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Summary 
All over the world, penetration of renewable energy sources in power systems has been 
increasing, creating new challenges in electricity markets and for operation and 
management of power systems, since power production from these resources is by 
nature uncertain and variable. New methods and tools to support optimal decision-
making under uncertainty in the electricity markets and power system operation, for 
both producers and system operators, are developed in this thesis. 

The existing market architecture integrates, to some extent, the participation of 
renewables by allowing these producers to offer in the day-ahead market and to correct 
for potential energy imbalances in the intraday market and ultimately in the balancing 
market. However, the design and rules of electricity markets do not support the 
transition from conventional generation to renewable energy sources as recently sought 
by many governments. Renewable energy sources are characterized by their uncertain 
and variable production that limits the current operation and management tools of the 
power system. Nevertheless, recent developments of renewable energy technologies 
enable these resources to provide, to some extent, ancillary services. Hence, the opening 
of the reserve market for renewables participation is crucial for the integration of 100% 
renewables into the system. 

New business models will emerge from these challenges, while renewable energy 
producers will require appropriate decision-making support tools to jointly offer in both 
energy and reserve markets. In this context, the main contribution of this thesis is the 
design and development of optimal offering strategies for the joint participation of 
renewables in the energy and reserve markets. Two distinct control policies for the 
splitting of available wind power in energy and reserve are considered. Different 
methods and optimization tools are developed based on these control policies, 
considering distinct goals of producers’ participation in energy and reserve markets. 
Nonetheless, these tools allow renewable producers to move forward in the decision-
making process of future energy and reserve markets. 

Towards a power system based on distributed energy resources, mainly comprising 
renewable sources, new operation and management of distribution systems needs to be 
thought of. In fact, the existing passive distribution grid management does not provide 
the flexibility to deal with uncertainty and intermittency of distributed energy resources. 

 



Summary ii 

In this context, a major contribution of this work is the design and development of a 
preventive distribution grid management that allows distribution system operators to 
contract flexibility (ahead in time) from distributed energy resources to assist in the 
management and operation of the grid in case of congestion and voltage problems. Such 
a proposed methodology opens the door to other methods in this timely research 
problem. 

Finally, new costs for this operation and management of the network will arise, 
requiring new cost allocation methods to split these costs between the energy resources 
that induce such congestion and voltage problems. To deal with this concern, one can 
propose new cost allocation methods that divide the costs of operation and management 
of the distribution network among all network users (generators and consumers) 
promoting equity, fairness, impartiality and equality. The hybrid methodology combines 
different costs (fixed, network usage/congestion and losses) covering all the gaps of 
each conventional cost allocation method. 

 

 

 



Preface 
This thesis was prepared at the department of Electrical Engineering at the Technical 
University of Denmark (DTU) in partial fulfillment of the requirements for acquiring a 
Pd.D. degree. 

This thesis aims to develop new methods and tools to support decision-making in the 
framework of electricity markets and power system operation with large-scale 
introduction of renewable energy sources. The proposed models focus on various 
methods for optimal offering of renewable producers in the energy and reserve markets. 
In addition, the procurement and deployment of flexibility from distributed energy 
resources to assist the operation and management of distribution systems is addressed. 
Both directions of research perceive the different perspectives of renewable producers 
and market/system operator. 

The Ph.D. studies were partly supported by the Technical University of Denmark and 
by the Danish Strategic Research Council through project “5s – Future Electricity 
Markets” (No. 12-132636/DSF). 

The thesis consists of a summary report and six papers, documenting the research 
conducted during the period between February 2014 and January 2017. Two of these 
papers appear in conference proceedings and two others are published in international 
peer-reviewed journals. Finally, the last two papers have been submitted to international 
peer-reviewed journals and are under review. 
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1  
Introduction 
1.1 Context and motivation 
Over the last few decades, climate change has been on the agenda of governments in 
most industrialized countries to reduce greenhouse gas emissions. Within this context, 
Renewable Energy Sources (RES) have been playing a key role in the development 
of power systems as a prominent clean energy source contributing to the mitigation of 
greenhouse gas emissions from conventional power plants. In particular, some countries 
such as Denmark have established as ambitious targets the complete independence from 
fossil fuels by 2050 [1]. The resulting deployment of RES has been supported by 
remuneration schemes that dampen financial risk induced by market participation. The 
rapid and massive deployment of renewable power generation helped lower the per-
unit-cost of such technologies (e.g., wind and photovoltaic (PV)). Renewable power 
producers are now not only able, but also required to participate in the electricity 
markets under conditions similar to those for conventional power producers [2]. 

Nonetheless, electricity market designs are still operating under the conventional 
characteristics of power systems. In fact, rules and grid codes that support electricity 
market designs have been defined based on the operation and management of power 
systems under conventional power plants. These types of power plants are fully 
dispatchable, i.e., the power plant operator has full control of the power production, as 
well as full knowledge of the ramp characteristics of the power plant. Traditional 
operation and management methods were sufficient to control the power system with 
proper levels of reliability and security. Furthermore, market designs were modeled 
based on the technical and economic characteristics of these energy resources. In the 
meantime, conventional power generation has been replaced by renewable generation, 
and therefore current market designs have been adjusted to the technical and 
economic characteristics of RES. Still, current market designs are far away from 
taking full advantage from RES participation. 

One of the main impacts of RES on electricity markets is the influence on the electricity 
prices. RES reduces the average electricity market price, since its marginal cost is 
near zero, or even negative if it is under incentive remuneration schemes [3]. That 
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is, renewables are dispatched before the conventional power producers, influencing the 
market price. However, the uncertainty of their production may increase the price 
volatility in the system, especially in cases of low flexibility. Reserve prices may 
significantly increase to ensure sufficient reliability, while energy prices can become 
negative to avoid shutting down conventional power plants, which is very expensive. 
For instance, during peak periods of PV production, where RES is dispatching all its 
power due to its production incentive schemes, and conventional producers must 
maintain their minimum production due to technical constraints, energy prices become 
negative. On the other hand, periods with low RES power production are characterized 
by higher prices and lower production/consumption ratio. 

From the technical point of view, RES are non-dispatchable resources (aside from 
hydro and biomass power plants). More precisely, the output power of renewable power 
plants is stochastic, and thus cannot be fully controlled by the operator. These resources 
introduce uncertainty and intermittency into the power system, and therefore proper 
methods to deal with this uncertainty, as well as proper procurement levels of reserve 
and flexibility of all energy resources should be considered [4]. Therefore, a market 
perspective under the 100% RES target in the power system means higher 
procurement of reserve to support such levels of uncertainty, as well as RES 
supporting part of ancillary services. 

Current developments of RES technologies enable them to support limited 
reserve/flexibility levels, which keeps the power system running under proper levels of 
security and reliability [5]. Such technical capability opens the door to new market 
designs, where RES can compete in energy and reserve markets. These new market 
designs must consider the stochastic production of RES, i.e., the possibility of RES 
failing to provide the energy and reserve. For example, new market designs may include 
penalties when RES do not provide committed energy and reserve levels. Additionally, 
new business models and remuneration mechanisms for the optimal integration of 
RES in the energy and reserve markets should be taken into account. In particular, 
RES producers may seek new strategies and control policies to offer their availability in 
the energy and reserve markets.  

In addition to the aforementioned challenges, technical challenges may arise in the 
operation and management of the power system, namely in distribution grids with 
high penetration of Distributed Energy Resources (DER) (mainly composed of RES). 
More specifically, it is expected that future distribution systems will face voltage and 
congestion problems due to the continuous increase of electricity consumption (e.g., 
electric vehicles) as well as small intermittent production at consumption points (e.g., 
PV panels). For instance, the high production of PV occurs in periods of low 
consumption, which can induce overvoltage problems in the distribution network. Thus, 
adequate support tools for preventive operation and management of distribution 
grids must be taken into account. The most likely approach would be to have 
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Distribution System Operators (DSO) take advantage of the power flexibility of DER to 
solve potential line congestion and voltage problems, as well as deal with the uncertain 
and variable power production in the system [6]. More precisely, the potential flexibility 
of DER can be used by DSO to manage technical problems. The DSO will contract such 
flexibility from different DER, depending on various technical conditions (such as 
location, upward and downward flexibility, operating cost, among others). Thus, a new 
market design can emerge to allow DSO to contract flexibility ahead of delivery 
requirements. 

These changes in the power system have resulted in a new paradigm characterized by a 
complex, unpredictable and decentralized operation and management [7], [8]. In this 
context, traditional cost allocation methods are no longer valid, since DER can 
create different directions of power flow in distribution grids, as some DER may 
behave as producers or consumers (such as Energy Storage Systems (ESS) and Electric 
Vehicles (EV) with vehicle-to-grid ability). In fact, the costs for using the network must 
be fairly distributed among all participants in the system to inspire fairness and equality. 
Consumers currently bears the costs for network usage, disregarding resources that 
often create some problems in the operation and management of the distribution grid. 
Thus, new cost allocation methods for future distribution systems should take into 
account resources that behave both as producers and consumers or create 
potential network operational problems. In order to fairly cost allocating all future 
participants in distribution grids, cost allocation methods concerning such 
characteristics should be taken into consideration.  

In short, there are a number of challenges that require new methods, strategies and tools 
to operate the electricity markets and the power system under suitable levels of security, 
competitiveness and equity. More precisely, new strategies and market designs for 
competing RES in both energy and reserve markets should be considered. In 
addition, the ability of RES to provide reserve/flexibility services to the system operator 
should be accounted for. The development of preventive management and operation 
of the power system, as well as the proper cost allocation of system usage are crucial 
to the integration of all RES required to meet the target of a power system operating on 
a 100% RES scenario. 

1.2 Thesis objectives and contributions 
The main goal of this thesis is to propose new methods for solving problems within the 
market participant and system’s point of view by considering the large integration of 
RES. On the market participant’s point of view, the objective is to propose optimal RES 
offering in short-term electricity markets considering the trading floors with time 
horizon from day-ahead up to real-time for energy and reserve market products. From 
the system’s point of view, three different objectives are taken into account: (i) a market 
equilibrium analysis on the impact of RES offering strategies in the electricity market 
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following the market operator’s perspective; (ii) an active operation and management of 
distribution systems with large integration of DER (mainly RES) following the system 
operator’s perspective; and (iii) cost allocation of distribution network under the new 
characteristics of all active participants in the distribution system. 

All methods are modeled in the form of optimization problems ideal for dealing with the 
technical and economic aspects of electricity markets and power systems under high 
levels of uncertain and variable production. 

From the market participant’s point of view, this thesis considers the design of strategy 
offering for Wind Power Producers (WPP) in both energy and reserve markets. In future 
power systems, WPP will be often called to provide reserves, since they actually have 
the ability to provide, to some extent, ancillary services. Thus, new business models 
may arise for WPP to play with both market products, i.e., energy and reserve. WPP 
will be willing to participate in energy and reserve markets, accounting for some profits 
with regard to the provision of such services. However, penalties for energy and reserve 
balancing deviations must be taken into account, since WPP can fail to provide the 
energy and reserve offered in the operational planning phase. In this context, penalty 
schemes for reserve imbalance should be considered, aiming to fairly penalize WPP for 
their deviation (since it is quite harmful to the system, when such imbalance occurs in 
reserve provision, compared with energy service), although including incentives for the 
participation of WPP in this service. Within this scope, several works included in this 
thesis (Paper C, D and F) provide a number of contributions, as well as the development 
of innovative and realistic methods to the literature. The main contributions under the 
market participation perspective are fivefold: 

• Conception and design of strategy offering for WPP in both energy and reserve 
markets; 

• Implementation of distinct wind control policies for the splitting of available 
wind power in energy and reserve offers; 

• Market design of prices and penalties for wind participation in reserve markets. 
An intuitive relationship between prices and penalties of energy and reserve 
market defines the willingness of WPP to participate in one or both markets; 

• A new concept for different splitting of energy and reserve offers between day-
ahead and balancing stages is proposed. This concept is based on allowing WPP 
using better information of their forecast production when closer to real-time, 
thus improving the decision-making process and consequently their expected 
revenue; 

• The evaluation of distinct methodologies for performing the optimal offering 
problem in both energy and reserve markets, accounting for balancing costs. At 
this level, four distinct methodologies were developed to analyze the behavior of 
the WPP’s offering in both markets. To some extent, the developed methods 
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allow WPP to perform the offers in the market under different levels of 
conservative and non-conservative behavior. 

