a broad range of (H,Np)-pairs.

To this end, UGCT’s Medusa system (section 2.2.3) was equipped with an
add-on module (figure 4.7) containing a flat panel detector (Varian Medical Sys-
tems GmbH, Willich, Germany) and an extra rotation stage (PI miCos GmbH,
Freiburger, Germany). The detector and the rotation stage are fixed w.r.t. each
other such that the distance between the detector surface and the rotation axis re-
mains constant, i.e. ODD = 84.5 mm. The add-on module is mounted on a
translation stage which is normally used to select one of the detectors from the
setup, and to align its central row with the X-ray source and the original rotation
axis of the setup. The combined movement of the translation stage and the rotation
stage makes it possible to mimic conveyor belt trajectories with a travel limited to
the translation stage’s spindle length (Hmax = 556 mm). The translation stage in
turn is mounted on another motorised stage which can set the SDD. The three axes
of motion allow for practically any conveyor belt acquisition. However, some ge-
ometrical parameters are implicitly fixed, such as the detector run-out (W ) which
is given here by the detector width, the ROI diameter set to the maximal diameter
of the sample (Ds) and subsequently the half opening angle (α), by taking into
account equation 4.1. The opening angle is well within the limits of the setup, as
here an uncollimated transmission type X-ray source (Feinfocus FXE160.51, X-
RAY WorX GmbH, Garbsen, Germany) was used, which radiates quasi-uniformly
from its source point. An overview of the geometrical parameters and their fixed
nature is given in table 4.1. In order to minimise the drying and the build-up of
browning disorders in the apple sample, all of the scans were performed on the
same day, including the high resolution scan, which was used to construct the dig-
ital phantom.

Following table 4.2, a series of conveyor belt scans was acquired with the
mock-up conveyor belt. Using the radiography simulator, discussed in section
2.3 [21], these scans were also simulated, opening the possibility to produce data
beyond the travel limits set by the mock-up’s design. Each of the setups, listed in
table 4.2, was executed five times for a varying number of projections, going from
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Table 4.1: Overview of the geometrical parameters of the conveyor belt mock-up. Only the
horizontal travel (H) is varied independently, while the source detector distance (SDD)

and the rotation angle (Θ) are calculated from equations 4.6 to 4.8. The other parameters
are fixed by design.

Fixed? Value \Range
horizontal travel (H) no -278 . . . 278 mm
source detector distance (SDD) no 200 . . . 1300 mm
rotation angle (Θ) no no restrictions ◦

ROI diameter (DROI ) yes 65 mm
object detector distance (ODD) yes 84.5 mm
detector run-out (W ) yes 145.5 mm
half opening angle (α) yes 24 ◦

binned pixel size (pd) yes 254 μm

translation axis

magnification axis

flat panel detector

X-Ray source

extra rotation axis

original rotation axis

Figure 4.7: UGCT’s Medusa system (section 2.2.3) was equipped with an extra detector
and a co-moving rotary stage. The module containing this detector and rotary stage is

mounted on a translation axis, which is normally used to align one of several detectors on
this setup with the X-ray source. The translation stage in turn is mounted on another axis

which sets the SDD.

100 to 500 in steps of 100, leading to 20 scans acquired with the mock-up and 35
simulated scans in total.

Regarding table 4.2 it should be noted that the detector illumination (texp · Pt)
is varied in order to completely fill up the detector’s dynamic range as to com-
pensate for the quadratic drop in the X-ray flux with the increasing SDD. In the
mock-up setup, this was achieved by altering the exposure time (texp), because the
transmission X-ray tube used in the setup had a limited output power, here set to
4 W. This power limitation is not an issue for industrial, directional tubes, which
can reach up in the order of 1 kW in tube power. So in a practical setup, rather
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Table 4.2: Overview of the scans performed with the mock-up and the simulated scans.
The travel (H) is varied while the SDD, L and Θ are calculated through equations 4.6 to
4.8. The detector illumination is expressed as a product of the exposure time and the tube

power. The tube high voltage was set to 120kV.

Simulated Mock-up H L SDD Θ texp · Pt

scans scans [mm] [mm] [mm] [◦] [Ws]
v v 200 318.7 361.5 153.0 0.800
v v 300 416.4 472.4 146.7 1.368
v v 400 515.2 584.4 143.3 2.092
v v 500 614.4 697.0 141.2 2.976
v 600 713.9 809.9 139.9 4.016
v 700 813.5 922.9 138.8 5.216
v 800 913.2 1036.0 138.0 6.568

than the detector’s exposure time, the power would be adjusted towards filling up
the dynamic range of the detector.

4.3.2 Comparing the simulations to the mock-up data

Projections

In figure 4.8, three projections of the sample, moving along its conveyor belt tra-
jectory, are superimposed on what would be the full field of view of a stationary
detector of length L = 319 mm, corresponding to a travel of H = 200 mm.
Based on a visual comparison, a good agreement was found between the mock-up
scans and the simulated scans, while some small differences can clearly be seen
on the line profiles for transmission and the local SNR, following a horizontal line
through the centre of the middle projection (indicated in figure 4.8). These small
differences can to a large extent be explained by a slight misalignment between
the digital phantom and the real sample. Most importantly, the SNR, calculated of
over ten voxel wide moving window, is very similar in both cases, which is crucial
with respect to evaluating the quality of the CT reconstructions.

Reconstructions

For standard circular cone beam and helical cone beam acquisitions the reconstruc-
tion can be performed through fast analytical reconstruction algorithms like the
FDK [23] and Katsevich [24] algorithms (section 3.1.2). An essential prerequisite
to the FDK algorithm is that the projections are sampled in an equiangular fash-
ion on a circular trajectory, which is not the case for the conveyor belt setup. By
remapping the ray paths into an equiangular sequence, and by applying appropriate
back projection weights, the FDK algorithm can still be used to perform a recon-
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Figure 4.8: Comparison between three projections acquired with the mock-up conveyor
belt and their simulated counterparts (top). The projections are shown from left to right as

they would be acquired on a stationary detector with a span L, here L = 319 mm for
H = 200mm. Although the overall agreement is good, some small differences, which can
be attributed to slight misalignments between the digital phantom and the real apple, are

visible on line profiles for the transmission and the local SNR (bottom).

struction of a conveyor belt acquisition. To avoid these remapping and reweighting
steps, the data from the uncommon conveyor belt geometry are reconstructed with
the simultaneous algebraic reconstruction technique (SART) [25] (section 3.2.3).
The SART reconstructions were performed with the Python-C tool, which uses
PyCUDA [26] to off-load the computationally demanding tasks to a GPU, offer-
ing a tremendous decrease in reconstruction times (section 3.2.5).

The reconstructions are performed on a grid of 545 slices containing 570 by
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570 cubical voxels with a volume of 1283 μm3 each, of which the central slice
is shown in figure 4.9 for H = 200 mm. Visually the simulated and mock-up
reconstructions proved to be very similar, although the simulated scans appear
to be slightly sharper. This can also be seen in the histograms, where some of
the features are smoothed out in the mock-up reconstructions. Most importantly,
the overall sharpness improves as the number of projections (Np) is increased.
This effect can be leveraged when setting a larger travel (H), which allows for
more projections to be acquired at a similar throughput, and for smaller features
to be visualised. This gain in sharpness is barely visible to the naked eye, and
is therefore not conveyed through figure 4.9, though it can be quantified through
the Spectral Signal-to-Noise Ratio (see section 4.4.1). On the other hand, there
is loss in sharpness as H increases, at a fixed number of projections. This is
primarily caused by a decrease in the geometrical magnification for larger SDD’s
at a constant ODD, next to a slight drop in the factor f(x) in equation 4.10, which
is not compensated for by setting a higher illumination.

simulated

100 300 500

mock-up

0.15 0.30
Attenuation [cm-1]

Frequency [-]

Figure 4.9: Reconstruction for the central slice in the Elstar apple based on the simulated
(top) and the mock-up projections (bottom) for a varying number of projections (Np) and
H = 200 mm. The simulated scans seem to be sharper, and as expected the sharpness
increases significantly with Np. The histograms for the Np = 500 case (right) are very

similar, apart from a small streaking artefact in the mock-up reconstructions. This is
probably caused by a misalignment in the reconstruction geometry, which is difficult to
pinpoint at this stage, but could be eliminated by an automated trajectory calibration.



4-18 CHAPTER 4

4.4 Reconstruction quality & throughput

4.4.1 Spectral resolution metrics

The spatial resolution of a reconstruction forms an absolute lower bound on the
smallest features that can be detected through CT. The voxel pitch, given by (2.5),
is however not always a fair reflection of the apparent resolution, which is also
affected by noise and the filtering effects of the reconstruction process. To de-
termine a reliable estimate for the apparent resolution, the SNR concept can be
extended towards the frequency domain, leading to so-called spectral resolution
metrics. The idea of these metrics is to identify the highest spatial frequency that
can marginally be discerned from the noisy background. In other words, they iden-
tify the frequency for which the SNR drops below a certain visibility threshold.
Here, this frequency, or more specifically its inverse, which sets a lower bound on
the detectable feature size, serves as a measure for the quality of a CT reconstruc-
tion. In the context of this work, two spectral resolution metrics have been studied:
(1) the Spectral Signal-to-Noise Ratio (SSNR), and (2) Fourier Shell Correlation
(FSC).

The Spectral Signal-to-Noise Ratio (SSNR)

For the SSNR [27, 28] the 3D Fourier transforms of two distinct volumes are
calculated, i.e. a reconstruction of the projections taken from a sample, and a
reconstruction based on projections containing only noise. To obtain these noise-
only reconstructions, the noise component in the projections has to be estimated.
This can be done by considering a Gaussian error propagation on the ray sums (cfr.
equation (2.6))

p = − ln

(
U

U0

)
= − ln (u)

where the measurements U and U0, expressed in ADUs, are distributed normally in
the high photon count limit of a Poisson distribution (equation 2.18). The variance
on U and U0 is thus proportional to the number of detected photons

N0 ≈ β2 · σ2
U0

(4.13a)

no ·N ≈ β2 · σ2
U (4.13b)

where β represents the number of photons needed to fill up one ADU-level, and no

the number of open beam images acquired for each data frame (here no = 5). The
factor β can be estimated from the simulated radiographs, after a proper tuning of
the gain factor κ (see equation 2.16) which matches the simulations to the real data
(here β = 2.5). In a next step, the error on p can be approximated through a first
order expansion under the Gaussian propagation assumption
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σ2
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(
∂p

∂u

)2

u=1

σ2
u (4.14a)

≈ σ2
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u2
(4.14b)

≈ σ2
U0

U2
0

+
σ2
U

U2
(4.14c)

By combining (4.13) and (4.14), it follows that

σ2
p ≈
(α
u
+ 1
)
· 1

βU0
(4.15)

With (4.15), the variance σ2
p can be estimated for each pixel individually by ap-

proximating u and U0 through low pass filtered versions of the normalised pro-
jections and the open beam images, respectively. Here, a 50 pixel wide Gaussian
blur is applied to the normalised projections and open beam images, in order to
eliminate their inherent shot noise through a spatial smoothing.

Subsequently, the power of the 3D Fourier signals is averaged out over a series
of spherical shells centred on the zero frequency. This essentially reduces a 3D
signal to a 1D signal representing the power spectra, denoted by Fd(fR) for the
data reconstruction and by Fn(fR) for the noise-only reconstruction (Figure 4.10).

0 0.5 1

33

65

130

normalised frequency [-]

power spectrum [dB]

noise spectrum

data spectrum
98

Figure 4.10: Radial power spectra for the noise only and data reconstructions of a mock
up data set (H = 200mm and Np = 500). The radial frequency associated to the

spherical shells in the Fourier domain are normalised w.r.t. the Nyquist frequency, i.e.
fmax = 1/(2 pv). The power spectra are expressed in dB relative to the unit power.

Given the noise and data power spectra, the SSNR can be calculated as follows

SSNR(fR) = max

(
Fd(fR)

Fn(fR)
− 1, 0

)
(4.16)
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where fR is the frequency radius of the spherical shells. A cut-off can then be
set on the resulting SSNR-curve, representing the minimal Signal-to-Noise Ratio
(SNRmin) necessary for a frequency component to be distinguishable from its
noisy background (Figure 4.11). It should be noted that following this definition
of the SSNR, the SNR is implicitly defined as the ratio of the square mean value
to the variance of a signal (SNR = μ2/σ2).

0 0.5 1

0

5
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normalised frequency [-]

SSNR + 1 [dB]

threshold = 1.5

-5

decreasing number
of projections

Figure 4.11: The Spectral Signal-to-Noise Ratio (SSNR) of a volume reconstructed with a
varying number of projections. As the number of projections decreases, going from 500 to

100 in steps of 100, so does the maximal frequency cut off at the threshold. This graph
depicts an SSNR offset by one in dB, i.e. 10 ·10 log(SSNR + 1).

Here, the SNR threshold is defined by

2 log(1 + SNRmin) = 0.5

assuring that the average information content of a voxel in Fourier space is at least
1/2 bit [29, 30]. The frequency at which the SSNR-curve reaches the cut-off
SNRmin can be interpreted as the maximal frequency (fmax) which is adequately
represented by the reconstructed volume, and hence its inverse (f−1

max) serves as a
resolution measure indicating the minimal feature sizes visible on the reconstruc-
tion. Figure 4.11 illustrates how fmax shifts downward with subsequent degrada-
tion of the apparent resolution when a lower number projections is taken up in the
reconstruction process.

A drawback to the SSNR method is obviously the fact that the noise-only pro-
jections have to be estimated through a noise model. As seen on Figure 4.10,
this might lead to a slight overestimation of the noise component. These anoma-
lies are caught by the SSNR definition by throwing out the negative values in the
high frequency range, where the noise component is expected to take over. The
proper interpretation of this effect is to consider these high frequencies as being
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pure noise, or at least to be indistinguishable from it, in the light of the noise model
introduced throughout this section.

Fourier Shell Correlation (FSC)

As an alternative to the SSNR, a correlation can be drawn between the reconstruc-
tion of the data and a reference volume in the Fourier domain. Whereas the SSNR
requires a noise model to generate the noise-only reconstructions, the problem in
FSC is shifted towards finding an appropriate reference volume. A popular choice
is to split the projections from a data set into two non-overlapping sets, indexed
d1 and d2, containing an equal amount of projections, i.e. the so-called ‘half-data
split’. A shell correlation for the Fourier transforms of the resulting reconstruc-
tions, denoted by Fd1(�ξ) and Fd2(�ξ), is then calculated as follows [29]

FSC(fR) =

∑
�ξi∈fR

Fd1(�ξi) · F ∗
d2(

�ξi)√∑
�ξi∈fR

F 2
d1(

�ξi) ·
∑

�ξi∈fR
F 2
d2(

�ξi)
, (4.17)

where the sums accumulate all of the values at discrete frequency positions �ξi
within a spherical shell of diameter fR and a predetermined thickness Δf , and ∗
implies complex conjugation. Again, the underlying idea is that the correlation
quantified by the FSC will drop below a certain threshold at the maximal fre-
quency fmax which reflects the effective resolution of the reconstructed volume.
The threshold curve in Figure 4.12 is linked to the SNR, following van Heel et
al. [29],

FSCt(fR) =
2
√

SNRmin + SNRmin

√
n(fR) + 1

2
√

SNRmin + (SNRmin + 1)
√
n(fR)

(4.18)

This threshold is a function of fR through the number of frequency voxels n(fR)
contained within the shell at this diameter, and is determined by the minimally
required SNRmin. Which threshold to use on these FSC curves is however still a
matter of debate [29], contrary to the SSNR where the threshold is just SNRmin

itself. This clear cut interpretation makes the SSNR the preferred measure for
quantifying the image quality throughout section 4.4.2, despite its noise estimation
step. The SSNR is also a slightly more conservative measure when comparing the
Figures 4.11 and 4.12. It can also be shown that the expectation values for the
SSNR and FSC are linked to each other by [27, 31]

SSNR = 2
FSC

1− FSC
,

which stipulates their equivalence. The main reason, however, to set aside the
FSC in favour of the SSNR, is that the FSC is a somewhat more computation-
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ally demanding task, requiring the GPU memory to hold up to eight arrays of the
reconstruction volume’s size.
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Figure 4.12: Fourier shell correlation curves (FSC) of a volume reconstructed with a
varying number of projections. The dashed curve represents the threshold according to

(4.18). Again the cut-off frequency decreases as the number of projections decreases from
500 to 100 in steps of 100.