From the system’s point of view, the penetration of RES in energy and reserve markets 
and in power system operation raises some important considerations, especially with 
regard to the operation of the electricity market and power system, more specifically the 
distribution grids. In fact, the main contributions of this thesis from the market and 
system operator’s point of view are threefold: 

• From the market operator’s perspective, bringing wind to reserve markets forces, 
to some extent, the market operator to deal with the uncertainty in a market that 
is designed to ensure reliability, which is unavoidable. Thus, reserve market 
redesign is required in order to face this issue. The approach proposed in Paper 
C, D and F (penalty scheme for wind producers failing to provide reserve) is one 
of the simplest approaches to perform in the market allowing wind producers to 
provide reserve. However, the reserve penalty should be well defined by the 
market operator in order to accomplish the participation of wind power in the 
reserve market and, at the same time, maintain proper reliability levels. On the 
other hand, the impact of such approach on the energy market equilibrium 
should be accounted for, once the available wind power is divided toward both 
energy and reserve market products. Within this scope, Paper B contributes to a 
realistic analysis of the energy market equilibrium under WPP participation in 
both energy and reserve markets. The aim is to analyze the energy market price 
and social welfare under different levels of the WPP participation in current 
energy market; 

• On the system operator’s perspective, penetration of RES may increase the 
complexity of network management due to the intrinsic characteristics of these 
types of resources. For this reason, sufficient flexibility levels are highly 
important for the secure operation of the power system. In fact, this issue 
becomes crucial at the distribution level, since large penetration of DER (mainly 
composed of RES with feed-in tariffs) have direct influence on the system 
management. For instance, cases of voltage problems and network congestion 
due to intensive located PV production may arise in the distribution grid. Thus, a 
proper operation of distribution systems is essential for the use of flexibility, 
which can be provided by DER in the management of these problems. Within 
this view, the current practice of DSO operation must change. The current 
reactive management of the network by the DSO does not consider such tools in 
order to face the challenge. Thus, a preventive distribution management has 
been studied in the literature to manage the network under these new 
characteristics. Within this scope, Paper E provides a significant contribution by 
proposing a robust active management of distribution grids by contracting 
flexibility to DER. The goal of this work is to provide an extra tool for the DSO 
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in network management. The design of a new market product where DER offer 
upward and downward flexibility to the DSO is developed. The DSO may 
schedule the most convenient offers by minimizing the cost of contracting this 
service, by taking into account the intrinsic characteristics of the network and 
DER, solving voltage problems and network congestion; 

• The cost allocation for using the distribution network has been associated to 
consumers in the past, since the power flow has always flowed in one direction. 
However, with the continuous integration of DER, different directions of power 
flow occur in the distribution grid, and therefore traditional cost allocation 
methods are no longer valid. In this respect, cost allocation methods must 
consider network usage by DER, either for their own benefit on delivering 
energy or for providing services to the system. Additionally, future distribution 
grids will integrate other DER with special characteristics, i.e., ESS and EV with 
vehicle-to-grid ability, which can be identified either as consumers or producers, 
depending if they are in the charging or discharging process. These devices have 
also the ability to store energy that increases the flexibility of the system. Thus, 
new methodologies adapted to the new system’s characteristics must have a 
proper cost allocation of network usage. Within this scope, Paper A proposes a 
new cost allocation methodology for this new operation paradigm, as the main 
contribution. The cost allocation methodology considers a fair mechanism that 
shares the costs of network usage through DER and consumers. The method 
traces the power flow in the system and allocates the costs according to the 
impact of each DER and consumer on each line of the network. In addition, a 
new inefficiency penalty scheme to ensure full sustainability of the model is 
performed. This work allows system entities to fairly distribute the costs of 
using the distribution network through the impact that each user has on the 
system. 

1.3 Thesis structure 
The thesis is structured as follows. Part I introduces and describes the main concepts 
addressed in this thesis, while summarizing the main contributions of the papers 
developed and published during the PhD project. Within this part, Chapter 2 contains an 
overview of the basic concepts of electricity markets, as well as the integration of 
renewable generation in electricity markets and power system problems. Chapter 3 
provides an introduction to optimization under uncertainty and relaxation techniques, 
covering the topics of two-stage stochastic programming, robust optimization, linear 
and piecewise linear decision rules, as well as the McCormick convex relaxation 
technique. Chapters 4 and 5 outline the main methodological aspects and summarize the 
results of the research papers included in this thesis. Chapter 4 focuses on the wind 
offering problem in energy and reserve markets within the perspective of the WPP. On 
the other hand, Chapter 5 addresses the impact of the integration of renewable energy 
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resources on the electricity markets and on the distribution system comprising both 
market and system operator’s perspective. Finally, Chapter 6 gathers the most important 
conclusions and suggestions for future research. 

Part II includes the publications that contribute to this thesis. 

Paper A is a journal article published in Electric Power Systems Research (2015).This 
paper covers the topic of cost allocation tariff to different actors in the distribution 
systems. A fair cost allocation method for assessing the use of the distribution system 
by all system actors (e.g., DER) was developed. Moreover, the method includes fixed 
and variables costs for the use of the distribution system. 

Paper B is a peer-reviewed article published in the Proceedings of the 18th Intelligent 
Systems Applications to Power Systems Conference (2015). This paper uses a multi-
agent system (namely, MASCEM) for the evaluation of the day-ahead market 
equilibrium of the MIBEL electricity market considering the application of proportional 
control policy in wind power offers. 

Paper C is a journal article published in IEEE Transactions on sustainable Energy 
(2016). This paper provides an analytical approach for the optimal offering of wind 
power plants in both energy and reserve markets. Furthermore, the proportional and 
constant control policies for the splitting of wind power in energy and reserve, while 
maximizing the profit of wind power plants is performed. 

Paper D is a peer-reviewed article published in the Journal of Physics: Conference 
Series and presented in the WindEurope summit (2016). An optimal offering for wind 
power in energy and reserve markets considering proportional strategy as control policy 
and using stochastic programming framework is developed. This paper introduces a new 
concept where the share of energy and reserve in the balancing market can be different 
from the share of energy and reserve in the day-ahead stage. This concept allows wind 
power plants to improve their expected revenue. 

Paper E is a journal article submitted in IEEE Transactions on Smart Grid (under 
review). The topic of this paper is the value of DER in providing upward and downward 
flexibility to the DSO, helping the system management and solving congestion 
problems. It provides a robust framework to DSO in order to contract proper levels of 
flexibility for grid management. 

Paper F is a journal article submitted in Wind Energy journal (under review). This paper 
proposes the use of different optimization tools (namely, stochastic programming by 
considering McCormick envelopes for convex relaxation of bilinear constraints and 
piecewise linear decision rules) to solve the wind power offering problem in the energy 
and reserve markets. Furthermore, a comparison of the proposed methods led to an 
analysis able to distinguish conservative and non-conservative behavior. 

 

 





 

2  
Renewable Energy Integration in 
Electricity Markets 
The current integration of RES in power systems and therefore in electricity markets has 
been slowing changing the way as electricity markets deal with uncertain power 
production. A well-functioning electricity market is essential for achieving a future 
reliable and cost-efficient operation of the power system. Thus, a turning point must be 
achieved with RES being part of the solution for energy and reserve procurement, while 
accounting for their intermittent and uncertain production. 

This chapter provides an overview of electricity markets structure and organization, 
while discussing the challenges from the large-scale integration of RES. Furthermore, 
the impact of DER in distribution system operation and management is addressed. 
Section 2.1 describes the main concepts related to the current electricity markets 
designs, focusing on the main principles of the European and US markets operation. 
The main properties and impact of existing support schemes and trading of renewable 
production in electricity markets are presented in Section 2.2. Section 2.3 aims to 
outline the main challenges of current and future market and system operation designs, 
considering that RES offer and compete in both energy and reserve markets. The 
integration and impact of DER in future power systems with preventive management 
and operation of the distribution grid by the DSO is also undertaken in this section.  

The interested reader is referred to [9] for a comprehensive overview of electricity 
market fundamental principles. Additionally, an deep-in discussion of the recent trend 
in the scientific community on the preventive management of DSO in the distribution 
grid, through contracting flexibility from DER is provided in [10], [11]. 

2.1 Electricity market designs 
The current electricity markets have been modeled based on the conventional 
characteristics of power systems. In fact, the design sustains assumptions based on fully 
dispatchable and controllable power generation considering known operational costs 
and technical constraints of their flexibility. The market operation is settled based on 
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sequential clearing of several trading floors in a temporal horizon, i.e., from 36 hours-
ahead up to real-time operation. These general market characteristics are suitable to deal 
with the traditional demand-side and system uncertainty. A general market structure of 
the electricity markets is illustrated in Figure 2.1. The electricity markets are currently 
divided in several markets, such as the financial, day-ahead, intraday and real-time 
market for energy delivery. During this process, ancillary services are also procured in 
the market, following different characteristics and structures depending of each 
country/region of the power system, i.e., ancillary services are modeled following 
intrinsic characteristics of the power system to which they belong.  

 
Figure 2.1 – General structure of electricity markets 

Nevertheless, different countries and regions may have distinct market operation. For 
instance, the US and Europe has a different way of operating the electricity markets. 
Figure 2.2 shows a higher resolution of the different ways of operate traditional 
electricity markets considering both the US and European perspectives.  

 
Figure 2.2 – Electricity market designs for US (top) and Europe (bottom). Adapted from 
[12]. 
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Both market structures comprise three main levels for short-term trading of electricity 
depending on the proximity to the time of delivery. The US market design considers 
nodal pricing design, thereby considering a unit commitment with full information of 
the network in each market stage. On contrary, in Europe a more decentralized scheme 
is followed, since the trade is performed regionally following a zonal pricing scheme. 

2.1.1 Day-ahead market 
The day-ahead market is the market floor where the largest volume of electricity is 
traded considering supply and demand offers. Typically, this market is cleared from 36 
hours up to 12 hours before the delivery of electricity. The supply and demand offers for 
the next 24 hours in the form of price-quantity is submitted in the market. Then, 
optimization algorithms schedule the resources with the objective of minimizing the 
total offer costs of resources committed in the market. Depending of the market 
characteristics, different algorithms requiring additional input information are 
considered. In US, a unit commitment considering the network constraints and 
resources characteristics is considered under a nodal pricing design. Thus, the resources 
scheduling and nodal price is obtained. In contrast, European markets have a different 
structure. The market coupling process is based on the maximization of the social-
welfare within the limits of the established network capacity by Available Transfer 
Capacity (ATC) between bidding regions. This market ends up with a resources 
scheduling under a zonal pricing scheme. 

2.1.2 Intraday market 
The intraday market was designed for market participants that need to adjust their 
scheduling under new information of their position in the market [13]. For instance, 
renewable producers under new updated forecasts, or conventional producers under 
equipment failures use the intraday market to adjust their participation in the market, 
hence avoiding penalties on the real-time market. In addition, this market can be also 
used to adjust the strategic behavior of market participants. 

In Europe, there are two main distinct intraday market designs, namely the continuous 
and session markets [13]. For instance, the intraday market of Nord Pool (Elbas) is a 
continuous market trading and matching supply and demand offers, following the first-
come, first-served principle. On the other hand, the Iberian intraday market follows a 
different approach. The market clears six trading sessions (in different time steps), 
taking place at each crossing of a marginal nature between supply and demand curves 
[14]. In this context, the liquidity of the intraday market in Nord Pool and in MIBEL 
highly depends of the intrinsic characteristics of each market [15]. In fact, Elbas 
performs a low volume of trading, while the opposite occurs in the MIBEL [13]. 
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2.1.3 Real-time and balancing market 
The real-time market is a spot market to procure energy and ancillary services, and 
manage congestion, as well as outages of generation units and transmission lines 
disconnection in the real-time after all the other market processes have run. This market 
procures energy to balance instantaneous demand, reduce supply if demand falls, offer 
ancillary services as needed and in extreme cases, curtail demand. Furthermore, it is the 
last market instance for renewable production and demand correct their imbalances due 
to forecast errors. In short, this market is used to compensate for energy deviations in 
real-time from the day-ahead and intraday schedules. 

The real-time market in US allows market participants to buy additional power to 
correct their imbalances. In California, the real-time market consists in three distinct 
processes [16]: the Real-Time Unit Commitment (RTUC); the Short-Term Unit 
Commitment (STUC); and the Real-Time Dispatch (RTD). The RTUC runs every 
fifteen minutes and uses an optimization algorithm, referred to as Security Constrained 
Unit Commitment (SCUC), to commit fast-start units and to procure any necessary 
ancillary service. The STUC runs once per hour near the top of the hour and uses the 
SCUC optimization to commit medium-start, short-start and fast-start units to meet the 
demand forecast. The RTD uses a Security Constrained Economic Dispatch (SCED) 
algorithm every five minutes throughout the trading hour to determine optimal dispatch 
instructions to balance supply and demand. 

Regarding the European paradigm, real-time markets are usually divided in two-stage 
markets, namely regulating and balancing power markets (see Figure 2.2 for detail) 
[17]. It is noteworthy that these markets are run by the local Transmission System 
Operator (TSO). The regulating power market consists in the TSO purchasing the 
required upward and downward regulating power to balance the system. In contrast, in 
the balancing power market, the TSO acts as a seller, by selling the volume purchased 
in the regulating market to all market participants who actually deviated from their 
initial schedule. This selling process is made under the balancing prices. 

2.1.4 Ancillary services / reserve market 
The procurement of ancillary services in the electricity markets is addressed in different 
ways, depending on the market design and power system rules. In fact there are several 
different ancillary services with distinct characteristics used to meet the specific needs 
of the power system, thus maintaining proper levels of security and reliability of the 
system. The ancillary services are commonly divided in three categories: Services 
related to frequency control; voltage control; and system blackstart. This thesis refers to 
the reserve services from frequency control category. For a survey on current ancillary 
services market in Europe and US, the reader is referred to [18] and [19], respectively.  

Broadly speaking, in Europe, reserve services are procured through capacity markets 
managed by the local TSO. This market can run in parallel with the day-ahead markets 
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for energy, where energy recourses assume the commitment of being ready to provide 
the service when the TSO calls them, under the revenue of a capacity payment. In US, 
an auction for reserve services is considered. The energy and reserve auctions are co-
optimized together, hence reducing the general costs for running the system. 

2.2 Renewables in electricity markets 
The electricity markets characteristics have been changing in the last years with the 
continuous penetration of renewable sources, namely wind power. Indeed, wind power 
generation has been increasing year after year in the power system playing now a more 
active role in the electricity markets [20]. 

2.2.1 Current support schemes 
Currently, wind power generation is one of the main energy resources in the energy mix 
in several countries, such as Denmark, Germany, Netherlands, Portugal, Spain and 
USA. This growth of wind power generation has become possible due to the high 
governmental incentives in most of the countries. However, in most of the European 
countries, governments are revising the renewable generation support schemes, thereby 
trying to reduce the incentives on feed-in tariffs forcing wind power generation to 
compete side-by-side with other players in the electricity market [21]. Under this new 
challenge, the most common and actual schemes for remunerate wind power generation 
in Europe are threefold: (i) feed-in tariff, (ii) feed-in premium tariff and (iii) 
remuneration by market price plus renewable obligation certificate price (also so called 
as renewable portfolio standards in U.S.) [21]. The traditional feed-in tariff is a scheme 
that establish a fixed price for the total wind power generation provided to the network 
[22]. The feed-in premium tariff is a variant of the traditional feed-in tariff, which 
establishes that the WPP is paid at the electricity market price plus a fixed regulated 
premium for producing renewable generation [21]. The last support scheme is the most 
competitive in terms of market perspective. In this scheme, the WPP submits its offer in 
the energy market and is remunerated according to the market clearing price. Moreover, 
the WPP get green certificates according to the produced energy, thereby the WPP may 
trade these certificates in a specific market to increase its own revenue [21]. 

2.2.2 Impact on electricity markets 
Once RES marginal cost is close to zero, or even negative if incentive schemes award is 
on top of the clearing price, the offers from RES enters directly to the left-hand-side of 
the supply curve in the market, as can be seen in Figure 2.3. In other words, renewables 
producers are scheduled before conventional producers, thereby their output directly 
influences the market clearing price [3]. Thus, the energy market price tends to decrease 
as long as increases wind power participation in the market. However, this conclusion is 
not straightforward, since RES have uncertain production, so the price volatility is 
considerably higher. For instance, in periods with high renewable production, the 
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amount of scheduled production and consumption will increase, while the market price 
will be low. On the other hand, in periods with low renewable production, lower 
production and consumption will be scheduled, resulting in significant higher market 
prices. 

 
Figure 2.3 – Illustrative example of supply and demand curve by technology. 

In electricity markets under high level of RES penetration, the real-time market will be 
of special importance to RES producers, since it is the last market instance for them to 
adjust their initial scheduling. Consequently, balancing costs will increase since more 
reserve will be required to cope with uncertainties during real-time operation.  

2.2.3 Renewables producers trading in the electricity market 
In the scope of RES impact in the electricity market, RES producers (mainly WPP) 
must consider several aspects when offering in the market:  

• Firstly, its technical characteristics, i.e., wind power units are non-dispatchable 
and characterized by their uncertain production and intermittency. Thus, their 
decisions in the day-ahead market should consider the risk of failing to supply 
the volume offered in the market; 

• Secondly, the marginal cost for operation is close to zero, since there is no fuel 
costs for producing energy; 

• Finally, renewable producers still count with support schemes from governments 
for producing clean energy, thereby renewables producers set offers at low price 
in the market to ensure that they are scheduled. 

In this context, the participation in the electricity market is most likely made in two 
stages. WPP offers an expected available wind power in the day-ahead market, while 
accounting for balancing costs in the real-time market, covering its energy imbalances. 
Therefore, placing the optimal offering in the day-ahead market is fundamental for WPP 
to reduce potential balancing costs from the real-time market. The offering strategy of 
the WPP aims to maximize the expected revenue from its participation in the day-ahead 
market, while minimizing the cost of covering its eventual energy deviations in the 
balancing market. 
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2.3 Challenges for current and future market designs 
Current electricity markets have been facing the challenge of massive integration of 
renewable power generation into the power system, adapting its design and operation. 
Additionally, such integration requires changes and a partial restructuring of the market 
and power system operation, by which the power system is not adapted for. 

2.3.1 Capacity markets 
Capacity markets have become an important feature of restructured electricity markets. 
Ultimately, they have been designed to provide revenue sufficiency and assure 
reliability where the energy market may not cover the long-term cost of conventional 
generation. This type of market assures the reliability of the system by contracting 
enough generation and flexibility, preventing the possibility of future blackouts. Indeed, 
the aim of this market is to ensure sufficient capacity to meet the anticipated needs of 
the system, especially power systems with high penetration of RES, where flexibility 
levels are considerably higher and more important. The capacity market is therefore 
used to produce sufficient revenues for conventional producers to keep them available 
to provide flexibility when needed. 

The massive introduction of RES has significant implications for these capacity 
markets. Indeed, the increasing share of RES in the system will induce a greater need 
for capacity payments to conventional generation providing flexibility, which means an 
increase in the market price. In a more detail way, RES reduces the revenue and energy 
scheduled of conventional producers in the energy market, since RES has a nearly zero 
production cost and dispatch all available power in the energy market. On the other 
hand, increasing RES production requires higher flexibility requirements, which leads to 
more operation flexibility of conventional producers, thus increasing the operation cost 
of conventional producers. In general, these characteristics reduce the energy revenue of 
conventional producers in the energy market, leading to a need for higher capacity 
payments in the capacity market. These implications are likely to be mitigated in future 
electricity markets considering new designs of electricity market operation, as well as 
with the recent technological developments of RES, allowing better control of RES 
production and the provision of some reserve services. 

2.3.2 Electricity market design regarding uncertainty 
Current electricity markets designs do not properly cover the uncertain production of 
renewables. In fact, the market follows a sequential and deterministic market design 
between day-ahead and real-time stages, since the whole information about the future 
uncertainty is represented through a single-valued forecast at day-ahead stage. 
Furthermore, the uncertainty of renewable production is cleared during the real-time 
market with penalties for renewables producers that cannot supply the expected forecast 
established in day-ahead. In this context, one of the challenges of the current electricity 
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markets is to revise their deterministic market design by adapting advanced tools able to 
support decision-making under uncertainty. The use of stochastic integrated market that 
co-optimizes day-ahead and balancing stages is a proposed path in the recent literature 
[23]. However, the performance of such model will heavily depend on the quality of the 
input information, in this case of the forecast information from renewable production. 
Nevertheless, renewable power producers have a near-zero marginal cost (or even 
negative in case of subsidies), so that they enter the base of the supply curve, thus, 
constraining the conventional generation set-points. 

2.3.3 Renewables in reserve markets 
In view of the new possibilities for future electricity market designs, the provision of 
reserve through RES (mainly wind power) should be taken into account. Current 
developments of the wind power technology and wind farm control allows WPP to 
provide distinct ancillary services such as frequency and voltage control. In fact, wind 
farms are able to [5], [24]–[26]: 

• Provide and control active power injection in a few seconds; 
• Respond to reactive power demands in less than one second; 
• Support and maintain voltage levels; 
• Provide kinetic energy (virtual inertia). 

In this context, such technological developments will be essential in a 100% RES power 
system, helping system operators to maintain adequate levels of system reliability. 
Furthermore, one of the main challenges in future electricity market designs is the 
conception of an ancillary services market model that allows renewable production 
participate in the market, while maintaining suitable reliability system levels. In parallel, 
the high penetration of RES will change the services design, since the reserve 
requirements may dynamically vary on an hourly or even minute basis, while the system 
may have lower inertia [27], [28]. Then, WPP must be called to participate under this 
new services design. New services design according to the new system characteristics 
with large-scale integration of RES is essential for proper operation of the future power 
system. Additional challenges and potential market redesigns for ancillary services can 
be looked in detail in [5], [6]. 

One way of bringing the RES to the reserve market is by creating incentives for RES 
offering in this market. Thus, for an optimal integration of RES in both energy and 
reserve markets, new business models and remuneration mechanisms should be thought 
of, since current electricity markets rules and mechanisms are not suitable for a fully 
renewable power system. The challenge is allowing simultaneous offering of RES in 
energy and reserve market at day-ahead stage, accounting for potential balancing costs 
during real-time stage. Since, RES (namely wind and PV have uncertain and variable 
production) face the challenge of guaranteeing that power scheduled as reserve is 
available at any time without fail, the reserve market must be designed to account for 



 
Renewable Energy Integration in Electricity Markets  19 

the possibility of RES not providing reserve. For instance, by introducing penalties in 
the real-time stage for failing to provide reserve. The penalty for failing the contracted 
reserve must be well established by the market operator, i.e., the penalty cannot be too 
low either too high, in order to ensure that renewable producers do not submit reserve 
offers with low probability of accomplish it neither submitting reserve offers at all. 
Under this issue, Papers C, D and F presents a significant contribution for the optimal 
offering of wind power in energy and reserve markets, accounting for energy and 
reserve balancing penalties. 