4.4.2 Image quality as a function of throughput

In the previous section, the SSNR was introduced as a means to quantify the small-
est detectable features in the reconstruction of a conveyor belt acquisition. It is
particularly interesting to look at this minimal feature size in terms of the through-
put realised by the conveyor belt system, calculated according to equation 4.11
for a given exposure time of 20 ms per projection1. Looking at figure 4.13, it is
clear that the image quality produced by the mock up is not as good as for the
simulated scans, in the sense that the simulated scans might be overestimating
quality. Nevertheless, the general trends as a function of the horizontal travel and
the number of projections are reproduced in both the simulated and the mock up
case, apart from one anomaly occurring at a horizontal travel of 200 mm in the
mock up data. As the number of projections increases the detectable feature size
significantly decreases, with the drawback of longer acquisition times and thus a
lower throughput. This drop in throughput can be countered by increasing the hor-
izontal travel, causing the curves to slowly shift towards higher throughputs, such
that smaller features can only be detected in a fast way by using larger setups.

The minimal feature size calculated through the SSNR is up to seven times
larger than the voxel size (here 128 μm) of the reconstruction grid, which under-

1Corresponding to the minimal exposure time of the mock up’s detector (Varian Medical Systems
GmbH, Willich, Germany).
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lines the fact that the voxel size is not a fair reflection of the apparent resolution.
The double of the voxel size (256 μm) does however constitute an absolute mini-
mum to the spatial resolution, theoretically attained for Np → ∞. It should also
be noted that the voxel size of 128 μm is deliberately chosen to be smaller than the
detector’s pixel pitch pd = 254 μm. Through this choice, the lower limit on the
resolution estimates calculated according to equation 4.16 is primarily governed
by Np rather than the voxel size itself. In retrospect, based on the lowest reso-
lution values in figure 4.13(b), setting the reconstruction grid’s voxel size (pv) to
approximately 250μm would have been an optimal choice towards minimizing the
voxel count and avoiding the voxel pitch’s influence on the resolution estimate.
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Figure 4.13: The detectable feature sizes as a function of the throughput for the mock up
scans (a) and the simulated scans (b). Each curve represents a different travel as indicated
next to the curve in ‘mm’. The number of projections increases from 100 to 500 following

each curve from right to left, showing a clear trend towards smaller feature sizes for
slower scanning regimes.

4.5 Towards a simulation based design

An analysis, such as the one outlined in this work, can be performed purely on
a simulation basis, but care needs to be taken in drawing conclusions as the mis-
match between the simulations and the mock up case in figure 4.13 points out.
Several sources of uncertainties are not accounted for in the simulations, and can
to a large part explain the loss in resolution encountered in the real data. In order
of importance:



SIMULATION AND MOCK UP VALIDATION OF AN ALTERNATIVE IN-LINE CT
GEOMETRY 4-25

• Sample movement and small calibration errors in the real life sample trajec-
tories can cause excessive blurring in the resulting reconstructions. Hence,
when a conveyor belt system is commissioned, a careful mechanical calibra-
tion of the sample trajectories and/or an algorithmic strategy to compensate
for positioning errors during reconstruction, will be necessary.

• Systematic downward offsets with respect to the tube power setpoint can
cause an illumination shortage, and subsequently a lower SNR. Together
with the aforementioned point, the author believes this might partly explain
the shift of the H = 200mm curve with respect to the other curves on figure
4.13 in the mock up case.

• Photon scattering caused by the sample itself, which is particularly a prob-
lem for small ODDs where the scattering footprint forms a smeared out halo
like structure around the projection of the sample (cfr. section 2.3.3).

• Cross talk between the detector pixels caused by an oblique entrance of X-
rays might impose a practical limit upon the cone angle and the detector
length, next to a degradation of resolution.

• Finally, the detector’s point spread function might also cause the resolution
to degrade.

As mentioned before, a slight improvement in image quality can be achieved
while maintaining a similar throughput by increasing the horizontal travel, or vice
versa a higher throughput can be achieved for the same image quality. There are
however other ways, next to larger travels, to increase throughput, e.g. by intro-
ducing multiple inspection stations in parallel, or even better, by considering the
fact that several samples might simultaneously fit into the reconstruction region
depicted on figure 4.5(a). As such, the shape of this reconstruction region and the
way it is filled up by the sample is equally important in the design phase. For
instance, the ROI diameter might deliberately be chosen larger than the sample
such that the reconstruction region can indeed contain several samples at once.
The shape of the reconstruction region can also be tailored by introducing a whole
series of alternative conveyor belt like trajectories through a generalisation of the
mapping between the rotational and the translational movement.

4.6 Conclusion

In this chapter it was shown that under certain mathematical constraints the com-
bination of a translational and rotational sample movement can produce a series of
radiographs from which a theoretically exact CT reconstruction can be obtained,
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leaving small cone beam artefacts for off-centre slices aside. Within the bound-
aries of these mathematical constraints a methodology to evaluate the design of a
conveyor belt system was developed, which may serve as a tool to tailor and op-
timise the design of the system toward a specific type of sample, i.e. other than
the Elstar apple and its phantom presented in section 2.5. As an end result to the
design exercise, plots can be generated, which visualise the trade-off between a
quality measure, here the minimal feature sizes that need to be detected, and how
fast they have to be imaged. The throughput of a conveyor system which is a func-
tion of the size of the system and the duration of an acquisition, expressed in terms
of the horizontal travel and the number of projections, can thus be optimised with
respect to this quality measure.

Regarding Figure 4.13, generated here for the Elstar apple sample in both a
simulated and mock up environment, it can be concluded that the throughput for
this particular case tends to a realistic, practically usable range of up to 5 sam-
ples per second. In general, also valid for other types of samples, the analysis
performed here indicates that larger setups can achieve a higher throughput at the
same level of image quality. Furthermore, other ways to improve throughput re-
main to be investigated in future work, primarily the tailoring of the reconstruction
region’s shape by looking at alternative conveyor belt like sample trajectories. In
conclusion, the concept of a conveyor belt acquisition geometry is shown to be a
viable solution to in-line non-destructive testing with 3D X-ray CT in a continuous
high throughput environment.



SIMULATION AND MOCK UP VALIDATION OF AN ALTERNATIVE IN-LINE CT
GEOMETRY 4-27

References

[1] T De Schryver, J Dhaene, M Dierick, M N Boone, E Janssens, J Sijbers,
M van Dael, P Verboven, B Nicolai, and L Van Hoorebeke. In-line NDT
with X-ray CT combining sample rotation and translation. NDT & E Inter-
national, 84:89–98, 2016.

[2] R P Haff and N Toyofuku. X-ray detection of defects and contaminants in
the food industry. Sensing and Instrumentation for Food Quality and Safety,
2(4):262–273, jun 2008.

[3] R Hanke, T Fuchs, and N Uhlmann. X-ray based methods for non-destructive
testing and material characterization. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment, 591(1):14–18, jun 2008.

[4] N Kotwaliwale, K Singh, A Kalne, S N Jha, N Seth, and A Kar. X-ray imag-
ing methods for internal quality evaluation of agricultural produce. Journal
of food science and technology, 51(1):1–15, jan 2014.

[5] Y Zou, D Du, B Chang, L Ji, and J Pan. Automatic weld defect detection
method based on Kalman filtering for real-time radiographic inspection of
spiral pipe. NDT & E International, 72:1–9, jun 2015.

[6] J Xu, T Liu, and X M Yin. Automatic X-ray crack inspection for aircraft
wing fastener holes. 2nd International Symposium on NDT in Aerospace,
pages 1–8, 2010.

[7] E Herremans, A Melado-Herreros, T Defraeye, B Verlinden, M Hertog,
P Verboven, J Val, M E Fernández-Valle, E Bongaers, P Estrade, M Wevers,
P Barreiro, and B M Nicolaı̈. Comparison of X-ray CT and MRI of watercore
disorder of different apple cultivars. Postharvest Biology and Technology,
87:42–50, jan 2014.

[8] M S Kim, Y R Chen, B K Cho, K Chao, C C Yang, A M Lefcourt, and
D Chan. Hyperspectral reflectance and fluorescence line-scan imaging for
online defect and fecal contamination inspection of apples. Sensing and In-
strumentation for Food Quality and Safety, 1:151–159, 2007.

[9] N Kondo. Robotization in fruit grading system. Sensing and Instrumentation
for Food Quality and Safety, 3(1):81–87, 2009.

[10] L De Chiffre, S Carmignato, J-P Kruth, R Schmitt, and A Weckenmann.
Industrial applications of computed tomography. CIRP Annals - Manufac-
turing Technology, 63(2):655–677, 2014.



4-28 CHAPTER 4

[11] Zeiss. Inline process control with industrial computed tomography.
https://www.zeiss.com/metrology/products/systems/
process-control-and-inspection/volumax.html.

[12] O Brunke, F Hansen, I Stuke, and F Butz. A new Concept for High-Speed
atline and inlineCT for up to 100% Mass Production Process Control. Pro-
ceedings 18th World Conference on Non-Destructive Testing, pages 16–20,
2012.

[13] Micro Vista. Inline CT: 100 % examination of components in line with series
production. http://www.microvista.de/en/inline-ct/.

[14] W M a Thompson, W R B a Lionheart, E J b Morton, M b Cunningham, and
R D b Luggar. High speed imaging of dynamic processes with a switched
source x-ray CT system. Measurement Science and Technology, 26(5):1–11,
2015.

[15] J M Warnett, V Titarenko, E Kiraci, A Attridge, W R B Lionheart, P J With-
ers, and M A Williams. Towards in-process x-ray CT for dimensional metrol-
ogy. Measurement Science and Technology, 27(3):035401, 2015.

[16] Rapiscan Systems. The next generation technology for hold baggage screen-
ing. http://www.rapiscansystems.com/en/products/hbs/
rapiscan_rtt.

[17] D Matenine, Y Goussard, and P Després. GPU-accelerated regularized
iterative reconstruction for few-view cone beam CT. Medical physics,
42(4):1505–17, apr 2015.

[18] E Y Sidky, C M Kao, and X Pan. Accurate image reconstruction from few-
views and limited-angle data in divergent-beam CT. Journal of X-ray Science
and Technology, 14(2):119–139, 2006.
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5
Imaging dynamic processes with CT

High-resolution X-ray Computed Tomography or micro-CT (μCT) has matured
to the point where it is now possible to image dynamic processes within micro-
structures in 3D with a sufficient temporal resolution to follow the micro-structural
changes caused by these processes through time, i.e. in 4D. Especially synchrotron
experiments, armed with the luxury of a high X-ray flux, have pushed the bound-
aries of the temporal resolution up to the 1 kHz range, at spatial resolutions down
to 3 μm [1]. An exhaustive survey on the achievements in literature, regarding
temporal and spatial resolutions, can be found in [2, 3], from which it should be
noted that high temporal and spatial resolution CT imaging is becoming tractable
at lab-based CT facilities as well [4, 5]. The obvious advantage of lab-based se-
tups is their compactness, and the ability to rotate the X-ray source and detector
instead of the sample, as in the gantry based EMCT scanner described by section
2.2.2, which allows the sample to be attached to peripheral measuring or in-situ
conditioning equipment. On the other hand, the X-ray fluxes produced by micro-
focused lab sources are much lower than those available at synchrotron and med-
ical sources. The available flux is an important quantity, as it puts up an inherent,
physical lower bound on the process time constants that can be resolved with a
4D-CT acquisition. Indeed, in the extreme cases of very fast 4D scanning, at low
detector exposure times and number of projections, the acquired photon statistics
might be insufficient to extract a usable CT signal form the shot noise background,
while scanning at a slower rate to gather more photon statistics, can cause exces-
sive temporal blurring, due to the sample’s time evolving attenuation distribution.
If this is the case, this simply means that, given its available flux, the imaging
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device or protocol is incapable of resolving the time constants of the underlying
process, with an acceptable amount of noise or temporal blurring. But, even if
the X-ray CT device is perfectly capable of producing a relatively noise free ac-
quisition at the desired temporal resolution, a slower scanning protocol might be
desirable to suppress the massive amount of data produced during a 4D acquisi-
tion. In other words, tolerating a small amount of temporal blurring is not just
compelling through physical limitations, i.e. shot noise, but also through other
limitations, particularly the data rates.

This chapter addresses the scenarios, where at first glance a certain degree of
temporal blurring seems to be inevitable. In general, temporal blurring can be
caused by any change in the attenuation distribution following a dynamic process
within the sample, e.g. stress induced internal deformations, temperature related
phase changes, fluid transport in rock’s micro-pores etc. To effectively reduce or
eliminate the temporal blurring effects, and indirectly boost the temporal frequen-
cies of CT imaging, à priori information on the underlying dynamic processes can
be incorporated in the CT reconstruction algorithm. In this chapter, a dynamic
non-rigid deformation of a sample’s micro-structure is considered, for which tem-
poral blurring is henceforth referred to as ‘motion blurring’. In section 5.2, some
algorithms are discussed to estimate this deformation under the form of a dense
displacement field, which can be incorporated in the projection and back projec-
tions steps of an iterative reconstruction algorithm, as described in section 5.3.
How this eliminates the motion blurring effects, is illustrated through a series of
applications in section 5.4, primarily based on deformation processed that can, to
certain extent, be controlled with the in-situ devices, discussed in section 5.1.

5.1 In-situ process control

There is an ongoing effort at the UGCT to develop, acquire and implement add-on
modules to accurately control the conditions a sample is scanned in, i.e. temper-
ature, pressure, humidity, flow, compression, etc.. First of all, these modules can
provide a stabilised environment by minimizing the micro-structural changes that
could be caused by an improper conditioning of the sample. But more importantly,
the ability to accurately control the dynamics related to a changing environment
opens a broad range of applications in dynamic or 4D μCT. Various add-on mod-
ules are available at the UGCT of which two in particular are relevant to the appli-
cations discussed in the section 5.4 of this chapter, i.e. for (1) setting a sample’s
temperature, and (2) applying a unilateral extension or compression to a sample,
during a CT scan.
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5.1.1 Temperature control

Design constraints

As outlined in [6], a compact heating/cooling stage was developed, with the goal
of studying temperature related micro-structural changes in a sample, in both a
static and dynamic regime, within the -20◦C to 50◦C temperature range. This
compact, low cost in-situ module was made to fit samples of approximately 1 cm in
diameter, with a density ranging from 0.5 g/cm3 or lower for soft organic samples,
such as food and wood, up to 2.5 g/cm3 for dense structures, e.g. rock samples.
With these constraints on the sample size and density, the material choices and
geometry are tailored towards high voltages of at least 60 to 100 kV, resulting in a
polychromatic X-ray beam spectrum with an average energy of approximately 30
keV.