The goal of this new market design is the joint offers in both energy and reserve 
markets, as can be seen in Figure 2.4. Under this new market design, WPP are able to 
submit both energy and reserve offers, while accounting for potential energy and 
reserve imbalance situations and respective penalties, i.e., the energy and reserve offers 
submitted in the day-ahead stage consider the potential expected costs in the balancing 
stage. 

 
Figure 2.4 – Schematic representation of the market structure for wind offering in both 
energy and reserve markets. 

Additionally, offering strategies can be derived for the joint offering in both markets. In 
fact, different control policies for WPP split the expected available wind power 
production in energy and reserve offers are studied, tested and demonstrated in Paper C. 
Furthermore, Paper D stresses the importance of using the best forecast information 
(closer to real-time) to reduce expected power deviations in the balancing stage, thereby 
improving the system reliability and reducing the volatility of the reserve market. 
Besides this, Paper F proposes distinct approaches to model different degrees of 
imperfect energy and reserve offering strategies, in some extent discussing the 
conservative and non-conservative behavior of WPP. 

2.3.4 Towards a power system based on DER 
Moving towards higher shares of renewables in electric power system, aggregators 
ought to merge the offering of different RES to some extent able to compensate each 
other for their uncertainty and intermittency, thus providing flexible participation in 
electricity market, while improving system reliability. Thus, the DER aggregators will 
be essential to provide flexibility to local electricity markets (probably managed by 
DSOs), thereby helping to maintain the energy delivery with suitable levels of security 
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and reliability. Within this scope, new business models for DER aggregators providing 
local flexibility services will emerge. Section 2.3.4.1 highlights the main characteristics 
that will result in a power system full of DER. Section 2.3.4.2 provides the latest 
definition of DER flexibility. In addition, full insights about flexibility of DER in a 
competitive environment are provided in Section 2.3.4.3. 

2.3.4.1 General characteristics of DER 
In last decade, technological innovations on renewables and smart grids together with 
ambitious environmental targets have increasing the interest of using DER. The main 
reasons for the recent interest in DER are fivefold: 

• The dynamic growth of distributed generation technology industry. The 
evolution of the technology makes distribution generation more attractive to 
investors on a small-case business, thereby greater efficiency at lower cost. 
Furthermore, the flexibility of DER to provide different ancillary services in the 
system will become crucial to help in the network management. In fact, the DER 
can improve the quality and reliability of the system by providing voltage 
support, power factor correction and other ancillary services. 

• Limits on building new transmission lines. Transmission network expansion 
usually faces several issues, i.e., high investment costs, political and 
environmental concerns. Thus, DER can delay investments in transmission lines, 
since the distributed generation (such as PV) can reduce congestion of current 
lines at the transmission and distribution levels. 

• Increased customer demand for highly reliable electricity. Consumers are more 
demanding for proper levels of electricity supply. Even more in the future 
because consumers can generate part of their own consumption, demanding high 
levels of quality and system reliability. 

• Deregulation of the electricity sector with special focus in electricity markets 
opportunities. Small producers are willing to be more involved in electricity 
markets, thereby increasing its expected revenue. 

• Concerns about climate change. Recent trends for a power system for 100% 
renewable power generation have come to open a new window for government 
incentives to achieve these targets. Thus, such incentives will partially support 
continuous development of DER technologies and smart grid concept.  

Overall, the combined impact of all these factors continuously boosts the transition from 
the current power system for a future decarbonized power system. For a comprehensive 
overview of the general characteristics of DER, the interested reader is referred to [29]–
[31]. 
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2.3.4.2 The new role of flexibility - definition 
In addition to the general aspects, the introduction of DER (mainly RES) into the power 
system makes system planners and operators recognize the need for new ways of 
balancing supply and demand. In fact, the developments in DER technology enable 
them to contribute to this new era of services to maintain the system security and 
reliability [32], [33]. Thus, the concept of DER flexibility in the literature gains 
importance for the future management of power system, especial in the distribution 
systems. Recently, the concept of flexibility has been defined and intended as: 

“On an individual level, flexibility is the modification of generation injection 
and/or consumption patterns in reaction to an external signal (price signal or 
activation) in order to provide a service within the energy system. The 
parameters used to characterize flexibility in electricity include: the amount of 
power modulation, the duration, the rate change, the response time, the location, 
among others.”[34] 

In this context, different DER technologies are capable of providing flexibility from 
different levels and technical aspects. In the remainder of this thesis, the term flexibility 
refers as the amount of power provided by DER that can help the system operator 
managing the system. This concept includes upward flexibility that means DER 
providing additional power as needed to maintain system balance, and downward 
flexibility that means reducing the power availability in the system. 

2.3.4.3 Flexibility of DER in a competitive environment 
In line with the aforementioned developments and definitions, a future power system 
with DER partly supporting the system needs is part of smart grid paradigm, which is 
gaining consistency in the literature in recent years, regarding the operation and 
management of future power systems [35]–[37]. Under such circumstances, the 
flexibility of DER to provide ancillary services will be crucial for a proper management 
of the distribution network, even under different power flow directions and network 
congestion. However, the variability and intermittency of RES is a challenge for the 
DSO operation. In addition, the new preventive management methodologies of 
distribution grids must take into account congestion and voltage problems that may 
appear on the network. In fact, the presence of DER should help the DSO to solve 
potential congestion problems, thus deferring network reinforcement. Furthermore, the 
DSO can also use the flexibility of DER to solve potential voltage problems in the 
network. It has been deeply studied that the DER can create some voltage problems in 
the distribution grid from time to time, depending on the consumption in that network 
location, especially in network locations with high penetration of PV generation and 
EV. Thus, the flexibility from these distributed generation units can be crucial for the 
DSO to correct voltage levels and ensure smooth energy delivery to consumers. Within 
this scope, Paper E contributes with a new approach that allows the DSO managing 
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network congestion under high levels of uncertain power production by contracting 
upward and downward flexibility to the DER. In fact, the use of this approach relieves 
the congestion of the main branches of the distribution network. 

Despite the high integration of DER in future power system, this paradigm will bring 
new challenges. In fact, small producers and consumers will compete partially by the 
use of the network, since consumers are an active participant in the system by behaving 
as a producer/consumer by injecting/absorbing power on the network (through PV, ESS, 
EV with vehicle-to-grid ability, and demand response). In this context, new tariff 
schemes for the cost allocation of using the network should be rethought. Indeed, the 
cost of using the network may consider the impact of all distribution system participants 
in a fair and distributed way. To this end, Paper A contributes with a model that fairly 
allocates the cost of using the distribution network to all network users. The model 
considers different costs (namely fixed, losses and congestion costs) allocated to a large 
set of DER (e.g., distributed generation, demand response, ESS and EV with vehicle-to-
grid ability) and consumers. In short, this work proposes that all system participants 
with impact on the network flow must share part of the management and operating 
costs. 

 

 



 

3  
Optimization under uncertainty 
The increasing penetration of RES in power systems requires the change of the 
traditional optimization approaches to solve power system problems, since RES has 
intermittent and variable production. In this context, new ways of solving the problems 
taking into account the uncertain behavior of RES should be investigated. The problems 
considered in this thesis require the use of different optimization techniques able to cope 
with the uncertain and variable production of RES, in particular, stochastic 
programming, Linear Decision Rules (LDR) and robust optimization. 

Nonetheless, the use of these techniques requires the basic knowledge of linear and 
nonlinear optimization. For a deep discussion on linear and nonlinear optimization 
theory, the interested reader is referred to [38] and [39], respectively. In addition, 
relaxation techniques are also important for the linearization of nonlinearities. For 
example, McCormick envelopes can be used to linearize bilinear terms to make 
problems linear and convex [40]. This chapter depicts the fundamental concepts of the 
optimization techniques used in this work. Section 3.1 provides the basic concepts and 
differences of optimization in linear and non-linear programming. Section 3.2 presents 
the McCormick envelopes technique to handle bilinear constraints, by generating 
equivalent convex constraints. 

Problems under uncertainty can be performed through different optimization techniques 
(e.g., stochastic programming, robust optimization and LDR), by which the adequacy of 
each technique depends on the level of available information of the uncertain parameter, 
as well as the goal of the decision maker. Applications of stochastic, robust and LDR 
optimization related to clearing and trading in electricity markets are presented in [3] 
and [41], [42]. In the literature, an exhaustive detailing of stochastic programming is 
given in [43]. Section 3.3 provides the basic concepts of two-stage stochastic 
programming used in several papers included in Part II. Robust optimization is designed 
to ensure decisions based on conservative behavior. A special variant of robust 
optimization is adaptive robust optimization. This optimization technique stands out for 
its ability of decision-making based on the worst-case scenario. All the theory behind 
adaptive robust optimization is discussed in [44]. Section 3.4 describes the main 
principles of robust optimization with special focus in adaptive robust optimization. 

CHAPTER 
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Finally, LDR and Piecewise Linear Decision Rules (LDR) are techniques that have a 
different way of modelling recourse problems in addition to stochastic and robust 
optimization. In fact, such a technique is suitable for modeling problems where 
uncertainty information is limited. For further details on recourse function modeled by 
linear and piecewise linear functions, the reader is directed to [45] and [46]. Section 3.5 
presents an introduction to the LDR and PLDR to deal with uncertain production. 

3.1 Basics of optimization 
In the scope of this thesis, linear and nonlinear optimization has been used to model 
certain power systems problems. Thus, convex optimization models are introduced in 
Section 3.1.1, duality theory is discussed in Section 3.1.2, while the motivation for 
using nonlinear optimization is explained in Section 3.1.3. The aim of this thesis is to 
provide optimization models for modelling power systems problems under the new 
challenges, rather than algorithms for solving these models. Instead readers are 
suggested to consult CPLEX [47] algorithm that has been used for dealing with linear 
optimization and mixed integer optimization, while for non-linear optimization 
CONOPT [48] algorithm was employed. All mathematical models developed in this 
thesis has been modeled under GAMS [49] modelling language with connection to the 
MATLAB1. 

3.1.1 Linear programming 
A convex optimization problem is a problem considering convex functions and sets. By 
definition a convex function is a “continuous function whose value at the midpoint of 
every interval in its domain does not exceed the arithmetic mean of its values at the ends 
of the interval” [50], [51]. Thus, for an optimization problem being convex some 
conditions should be ensured: 

• a differentiable and convex objective function; 
• differentiable and convex inequality constraint functions; 
• affine equality constraint functions 

Linear programming is a special instance of convex optimization problems. A linear 
program is generally modelled such as: 

where the objective function is given by (3.1a). x represents the vector of decision 
variables and C the vector of cost coefficients. Constraint (3.1b) represents the equality 

1 MATrix LABoratory (MATLAB), The MathWorks, Inc., Natick, United States, 2014  

Min T

x
C x  (3.1a) 

s.t. ,=Fx f  (3.1b) 
,≤Gx g  (3.1c) 
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constraints of the system with F being the matrix of the decision variables vector and f 
the right-hand side vector of the constraint. The inequality constraints are represented 
by (3.1.c). Together, (3.1b) and (3.1c) determine the feasible region of the problem. 

In the scope of power system operations, optimization problems considering the optimal 
operation schedule follows the minimization of operation costs, thereby maximizing the 
social welfare. Linear programming served as the basis for the optimization models 
developed in all works presented in Part II.  

3.1.2 Duality theory 
Duality theory [38] is of great importance in the field of optimization, since it can give 
different interpretation of the problem. For instance, in scheduling problems (such as in 
electricity markets), duality can provide economic signals of the system limitations that 
can be further interpreted and properly analyzed.  