Materials & Geometry

To realise a compact design, and reach the low temperature of -20◦C, a ‘thermo-
electric Peltier element’ (TEC) was chosen to actively cool the sample. An added
advantage of TECs is that by varying their supply voltage, different degrees of
cooling or heating can be obtained, by including them into a feedback loop with a
temperature sensor. The feedback loop and its accompanying electronics are de-
scribed in detail later in the next section.

Using thermal grease one end of a highly conductive aluminum extension rod,
with a thermal conductivity of 237 W/(m ·K) [7], is attached to the TEC’s cold
surface, with the goal of elevating the actively cooled sample volume to within
the X-ray setup’s field of view. This essentially transfers the TEC’s cold surface
temperature to the other end of the aluminum rod, which is topped off with a
highly conductive, hollow cap that homogenises the temperature distribution over
the actively cooled volume (Figure 5.1(a)). In particular, the temperature gradient
between the top and the bottom of the actively cooled volume should be as small
as possible, leading to a specific choice for the material and the wall thickness of
the conductive cap, which is governed by a trade-off between the need for a high
thermal conductivity and low X-ray attenuation properties. To investigate these
trade-offs, the temperature distributions in the cooling stage were simulated using
QuickField (Svendborg, Denmark), resulting contour plots similar to the one in
Figure 5.1(a). Two cap materials, with complementary properties on thermal con-
ductivity and X-ray attenuation (see table 5.1), were investigated. The cap material
can then be chosen depending on the application it is used for, because essentially
it serves as an X-ray beam hardening filter. While dense and highly attenuating
samples can be imaged in the cooling stage using the aluminum cap, light and
translucent samples can be imaged with the graphite cap, keeping in mind that
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cooling performance will be less in the latter case. To further optimise the heat
transfer from the actively cooled volume on the tip of the rod to the TEC surface,
the rod needs to be insulated. Contrary to the rod’s material, the thermal conductiv-
ity of the insulating material needs to be as low as possible, hence a polyurethane
foam (W/(m ·K)) is used.

(a) (b)

Figure 5.1: UGCT’s home made cooling stage. (a) A longitudinal cross-section through
the aluminum extension rod, its polyurethane insulation and the graphite cap containing

the sample volume, with a simulated temperature contour overlay. Based on the simulation
the temperature difference between the top and the bottom of the actively cooled sample

volume is approximately 1.5◦C. In this simulation the TEC was modelled as a surface with
its temperature fixed at -22.4◦C. (b) The cooling stage in its assembled state, measuring

approximately 24 cm from top to bottom and 13 cm in diameter.

Table 5.1: Thermal conductivity and X-ray mass attenuation properties of aluminum (Al)
and graphite (C). The attenuation, being energy dependent, is listed at 30keV [8, 9]. Both

materials are complementary in their use as a cap material.

Thermal Conductivity X-ray Mass Attenuation
[W/(m ·K)] at 30keV

[
cm2/g

]
Aluminum 237 1.13
Graphite 96 0.26

The simulation using a graphite cap (Figure 5.1(a)) indicates that the desired
temperature of -20◦C at the top of the cooled region is already attained, when the
cold side of the TEC reaches approximately -22.4◦C. Moreover, there is only a
small temperature difference of approximately 1.5K between the top and the bot-
tom of the cap. Reaching the a temperature of -22.4◦C is not a problem for a TEC
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if the heat dissipated at its hot side is adequately drained off to the surroundings.
This can be done with standard CPU coolers, which are rated by their thermal re-
sistance between their hot side and the surroundings. The one used in this cooling
stage has a minimum thermal resistance of 0.24 K/W , depending on the fan’s
rotary speed, which proved to be sufficient to reach the minimum temperature of
-20◦C. A drawback in using these CPU coolers is the fact that their fans can in-
duce vibrations, which are unwanted in a μCT imaging setup. This practically
limits the image resolution, that can be obtained with the add-on module, to twice
the principal vibration amplitude. This amplitude has not been thoroughly inves-
tigated, but is expected to be well below 9 μm since no degradation of the quality
of scans at this resolution has been observed after switching on the fan. In its
completely assembled state the cooling stage measures approximately 24 cm from
top to bottom and 13 cm in diameter (see Figure 5.1(b)). The bottom part was 3D
printed, serving as a mount for the CPU cooler, and holding the stage controller
electronics.

Electronics

The temperature in the sample volume is controlled by a custom-made carrier
board (see Figure 5.2), which can measure up to four different temperature sig-
nals through TTF-103 thermistors. These temperature signals are interpreted by a
PID controller embedded on an ArduinoTM Nano micro-controller [10]. Based on
the temperature measurement, the PID regulates an H-bridge module, which sets
the voltage for the TEC. The H-bridge can also invert the polarization of the TEC
supply voltage, so that the sample volume can be heated as well. This maximum
heating temperature is determined by the thermistor’s series resistor, which sets
the clipping value for the Arduino’s ADC. So, while higher temperatures can be
reached, their measurements will be clipped, unless a larger series resistor for the
TTF-103 is chosen. This can however drastically deteriorate the measuring accu-
racies for the lower temperature range. With a 10 kΩ series resistor, the 1 kbit

ADC can measure temperatures up to 50◦C, and an accuracy of 0.22 K/ADU at
-20◦C.

The stage electronics transmit the temperature measurements wirelessly (through
RF) to a USB module, which can be attached to a PC. A user can then read out the
current temperature, and set the desired temperature and PID parameters through
a custom LabVIEW interface. Furthermore, the LabVIEW interface seamlessly
integrates into UGCT’s scanner control software [11], making it possible to com-
pletely automate the combined cooling and μCT experiment. An advantage of the
wireless communication is that the power supply cable is the only wire externally
connected to the stage. A battery could be used, but most batteries do not last an
entire experiment, considering that the current drawn by the TEC can go up 6 A.
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Figure 5.2: Cooling stage electronics and controlinterface. The stage controller, encased
in the 3D printed CPU cooler mount (Figure 5.1(b)), communicates wirelessly with its

USB counterpart, which is attached to a PC. Users can measure and set the cooling stage
temperature through a LabVIEW based interface.

For the moment, any commodity AC to DC adaptor, which can deliver up to 6A at
15V, can be used with the cooling stage.

Application range

The cooling stage has been used to facilitate several applications, categorised by
a rising degree in dynamism, going from sample immobilization, over time-lapse
evolution studies to fully dynamically evolving, temperature dependent processes.

In Figure 5.3(a), a sagittal slice through a CT reconstruction of puff paste
frozen to -20◦C is shown. Yeasted, laminated dough products progressively start
leavening when they are left at room temperature, consequently changing their
internal structure and making it difficult to image their interior with a long, high
quality and motion artefact free μCT acquisition. Freezing the puff paste during
the scan solves this problem. When on the other hand yeasted doughs are heated
to their preferred leavening temperature, the process is accelerated and becomes
an ideal case study to test out new developments in 4D-CT research (see section
5.4.4).

Of special interest are the applications where the freezing process alters the
micro-structural properties of a sample. Figure 5.3(b) shows a sagittal slice through
a frozen (also -20◦C) ice cream mock up mixture. By adding a contrast agent, the
ice crystals are clearly delineated, making it possible to investigate their formation
as a function of mixture composition, and the number of freeze-thaw cycles the
mixture is exposed to [12]. Freeze-thaw cycling also has a marked effect on crack
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initiation and propagation in rocks, where the crystallization-induced stress frac-
tures the material, forming new pathways for water to penetrate deeper into the
rock’s pore space [13].

In a final application, the dynamics of a crystallization process were captured
by using the cooling stage in UGCT’s Environmental CT-scanner (EMCT) (2.2.2).
Figure 5.3(c) shows one time-frame out of a 4D rendering, capturing the crystal-
lization process of a highly concentrated sodium sulfate (Na2SO4) solution cooling
down from 10◦C to -5◦C [14].

2 mm

(a)

2 mm

(b) (c)

Figure 5.3: Examples of some applications with the cooling stage. (a) Sagittal slice
through a frozen (-20◦C) puff paste sample with a clear visualization of its layered

structure. (b) Ice crystal formation in an ice cream mock up mixture containing a contrast
agent at -20◦C (sagittal slice). (c) A snapshot from a 4D rendering of the Na2SO4

crystallization process in a cylindrical capillary of 9 mm in diameter, cooling from 10◦C
to -5◦C.

5.1.2 Tensile & compression stage

A second add-on module, central to this work, is the CT5000-TEC stage (Deben
UK Ltd., Suffolck), which can unilaterally apply loads of up to 5 kN in both a
tensile and compressive direction (Figure 5.4). The CT5000 stage, acquired by the
‘Pore-scale Processes in Geomaterials Research group (PProGRess)’, was specif-
ically customised by Deben to fit the UGCT scanners. With it, as a first key appli-
cation, the PProGRess team is able to perform Unconfined Compressive Strength
(UCS) tests on geomaterials, and is able to simultaneously visualise the internal
structural disintegration of the loaded geomaterials in 3D, through in-situ μCT
imaging.

The CT5000’s claws can also be heated or cooled within a range of -20◦C up to
160◦C, again through the use of TEC elements, although in a less uniform way. An
object can thus be compressed or extended up to 10 mm or up to the maximal load
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of the installed load cell (500N, 1 kN, 2 kN or 5 kN) 1, which ever of these limits is
reached first, while at the same being subjected to a form of temperature control. In
a typical compression or extension experiment, a prescribed load or displacement
is set, which is then attained by moving the bottom yaw or compression plate in the
vertical direction at a fixed speed (0.1, 0.2, 0.5, 0.7 or 1 mm/min), while the top
yaw remains stationary. In other words, an object can undergo a controlled in-situ
deformation, which is additionally characterised by an accurate load-displacement
curve acquired through the Deben Microtest software. An example of such a curve,
setting out the load applied during the compression of an aluminum foam cube
(1.53cm3), is depicted Figure 5.4(b) (see also section 5.4.3).

(a)

0 3.5 7

0

50

100

compression [mm]

Load [N]

(b)

Figure 5.4: (a) The Deben CT5000-TEC stage installed on the EMCT. With this
combination long running dynamic compression or extension experiments can be

conducted, since the stage’s wiring can not be caught up in any rotational movement. (b)
Example of a load-displacement curve for the compression of an aluminum foam cube

(1.53cm3; Picture of CT5000 courtesy of Jeroen Van Stappen).

5.2 Tracking 3D deformation with CT

5.2.1 Registration of 3D images

Free form deformation (FFD)

Before introducing the concept of registration, it is important to note that the final
goal here is to determine how objects, and in particular their internal structures,
move or more generally deform through space. From a mathematical perspective,
a 3D deformation can be described by a mapping

1When small loads are expected, a lower capacity cell with a higher accuracy can be used.
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M : Ωf → Ωm (5.1)

which transforms the points �xf of a ‘fixed’ (initial) region in 3D space (Ωf ) to a
‘moving’ (deformed) state Ωm, containing the points �xm, such that

M(�xf ) = �xm = �xf + �u(�xf ) (5.2)

In other words, the deformation is defined by �u(�xf ), known as a ‘dense displace-
ment field’ or ‘Motion Vector Field’ (MVF), which describes how points move
through space (Figure 5.5). In section 2.4, a particular type of deformation was al-
ready introduced through the parametrisation of an acquisition geometry, namely
‘affine deformation’, given by

�xm = A · �xf + �Ot,

which leads to an MVF

�u(�xf ) = (A− I) · �xf + �Ot, (5.3)

where I represents the identity transform. The affine transform is able to cap-
ture rigid deformations, i.e. rotations and translations, as well as non-rigid defor-
mations in the form of scaling and shear. More importantly, (5.3) is a ‘global’
parametrisation of �u(�xf ), in the sense that changing any of the components in A

or �Ot will affect the MVF over its entire support.

Apart from affine deformations, this chapter will mainly address the more gen-
eral notion of a ‘Free Form Deformation’ (FFD), which implies a local and non-
rigid deformation of an object, and as such requires a ‘local’ parametrisation of
�u. For example, if �u would be set out on a regularly spaced grid of positions
�xm, similar to the grid of a 3D reconstruction volume, the most extreme case of
FFD defines a different �u(�xm) in each voxel position. The neighbouring field
vectors may even not be correlated. In reality however, deformations will always
be correlated locally through a certain extent of space, and with a view to reg-
istration it is important to capture this correlation through a minimal amount of
parameters. This is why in the context of registration, the brute-force deformation
parametrisation, where each voxel position has its own �u, is actually referred to as
‘non-parametric’.

Registration

During the registration of two images, a spatial transformation that optimises the
similarity between these images is estimated. This similarity can be defined in
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Figure 5.5: General formulation of deformation as a mapping that can be represented by a
‘Motion Vector Field’ (MVF) �u(�xf ).

several ways, but a plausible though rigorous approach in the context of registering
CT attenuation images, is to instate the ‘constancy of brightness’

μ(�xm, τm) = μ(�xf + �u(�xf , τf ), τf ). (5.4)

In this equation, the images are implicitly linked to distinct instances in time (τf
and τm), which underlines the fact that in the following a time evolving deforma-
tion field (�u(�xf , τf )) is to be inferred from the time evolving attenuation distribu-
tion of an object. Although the general problem of registration extends across mul-
tiple imaging modalities (CT, MRI, PET, SPET, etc.), equation (5.4) also implies
that the registered images originate from one single imaging modality, namely μCT
in the case of this work.

The goal is thus to find an MVF that deforms one of the images such that it
matches or in the ideal case is equal to the other image. When these images are
represented by 3D volumes, image registration is sometimes referred to as ‘Dig-
ital Volume Correlation’ (DVC), which according to the author is a somewhat
confusing terminology, that might imply the image’s similarity is always quanti-
fied through a correlation metric. The chosen similarity metric can greatly affect
the outcome of any registration method, as one of its key elements.

Following [15], the crucial elements of a registration method are gathered in
the flow chart of Figure 5.6. As outlined above, the inputs are two distinct images,
referred to as a fixed (μf ) and a time evolved or moving image (μm), where the
explicit time stamp notation has been replaced with an appropriate indexation. A
first important observation is that most registration methods adopt a ‘hierachical
strategy’, which represents the images in multi-resolution pyramids, going from a
coarse to a fine scale through dyadic decimation and smoothing. At each level ‘k’
of these pyramids, μf is sampled in a series of points �xs, while μm is interpolated
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in the same points, though in their moved state M(�xs; �w
(k)), following the map-

ping M defined by the vector of parameters �w(k). The resulting image samples
are then combined in a metric (C), which at its optimum2 yields a new estimate for
the parameter vector.

�w(k+1) = arg min
�w

C [μf (�xs), μm (M(�xs; �w))] . (5.5)

This optimum can be found as a direct solution to (5.5), or as in most cases through
an iterative optimisation algorithm. The new parameters are passed on to the next
pyramid level as an estimate for the finer scale displacements, which are thus at
the mercy of good coarse scale estimates.
Nevertheless, the coarse scale estimates are crucial in tackling the ‘aperture prob-
lem’, and avoiding ‘temporal aliasing’ in the deformation fields [16]. The aperture
problem states that through a limited aperture on a moving image only the compo-
nents of motion perpendicular to the edges, i.e. in the direction of the image gra-
dient, can be accurately inferred. In practice, this means that the aperture and thus
the scale on which the displacements are inferred, needs to be large enough such
that it contains an adequate amount of texture for robust and correct displacement
estimation. Temporal aliasing, on the other hand, occurs when the deformations
tend to be larger than the scales on which they are estimated. By eliminating the
large scale deformation, through a coarse scale estimation, temporal aliasing can
be avoided at the smaller scales.

In summary, the essential components of any registration algorithm are:

1. the metric used to quantify the similarity between the fixed and moving im-
ages,

2. the choice on how the MVF is parametrised, and

3. the strategy used to find an optimal set for the deformation parameters.

Hence, in an attempt to classify the different registration methods, the type of the
metric can be considered, which can either be based on image intensity, e.g. the
mean square difference [17], normalised cross correlation [18] and mutual infor-
mation [19, 20], or on motion constraints, e.g. optical flow [16] (see sections 5.2.2
and 5.2.3). Moreover, the metric can be evaluated and optimised over the entire
image, or over smaller sub-regions across the image, for which the displacements
are then estimated individually. This brings about a classification that underlines
either a global or local nature of the registration problem [21, 22]. This global
or local character is also partly determined by the deformation model, which may
capture the deformation across multiple voxels in a smooth and continuous way,

2Minimum or maximum depending on how the metric is defined
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e.g. with b-splines (see section 5.2.4), or may define a motion vector for each
voxel individually, leading to the respective parametric and non-parametric classi-
fications. So, in order of importance, a registration method can be:

• quantified through an intensity or constraint based metric,

• evaluated on a global or local (sub-region) scale,

• parametric or non-parametric.

In the following sections 5.2.2 to 5.2.4, a global method with a b-spline parametri-
sation and two constraint based, local methods, are discussed in more detail. These
methods are used to estimate FFDs throughout the applications described in sec-
tion 5.4.

5.2.2 Optical intensity flow

Optical flow constraint

One the oldest concepts in registration is that of optical flow, which is firmly rooted
in the assumption of brightness constancy. The optical flow constraint can be
found by expanding the right hand side of (5.4) into a first order Taylor expansion,
resulting in

0 = μ(�x+ �u, τ + δτ)− μ(�x, τ) ≈ μτ (�x, τ) · δτ + �u(�x, τ)T · ∇�xμ(�x, τ) (5.6)

with

�u(�x, τ) =

[
∂x

∂τ
,
∂y

∂τ
,
∂z

∂τ

]T
= [ux, uy, uz]

T

∇�xμ(�x, τ) =

[
∂μ

∂x
,
∂μ

∂y
,
∂μ

∂z

]T
= [μx, μy, μz]

T
,

and μτ = ∂μ/∂τ . Without any loss in generality, δτ may be set to one, keeping in
mind that

μτ (�x, τ) · δτ ≈ μf − μm

is a measure for the difference between the fixed and moving images. Alterna-
tively, equation (5.6) can also be found in the total derivative along a path of con-
stant brightness, μ(�x(τ), τ) = constant.

The problem with the optical flow constraint is that it provides only one equa-
tion to solve for three velocity components. Hence, to recover �u, the constraints in
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neighbouring pixels can be combined in a least-squares sense by minimising their
weighted sum

C(�u) =
∑
�x

g(�x)2
[
μτ + �uT · ∇�xμ

]2
(5.7)

With (5.7) the displacement �u, or more generally its parametrisation, is assumed
to be constant over the support of g(�x), whose local values serve as weights, re-
flecting how strongly the outcome of �u’s underlying motion models is influenced
by a local constraint. A more convenient form of (5.7) arises by introducing the
constraint vector

�c = g(�x) ·
[∇�xμ(�x)
μτ (�x)

]
, (5.8)

and by extending the displacement vector to �v =
[
�uT 1
]T

, such that

C(�v) =
∑
�x

�v(�x)T · [�c(�x) �c(�x) T
] · �v(�x) (5.9)

This expression is invariant with respect to any linear parametrisation of �v, i.e.

�v(�x) = K(�x) · �w. (5.10)

By plugging this general motion model into (5.9), the optical flow metric becomes

C(�w) = �wT
∑
�x

[
K(�x)T �c(�x) �c(�x) T K(�x)

]
�w

= �wT Q̃�w (5.11)

for which a minimum can be found at

�w = Q−1�q (5.12)

by setting ∇�wC = 0, under the condition that Q is full-rank. It can be shown that
(see also [23])

Q =
∑
�x

gKT · ∇�xμ
T∇�xμ ·K

�q =
∑
�x

gKT∇�xμ
Tμτ

q0 =
∑
�x

gμ2
τ ,
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which represent the components of the structure matrix Q̃ introduced in (5.9)

Q̃ =

[
Q �q
�q q0

]
.

This structure matrix can be interpreted as a tensor that encodes preferential direc-
tions in the motion model’s parameters space. If K ≡ I , this parameter space is
nothing but the displacement vector space, resulting in a so-called non-parametric
method, when respecting the terminology introduced in the previous section. More
complicated deformation fields, can also be described through K, e.g. an affine
one, centred at �x0 [16]

K(�x; �x0) = [I X0 X0 X0]

X0 =

⎡⎣x− x0 0 0
0 y − y0 0
0 0 z − z0

⎤⎦
with a parameter vector that holds 12 entries, �w = [w0, · · · , w11]

T . K can even
represent a local B-spline model, but as more parameters are introduced, Q may
not be full-rank, unless more constraints are combined through a larger support
of g. Unfortunately, as g’s support grows larger the displacement field’s resolu-
tion degrades. To overcome this loss in resolution, extra regularisation terms, e.g.
enforcing a certain degree of smoothness upon �u, can be added to (5.9) [24], or
the optical flow constraint can be evaluated on derived image characteristics that
might be more informative on a signals displacement, specifically the local phase
(see section 5.2.3).

Demons registration

Interestingly, it can be shown that the optical flow metric is equivalent to a Sum
of Square Differences (SSD), as a direct result of the Taylor expansion in (5.6)
that leads to the optical flow constraint. In the limit for small displacements δ�u, it
follows that

SSD(δ�u) =
∑
�x

g(�x) ‖μ(�x+ δ�u, τ + δτ)− μ(�x, τ)‖2 ≈ C(δ�u) (5.13)

This particularly holds for iterative optimisation methods, which minimise the
optical flow metric by gradually removing the motion from the moved images
through small incremental estimates for the displacement δ�u(k), known as the up-
date field. As the metric converges to its optimum, the update field grows smaller
and smaller until the fixed and moving images overlap. In finding a suitable update
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field, it is interesting to note that the optical flow constraint defines a plane in the
displacement vector space normal to ∇�xμ, and at a distance μτ/ ‖∇�xμ‖ from the
origin. Similar to the Kaczmarz method (see section 3.2.2), the deformation field
can thus be found by iteratively projecting the intermediate solutions between the
planes corresponding to the constraints, with an update of the form

δ�u(k) =
μm(�x+ �u(k−1))− μf (�x)

‖∇�xμ‖2
∇�xμ (5.14)

where �u(k) =
∑

k δ�u
(k) adds up all of the update fields to form a final solution for

�u. It was Thirion [25] that first proposed this update in his more general frame-
work, using ‘Maxwell’s demons’ to register images. He also introduced an extra
regularisation term to handle points with a vanishing gradient, leading to

δ�u(k) =
μm(�x+ �u(k−1))− μf (�x)

‖∇�xμ‖2 + α · (μm(�x+ �u(k−1))− μf (�x))2
∇�xμ (5.15)

The regularisation parameter α limits the size of the update field, and while Thirion
simply set α to one, it may generally not even be scalar [26], i.e. a different value
at each field location. Several demons registration algorithms evolved, as more
complicated models for and feature of the motion fields were taken into account.
For example, the SSD metric may be symmetrised

SSD∗(δ�u) =
∑
�x

g(�x) ‖μ(�x+ δ�u, τ + δτ)− μ(�x, τ)‖2

+
∑
�x

g(�x) ‖μ(�x, τ + δτ)− μ(�x− δ�u, τ)‖2

to enforce a ‘Symmetric Demons Registration’ update, yielding a consistent for-
ward and backward deformation transform. Or, a diffeomorfic transform 3 can be
obtained by looking at the problem as an optimisation over Lie groups of trans-
forms, rather than a vector space of displacements [27, 28]. And finally, by apply-
ing a simple Gaussian smoothing on the update field or the total field, the eventual
motion model can be forced the show a fluid like or elastic behaviour, respec-
tively [26].

To conclude, algorithm 1 outlines the basic demons registration approach.
A Python implementation of the demons algorithm and several of its variants,
is available through the SimpleITK module [29–31]. Among others, the Sim-
pleITK module was used to perform registration tasks in the applications discussed
throughout 5.4 by employing ITK’s fast implementation of the symmetric demons
algorithm [31].

3A smooth bijective mapping with a smooth inverse.
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Algorithm 1 Demons registration algorithm

• Set the initial displacement field for k = 0: �u(0) = �0

• Do until (5.13) converges:

1. Compute the update according to (5.15): δ�u(k)

2. Gaussian smoothing of the update field for a fluid like behaviour:

δ�u(k) ← Gσf
� δ�u(k)

3. Compose the transforms: �u(k+1) ← �u(k) + δ�u(k)

4. Gaussian smoothing of the total field for an elastic behaviour:

�u(k+1) ← Gσe
� �u(k+1)

5. k ← k + 1

5.2.3 Optical phase flow

The phase based constraint

In substituting the image’s intensity for its phase θd, such that the optical flow
constraint becomes

θd,τ + �u · ∇�xθd = 0 (5.16)

with θd,τ = ∂θd/∂τ , it should first of all be noted that an image’s phase is indeed
a stable characteristic, in the sense that it does not wildly fluctuates as a result
of small deformations. Especially in the vicinity of salient image features, which
require a high coherence of the underlying frequency components, the phase has to
be stable if a constructive interference is to build up these features [32]. Moreover,
the phase is approximately linear over a relatively large spatial extent [16], making
the optical phase flow constraint (5.16) particularly accurate. In the extreme case
of a Fourier transform, this linearity holds across the entire image, such that a
signal displacement is exactly proportional to a phase shift of the Fourier spectrum.
Unfortunately, this property is of little practical interest to estimate local non-rigid
deformations from one image to the next, as the locality of the image features is
clearly lost under the Fourier transform. Hence, a more local analysis of phase
needs to be conducted, which preferable also yields components in a limited band
across frequency space, an ideal task for wavelets.
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The problem with wavelets

For a detailed description on wavelets and the discrete wavelet transform (DWT),
the reader is referred to the appropriate literature [33–35]. The DWT was origi-
nally conceived, by among others Ingrid Daubechies, to facilitate a compact rep-
resentation for the analysis of a signal in both the spatial and the frequency do-
main [36–38]. It can be implemented very efficiently by passing a signal through a
cascade of filter banks, which splits a signal into a high frequency part, the ‘wavelet
coefficients’, and a low frequency part, the ‘scaling coefficients’, while intermit-
tently decimating the signal dyadically4 at each level of the cascade. In Figure 5.7,
two levels of such a cascade are depicted, indicating that the decomposition into
wavelet and scaling coefficients is governed by the high and low pass filters, h1

and h0, respectively. The original signal can also be exactly reconstructed from the
wavelet and scaling coefficients by reversing the direction of the filter bank, and
by replacing the filters by their synthesis counter parts (h̃1 and h̃0) [33]. However,
since the reconstruction aspect is not relevant in the context of deformation esti-
mation, it is not discussed any further. Imporant to note is that the DWT has two
shortcomings, which are specifically problematic in the context of deformation
estimation [33, 35]:

1. The DWT is ‘shift variant’.

2. The DWT has ‘no directional selectivity’.

2  

2  

2  

2  

level 0 level 1 level 2 

wavelet coefficients

wavelet coefficients

scaling coefficients

Figure 5.7: A 1D wavelet analysis with a cascading filter bank. A 1D signal is split into
high frequency and low frequency parts by passing it through high and low pass filters.

The dyadically decimated results are called wavelet and scaling coefficients, respectively.
The scaling coefficients are passed on the next level in the filter bank.

4By powers of two.
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Indeed, the DWT coefficients of a shifted signal may differ significantly from those
of the original signal. As a result, the signal’s phase is not stable, nor is it lin-
ear. Ideally, the high and low pass filters (h1 and h0) should exactly split up the
frequency domain into two equal halves. The accompanying block-like filter re-
sponses in the frequency domain will thus correspond to an infinite support of the
spatial impulse response, which does not stroke with the philosophy of a wavelet
analysis. Practically usable wavelet filters with a finite support will thus necessar-
ily exhibit a slight overlap (Figure 5.8). It is precisely this overlap that causes the
shift variance, since both the high and low frequency filter outputs are contami-
nated by components that do not belong to their respective bands after decimation,
i.e. the decimated signals are distorted by aliasing terms.

0

0

0.5

1

angular frequency [-]

frequency reponse [-]

aliasing region

Figure 5.8: Aliasing region in the frequency responses of the db7 wavelet filters.

To illustrate the lack in directional selectivity, consider a 2D extension of a real
DWT high pass filter, such as the one depicted in Figure 5.8. As the DWT allows
it to act on the rows and columns of an image in a completely separable way, the
composite frequency response arises through a tensor product of the individual
row and column filter (see Figure 5.9). The resulting spectrum occupies the four
corners of frequency space, which means this composite filter does not select a
preferred direction in space. The link between directionality and the structure of
the Fourier spectrum can be explained by looking at the opposite scenario of a basis
function that can basically encode any desired direction, namely a plane wave with
wave vector �k

ej
�k·�x = cos(�k · �x) + j sin(�k · �x). (5.17)

Coincidently, this is the Fourier transform’s expansion basis, for which it was al-
ready established that a signal displacement expresses itself as a phase shift of
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these plane waves. The most important observation to be made on the plane wave
expression (5.17) is the one-sided build up of its spectrum, i.e. it only has non-zero
components (in this case one) on one side of the plane with normal �k. It can be
shown that any N -dimensional signal, which has non-zero frequency components
at just one side of an (N+1)-dimensional hyperplane dividing its frequency space,
will predominantly fluctuate in the direction normal to this hyperplane [39]. These
types of signal are so-called ‘analytical signals’, for which the real and imaginary
parts form a Hilbert transform pair. As an added perk, the projections of a signal
on a basis of analytical signals is also shift invariant. In other words, the problems
of the DWT’s shift variance and poor directional selectivity, are solved in defining
a complex analytical basis of wavelets and scaling functions.

Figure 5.9: Artistic impression of a 2D-DWT high pass filter spectrum’s amplitude. The
four cornered spectrum does not encode a clear preference for any direction.

The Dual-Tree Complex Wavelet Transform (DT-CWT)

Again, the decomposition of a signal onto a complex analytical wavelet basis can
be executed by a filter bank. However, this time the signal is simultaneously passed
through two filter banks, the standard filter bank from Figure 5.7 and a dual filter
bank, where the filters have been exchanged for half-sample delayed versions of
h1 and h0 (see Figure 5.10)

g0(n) = h0(n− 0.5) g1(n) = h1(n− 0.5). (5.18)

It can be shown that the wavelets functions (ψh(n) and ψg(n)) and scaling func-
tions (φh(n) and φg(n)) represented by both of these trees are indeed linked
through a Hilbert transform [33]

ψg(n) = H [ψh] (n) φg(n) = H [φh] (n)

which gives rise to the ‘Dual-Tree Complex Wavelet Transform (DT-CWT)’, with
complex analytical wavelet and scaling functions of the form (in 1D)

ψ(n) = ψh(n) + j ψg(n) φ(n) = φh(n) + j φg(n) (5.19)
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level 0 level 1 level 2 

2  

2  

2  

2  

2  

2  

2  

2  

real part 

imaginary part 

Figure 5.10: A 1D dual-tree complex wavelet transform filter bank. The individual trees
respectively generate the real and imaginary parts of the complex wavelet and scaling

coefficient.