Nevertheless and in terms of duality theory, let’s assume that the linear optimization 
problem (3.1a) is the primal problem and associate the dual variable α to the equality 
constraint (3.1b) and the dual variable μ to the inequality constraint (3.1c). Following 
duality theory, the Lagrangian function of the entire problem (3.1) is obtained through: 

Thus, the dual problem takes the form of: 

The dual variables of the problem represent the shadow prices of the associated 
constraints. 

For instance, considering the primal problem as simple economic dispatch, the marginal 
price of electricity is given by the dual variable of the power balance of the primal 
problem (α). In other words, an increase of the decision vector x by one unit, will 
increase the system cost by α. 

Another two important properties associated with the primal and dual problems are: 

The weak duality property states that: if x is a feasible solution of the primal problem 
(3.1) and (α,μ) a feasible solution of the dual problem (3.3), then 

On the other hand, the strong duality property states that: if x* is the optimal solution of 
the primal problem (3.1) and (α*,μ*) the optimal solution of the dual problem (3.3), then 

( ) ( ) ( ), , .α µ α µ= + − + −T Tx C x Fx f Gx gL  (3.2) 

,
Max
a µ

a µ− −T Tf g  (3.3a) 

s.t. ,α µ+ = −T TF G C  (3.3b) 

0,µ ≥  (3.3c) 

 .α µ≥ − −T T TC x f g  (3.4) 
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3.1.3 Nonlinear programming 
The nonlinear programming is the process of solving the optimization problem where 
some of the constraints or the objective function are nonlinear [39]. For a better 
understanding of the subject, let’s define that nonlinear functions are all the functions 
that are not linear, i.e., functions that have different properties from linear functions. A 
special example of a nonlinear function is the quadratic function (Figure 3.1), which is 
not linear, but is convex. An optimization model with this type of functions can be 
solved by using quadratic programming, since this function is convex and can be solved 
in polynomial time. For instance, in power systems, this type of function is used to 
model the fuel-cost curve of thermal generators. In Paper A, quadratic functions have 
been used for modeling the fuel-costs of combined heat and power plants. 

 
Figure 3.1 – Example of a quadratic convex function. 

Nevertheless, other functions such as trigonometric functions are nonlinear and are 
neither convex nor concave functions (e.g., Figure 3.2). Trigonometric functions (such 
as sine and cosine) are included in the modulation of a full Alternating Current Optimal 
Power Flow (AC OPF). Paper A and E comprise the modulation of these functions to 
ensure a proper and accurate power flow in the electric system.  

 
Figure 3.2 – Example of a trigonometric function. 

 

Besides, other nonlinear functions or constraints can appear in power system problems. 
For instance, constraints with different linear variables multiplied by each other, forms a 

* * *.α µ= − −T T TC x f g  (3.5) 
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bilinear constraint, which becomes nonlinear. The constraint (3.6) represents a bilinear 
equation where x and y are linear decision variables.  

In this thesis, bilinear constraints were employed to the model for dealing with a control 
strategy of wind power plants to split available wind power in energy and reserve, as 
explained in detail in Section 4. Thus, the modelling of bilinear constraints is presented 
in Papers C, D and F. Additionally, bilinear constraints can be relaxed through 
relaxation techniques (such as McCormick envelopes presented in Section 3.2), thereby 
reducing the complexity of the models. However, this relaxation comes with the cost of 
accuracy for getting the optimal solution of the problem. 

One of the main advantages of the nonlinear modulation is the very close approximation 
to the natural behavior of power systems. However, this precision comes with the cost 
of higher complexity of the modulation, as well as, some nonlinear functions used in the 
power system (such as trigonometric functions) do not guarantee a global optimal 
solution and is not solvable in polynomial time, which leads to an increase of the 
computational effort in the simulation process. 

In what concerns to all the details of the duality theory for nonlinear optimization 
problems, interested readers are referred to [39], [52]. 

3.2 McCormick envelopes 
The McCormick envelopes are a type of convex relaxation used to relax bilinear 
nonlinear problems. The aim is to transform nonconvex functions into convex, by 
relaxing the bounds of the nonconvex function through a convex relaxation [40]. Thus, 
the technique can turn bilinear functions into convex function, thereby reducing the 
computational effort for solving the problem. Another advantage of this technique is the 
possibility of mitigating local minima to the solvers. However, the optimal solution in 
the relaxed problem can be different of the optimal solution of the standard problem, 
i.e., the accuracy of obtaining the optimal solution can be decreased. 

Nevertheless, McCormick envelopes provide a good relaxation of bilinear functions by 
creating tight bounds of the bilinear function, while ensuring its convexity. Let us refer 
to (3.6) as a usual bilinear constraint where x and y are two distinct decision variables. It 
is assumed that the upper (x) and lower (x) bounds of the decision variables are known 
in advance, which is the case of the proportional control strategy of wind power plants, 
modelled as a bilinear constraint in this thesis (Section 4). In cases where the upper and 
lower bounds need to be estimated, the reader is referred to [53]. 

Following the theory of McCormick envelopes, four different inequality constraints 
should be modelled, such that 

 

=xy f  (3.6) 

 



 
Optimization under uncertainty 28 

A graphical illustration of the four inequality constraints is shown in Figure 3.3. 
Constraints (3.7a) and (3.7b) represent the red area of Figure 3.3, also called as convex 
underestimators. Similarly, constraints (3.7c) and (3.7d) define the convex 
overestimators, which cover the envelope representing the green area in Figure 3.3.   

 
Figure 3.3 – Graphical illustration of McCormick envelopes. The area in red is covered 
by the convex underestimators constraints, while the green area is delimited by the 
convex overestimators constraints. 

In this thesis, McCormick relaxation is used for relaxing a bilinear constraint modelled 
for wind power participation in energy and reserve markets (as presented in Paper F). 
The proportional control has bilinear properties that can be relaxed into convex 
constraints. Thus, the use of this type of convex relaxation allows transforming the 
developed nonconvex model into a convex model, thereby decreasing the complexity of 
the model while ensuring tight bounds for the convex constraints. For bilinear problems 
requiring higher tightness of the boundaries, the reader is referred to [54]. 

3.3 Stochastic programming 
The continuous penetration of RES in power systems requires the system operator to 
create new models for dealing with the uncertain production of these types of resources. 
Optimization problems under uncertainty are characterized by the necessity of making 
decisions without knowing what their full effects will be. In this context, several 
different methodologies for solving optimization problems under uncertainty are known. 
One of them is through stochastic optimization. 

In this section, the basic concept of a stochastic programming problem is detailed for 
dealing with uncertainty in power systems. This type of tool is very useful in the 

,≥ + −f xy xy xy  (3.7a) 

,≥ + −f xy xy xy  (3.7b) 
,≤ + −f xy xy xy  (3.7c) 

.≤ + −f xy xy xy  (3.7d) 
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support of decision-making process of different optimization problems. This section 
focuses on two-stage stochastic optimization problem, since this technique has been 
used for modelling uncertainty in different papers of this thesis (e.g., Paper D and F). 

3.3.1 Basic concept 
Stochastic programming is one of the most used tools for solving problems under 
uncertainty. The ability to model problems where uncertainty can realize over different 
decision horizon, thereby defining a number of stages, makes it a good tool to solve 
problems and find optimal solution in expectation. Every stage depicts a certain point in 
time where decisions are made and uncertainty is realized [43]. Commonly in power 
systems, an optimization problem under uncertainty is modelled as a two-stage 
stochastic programming, also called recourse problem, where the second-stage is the 
one that deals with the uncertainty. 

Nevertheless, multi-stage stochastic programming problems are often used to model 
problems where uncertainty takes realization in larger time horizon. The multi-stage 
stochastic problem (considering more than two-stages) is out of the scope of this thesis. 
Instead, the reader is suggested to read [43], [55], for a deep knowledge of how to 
model multi-stage stochastic programming problems. 

3.3.2 Two-stage stochastic programming 
The two-stage stochastic programming problem is a decision-making problem where 
decisions are made at two stages and there is a stochastic decision variable y which 
depends on a set of scenarios Ω. The first-stage decision x is made before knowing the 
actual value of the stochastic process, while y is determined after the realization of each 
scenario ω (second-stage). Intuitively, y will also depend on the decision x previously 
made in the first-stage. Thus, y can be represented as y(x,ω). Thus, the decision-making 
process consists of making the decision for x; then comes the disclosure of the 
uncertainty by ω; finally decision y(x,ω) is made. This process is illustrated by Figure 
3.4. 

In this context, the two-stage of the decision-making process is characterized as: 

• First-stage (here-and-now). In this stage, the decision x is made before the 
uncertainty disclosure. Thus, this decision variable does not depend on each 
realization of scenario of set Ω; 

• Second-stage (wait-and-see). The decision y(ω) is performed after knowing the 
actual realization of the uncertainty. Thus, the variable y depends on each 
scenario ω of the scenario set Ω. 
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Figure 3.4 – Sequence of the decision-making process for the two-stage stochastic 
programming (adapted from [12]). 

Associated to each scenario ω, there is a probability of occurrence π(ω). Thus, the 
generalized mathematical formulation of the deterministic equivalent of a two-stage 
stochastic problem is expressed as: 

where the objective function (3.8a) leads to the minimization of the total cost of both 
stages, considering the recourse cost of the second stage with weighted probability. 
Additionally, q(ω) stands for the matrix with the costs related to the second-stage 
decision variable. This problem is subjected to first-stage constraints (3.8b) and to 
constraints that connect the first-stage decision with the recourse decision (3.8c). Thus, 
the first-stage decision affects all the matrixes and vectors of the second-stage. 

In this thesis, two-stage stochastic optimization has been used as a tool for treat the 
uncertainty of the WPP offering problem in energy and reserve market. The aim is to 
find the best offer for energy and reserve that the WPP should submit in both markets, 
accounting for the uncertainty modelled in the form of a scenario set. This type of tool 
is appropriate to evaluate the uncertainty under expectation. The behavior and full 
characteristics of the model are detailed in Section 4, as well as in Papers D and F.  

3.4 Robust optimization 
Robust optimization is a type of optimization that was developed for dealing with the 
worst-case of the uncertainty in optimization problems. In fact, robust optimization is 
ideal for the treatment of severe uncertainty in the problems, thereby being based on the 
worst-case analysis and modelled by the Wald’s max-min model. Furthermore, robust 

( ) ( ) ( )
, ( )

Min
ω ω

π ω ω ω
∈Ω

+∑ TT

x y
C x q y  (3.8a) 

s.t. ,=Fx f  (3.8b) 

( ) ( ) ( ) ( ) ,ω ω ω ω ω+ = ∀T x H y h  (3.8c) 

0,≥x  (3.8d) 

( ) 0,ω ω≥ ∀y  (3.8e) 
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optimization is constructed with the aim of obtaining a solution that is feasible for all 
uncertainty realizations in the uncertainty set and optimal for the worst-case [3]. 

This section presents the formulation of uncertainty sets (Section 3.4.1) and the general 
model of adaptive robust optimization (Section 3.4.2) that served as the basis for the 
work developed during this thesis. 

In the electric power system, robust optimization is often used to deal with the 
uncertainty of RES production, ensuring a solution that is feasible and reliable, thereby 
guaranteeing the safety of the system in most of the cases. 

3.4.1 Uncertainty set definition 
One of the biggest issues in robust optimization is the need for establishing uncertainty 
sets, e.g., polyhedral and ellipsoidal uncertainty sets [3]. Uncertainty sets that are not 
properly modelled considering the intrinsic characteristics of the optimization problem 
can leads to inappropriate set of vertices that are not truly representative of the worst-
case solution, thereby providing solutions that are not robust at all or too conservative. 
In this context, several forms of constructing the uncertainty set appear in literature, 
e.g., polyhedral, ellipsoid and scenario set with spatial-temporal correlation are the most 
common in literature [56]. 

In the scope of this thesis, the uncertainty set has been modeled through a scenario set 
with spatial-temporal correlation. Readers interested on the construction of the 
uncertainty set through polyhedral and ellipsoid are referred to [3], [44] and [57] , 
respectively. The construction of the uncertainty set through a scenario set is threefold: 

• Definition of the scenario set J (previously generated through a scenario 
generation process considering spatial-temporal trajectories); 

• For each period, the deviation between the scenario set J and the conditional 
mean value forecast of the set creates a cloud of Nj points representative of the 
uncertainty space. 

• Finally, the uncertainty set W is defined as a convex hull of these points 
constructed through convex hull algorithms. 

The cloud’s points and the delimitation of the uncertainty set for two random variables 
are illustrated in Figure 3.5. One of the vertices that delimit the uncertainty set will lead 
to the worst-case. 
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Figure 3.5 – Uncertainty set representation through scenario set with spatial-temporal 
correlation. 

3.4.2 Adaptive robust optimization 
Adaptive robust optimization is one specific instance of robust optimization that has 
been used in this thesis. This approach considers a two-stage programming (as the two-
stage stochastic programming presented in Section 3.3) with first-stage and second-
stage decision variables regarding the decision before and after realization of the 
uncertainty. The main difference between the adaptive robust optimization and the two-
stage stochastic is the modelling of the uncertainty. The adaptive robust optimization 
aims to select one of the vertices of the uncertainty set that will ensure the worst-case 
solution [58], [59]. i.e, a unique and reliable solution is obtained from the robust 
optimization, as illustrated in Figure 3.6. 

x ω y End

First-stage

Worst-case 
realization of 
uncertainty

Second-stage 
(recourse)

 
Figure 3.6 – Sequence of the decision-making process for the adaptive robust 
optimization (adapted from [12]). 

Nevertheless, the general representation of the adaptive robust optimization follows a 
three-level optimization model, which is given by: 
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This problem has a min-max-min structure, where the right-hand-side aims at 
minimizing the cost related to first-stage decisions x that have to be made before the 
realization of uncertainty. The decisions under the first-stage are constrained by the 
constraints (3.9e) and (3.9f). The max-min problem represents the second-stage 
problem, where the aim is to minimize the operation costs of the second-stage decision 
variable y, while maximizing the impact of the uncertain parameter h in the second-
stage decision variable y. The worst-case realization of the uncertainty set W is enforced 
by the maximization problem that drives the uncertain parameter h towards the 
maximum recourse cost. However, this three-level problem (3.9) cannot be directly 
solved. Instead, the inner minimization problem can be replaced by its dual problem, 
using duality theory. This would allow merging the max-min problem in one single 
problem, thereby called the recourse part of the problem. However, the dual problem of 
the max-min problem adds bilinear terms in the objective function as proven in [3]. 
Within this scope, [3] proves that for a polyhedral uncertainty set W, the optimal 
solution will be at one of the vertices of this set. Thus, an equivalent deterministic 
problem (3.10) can be modeled by adding an auxiliary variable β that can be used to 
represent the worst-case of the recourse in the objective function. The auxiliary variable 
β is constrained by the previous recourse function for each of the finite vertices v 
(v=1,…,v0) of the uncertainty set. Then, the optimization problem is reformulated in 
such way that: 

where all the constraints concerning the second-stage problem are modelled for each of 
the vertices v of the uncertainty set W.  

In electric power systems, adaptive robust optimization has been widely used to deal 
with uncertainty, based on the worst-case scenario. Indeed, this approach is appropriate 

Min Max Min+T T

x yh
C x q y  (3.9a) 

s.t. ,+ =Tx Hy h  (3.9b) 
0,y ≥  (3.9c) 

s.t. ,∈h W  (3.9d) 

s.t. ,=Fx f  (3.9e) 

0.≥x  (3.9f) 

Min β+T

x
C x  (3.10a) 

0s.t. , 1,...,β ≥ ∀ =T
vq y v v  (3.10b) 

0, 1,...,+ = ∀ =v vTx Hy h v v  (3.10c) 

00, 1,...,≥ ∀ =y v v  (3.10d) 

,=Fx f  (3.10e) 

0.≥x  (3.10f) 
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for obtaining a solution that is robust for all the cases of the uncertainty, thereby 
allowing the system to perform high levels of reliability and security. Therefore, robust 
optimization is of most interest of transmission and distribution operators, ensuring the 
operation of the system at the lowest possible cost, considering proper levels of 
reliability. Within this scope, adaptive robust optimization has been used in this thesis to 
cover the management of a distribution grid with high levels of uncertainty, as fully 
detailed in Section 5 and Paper E. 

3.5 Optimization using linear decision rules 
The LDR is an approximation of the stochastic programming providing a tractable 
linear problem at the cost of a potential loss of optimality [45], [60]. The LDR consists 
in modelling the uncertain decision variable of stochastic model through an affine 
function. The main advantage of the LDR optimization is that does not require discrete 
distributions of the uncertain parameters in contrast to stochastic programming. 
However, the LDR can create an optimality gap, since the uncertain parameter behaves 
linearly. An improvement of the traditional LDR optimization is the PLDR. The PLDR 
is able to reduce the gap of the linearization of the uncertain parameter [46]. 

In electric power systems, LDR has been recently used to solve some problems under 
uncertainty, in which the uncertainty is modeled by linear functions. In these cases 
where the goal is obtaining a solution that is neither optimistic (stochastic approach) 
neither pessimistic (robust approach), LDR are an alternative. 

In this section, the LDR and PLDR approximations for the two-stage stochastic 
programming are discussed on Section 3.5.1 and Section 3.5.2, respectively. This 
method has been used in this thesis to model the uncertainty and strategic behavior of 
WPP in the electricity market, as detailed in Section 4.6.4 and Paper F. 

3.5.1 Linear decision rules 
This section presents the LDR approximation, based on the derivation in [45], [60], yet 
adjusted to the general formulation of the two-stage stochastic problem presented in 
Section 3.3.2. 

Assuming the two-stage stochastic formulation from (3.8) and that δ is the random 
variable, the following affine dependency of the second stage decision y(δ) variable is 
given by 

where 𝑦𝑦� represents the expected mean realization of the decision variable y, and Ky the 
slope of the affine function. All variables related with the second-stage problem should 
be modelled with affine dependency, once it is considered that the uncertain parameter 
behaves linearly. Problem (3.8) has only one second-stage variable.  

( ) ˆ ,δ δ= + yy y K  (3.11) 
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Additionally, the recourse variable y needs to be positive. 

It is assumed that T, H and h are a known matrixes and vector not depending of the 
uncertainty. Within this scope, the optimization problem in the form of (3.12) need to be 
reformulated reaching a single-level reformulation of the stochastic problem with LDR. 
The problem reformulation is divided through equality constraints (Section 3.5.1.1), 
inequality constraints (Section 3.5.1.2) and objective function reformulation (3.5.1.3). 

3.5.1.1 Equality constraints reformulation 
Let us consider the equality constraint (3.12d) of the second-stage problem for 
reformulation. Following [45], [61], this equality constraint is reformulated in a way to 
eliminate the random variable and assure finite cardinality, hence 

where equation (3.13a) must hold in the nominal case, i.e., for δ=0. Additionally, 
equation (3.13b) ensures that the balance in the equation holds for any realization of δ in 
the uncertainty set W. 

3.5.1.2 Inequality constraints reformulation 
Let us consider the inequality constraint (3.12e) of the second-stage problem for 
reformulation. By replacing the LDR for the recourse decision variables, this inequality 
is formulated as 

where αj is the dual variable associated to the j-th inequality constraint, Mj and mj 
represents the left-hand-side and right-hand-side of the uncertain parameter constraints, 
which in this case is modeled by its upper and lower bounds. Following duality theory 
[38], [45], the minimization problem (primal) on the left-hand-side of the inequality 
(3.14a) can be replaced by its dual (maximization problem), as 

( )( )ˆMin δ+ +T T y

x
C x q y K  (3.12a) 

s.t. ,=Fx f  (3.12b) 
0,≥x  (3.12c) 

( )ˆ ,δ+ + =yTx H y K h  (3.12d) 

ˆ 0.δ+ ≥yy K  (3.12e) 

ˆ ,+ =Tx Hy h  (3.13a) 

0,=yHK  (3.13b) 
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y
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Thus, the equivalent representation of the dual problem in a system of constraints 
follows 

where the set of inequalities (3.15) has finite cardinality. Moreover, all recourse 
decisions variables (in its piecewise linear form 3.12e) from the second stage problem 
are positive variables, being required performing similar reformulations to all these 
inequality constraints affected by the uncertainty. 

3.5.1.3 Objective function reformulation 
The part of the objective function regarding the second-stage decision (3.12a) has been 
reformulated taking the expectation over the uncertain parameter. By exploiting 
linearity and assuming that the uncertain parameter δ is zero-mean, the objective 
function can be simplified as 

3.5.2 Piecewise linear decision rules 
The approximation of LDR to the stochastic problem is often poor due to the recourse 
function of several problems has a behavior far from the linearity. In this context, a 
more accurate design to model the recourse function of a stochastic problem is through 
PLDR [46]. This method reduces the approximation gap to the stochastic problem by 
defining uncertainty through a piecewise linear function, however, the main 
disadvantage of this method is that the size of the problem increases significantly. A 
schematic representation of the different behavior between LDR and PLDR methods 
and respective approximation to the recourse function is illustrated in Figure 3.7. 

It can be seen that the approximation to the recourse function by simple linear function 
generates a significant gap, since the value of x(δi) increases linearly according to the 
increment of the uncertain parameter δi. On the other hand, piecewise linear function 
considers two breakpoints, thereby reducing the gap to the recourse function. By 
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increasing the number of breakpoints it is expected a better approximation to the 
recourse function, however, the size of the problem also increases. 

 
Figure 3.7 – Illustrative example of a natural recourse function (green), linear decision 
rules approximation (black) and piecewise linear decision rules approximation (blue) 
under the realization of the uncertain parameter. 

In this context and with the aim of improving the approximation of the recourse 
function modelled in this thesis, this section provides the basic insights of the piecewise 
linear continuous decision rules with axial segmentation developed by [46]. This 
method requires the establishment of breakpoints z to model the piecewise function a 
priori. An improved technique of the PLDR (the PLDR with general segmentation) can 
optimally estimate these breakpoints, however the complexity of the problem increases 
even more. This technique is out of the scope of this thesis, thereby the interested 
readers are referred to [46]. 

The idea behind the PLDR with axial segmentation is to expand the sample space of the 
uncertain parameter δi into ri lines with ri –1 breakpoints zj

i for j∈{1,…,ri –1}and i 
∈{1,…,k} 

where δi is the lower bound and δ�i the upper bound of δi. Following the rational behind 

[46], one can introduce the lifted space ℝ𝑘𝑘′ of the piecewise linear parameters 𝛿𝛿𝑖𝑖′ ∈ ℝ𝑟𝑟𝑟𝑟 
in the lifted support 𝐺𝐺′, where 𝛿𝛿𝑖𝑖′ ∈ 𝐺𝐺′ and 𝛿𝛿′ = (1, 𝛿𝛿2′⊤, … , 𝛿𝛿𝑘𝑘′⊤)⊤. Within this scope, 
the lifting operator Li,j is constructed based on the breakpoints, as 
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where j ∈{1,…,ri} and i ∈{2,…,k}. The retraction operator converts the lifted 
parameters into the original parameters through 

such that V is a square matrix with (ri +1)x(ri +1) dimensions, defined as 

Now, one can apply the PLDR approach with axial segmentation to the general 
stochastic optimization problem. In fact and from now on, the procedure is very similar 
to the procedure performed in Section 3.5.1 for LDR. 

The second stage decision variables of the general optimization problem assumes now a 
piecewise linear shape. Thus, the decision variable in (3.11) should be reformulated as 

where 𝛿𝛿𝑖𝑖′ is the random variable in each line i, 𝐾𝐾𝑖𝑖
𝑦𝑦 is the slope parameter of the linear 

function in each line i and 𝑦𝑦� is the conditional mean forecast of the decision variable 
which does not depends on the actual realization of the uncertainty δ. 