In 2D, the tensor products of these complex wavelets inherently exhibit direc-
tionality, which again is best seen on the idealised impulse response spectra of
Figure 5.11. The wavelet corresponding to the spectrum in this figure is given by

ψ(nx, ny) = ψ(nx) ψ(ny),

which is a tensor product of the complex wavelet function from (5.19). This
wavelet can be labelled as ’HH’ (High, High), as both the rows and columns of
the analysed imaged will be high pass filtered. Five other tensor products can be
composed by also taking into account the low pass filter behaviour of the complex
scaling wavelets, and by complex conjugation the wavelets in the Y-direction5, e.g.
the HL (High, Low) band

ψ(nx, ny) = ψ(nx) φ(ny)

This leads to six sub-bands in total, HH ,HL,LH ,LH∗,HL∗ and HH∗, which,
looking at Figure 5.12, clearly encode different directions. This is not the case for
the LL-variants, which why they are not considered here.

In 3D, the tensor products of complex wavelet and scaling functions are made
up out of three factors, e.g.

ψ(nx, ny, nz) = ψ(nx) ψ(ny) ψ(nz),

representing the HHH sub-band wavelet. Each factor may represent a high or low
pass filtering operation with the wavelet or scaling functions, or their conjugate
forms, leading to the following 28 sub-bands

5Complex conjugation in the X-direction does not yield any extra components, since the input signal
is a real image.
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Figure 5.11: Idealised spectrum from one of the six bands of 2D DT-CWT. By composing
the X- and Y- analytic high pass band, only the top right corner in the idealised spectrum

shows non-zero values. The accompanying wavelet will be directed towards 45◦.

Figure 5.12: Real part of the six complex wavelet bands of DT-CWT. These images clearly
show the directionality of the wavelets.

HHH HHL HLH HLL LHH LHL LLH
HH∗H HH∗L HL∗H HL∗L LH∗H LH∗L LL∗H
HHH∗ HHL∗ HLH∗ HLL∗ LHH∗ LHL∗ LLH∗

HH∗H∗ HH∗L∗ HL∗H∗ HL∗L∗ LH∗H∗ LH∗L∗ LL∗H∗

Again, each of these sub-bands filters out a certain direction in the 3D input im-
age. In other words, the analysis preformed by the 3D DT-CWT unveils which
directions are predominantly expressed through the image’s features, and this on a
local basis.

A particularly interesting feature of the DT-CWT is that all of the resulting
wavelet subbands can be stored without taxing an excessively redundant amount
of memory. This is a direct result of decimation and thus the fact that the DT-CWT
remains (approximately) shift invariant and keeps its directional sensitivity across
different scales. The redundancy factor, as in the number of times the original data
needs to be stored, is only 2d for d-dimensional signals, whereas the undecimated
DWT, which can also be made shift invariant, is memory redundant by a much
larger factor of log2 N , where N is a typical number of data entries in one of the
dimensions [33, 35].

Back to the phase constraint

Since each of the 28 sub-bands, coming out of a 3D DT-CWT analysis, carries its
own phase information, 28 phase constraints of the form (5.16) can be composed.
So, instead of aggregating the constraints across a certain spatial extent, follow-
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ing equation (5.7), the phase constraints can be combined locally to solve motion
models with up to 28 parameters. Moreover, both strategies can be combined to
boost the robustness of the displacement estimation, according to the following
metric (cfr. (5.7)) [40]

C(�v) =
∑
�x

�v(�x)T ·
[

28∑
d=1

�cd(�x) �cd(�x)
T

]
· �v(�x) (5.20)

where the constraint vector is given by

�cd = gd(�x) ·
[∇�xθd(�x)
θd,τ (�x)

]
(5.21)

with an index d that refers to the individual sub-bands. Alternatively, the phase
constraints can be gathered in a single matrix

C = [�c1�c2 · · ·�c28] ,
leading to the following metric (cfr. (5.11))

C(�v) = �wT ·KT C CT K · �w,
by adopting the parametrisation given in (5.10). Again, the solution can be found
through equation (5.12), with a slightly different structure tensor

Q =
∑
�x

K(�x)T ·
28∑
d=1

[
gd(�x)∇�xθd(�x)

T∇�xθd(�x)
] ·K(�x)

�q =
∑
�x

K(�x)T ·
28∑
d=1

[
gd(�x)∇�xθd(�x)

T θd,τ (�x)
]
.

Following Chen et al. [40], a 3D version of the phase based registration ap-
proach was developed as an extension to an already existing 2D implementation
of the algorithm, available through an open source Python module [41]. The ex-
tension makes it possible to track local non-rigid deformations in 3D by producing
a dense displacement field that maps each voxel in a reference volume to its posi-
tion in the deformed volume. In summary, the phase based optical flow approach,
combined with a DT-CWT analysis, has some appealing properties that makes it a
viable and robust candidate for local non-rigid deformation estimation:

• An image’s phase can be linear over a relatively large extent of space, mak-
ing the constraint (5.16) even more accurate for phase than in the intensity
based context.
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• The DT-CWT provides a built-in directional analysis, leading to 28 direc-
tional sub-bands. Up to 28 motion model parameters can be estimated, by
combining their phase constraints locally, instead of aggregating constraints
spatially, as in the intensity based approach.

• A hierarchical scheme for the estimation of deformation naturally arises,
since the DT-CWT analysis inherently decomposes the image into a multi-
resolution pyramid.

5.2.4 B-spline registration

Both of the constrained based techniques, outlined in the previous sections, pro-
duce a local result for the displacement vector or the parameters of the motion
model describing this displacement. However, alternative parametrisations, fol-
lowing equation (5.10), were not considered in the implementations of the con-
strained based techniques, that were used throughout the applications in section
5.4. In other words, as they were exploited in this work, the constrained based
optical flow registrations are of the local, non-parametric kind.

As a third, parametric and global registration technique, the B-splines registra-
tion approach was also explored. In this approach, the entire displacement field is
described as a linear combination of B-splines, set out on a regularly spaced grid
of control points. In 1D, the one and only displacement component can thus be
approximated by

u(x) =

Nx∑
nx=1

w(nx) Bnx,k(x) (5.22)

where k indicates the B-spline’s order6, Nx fixes the number of control points,
and the w-values form a set of parameters that fix the motion model. The cubic
B-spline functions (k = 3) on a 1D control grid of 11 points uniformly spaced
throughout the unit interval, are set out in Figure 5.13. In 3D, the linear expan-
sion basis is constructed out of B-spline tensor products, which are now used to
approximate three displacement components, leading to

6Here, the order equals the degree of the polynomials composing the B-spline function. Confus-
ingly, in literature the order sometimes refers to the degree plus one.
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ux(�x) =

Nx,Ny,Nz∑
nx,ny,nz=1

wx(nx, ny, nz) Bnx,k(x) Bny,k(y) Bnz,k(z) (5.23a)

uy(�x) =

Nx,Ny,Nz∑
nx,ny,nz=1

wy(nx, ny, nz) Bnx,k(x) Bny,k(y) Bnz,k(z) (5.23b)

uz(�x) =

Nx,Ny,Nz∑
nx,ny,nz=1

wz(nx, ny, nz) Bnx,k(x) Bny,k(y) Bnz,k(z) (5.23c)

0

0.5

1

0 0.5 1

Figure 5.13: 1D cubic B-splines on an 11 point control grid.

The displacement vector field is thus described by a parameter vector field �w =

[wx, wy, wz]. In this work, the parameter vector was optimised according to scheme
outlined in Figure 5.6, through the implementation provided by the ‘elastix’ tool-
box [15], which is also exposed to Python through the SimpleElastix module [42].
The elastix B-spline registration procedure was configured to optimise a ‘Nor-
malised Cross Correlation (NCC) metric

NCC(�w) =
∑

�x μm(�x+ �u(�w)) μf (�x)√∑
�x μm(�x+ �u)2

∑
�x μf (�x)2

(5.24)

with an ‘Adaptive Stochastic Gradient Descent (ASGD) optimiser [43], and this on
a 3D grid of control points that is decimated by a factor of eight in every direction
with respect to the original image grid.

5.3 Motion corrected iterative reconstruction

5.3.1 Recap - The SART algorithm

In 4D X-ray CT imaging a delicate balance must be maintained between motion
blurring artefacts, arising when on the one hand a dynamic process is imaged at
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an insufficient temporal resolution, and on the other hand a low SNR, as a result
of acquiring an insufficient number of photons during fast imaging. When consid-
ering non-rigidly deforming samples, both the motion blurring and low SNR can
be alleviated by integrating an estimate of the deformation into the CT reconstruc-
tion algorithm. Although, the Simultaneous Algebraic Reconstruction Technique
(SART) or rather its generalised Ordered Subset version has been thoroughly dis-
cussed in section 3.2, it is revisited here with the prospect of incorporating a free
form deformation into its projection and back projection steps.

In doing so, it is important to build up a time scale for the projections used in a
reconstruction. If τ0 represents the instant in time at which the first projection (P0)
in a CT data set is acquired, the other projections are expected at the time steps τs,
given by

τs = τ0 + s texp, s ∈ [0 · · ·NS [,

if an exposure time texp is set. However, a valid CT reconstruction does not nec-
essarily require all of the NS projections (Ps) contained within the CT dataset
(S)

S = {Ps : s ∈ [0 · · ·NS [}.
For example, a dynamic acquisition might consist out of multiple rotations, such
that several subsets of the entire dataset may provide a sufficient sampling to cal-
culate an ‘accurate’ CT reconstruction of the imaged object. The term ‘accurate’
is however relative in considering the dynamic nature of such an experiment, in
which the underlying μ-distribution is in fact time dependent. Each reconstruction
thus reflects a certain temporal state of the object, which is uniquely determined
by the subset of the projections (R) used for this reconstruction

R = {Pr : r ⊂ s}
such that R ⊂ S. Whether the reconstruction accurately represents the underly-
ing state, i.e. with little to no motion blurring, depends on how much the object
deforms during the acquisition of all the projections in R. If this deformation is
negligible, it makes sense to attach a time stamp

τR =
1

NR

∑
Pr∈R

τr

to the reconstruction, which is then supposed to accurately reflect the underlying
ground truth μ-distribution. The object is assumed to be stationary in the time it
takes to acquire R, i.e. ‘local time stationarity’ is assumed [44].
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To reconstruct the time instant τR, the SART algorithm implements a sequence
of three steps, that iteratively loop (in a random fashion) over all the projections
in R (see algorithm 2). In a first step, a simulated version of the currently handled
projection Pr is calculated by tracing out a line integral through an intermediate
estimate of the μ-distribution. At iteration k, this amounts to (cfr. equation (3.23))

P̂
(k)
r,j = Δtj

L∑
l=0

μ(k)(�xjl) (5.25)

where, following Joseph’s approach [45], the L points �xjl are equidistantly sam-
pled with an interval Δtj on the ray that connects the source point �Os to detector
pixel j (see equation (2.12)). In the second step, the error with respect to the real
measurement Pr,j is calculated and weighted by a factor containing the relaxation
λ, a weight wc

r reflecting the contribution of projection Pr to the current time step
τR, an aperture function wa

j to reduce artefacts inherent to region of interest re-
constructions [46], and the intersection length between the ray j and the voxel
volume.

C
(k)
r,j =

(
Pr,j − P̂

(k)
r,j

)
· w

c
r w

a
j

L Δtj
(5.26)

Finally, during the back projection step, the μ-value in each voxel is updated
by interpolating the correction term C

(k)
r at the intersection between the detec-

tor plane and the line connecting the source positions �Os to the voxel’s position
�xm. The resulting interpolation value is then added to the previous estimate for
the μ-distribution

μ(k+1)(�xm) = μ(k)(�xm) + C(k)( �Os, �xm). (5.27)

5.3.2 Motion corrected SART

The goals is now to go beyond the local time stationarity assumption, and adapt
algorithm 2 in a way that it accounts for FFDs (cfr. [46, 47]). It is assumed that
these FFDs can be described by dense displacement fields �urR(�x), known before-
hand or more specifically estimated through one of the FFD registration techniques
described in the previous section. Important here is the indexation ‘rR’, which in-
dicates that the �urR describes the displacement of an object as it deforms from its
state at time instant τr, when the projection Pr is acquired, to the state represented
in the reconstruction, at the averaged time stamp of the entire subset τR. Given
this definition, algorithm 3 can be composed, which clearly only differs from al-
gorithm 2 in its projection and back projection steps.
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Algorithm 2 The standard SART algorithm

• Set the initial μ-distribution for k = 0: μ(0) = 0

• Randomly permute R

• For all Pr ∈ R do:

1. Project according to (5.25):

P̂
(k)
r,j = Δtj

L∑
l=0

μ(k)(�xjl)

2. Correct according to (5.26):

C
(k)
r,j =

(
Pr,j − P̂

(k)
r,j

)
· w

c
r w

a
j

L Δtj

3. Back project according to (5.27):

μ(k+1)(�xm) = μ(k)(�xm) + C(k)( �Os, �xm)

To calculate the correction term at τr, the volume at this time instant has to be
projected. The reconstruction volume however, represent the deformed state at τR,
in which the points that ought to be projected are now situated at the downstream
side of the displacement field, hence the plus sign in the deformation transform for
the projection step. In the back projection step, a minus sign needs to be adopted,
since the correction term now pertains to a time step at which the voxel position
were situated at the upstream side of the displacement field.

Algorithm 3, also gives some hints on how the motion correction can be ef-
ficiently implemented. In first, brute force approach, the deformation transform
could be executed across the entire intermediate reconstruction volume. In han-
dling a projection Pr, the reconstruction volume is thus reverted to its state at
that time. After the back projection, the volume is then deformed back to the re-
construction time stamp τR. This amounts to a twofold resampling of the entire
volume, which for one, is a computationally demanding task, especially because it
needs to be executed during each SART iteration, but foremost, might also induce
an interpolation error to be carried and accumulated across the many SART iter-
ations. In this work, a somewhat more lightweight implementation is considered,
that uses a non-parametric displacement vector field as an overlay to the recon-
struction volume. The major advantage of this approach is that the three displace-
ment vector components (ux, uy and uz) can be stored in texture memory. Using
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Algorithm 3 The motion corrected SART algorithm

• Set the initial μ-distribution for k = 0: μ(0) = 0

• Randomly permute R

• For all Pr ∈ R do:

1. Project the volume’s state at τr:

P̂
(k)
r,j = Δtj

L∑
l=0

μ(k)(�xjl + �urR(�xjl))

2. Correct according to (5.26):

C
(k)
r,j =

(
Pr,j − P̂

(k)
r,j

)
· w

c
r w

a
j

L Δtj

3. Back project to volume’s state at τR:

μ(k+1)(�xm) = μ(k)(�xm) + C(k)( �Os, �xm − �urR(�xm))

the texture’s built in trilinear interpolation capabilities, a displacement vector can
be sampled, which is then used to redefine the position at which the μ-volume is
sampled. While this approach introduces virtually no overhead 7 with respect to
the original SART implementation, there are some limitation to be considered:

• The approach requires more memory, as now three extra volumes need to
be stored in GPU RAM. However, the displacement vector volumes do not
have to be represented at the same resolution level as the μ-volume. A
down-sampling can be carried out, of course at the cost of some loss in
the displacement field’s accuracy.

• The parametrisation of the registration technique used to estimate the dis-
placement vectors is lost. This does not mean that the registration procedure
itself will not benefit from a more advanced parametric motion model. In
the SART iterations, the vector field will simply not be sampled according
to this motion model. A B-spline sampling model could be implemented on
the GPU, but then the advantages of using textures will have to be sacrificed.

• The technique falls or stands with a good model for the displacement field’s
evolution through time.

7Three texture memory fetches and three addition.
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Indeed, this last remark is crucial, but since a registration procedure, between a
fixed image at time τf and a moving image at τm, only yields a single displacement
field, without any information on its temporal information, not a lot of choices are
left for the parametrisation of its temporal behaviour. As demonstrated in section
5.4, the simple linear evolution of a displacement field

�urR(�x)) = �umf (�x))
τr − τR
τm − τf

, (5.28)

adopted in this work, already proved to be a good and useful approximation. More
complicated models, such as piece wise linear or higher order ones, can be con-
structed by considering extra reference volumes in between τf and τm. The po-
tentially high number of parameters in these models will however lead to an even
higher demand in GPU RAM and sampling overhead, which is why only (5.28) is
considered in the following.

5.4 Applications

5.4.1 Registration in μCT applications

In X-ray μCT literature, registration of 3D local non-rigid deformation has partic-
ularly gained interest as a way to visualise full-field strain maps in a wide variety
of materials. Ever since Bay et al. introduced 3D registration as a means to study
deformations in trabecular bone [48], it has been widely used, in combination with
μCT, in this biomechanical context [21, 22, 49–52], but also in other material dis-
ciplines like wood [53], aluminium foam [54–56], gypsum [57], soil [58], sand
packings [59] and composites [60].

Clearly, deformation registration is no stranger to X-ray μCT, while its mo-
tion corrective potential is not that widely studied in the context of μCT. To the
author’s knowledge, motion corrected reconstruction, using dense displacement
maps, has as of recently mainly been covered in literature on medical CT appli-
cations [47, 61, 62]. In a notable development at the University of Antwerp, Van
Nieuwenhove et al.have implemented a very similar motion correction scheme,
which slightly differs from the approach presented in algorithm 3 in its parametri-
sation of the MVF during the motion correction step [63, 64]. Van Nieuwenhove
et al.uphold the higher order B-Spline parametrisation to sample the MVF in the
warping procedures, which despite being a more accurate approach may cause an
unnecessary computational overhead in the motion corrected projection and back
projection steps. In this work, the native linear GPU texture interpolation is used,
which only amounts to a first order B-spline, though much faster, interpolation.
Hence, it should be interesting to assess this trade-off between speed and com-
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plexity in future work.

In the following sections, the registration approaches discussed throughout sec-
tion 5.2, and the motion correction framework of section 5.3, are tested on three
applications, either rooted in the day to day activities of the UGCT, in its goal to
spread μCT across multiple research disciplines, or as a particular case study in
the context of the TomFood project (see chapter 1). The application on aluminium
foams, described in section 5.4.3, was also presented at the iCT 2017 conference
with an accompanying proceeding [65].

5.4.2 Rigid registration of a moving tree stem

The Laboratory of Plant Ecology at the UGent Department of Applied Ecology and
Environmental Biology collaborates with the UGCT to image tree stems, through
X-ray μCT imaging, in an effort to visualise their internal water transport struc-
tures. In drought periods, these transport structures might water lose water con-
ducting function. The cavitated, water drained vessels show up on CT scans as
air filled cylindrical structures, with diameters down to and below the ten micron
range.

For the experiment presented here, a researcher of the Laboratory of Plant
Ecology set up a young beech tree for CT acquisitions with the EMCT system
(see section 2.2.2). This gantry based system allowed peripheral equipment to be
attached, such as tensiometers, sapflow sensors or microphones to audibly detect
cavitation events [66]. To visualise the cavitated vessels, the magnification was set
as high as possible, reaching a voxel pitch of ± 6.7 μm. Moreover, to also discern
the water filled vessels from the wood tissue matrix, a long imaging protocol was
adopted to ensure a high contrast and SNR. The details of the initial single turn
protocol, are summarised in table 5.2.

The problem with this 30 min single rotation protocol is that the tree could
move significantly during the acquisition, leading to motion blurring artefacts
in the reconstruction. Even when only the data for a short scan angular range
(180◦ + 2γ) is reconstructed (Figure 5.14). the motion blurring artefact is not
completely eliminated. More importantly, the resulting SNR is too low for the wa-
ter filled vessels to be distinguished from the wood matrix. Hence, a new protocol
had to be devised, in order to circumvent both the motion blurring and low SNR
problem.

In the new protocol, three 10 min rotations were performed, measuring 1200
projections each. As such, a similar amount of image statistics was acquired,
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Table 5.2: Imaging parameters for circular cone beam scans of a beech tree, using one or
several rotations.

Single Multiple
rotation rotations

Tube Hamamatsu L9181
Tube voltage (Vt) 60 kV
Tube power (Pt) 5 W

Detector Xineos1313
Exposure time (texp) 300 100 ms
Detector size (W,H) (1316,1312) -
Binned pixel size (pd) 100 μm

Geometry Circular cone beam
Source Detector Distance (SDD) 367.0 mm
Source Object Distance (SOD) 24.6 mm
Number of projections (Np) 2000 6000 -
Number of rotations (Nr) 1 3 -

Reconstruction FDK
Voxel pitch (pv) 6.7 μm
Voxel grid (W,H,D) (450,510,1101) -

1 mm

(a) (b)

Figure 5.14: Reconstructions of single rotation circular scan of a beech. The scanning
time proved to be too long for the tree to stay still, which resulted in clear motion blurring
artefacts in (a) the reconstruction of the entire dataset, and (b) as indicated by the arrows
some residual motion blurring artefact in the short scan reconstruction. Their respective
SNRs are 11.2dB and 9.2dB. In reporting these SNR values it is important to note that no

special reconstruction filters were used other than the Ram-Lak filter.

while keeping the individual rotations short enough to avoid unmanageable mo-
tion blurring artefacts in the reconstructions. In other words, during one rotation
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it is assumed that the beech stem remains stationary. During the entire acquisition
however, the beech stem moves significantly, which is clear when all of the single
rotation reconstructions are simply averaged in an attempt to restore the SNR of
the full acquisition (Figure 5.15(a)). To eliminate the motion blurring artefact, the
SimpleElastix toolbox [42] was used to rigidly register all of the short scan recon-
structions to the same point in time, before taking their average (Figure 5.15(c).
Specifically, an intermediate average reconstruction was rigidly transformed to
match the next in a series of six consecutive short scan reconstructions, before
taking the latter up into the average.

While very simple, this approach also proves to be very effective in solving
motion blurring, to the extent it is caused by a rigid displacement of the object. The
next application extents this deblurring to local non-rigid deformation. In any case,
with this multi rotation protocol, the UGCT has a new technique at its disposal to
tackle motion blurring without having to resort to fast low SNR acquisitions.

1 mm

(a) (b) (c)

Figure 5.15: Motion corrected reconstructions of a multi rotation acquisition by using
rigid registration before averaging. (a) The reconstruction of a multi rotation scan is

rendered useless due to motion blurring artefacts, if the individual reconstructions are
simply averaged. (b) The individual reconstruction (first short scan) shows no motion

blurring, at the cost of a low SNR (5.8 dB). (c) By registering the individual reconstructions
before averaging, the SNR could be restored (6.9 dB), while avoiding motion blurring. The

SNR for (a) is 10 dB, which is higher than in (c) due to the blurring effects of motion.

5.4.3 In-situ compression of aluminium foams

Aluminium foam

For the second application, the Deben compression stage (section 5.1.2) was in-
stalled on the EMCT system to compress aluminium foams at a controllable strain
rate. The deformation of aluminium foams has been studied before with X-ray
μCT in literature [55, 56]. Besides its use as an advanced engineering mate-
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rial [54], due to its low weight an load bearing capacity, it has also been brought
forward as a surrogate model for bone, which has a similar micro structure, though
a rather brittle mechanical behaviour as opposed to the ductile nature of alu-
minium [67, 68]. The precise properties of aluminium foams strongly depend
on the way it is manufactured, leading to a wide variety in structures of an open-
or closed-cell type, and with various aluminium strut thicknesses and air pore vol-
umes [69]. The foam used here, shown in its uncompressed state in Figure 5.16(a),
was provided by the Applied thermodynamics and heat transfer group at the UGent
Department of Flow, Heat and Combustion mechanics, that studies these foams in
their capacity to efficiently transfer heat [70]. With the goal of optimising this heat
transfer the foams are manufactured to have high surface area to volume ratio, re-
sulting in fairly thin aluminium struts (± 200 μm). As such, these type of foams
are not specifically designed to support large compressive loads. Hence, while it is
not particularly relevant to look at their compressive behaviour, this behaviour is
still fairly predictable8, making these foams an ideal candidate to benchmark the
registration approaches presented above.

(a) (b)

Figure 5.16: An aluminium foam (a) in its uncompressed state, and (b) how it is placed on
the bottom plate of the Deben compression stage.

Dynamic in-situ compression

A cubical aluminium foam sample, with a side length of ± 1.5 cm, was placed
in a cylindrical PEEK9 container, which is attached to the bottom (moving) plate
of the Deben compression cell (see Figure 5.16(b)). A piston, attached to the top

8They tend to deform in a smooth plastic way, with a small amount of discrete motion events, such
as buckling or brittle strut breaking.

9Polyetheretheketone
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(stationary) plate, inserts itself into the PEEK container, as the bottom part moves
upward, thus effectuating a compressive action upon the aluminium foam cube. At
the onset of this compression, a CT acquisition (see table 5.3) was initiated, to dy-
namically image the foam’s 3D deformation at a compression rate of 0.5 mm/min.
During the 14 min acquisition, 60 gantry rotations measuring 700 projections each,
were completed, which amounts to a total compression of ± 8 mm or ± 133 μm
per rotation. Each of the rotations in this 34 GB dataset, can be reconstructed
separately, showing a relatively low degree motion blurring. Due to the inherent
contrast of the aluminium foam structure with respect to its air-filled background
(Figure 5.17), the low SNR of 14 sec rotations was not an issue.

3 mm

Figure 5.17: Reconstruction of the first rotation in a dynamic acquisition of an in-situ
aluminium foam compression.

Comparing registration algorithms

The data produced by this dynamic acquisition (table 5.3), presents an ideal oppor-
tunity to benchmark the registration algorithms of section 5.2. The most straight-
forward way to analyse the precision of these algorithms, is to measure how well
the deformation field, produced by the registration, maps a fixed image onto the
moving image. The ‘Root Mean Square Error’ (RMSE)

RMSE(μm, μ∗
f ) =

√√√√ 1

Nx Ny Nz

Nx,Ny,Nz∑
nx,ny,nz=1

||μ∗
f (nx, ny, nz)− μm(nx, ny, nz)||2

(5.29)
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which averages the SSD (cfr. (5.13)) between the transformed fixed image

μ∗
f (nx, ny, nz) = μf (nx + ux(nx), ny + uy(ny), nz + uz(nz))

and the moving image (μm), over the entire voxel grid (Nx, Ny, Nz), before taking
its square root, and the ‘Normalised Cross Correlation (NCC) (cfr. (5.24)), are
combined in the following definition for a registration algorithm’s score (χs)

χs(nv) =
χncc(nv) + ν χrmse(nv)

χncc(0) + ν χrmse(0)
− 1 (5.30a)

χncc(nv) =
NCC(μm, μ∗

f )

NCC(μm, μf )
(5.30b)

χrmse(nv) =
1− RMSE(μm, μ∗

f )

1− RMSE(μm, μf )
(5.30c)

In this equation, the factor ν scales the RMSE-component of χs to lay within the
same range as the NCC-component. By progressively registering the first rota-
tion’s reconstruction to the reconstruction of a rotation further down the line, a set

Table 5.3: Settings for the dynamic acquisition of an in-situ compression of aluminium
foam.

Tube Hamamatsu L9181
Tube voltage (Vt) 90 kV
Tube power (Pt) 19.8 W

Detector Xineos1313
Exposure time (texp) 20 ms
Detector size (W,H) (658,656) -
Binnend pixel size (pd) 200 μm
Binning (-) 2 by 2 -

Geometry Circular cone beam
Source Detector Distance (SDD) 367.02 mm
Source Object Distance (SOD) 73.4 mm
Number of projections (Np) 42000 -
Number of rotations (Nr) 60 -
Voxel pitch (pv) 40 μm

Reconstruction SART
Voxel grid (W,H,D) (512,512,512) -
SART iterations (-) 1 -
Relaxation (λ) 0.5 -

In-situ apparatus Deben CT5000-TEC
Load cell (-) 5 kN
Compression rate (-) 0.5 mm/min
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of scoring curves can be generated as a function of the separation between these
two rotations (see Figure 5.18). This separation is reflected through nv , which
counts how many voxels (of 40 μm) the compression stage has moved, in between
two consecutive rotations nv = 3.3 voxels.

0 100 200

0

0.7

1.4

displacement, [voxels]

score, [-]

demons

phase

B-spline

Figure 5.18: Scoring curves for Demons, phase flow and B-spline registration for the
aluminium foam acquisition. The B-spline method performs best overall, providing

qualitative registrations up to very high deformations as indicated by its flat maximum.

The pretence of equation (5.30) is to have an indication on how good the cor-
respondence between the transformed fixed image and the moving image really
is, i.e. if the registration technique effectively removes the mismatch between the
original fixed image and the moving image, which is the case if χs > 0. Notably,
the curves in Figure 5.18 show a maximum, implying that the initial deformations
are not large enough for the registrations to significantly boost (decrease) the NCC
(RMSE), and that the algorithms completely lose track of deformations that are too
large. The maximum should thus be interpreted as the optimal state of deformation
at which the registration algorithms are most effective. More importantly, beyond
the maximum the registration results are not to be trusted entirely. Indeed, while
some regions of the images might be registered correctly, explaining the fact that
χs > 0, other regions might not be registered or even be distorted by the inferred
deformation field. The registration results are also compared in Figure 5.19, by
taking the difference between the moving images and the transformed fixed image
at the maxima (nv,max) of the scoring curves, and six rotations before and after
these maxima, i.e. nv,max± 20 voxels).

Purely based on the scores alone, the B-spline method is clearly superior to
the others, providing qualitative registrations up to very a high deformation (nv ≈
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maximum score-6 rotations +6 rotations

phase

demons

B-spline

3 mm

Figure 5.19: Difference between the moving images and the transformed fixed image at the
maxima of the scoring curves, and six rotations before and after these maxima. The

B-spline method clearly performs best.