Following the same procedure as in Section 3.5.1, equality constraints, inequality 
constraints and objective function are reformulated. 
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3.5.2.1 Equality constraints reformulation 
The equality constraint reformulation of the general stochastic problem takes its final 
form as 

3.5.2.2 Inequality constraints reformulation 
The reformulation of the inequality constraints is similar to the one of Section 3.5.1.2, 
however, the matrix regarding the constraints of the minimization problem is based on 
the square matrix V that contains the information about the bounds and breakpoints of 
the piecewise linear function. Thus, inequality constraint (3.12e) of the second-stage 
problem is formulated as 

where αi is the dual variable associated to the i-th inequality constraint. Following 
duality theory, the minimization problem is transformed to 

Then, the equivalent representation in a set of constraints follows 

The remaining inequality constraints affected by the uncertainty must follow the same 
procedure as demonstrated above. 

3.5.2.3 Objective function reformulation 
The reformulation of the objective function based on the decision variables in form of 
(3.21) is given by 
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where the expectation is considered for the uncertain parameter. The expectation for the 
PLDR is modeled based on the lifting operator matrix Li,j, and the probability for each 
line segment 𝜋𝜋𝑟𝑟 

The final form of the objective function is obtained through the replacement of (3.25b) 
in (3.25a). 
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4  
Renewable energy trading in 
energy and reserve markets 
The existing electricity market models integrate RES in such a way that WPP can offer 
energy offers in the day-ahead market, accounting for their energy imbalances in the 
balancing market. However, the design and rules of electricity markets are not ready to 
absorb a large-scale penetration of RES into the system [62], and this is a major 
challenge. Additionally, the current developments of wind turbines technology allow 
WPP provide limited reserve services. In this context, another challenge comes from the 
interest of WPP in participating in the reserve market, taking advantage of 
improvements in technical controllability to provide different services.  

To address these emerging challenges, this chapter presents strategic offering models 
for WPP that participate in both energy and reserve markets at the day-ahead and 
balancing stages. The goal is to maximize the expected revenue for WPP, allowing 
strategic offering in energy and reserve in day-ahead stage, while accounting for 
expected balancing costs from the balancing stage. The different methods and the 
results outlined in this chapter are presented in detail in Papers C, D and F. In Section 
4.1 a potential market structure for wind offering in energy and reserve market is 
proposed, considering current market operation and new market mechanisms. The wind 
energy-only participation in the current electricity market, considering its analytical 
solution is shown in Section 0, as a special case of the new market structure. Then, in 
Section 4.3, current wind control policies for the split of available wind power in energy 
and reserve are discussed. These control strategies are essential in how the WPP 
behaves in the advanced market setup. The general revenue for this new market 
structure is stated in Section 4.4. Then, Section 4.5 presents the analytical derivation of 
the optimal offers of a strategic price-taker WPP, aiming to maximize expected energy 
and reserve markets revenue. Furthermore, advanced optimization methods based on 
stochastic programming and PLDR are performed in Section 4.6, giving different 
strategic options while reducing potential expected costs for WPP to participate in 
energy and reserve markets. 

CHAPTER 
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For the methodologies presented in the following sections, the market assumptions were 
built upon the current electricity market structure, similar to the market structure of 
Nord Pool. Furthermore, the balancing stage structure addressed in this work is based 
on the current Danish balancing market designation [17]. 

4.1 Energy and reserve offering market model 
Under the new paradigm of WPP participation in both energy and reserve markets, 
current market rules need to be adapted. In fact, for WPP’s offers in the reserve market 
some considerations must be made. Firstly, the market rules should allow generators 
with uncertain and variable production offering in the reserve market. Secondly, this 
uncertain production must be taken into account in the market clearing mechanism, 
since uncertain production can reduce the proper levels of system reliability in a market 
previously designed with specific rules to guarantee system reliability. One way of 
constraining excess of uncertainty in reserve markets would be by settling penalties for 
WPP that do not provide contracted reserve levels. Within this scope, a model that 
allows WPP to participate in both energy and reserve markets, taking into account the 
penalties for energy and reserve deviations is proposed in Papers C, D and F and 
illustrated in Figure 4.1.  

 
Figure 4.1 – Wind power participation model in the energy and reserve markets. 

This model aims to facilitate the full integration of wind power into electricity markets, 
by considering that WPP participate in the energy and reserve markets. Thus, the WPP 
can split their expected available wind power both in energy and reserve bids in the day-
ahead stage. Still, penalties for energy and reserve deviations at the balancing stage 
should be accounted for. Within this scope, some basic assumptions and new market 
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mechanisms allowing the development of optimization techniques to solve the problem 
must be stated. 

4.1.1 Price-taker behavior 
For a market with perfect competition, all market participants must accept prevailing 
prices in the market. That is, the offer of a market participant should not be able to 
influence the market equilibrium, assuming that they have a small market share. This 
conception is valid for WPP that represent an insignificant part of the transactions in the 
market. Although in future electricity markets, wind power will most likely play an 
important role in the market, it is expected that WPP of various capacities will 
participate in the markets. This assumption implies that the production of the WPP is 
independent of market prices and penalties. 

4.1.2 Expected mean prices 
Following the independence between power production and market prices from the 
price-taker behavior, and assuming that all prices and penalties enter linearly in the 
offering problem, stochastic prices can be replaced by expected mean prices. In more 
detail, given that wind power production and power imbalances are independent of 
energy prices and imbalance penalties, the full stochastic distribution of prices and 
penalties can be replaced by certainty equivalents (following certainty equivalent theory 
[63]), i.e., the expected mean prices and penalties. 

4.1.3 Probabilistic wind power forecast 
Wind power production is uncertain and time-varying due to wind being a natural and 
uncontrollable resource. Thus, obtaining a good forecast of the wind power is essential 
for WPP to offer their potential availability in the market. One way to account for wind 
uncertainty is through probabilistic wind forecasts. They summarize the potential wind 
power production by assigning a probability of occurrence. In the offering problem, 
distribution using wind power production is essential because it is the basis of different 
optimization techniques employed to determine the optimal offer participating in the 
market under uncertain production. 

4.1.4 Reserve balancing mechanism 
Once the proposed model allows for WPP to submit their offers in energy and reserve 
markets, contingencies for energy and reserve deviations should be thought of. Current 
electricity markets comprise of a balancing mechanism for energy deviations of market 
participants in the balancing stage. This mechanism allows market participants to 
correct their production/consumption imbalances through upward and downward 
penalties. In fact, WPP use this mechanism to correct their uncertain production from 
the day-ahead to the balancing stage. More precisely, energy offers submitted in the 
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day-ahead stage must account for potential imbalance (positive and negative 
deviations). Therefore, the penalties are asymmetric. 

In the proposed market offering model, WPP can offer in both energy and reserve 
market products, thereby reserve penalties for reserve imbalances should be also 
considered. Furthermore, reserve offers submitted in the day-ahead stage only consider 
negative reserve deviations from the balancing stage, since the positive reserve 
deviation is not detrimental to the system’s reliability. This occurs in cases of available 
reserve in balancing stage greater than the offered reserve in day-ahead stage. 

4.1.5 Taking advantage of better forecast information 
Despite these general characteristics, additional market improvements under this 
strategic market model for WPP were proposed and performed in Papers D and F. In 
more detail, the idea is to allow the share between energy and reserve at the balancing 
stage to be different of the energy and reserve share at the day-ahead stage (through 
control strategies explained in detail in Section 4.3). This idea is supported by the 
assumption of WPP to submit their operational schedule closer to the energy delivery.  

Many electricity markets have different timeline for WPP submitting their offers and 
operational schedule, so bringing WPP offers close to delivery should be set up by the 
market and system operators, taking into account the inherent characteristics of the 
power system in that country/region. For example, in Denmark, WPP have to submit 
their operational schedule at the balancing stage (i.e., the special 5-minute production 
time series for delivery hour) 45 minutes before delivery, if WPP to participate in the 
regulation power market, otherwise 1 hour before delivery. Thus, if WPP could change 
their operational schedule of energy and reserve closer to the delivery (e.g., 30 minutes, 
15 minutes or even 5 minutes before delivery), their power imbalance would be smaller 
leading to smaller imbalance costs. Similarly, several researchers have been arguing for 
gate closure delays of the day-ahead market for WPP to levels closer to the energy 
delivery [64], [65] (e.g., [64] proposes postponing the day-ahead closure time from 
12:00 PM to 07:00 PM). This may reduce forecasting errors and related imbalances 
costs for WPP and the required reserve level in the regulation power market.  

On the basis of this assumption, the objective is to allow WPP to change their 
operational schedule (share of energy and reserve) at the balancing stage according to 
their energy and reserve offers submitted at the day-ahead stage. The difference 
between the offers and the operational schedule will result in the power imbalances that 
are penalized in the balancing power market. Thus allowing the change of the energy 
and reserve share closer to the energy delivery will reduce expected balancing costs, 
thereby increasing the expected profit for the WPP. 

Nevertheless, this idea is not available or even allowed in current electricity markets, 
since WPP may use it to postpone their decisions, i.e., use forecasts closer to the 
delivery to partially change the impact of their previous decisions. That is, according to 
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current market rules, decisions taken in the day-ahead stage cannot be changed in the 
balancing stage. In fact, previous decisions that create imbalances can only be offset by 
new adjustments in other market trading floors (e.g., intraday market).  

4.2 Energy-only – analytical optimization 
As a starting point, the simple case of offering in the energy-only market is considered. 
That is, in current electricity markets WPP only offer in the energy market. One way of 
solving this problem is through analytical optimization, as suggested in [66]. The 
analytical optimization takes advantage of analytical equations and functions to solve 
the problem. One typical problem that is solved with analytical optimization is the 
newsvendor problem [67]. This type of problem appeared initially in [68]. This problem 
concerns a newspaper vendor who must decide how many copies of the newspaper to 
stock in the face of uncertain demand and knowing that unsold copies will be worthless 
at the end of the day. 

Let us define the newsvendor problem assuming x as the random variable with 
probability distribution function f(x) representing the demand of newspapers. λ– is the 
unit underage cost, i.e., the unit newspaper cost for being short – the cost for having less 
newspapers that the demand requires. λ+ is the unit overage cost, i.e., the unit newspaper 
cost for being long – the cost of having more newspapers that the demand requires. Q is 
the ordering quantity decision variable, i.e., the number of units stocked. The aim of the 
newsvendor is to maximize his expected profit, which mathematically can be seen as the 
minimization of the total expected costs Z, which is modeled as: 

The Leibniz rule is then used to analytically solve the problem. The Leibniz rule, for an 
arbitrary function f, parameters θ, and integration bounds a and b, states that 

In this way, the derivative of (4.1) with respect to Q is given by 

The optimal level of stock is obtained by equating the derivative in (4.3) to 0, then 
yielding an optimal quantile of the predictive cumulative distribution function F for the 
newspapers demand 
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Similarly, in electricity markets the same concept can be applied in order to calculate 
WPP’s optimal bid in the energy-only market [66]. In this context, Q stands for the 
optimal bid of wind power to submit in the energy-only market; F stands for the 
cumulative distribution function of wind power generation; λ+ represents the energy unit 
cost for positive deviation, i.e., when the wind power delivered in the balancing is 
higher than the contracted in the day-ahead market; and λ– is the energy unit cost for 
negative deviation, i.e., when the wind power contracted in day-ahead is higher than the 
energy delivered in the real-time. Thus, analytical optimization can be of most interest 
for solving problems such as the optimal offering problem for wind power plants in 
electricity markets. 