100 voxels) as indicated by its flat maximum. Moreover, the B-spline method is
also very fast (56 sec per registration), despite the fact that it is inherently more
complex, specifically in its higher order resampling steps. This speed is a direct
result of the excellent rate at which a set of B-splines can approximate a function,
i.e. it can accurately represent (smooth) functions with a relatively small amount
of control grid points. The optical phase flow technique is notably slower than the
other techniques (114 sec per registration), partly because the resampling opera-
tion are implemented in Python rather than C/C++ as is the case for the other two,
and mainly because it calculates a Demons-like iteration update for each of its 28
sub-bands, thus making it roughly 28 times slower. The phase flow method also
did not perform well on the finer scale pyramid levels, where the phase informa-
tion is expected to lose its linearity [32]. If one of these finer scales is taken up in
the pyramid schedule, it can distort the registration by causing a phase wrap that
produces an inverted deformation field (see Figure 5.20). This is why a different
registration pyramid schedule was set for the phase flow technique (see table B.1 in
appendix B). While leaving out the fine scales significantly reduces the calculation
time, it leaves the algorithm blind to small scale deformations. A similar sensitiv-
ity to the registration schedule could be expected from the Demons, which not is



IMAGING DYNAMIC PROCESSES WITH CT 5-39

pronounced in this aluminium foam case, but was determining for the registration
results in leavening dough example of section 5.4.4, to the extent that both optical
flow techniques had difficulties in producing a valid registration result. Intuitively,
the registration schedules should be tuned to bridge the gap between the resolution
scale of the deformation and the scale of the moving features. And ideally, both of
these scales should populate the same spatial frequency range.

Due to its explicit sensitivity to the registration schedule, the author does not
recommend using the phase flow technique, despite its elegant though rigorous
mathematical background. The Demons method is a worthy alternative to the
B-spline method, particularly due to its short calculation time (38 sec per regis-
tration), although this depends on how fine the scales in the registration schedule
have be for a successful registration. Moreover, in this work, only non-parametric
motion models are considered the implementation of algorithm 3 anyway. To con-
clude, the B-spline method is unmistakably the best choice for most registration
problems, specifically when the underlying deformation is smooth, which for most
naturally occurring deformation is a good assumption.

Reconstructing an arbitrary set of projections

Having proven its worth as an effective registration method, the B-spline technique
is now used to estimate a displacement vector field between the first reconstruction
of the aluminium foam acquisition, i.e. the fixed image, and the reconstruction
corresponding to the B-spline scoring curve’s maximum (see Figure 5.18), i.e. the
moving image. By following the motion corrective scheme discussed in section
5.3.2, several strategies can be devised to reconstruct the time instances within and
even outside of the range bounded by the fixed and moving frames. Let τf and
τm denote the time stamps linked to these respective frames, then any time instant
τR ∈ [τf , τm] can be reconstructed by selecting a random set R of projections
in between these two time instances, which a least provides a sufficient angular
sampling. Since the exposure time is constant throughout the entire experiment,
the time scale may be expressed in terms of projections indices, with τf = 350 and
τm = 10850. Three scenarios are now considered to reconstruct the time instance
τc = 5600, at the centre of the interval:

• case 1: τc is reconstructed with the 700 projections from its enclosing rota-
tion, which is the standard approach.

• case 2: τc is reconstructed using 700 projections, equidistantly sampled
across the interval [τf , τm].

• case 3: τc is reconstructed using 2800 projections, which is the equivalent
of four complete rotations, though again equidistantly spread out across the
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3 mm

(a)

(b)

Figure 5.20: (a) An inverted deformation field caused by a phase wrap in the fine scale
levels of the phase flow registration pyramid (pyramid schedule: 5,4,3,2). (b) Leaving out

these fine scale yields a valid registration (pyramid schedule: 5,4). The vertical
reconstruction slices on the left reflect the registration results as a difference between the

first rotation and the thrid one. On the right these same rotations are depicted in their
original (unregistered) state, with the inferred displacement vector field as an overlay.

interval [τf , τm].

An axial reconstruction slice for each of these three scenarios is shown in Fig-
ure 5.21, with and without engaging the motion correction scheme (algorithm 3).
The vector field, used in this correction is set out on a 2563 grid, which is dec-
imated by a factor of two with respect to the original 5123 reconstruction grid .
By incorporating this vector field, the motion blurring artefacts can effectively be
eliminated, which is very clear in the second and third reconstruction case, while
in the first case there is practically no motion blurring to begin with. As an im-
portant note on case 3, it should be mentioned that the reconstruction is actually
performed with an ordered subset approach, i.e. OS instead of SART with four
projections in each subset. The OS approach is adopted here to avoid the inher-
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ent instability of SART at an excessive amount of iterations. As such, due to this
alternate OS approach, the improved SNR in case 3 can not solely be attributed
to the incorporation of more projections. Finally, in comparing cases 2 and 3 to
the first case, which may serve as a ground truth for reconstruction of τc, there are
some residual motion artefacts, which could not be eliminated through the motion
corrected reconstructions.

without correction difference

case 1

case 2

case 3

with correction
3 mm

Figure 5.21: Three cases showing the impact of a motion corrected reconstructions of
compressed aluminium foam. From top to bottom: a standard single rotation

reconstruction with 700 projections, a reconstruction with 700 projections spread over 14
rotations and a reconstruction with 2800 projections spread over 14 rotations.

Deblurring single rotation scans

For the multi-rotation dynamic acquisition above motion correction is not strictly
necessary, as the individual rotations already provide a qualitative reconstruction.
It is more interesting to test the motion correction scheme in a scenario where the
acquisition is effectively too slow to capture the aluminium foam’s deformation.
To this end a second aluminium foam cube was compressed in the Deben stage at a
rate of 0.1 mm/min, while imaging it with a standard, single rotation circular cone
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beam scan (see table 5.4). In fact, three datasets were acquired, with an increasing
exposure time while keeping the compression rate fixed, which resulted in scans
of respectively 4, 8 and 16 minutes. The underlying deformation is thus perceived
to be more dynamic, in the sense that the motion blurring artefacts will be more
pronounced, as the scan duration increases.

Table 5.4: Settings for three single rotation acquisition of an in-situ compression of
aluminium foam. Only the scan duration is varied by setting different exposure times.

Tube Hamamatsu L9181
Tube voltage (Vt) 90 kV
Tube power (Pt) 16 W

Detector Xineos1313
Exposure time (texp) (160,320,640) ms
Detector size (W,H) (658,656) -
Binned pixel size (pd) 200 μm
Binning (-) 2 by 2 -

Geometry Circular cone beam
Source Detector Distance (SDD) 367.02 mm
Source Object Distance (SOD) 71.4 mm
Number of projections (Np) 1500 -
Number of rotations (Nr) 1 -
Voxel pitch (pv) 39 μm

Reconstruction SART
Voxel grid (W,H,D) (512,512,512) -
SART iterations (-) 1 -
Relaxation (λ) 0.5 -

In-situ apparatus Deben CT5000-TEC
Load cell (-) 1 kN
Compression rate (-) 0.1 mm/min

Similar to the beech tree example (section 5.4.2), the goal is now to esti-
mate a deformation field by strategically defining sub-acquisitions in the acquired
datasets, that reflect at least two different states of motion of the aluminium foam
cube. The logical choice is to assign the fixed and moving frames to the reconstruc-
tions of the two short scans, that are separated furthest in time within the bounds
of the full rotation, i.e. the angular ranges [0, 180◦ + 2γ] and [180◦ − 2γ, 360◦].
The maximum compression reached in the 16 min scan, is approximately the same
as the compression reached up to the maximum of the B-spline scoring curve in
the previous experiment, i.e. 1.6 mm versus 1.75 mm respectively. The 16 min ac-
quisition is thus already situated at the limits of deformation that can be registered
with the B-spline technique. Moreover, the fixed and moving images, how they are
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defined here, are expected to also show a certain degree of motion blurring, which
may hinder the registration step.

In Figure 5.22, a vertical slice for the motion blurred reconstructions of the
4, 8 and 16 minute acquisitions are compared to their motion corrected versions,
where the deformation vector field between the short scan sub-acquisitions is in-
corporated into the reconstructions. Most of the motion blurring artefacts are elim-
inated, even in the relatively long 16 min scans. However, new artefacts are intro-
duced in the reconstruction of the 16 min acquisition, as the bottom plate of the
compression stage enters the registration window. The discrepancy between this
large displacing feature, and the implicit assumption of zero displacement at the
registration window boundaries, leads to a form of temporal aliasing. In general,
most registration techniques fail on the image boundaries, especially when matter
enters or exits through them. Indeed, to explain the unexpected loss or gain in
image intensity and features, boundary sources and sinks should be incorporated
into the registration models, a future development that fits into the discussion of
section 5.5.

A logical next step, is to iterate the motion correction approach to gradually
eliminate the motion artefacts in the short scan sub-acquisitions. It is plausible
to assume that in doing so, better estimates for the deformation vector field can
be found at each iteration. However, the deformation vector field did not signif-
icantly change from iteration to iteration, implying that its solution is stuck in a
flat optimum. As a result, the image quality also did not improve significantly
by performing multiple iterations. On the contrary, the aliasing artefacts intro-
duced through a motion correction of the 16 min scan seemed to amplified, and
persisted throughout further iterations (Figure 5.23). Intuitively, the flat nature of
the deformation field optimum can be explained by considering that the short scan
reconstructions are corrected by deformation vector fields, whose estimates are
based on these same reconstructions. In the light of consistency, it is logical that
more iterations will not produce widely different deformation vector fields, or at
least vector fields that will further promote the motion correction. A future, poten-
tial improvement may be found in higher order temporal parametrisations of the
vector field, i.e. other than (5.28), by taking into account multiple time instances
through a short scan window that slides across the entire acquisition.
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Figure 5.22: Motion corrected reconstruction of a single rotation acquisition by
registering the short scan sub-acquisitions. Most of the motion blurring effects are

eliminated, although an aliasing artefact arises for the 16 min acquisition. This can be
attributed to the bottom plate of the compression stage that gradually enters the

registration window. Most registation techniques can not handle this sudden introduction
of extra image features.

5.4.4 In-situ leavening of dough

Dynamic in-situ leavening

In the context of the TomFood project, the UGCT collaborated with KULeuven’s
Lab4Food in setting up dynamic CT acquisitions to image the internal micro struc-
ture of bread dough, while it is leavening. The Lab4Food is interested in how this
micro structure is correlated to a tasting panel’s perception of food products, that
were based on slight variations of a standard recipe or ways of preparing them.
Indeed, the micro structure might be changed by these variations, and X-ray μCT
is a powerful tool towards understanding how the dynamics of a preparation pro-
cess lead to a certain micro structure. For example, the bubble formation, during
a bread dough’s leavening process, can have a significant impact on the bread’s
quality.
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Figure 5.23: Multiple iterations in a motion corrected reconstruction of a single rotation
acquisition. These images show the incremental differences between the results of the

current and the previous iterations. By performing multiple rotation the image quality is
not significantly improved. Moreover, the temporal aliasing artefacts in the 16 min

acquisition are amplified persistently throughout several iterations.

To investigate this bubble formation, a piece of bread dough was kept at an
ideal leavening temperature of 30◦C, ready to be imaged according to the proto-
col presented in table 5.5. As depicted in Figure 5.24, the temperature control
stage from section 5.1.1 was modified to hold and heat a bread dough recipient
of a representable size. A vertical slice through the last rotation’s reconstruction
(Figure 5.25) shows no motion blurring, though contrary to the aluminium foam
example, the low SNR of the fast 24 second rotations has a recognisable impact on
the image quality.

Comparing registration algorithms

As for the aluminium case, a scoring curves can be generated for the dough acqui-
sition (see Figure 5.26). Again, the B-spline method produces the best results, and
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is in fact the only method capable of doing this in a robust way. Both, the Demons
and phase flow method can produce a valid deformation field at the finest scales
of the registration pyramid schedule. However, the problem is that at these small
feature scales only small scale deformations can be tracked effectively, which ex-
plains the rapid performance breakdown of the Demons and phase flow methods.
The parameters used for the three registration methods are given in table B.2 of ap-
pendix B. It also important to note that the scoring curves are set out as a function
of time, more precisely the rotation index, since there is no ground truth indication
on the overall deformation. The deformation could be estimated from the regis-
tration results themselves, but this would only be consistent if the registrations are
successful across the entire duration of the acquisition, which is not the case.

In comparing the registrations scores for the leavening dough with the ones of
the aluminium foam, it is clear that the former is a more challenging case. This
might not be surprising since the dough’s deformation is dominated by displace-
ments of small scale features, not much larger than several tens of voxels. More-
over, during the course of the process new features are introduced under the form
of bubbles that bloat up to a clearly visible size from actually being invisible at

Table 5.5: Settings for a dynamic acquisition with in-situ temperature control of a bread
dough sample.

Tube Hamamatsu L9181
Tube voltage (Vt) 90 kV
Tube power (Pt) 27 W

Detector Xineos1313
Exposure time (texp) 30 ms
Detector size (W,H) (658,656) -
Binned pixel size (pd) 200 μm
Binning (-) 2 by 2 -

Geometry Circular cone beam
Source Detector Distance (SDD) 367.02 mm
Source Object Distance (SOD) 76.6 mm
Number of projections (Np) 60000 -
Number of rotations (Nr) 75 -
Voxel pitch (pv) 41.7 μm

Reconstruction SART
Voxel grid (W,H,D) (640,640,640) -
SART iterations (-) 1 -
Relaxation (λ) 0.5 -

In-situ apparatus Homemade temperature control stage
Temperature (-) 30 ◦
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Figure 5.24: Modification to the temperature control stage, which allows it to heat up
dough samples. A dough recipient can be inserted into a heat conductive cap, ensuring a

uniform temperature distribution, in this case 30 ◦C

the onset of the experiment. Only the B-spline method proved to be robust against
this sudden introduction or in this case loss of image intensity. It can however not
explain the newly generated (bubble) features (see Figure 5.27), and in fact no reg-
istration algorithm purely based on modelling the deformation vector field, which
does not include sink or source terms, could.

Reconstructing an arbitrary set of projections

In the dough leavening case, the B-spline method is able to produce consistent de-
formation fields up to the 24th rotation, corresponding to an average and maximum
displacement magnitude of approximately 287 μm and 1435 μm, respectively .
Given the time instances linked to the first and 24th rotation, i.e. τf = 400 and τm
= 19600 , the same three reconstruction cases as for the aluminium foam case, are
now considered for the reconstruction of time instant τc =10000:

• case 1: τc is reconstructed with the 800 projections from its enclosing rota-
tion, which is the standard approach.

• case 2: τc is reconstructed using 800 projections, equidistantly sampled
across the interval [τf , τm].

• case 3: τc is reconstructed using 3200 projections, which is the equivalent
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5 mm

Figure 5.25: Reconstruction of the last rotation in the in-situ dough leavening acquisition,
represented in a vertical slice (left) and a 3D rendering (right).
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Figure 5.26: Scoring curves for Demons, phase flow and B-spline registration for the
leavening dough acquisition. Only the B-spline method yields consistent and robust

deformation fields up to high deformations.

of four complete rotations, though again equidistantly spread out across the
interval [τf , τm].

The deformation field used in these three cases does not cover the entire recon-
struction volume. As a result, the motion correction is only active on sub-volume,
as shown on the vertical dough reconstruction slices gathered in Figure 5.28.
Again, the motion blurring artefacts are significantly reduced in the second and
third case. As in the aluminium foam example, case two and three are difficult to
compare in terms of SNR, since the SART algorithm intrinsically amplifies high
frequency components at each volume update. To compare these cases in a fair
way, case two was also reconstructed by looping its 800 projections four times
over, instead of the single sweep leading the results in Figure 5.28. By thus ap-
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maximum score-12 rotations +12 rotations

original

registered
5 mm

Figure 5.27: Difference between the moving images and the transformed fixed image at the
maximum of the B-spline scoring curve, and twelve rotations before and after the

maximum. The B-spline method can robustly estimate a deformation field, even when
bubbles are formed during the leavening processes. The bottom row represents the same

difference, but with an untransformed fixed image.

plying the same amount of updates in both cases, it can be seen that case three
does indeed provide a better SNR, i.e. 16.4 dB versus 14.6 dB in case two (see
Figure 5.29). However, to optimally benefit from the motion correction, it is bet-
ter to adopt an ordered subset approach, providing a more robust and monotonic
convergence.
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Figure 5.28: Three cases showing the impact of a motion corrected reconstructions of a
leavening dough. From top to bottom: a standard single rotation reconstruction with 800

projections, a reconstruction with 800 projections spread over 34 rotations and a
reconstruction with 3200 projections spread over 34 rotations.

case 2 case 3

3 mm

Figure 5.29: Motion corrected leavening dough reconstructions of cases two and three
with an equal amount of volume updates. It is clear that in case three the SNR is improved

by combining the image statistics of multiple rotations.
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5.5 An outlook to in-situ 3D characterisation of mi-

cro structured materials

Next to their motion corrective potential, registration techniques also show a great
potential towards the analysis of a sample’s material characteristics. Indeed, a
strain tensor can be mapped across an entire sample through a proper differen-
tiation of the deformation vector field. For example, when the strains are small
enough, Cauchy’s strain tensor can be considered, as given by

εij =
1

2
(ui,j + uj,i) (5.31)
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where in the first line the Einstein notation is adopted. This is how local, non-
rigid registration was initially exploited in the context of μCT, as apparent from
the literature introduced in section 5.4.1. By going one step further, a stress field
can be deduced, e.g by adopting a linear elastic and isotropic material model [71]

σij =
E

1 + ν

(
ν

1− 2ν
εkkδij + εij

)
(5.32)

where E and ν respectively denote ‘Young’s modulus’ and ‘Poisson’s ratio’. By
fixing these parameters a stress tensor field, and specifically its scalar invariants
can be visualised, like the ‘von Mises stress depicted in Figure 5.30. In order to
produce this figure, a simple linear relation between the material parameters and
the X-ray attenuation coefficient is considered

E(μ) = Emax
μ

μmax
(5.33)

ν(μ) = νmax
μ

μmax
(5.34)

reflecting the intuitive notion that a stiffer and less compressible material will also
appear denser on an X-ray CT image. For the aluminium foam in Figure 5.30,
Emax and νmax were set to 69 GPa and 0.3, respectively [72]. But, as the con-
stitutive behaviour proposed by (5.33) and (5.34) are in no way validated, the von
Mises stresses in Figure 5.30 have been normalised to their maximal values, mak-
ing the exact values for Emax and νmax irrelevant. In other words, for the mo-
ment only qualitative conclusions can be drawn from Figure 5.30, like the fact that
stresses tend to build up at interfaces, which are in contact with the compression
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plates.

In a next step, the compression process can be simulated, e.g. with the finite el-
ement method (FEM), in order to cross validate the deformation inferred through
X-ray CT images. To set up such a FEM-model, first of all the structures in its
computational domain have to be meshed, cfr. Figure 5.31. While the completion
of this aluminium foam FEM-model with accurate material models and boundary
conditions is still an ongoing effort, it is important at this point to recognise the
potential synergy between these kind of advanced process models and the dynamic
CT images that can visualise them. On the one hand, the deformation fields ob-
tained through CT registration can be used to pinpoint the material parameters,
leading to a consistent FEM-model deformation field, while on the other hand the
FEM-model’s deformation fields can also serve as an initial estimate in the reg-
istration procedure itself. The deformation field and the material parameters can
thus be subjected to an iterative optimisation, which loops between a deformation
estimation step and a FEM-model parameter estimation step. This last step opens
up a new prospect to CT imaging, possibly in combination with other modalities,
towards shifting the focus from a simple reconstruction of attenuation values, to
characterising mechanical material properties. The framework presented here is
set out for a mechanical deformation, but it can also be built around other physical
processes, to the extent that the aspects pertaining to their modelling can be linked

von Mises stress
1.0

0.5

0.0

Figure 5.30: von Mises stress distribution in a compressed aluminium foam. Stresses tend
to build up a the compression plate interfaces.
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to image properties or changes therein. Equations (5.33) and (5.34) are specific ex-
amples of such a link, under the form of a constitutive relation between the imaged
quantity and the material model parameters, which effectively reduces the number
of parameters in the model.

Figure 5.31: Example of a tetrahedral finite element mesh of an aluminium foam.

5.6 Conclusion

In this chapter, a dynamic evolution of a sample’s attenuation distribution during
a CT acquisition, is considered, and while many processes can initiate this evolu-
tion in time, the focus is put here on local and non-rigid mechanical deformations.
When left unchecked, these deformations cause motion blurring artefacts in the
resulting CT reconstructions, which in first instance can be reduced by perform-
ing faster CT scans. However, faster scanning also produces an abundant amount
of data, and only helps to the extent that a deformation process’s speed does not
exceed a scanner’s mechanical limitations, on e.g. the gantry’s rotation speed; or,
more importantly, in so far the fast acquisitions do not lead to an inadequate CT
image SNR, as a result of physical limitations on the lab-based source’s X-ray flux.
Particularly in these borderline scenarios, motion blurring can not be avoided, un-
less a motion corrected reconstruction is applied. This chapter presents a motion
corrected version of the SART reconstruction algorithm through an alteration of its
projection and back projection steps, which involves a virtual, local and non-rigid
displacement of the ray sampling points and back projection points, respectively.

Three popular registration strategies to estimate these local, non-rigid defor-
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mations, namely the Demons, optical phase flow and B-spline approaches, were
discussed and evaluated on CT acquisition of dynamic deformation processes, that
to some extent can be controlled with in-situ devices. In both the aluminium foam
compression and dough leavening cases, the B-spline method proved to be the best
and most robust option to estimate deformation fields, across a wide range of fea-
ture scales, and is thus the preferred method to generate the deformation fields,
used in the motion corrected SART approach. As demonstrated through several
cases, motion corrected SART can effectively eliminate motion blurring artefacts
up to very large deformations, even with a simple time linear scaling of the motion
vector fields ((5.28)). The motion correction also proved to be successful when the
sub-acquisitions, that are used as a basis for the registration are also affected by
motion blurring, e.g. short scan portions of a full rotation scan. With this prospect
new CT protocols can be devised, that can tolerate a significant degree of sample
motion, as long as this motion can be estimated from at least two strategically cho-
sen sub-acquisitions.

Finally, the most promising aspect of performing local, non-rigid registration
on acquisitions of a dynamic in-situ controllable deformation, can be found in its
combination with an in-depth modelling of the deformation itself, e.g. through
finite element models. By doing this, X-ray μCT could be elevated from a simple
attenuation imaging technique, to a way of characterising a sample’s material prop-
erties at a micro-structure level. Moreover, this paradigm of combining modelling
and imaging is not limited to mechanical deformation and μCT imaging, as long
as the results of a process model and its relevant parameters can be correlated to
the values, structures and derived features visualised with the imaging technique.
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6
Conclusion & Outlook

As a reminder, the developments presented in this work all fit within the unifying
premise of fast CT imaging using non-standard geometries and protocols, with
the goal of

• bringing X-ray CT to an in-line setting as a non-destructive quality inspec-
tion tool, i.e. in-line CT, and

• improving the visualisation of dynamic processes, specifically pertaining to
local and non-rigid structural changes of an imaged object, i.e. 4D-CT.

CT imaging in both of these applications does indeed have to be fast, in the for-
mer case because the in-line CT apparatus should be able to keep up with a high
throughput conveyor belt, while in the latter case the 4D-CT acquisition’s tempo-
ral resolution has to match the time constants of the dynamic deformation process.
Also, in both applications the CT geometry is non-standard, either at the level of
the sample’s trajectory or its state of local, non-rigid deformation. The fundamen-
tal difference is that in the in-line CT case the non-standard character is introduced
by design, through the so-called ‘conveyor belt geometry’, while in the 4D-CT
case it is an intrinsic consequence of the dynamic process.

The conveyor belt geometry was introduced as an alternative approach towards
a feasible quality inspection with X-ray CT. A particular advantage of this geom-
etry is that it can be readily plugged into an existing conveyor belt configuration.
Moreover, it subjects the imaged sample to a trajectory, that produces Tuy-Smith
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sufficient CT datasets and thus exact CT reconstructions. While theoretically
sound, CT data had to be generated for the conveyor belt geometry in order to
properly evaluate its performance in terms of throughput and image quality. This
is why a first order model for radiography simulation was ported to a Graphical
Processing Unit, with a specific focus on accurately capturing the polychromatic
nature and noise characteristics of the radiography technique. Furthermore, a flex-
ible description of the scanner component’s geometric configuration made it pos-
sible to simulate CT acquisition in arbitrary geometries, such as the conveyor belt
setup. In a next step, both these simulated acquisitions and real life data, obtained
through mock-up realisation of the conveyor belt geometry, were reconstructed to
form a 3D representation of the scanned object. For this to work, an ordered subset
iterative reconstruction technique was coded in Python-CUDA tool, with the abil-
ity to reconstruct data coming from arbitrary CT geometries. By evaluating the
quality of these reconstructions, by estimating their apparent resolution through
Fourier shell correlation and the Spectral Signal to Noise Ratio, it could finally be
concluded that in-line quality inspection with CT is indeed a feasible endeavour,
although it needs to be mentioned that this study was conducted for one particular
type of sample.

Looking at the broader picture, the combination of a simulated acquisition, a
flexible reconstruction and a valid quantitative form of evaluation, forms a solid
methodology towards the optimisation of throughput with respect to image quality
for the conveyor belt geometry, though not limited thereto. This methodology on
its own is not new, but there are some interesting prospects towards exploiting its
parts and the synergy between them. For one, the spectral resolution metrics form
a new and fair way to evaluate and replace the somewhat arbitrary voxel size as
an indication for a reconstruction’s resolution. They do this by measuring how
strongly each frequency component in an image distinguishes itself from back-
ground noise, and as such determine which of the frequencies are relevant. This
is a powerful notion that can be coupled back to the design of reconstruction fil-
ters (e.g. Figure 3.3). In other words, there is a interesting synergy between the
reconstruction and evaluation components. Such a synergy also exists between
the simulation and reconstruction components, particularly when iterative recon-
struction algorithms are considered. The first order polychromatic model can for
instance be introduced as an improved forward projection model in the iterative
scheme, with the prospect of eliminating beamhardening artefacts, or more impor-
tantly, improving the reconstruction of multi-spectral datasets.

This tight integration of iterative reconstruction with better models was also
demonstrated in the CT reconstruction of dynamically deforming objects. Out of
three registration methods, the B-spline approach was identified as the most robust
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and accurate way to estimate an object’s deformation, based on two strategically
chosen acquisitions, producing a valid reconstruction of the object. By incorporat-
ing the estimated deformation fields into the iterative reconstruction, motion blur-
ring artefacts could effectively be eliminated in the applications discussed through-
out chapter 5. This provides a new option towards avoiding motion blurring, other
than simply scanning faster to the extent that this would be technically possible. As
a result, a new type of CT protocol, which tolerates a certain degree of motion blur-
ring, could be devised. Including the deformation fields is another example of how
the iterative techniques can be augmented to provide better reconstructions. But in
fact, an analytical technique, such as FDK, could also benefit from the deforma-
tion estimates by simply incorporating the motion fields in its back projection step.

A final interesting prospect is that the deformation fields can be used to study
the material characteristics of the imaged object. Strain and even stress fields
can be derived from them by adopting a proper material model. On the other
hand, the dynamic process can be modelled, e.g. through finite element analysis.
First of all, this provides an opportunity to cross validate the deformation fields
obtained through imaging and modelling, but foremost the forced consistency be-
tween these fields implies that a valid material model with correctly set parameters
is used. In other words, the images could be used to infer the material parame-
ters, and vice versa the modelled deformation field could be plugged back into the
image based deformation estimation. This is only an example of how a thorough
modelling of dynamic processes, not necessarily limited to mechanical deforma-
tion, can be combined with 3D imaging, not necessarily limited to X-ray CT. As
a future prospect, the tight integration of advanced numerical models for dynamic
processes with 3D X-ray CT imaging should investigated, with the potential of
elevating X-ray CT from a simple visualisation of attenuation to a 3D dynamic
material characterisation.





A
Machine specifications

All of the calculations in this work are performed on a workstation for which the
specifications are outlined in table A.1.

Table A.1: Workstation specifications.

CPU Intel Core i7 4770K
Base clock 3.5 Hz
Cores 4

CPU RAM Corsair CMZ32GX3M4X1600
Type DDR3
Capacity 32 GB
Clock 1600 Hz

GPU NVIDIA GeForce Titan GTX
Base clock 837 Hz
Cores 2688

GPU RAM
Type GDDR5
Capacity 6144 MB
Clock 1502 Hz





B
Registration parameters

The parameters used in the registration calculations throughout section 5.4 are
listed below. Most of the parameters pertain to internal settings of the elastix and
ITK modules, providing the registration implementations.The list below gives a
brief explanation of the parameters, following the table’s order:

• ‘image size’ : dimensions of the two input images

• ‘schedule’: determines how the original image is dydically decimated in
order to represent it in a multi-resolution pyramid.

• ‘registration scale’: determines on which scale of this pyramid the parame-
ters of the deformation field are estimated, i.e. the control grid points in the
case of a B-spline registration and the grid of displacement vectors in the
case of Demons or optical phase flow.

• ‘interpolation scale’: determines on which scale the displacement field vec-
tors are calculated.

• ‘optimiser’: used to iteratively find the optimal value for the parameters of
the deformation field.

• ‘learning rate’: controls the convergence speed of the optimiser by (down)scaling
the updates it provides, when set too large the algorithm may become unsta-
ble.

• ‘iterations’: number of iterations performed by the optimiser.
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• ‘spline transform order’: order of the spline basis functions used in the B-
spline deformation model.

• ‘warp interpolation order’: used to resample the images when applying one
of the transforms.

• ‘update field smoothing’ : standard deviation of the Gaussian used to smooth
the Demons update field, giving the deformation viscous character.

• ‘total field smoothing’: standard deviation of the Gaussian used to smooth
the Demons total update field, giving the deformation elastic character.

Table B.1: Registration parameters for calculating the aluminium foam registration scores.

Demons Phase B-spline
image size (218,216,184) (218,216,184) (218,216,184)
schedule (5,4,3,2) (5,4) (5,4,3,2)
registration scale 2 2 3
interpolation scale 2 2 2
optimiser Gradient Gradient Stochastic

Descent Descent Gradient Descent
learning rate 1.0 0.5 Adaptive
iterations 50 50 500
spline transform order n/a n/a 3
warp interpolation order 1 1 3
update field smoothing 2 voxels 2 voxels n/a
total field smoothing 2 voxels 2 voxels n/a

Table B.2: Registration parameters for calculating the leavening dough registration scores.

Demons Phase B-spline
image size (256,256,256) (256,256,256) (256,256,256)
schedule (3,2) (3,2) (5,4,3,2)
registration scale 2 2 3
interpolation scale 2 2 2
optimiser Gradient Gradient Stochastic

Descent Descent Gradient Descent
learning rate 1.0 0.5 Adaptive
iterations 50 20 500
spline transform order n/a n/a 3
warp interpolation order 1 1 3
update field smoothing 2 voxels 2 voxels n/a
total field smoothing 2 voxels 2 voxels n/a