Further in this chapter, an extension of the previous analytical optimization has been 
applied on a new offering problem, where the WPP can participate in both energy and 
reserve markets considering that there is direct correlation of the wind power to provide 
both market products. This model has been fully investigated in Paper C considering 
different control strategies for the split of available wind power to offer in the energy 
and reserve markets.   

For an in-deep discussion on optimal allocation of different products with distinct 
uncertain distributions and considering multi-constraints, the interested reader is 
referred to [69], [70]. 

4.3 Control policies for wind power 
Current wind power plants have the ability to control the provision of energy and 
reserve in different ways. In fact, such control policies have been required by system 
operators to ensure stability and reliability of the power system under high penetration 
of wind power. System operators have been updating grid-codes with new active power 
control methodologies for WPP. The aim is to allow the controlled curtailment of wind 
power to reduce congestion or balancing the power system when there is a considerable 
excess of power production in the system. Additionally, such control policies may also 
be used for reserve provision, i.e., wind farms may retain part of the available wind 
power to provide as upward reserve. Within this scope, different methods for active 
power control of wind power for providing energy and reserve can be found in literature 
[71]–[74]. 

In this thesis, the controllability of proportional and constant control strategies 
(proposed in [71] and illustrated in Figure 4.2) has been studied for optimal offering of 
wind power in the energy and reserve markets. The total available wind power 
production is given by Q (blue line), while the energy share is represented by Ec (red 
line). The reserve share Rc is defined by the area between the blue and red curve. 
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Figure 4.2 – Constant (left) and proportional (right) wind control strategies for split 
available wind power production in energy and reserve. Adapted from [71]. 

Constant wind control consists of a constant curtailment of power from the expected 
available wind power production. This constant curtailment is only performed in cases 
of available wind power exceeding a certain level of wind power. This curtailment is 
allocated as reserve to submit in the reserve market. The remaining available wind 
power is considered for offering in the energy market. 

Proportional wind control is based on the proportional split of available wind power in 
energy and reserve through αc. αc is the proportional share parameter that splits the 
available wind power into energy and reserve assuming a value between 0 and 1. 

4.4 General formulation of market revenues 
An important aspect of the new market model, including assumptions and properties 
discussed in Section 4.1 to 4.3 is the calculation of market revenue for WPP. In general, 
market revenues for a WPP offering in energy and reserve markets in the day-ahead, 
while accounting for potential penalties in the balancing stage is expressed as  

where λsp is the expected spot price, E* is the amount of expected delivered energy, λcap 
is the expected capacity price for contracting reserve, Rc is the expected contracted level 
of power reserve in day-ahead stage, T* are the expected costs for energy deviations in 
the balancing stage and O* is the expected penalty cost from failing to provide the 
scheduled reserve. 

The aforementioned assumptions concern that the WPP behaves as a price-taker. This 
means that WPP production is independent of market prices and penalties. From this, it 
can be assumed that the formulation depends only on the expected mean prices and 
penalties, rather than the full distribution of prices and penalties, as explained in [63], 
[75]. Thus, the expected costs for energy deviations in the balancing stage are defined as 

* * *λ λ= + − −sp cap cRev E R T O  (4.5) 
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where ( E*- Ec) is the energy deviation between the energy delivered E* in the balancing 
stage and the energy contracted (offered) Ec in the day-ahead stage. The parameters λ* ,+ 

and λ* ,– are the balancing unit costs for positive and negative energy deviations, 
respectively. Likewise, balancing unit costs are defined as 

where λc ,+ is the unit down-regulation price for being long, while λc ,– is the up-
regulation price for being short. Furthermore, following the market settlement 
characteristics of the Danish TSO, the two-price settlement rule for mapping the 
balancing costs for energy deviations is assumed [66]. For an extensive explanation and 
comparison on the influence of the one-price and two-price settlement rule in electricity 
markets with high penetration of renewables, the interested reader is referred to [3]. 
Thus, the two-price settlement rules establish that in cases of negative system imbalance 
(energy surplus – need for downward regulation), the prices behaves as 

On the other hand, in cases of positive system imbalance (energy deficit – need of 
upward regulation), sustains that 

Otherwise in cases of no imbalance, both λc ,+ and λc ,– are equal to the spot price λsp. 
Similar assumptions to account with the reserve imbalance in the balancing stage are 
performed. Thus, the expected penalty for not providing the reserve is modeled as 

where ( R*- Rc) is the reserve power imbalance between the realized level of reserve R* 
in the balancing stage and the reserve contracted (offered) Rc in day-ahead stage. λbpt ,+ 
is the unit penalty for generating more power than the contracted (surplus). In contrast, 

λbpt ,– is the unit penalty cost when WPP has less available power in the balancing stage 
than contracted in the day-ahead stage. These hold that 
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hence λbpt ,+=0 since (extra) positive reserve is not detrimental to the system’s 
reliability. However, when this positive reserve deviation occurs, it can be 
comprehended as a loss opportunity cost from the WPP’s standpoint. On the other hand, 

λpt ,– is the penalty for negative reserve imbalance, weighted by the probability that 
reserve is needed. 

4.5 Analytical approach 
This section focuses on the characterization and analytical derivation of optimal offers 
for WPP participation in energy and reserve markets, detailed in Paper C. Naturally, the 
optimal bids heavily depend on the prices and penalties of the energy and reserve 
markets. Under the current electricity market regulatory framework, the energy price is 
normally higher than the reserve price, so there is no incentive for WPP to participate in 
the reserve market [76]. In a market a structure like the one presented in this thesis, for 
WPP to participate in reserve markets, proper incentives should be ensured by market 
operators, i.e., they should provide appropriate price signals to encourage WPP to offer 
their flexibility [5]. 

Occasionally, three distinct levels of operation may occur and influence the decision-
making process of WPP. In normal operation, it is assumed that the reserve market price 
is higher than the energy price ( λcap ≥  λsp), and that the reserve penalty for reserve 

deviations is greater than the energy penalty for energy deviations (λbpt ,– ≥ λ* ,–). The 
energy and reserve penalty ratio follows the normal hierarchy of power system, so it 
makes sense that failing to provide reserve is worse than not providing the energy 
promised in the energy market. The other two levels of operation, occurs when there is 
an economic incentive (price and penalties relationship) to participate in a single 
market, either energy or reserve. This section will focuses on the normal operation, i.e., 
the most logical relationship between energy and reserve prices and penalties that 
encourage WPP offering in both energy and reserve markets. Detailed offering under 
different levels of operation can be found in Paper C. 

4.5.1 Optimal offering under constant control 
The optimal offer considering the constant control under normal relation between prices 
and penalties for energy and reserve is derived analytically based on a process 
thoroughly presented in Paper C and outlined in Section 4.2. 
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The optimal bid (4.12) represents the total power bid (energy and reserve) while (4.13) 
represents the optimal bid for submitting in the reserve market. The optimal bid for the 
energy market E c is given by the subtraction of the total power bid Q and reserve bid 
Rc. 

4.5.2 Optimal offering under proportional control 
Under the proportional control of WPP, the optimal bid for the energy and reserve 
markets is given by 

The above expression is valid only for the fixed assumption, whereby the share between 
energy and reserve in day-ahead stage have the same share in the balancing stage 
(αc=α*). Naturally, the analytical bid will depend on the share parameter αc. Following, 
Paper C, non-linearity of affine functions of the proportional control strategy infers that 
bids will take place in energy or reserve market, but not in both markets, 
simultaneously. In this context, the relationship between energy and reserve penalties is 

crucial to allocate the expected available wind power in energy (in case of λbpt ,– ≥ λ* ,–) 

or reserve (in case of λ* ,– ≥ λbpt ,–). 

4.5.3 Optimal energy and reserve bids 
The analytical expressions outlined in the previous sections for the WPP’s optimal bid 
in energy and reserve are applied in a case study, comparing the behavior and economic 
performance of proportional and constant control strategies. The case study is based on 
real-data and considers a 15 MW wind power plant participating in the Nord Pool 
market. Further details on the data can be found in Paper C. 

Figure 4.3 illustrates the different behavior of constant and proportional control 
strategies. It can be seen that in most of the periods, constant control strategy splits the 
available wind power for participation in both markets. Furthermore, proportional 
strategy offers all the available power to a single market. From an economic point of 
view, both control strategies present similar trends, however, proportional control 
provides higher expected revenues over time. On average, proportional control 
improves the expected revenue of the WPP relative to the constant control by about 8%. 
This results from the different intrinsic characteristics of each control strategy, yielding 
different behavior in the market. Such conclusions can only be made in the context of 
the specific case study presented in Paper C. 
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Figure 4.3 – Constant (top) and proportional (bottom) control strategies over the time, 
under analytical optimal offering. 

4.6 Optimization techniques 
Papers D and F address the optimal offering of WPP in energy and reserve markets 
considering different assumptions and techniques to improve the expected market 
revenues, as well as the strategic bidding of WPPs. This section summarizes 
optimization techniques that can derive the optimal offer of wind in energy and reserve 
markets, considering the proportional control strategy. Section 4.6.1, describes the fully 
flexible stochastic approach that allows different share of energy and reserve between 
day-ahead and balancing stages. Then, the fixed share of energy and reserve in both 
stages is exemplified, in Section 4.6.2. The fixed approach considers the same 
assumptions used in Section 4.5. Section 4.6.3 addresses a hybrid approach between the 
fixed and flexible approach. McCormick’s relaxation is used to model the convex part 
of bilinear constraints used in the fixed approach. Additionally, a coefficient to control 
the influence of the balancing stage information in day-ahead decisions is described. 
Section 4.6.4 presents the offering problem modelled by PLDR. This method relaxes the 
assumptions of a discrete distribution for the uncertain parameter in contrast to 
stochastic programming. A brief evaluation and comparison of the aforementioned 
approaches, considering their intrinsic behavior and market revenues, is exemplified in 
Section 4.6.5.  

4.6.1 Flexible stochastic approach 
The full flexible stochastic approach relies on the assumption of different share 
parameter to split the available wind power into energy and reserve, between day-ahead 
and balancing stages (addressed in Paper D and F). In fact, this mechanism allows WPP 
to use forecasts of their production closer to the real-time, in the day-ahead decision-
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making process. The optimization problem is formulated as a two-stage stochastic 
programming (as explained in Section 3.3), and is presented as follows 

where ∆E+ is the surplus of energy incurred by the WPP, ∆E− is the deficit of energy 
incurred by the WPP, ∆R− is the deficit of reserve incurred by the producer, πw is the 
probability in each scenario w, PMin and PMax are the lower and upper bounds of the 
total power bid in the day-ahead stage, respectively. With this market mechanism, the 
WPP can adjust the share of energy and reserve in the balancing stage considering the 
expected power production in each scenario w. 

4.6.2 Fixed stochastic approach 
In contrast, the fixed stochastic approach considers the same share of energy and reserve 
in both trading floors. Thus, the mathematical formulation of the fixed stochastic 
formulation considers 

 

where the energy and reserve offered in the day-ahead market is determined in (4.16a) 
and (4.16b), respectively. Both constraints represent the proportional control strategy 
and form a system of bilinear equations which is non-convex. The non-convexity of 
both equations makes the problem more complex, however, feasible with suitable 
solvers. The formulation is completed with equations (4.15a), (4.15b), (4.15e) and 
(4.15f) of the previous model.  

* *, *, ,Max λ π λ λ λ λ+ + − − − −

∈Ω

 + − ∆ − ∆ − ∆ ∑caπ c sπ bπt
w w w w w

w
R E E E R  (4.15a) 

s.t. ,≤ ≤Min c MaxP Q P  (4.15b) 

,+ =c c cE R Q  (4.15c) 

* * * ,+ = ∀ ∈Ωw w wE R Q w  (4.15d) 

* ,− +− = ∆ −∆ ∀ ∈Ωc
w w wE E E E w  (4.15e)  

* ,−− ≤ ∆ ∀ ∈Ωc
w wR R R w  (4.15f) 

,α=c c cE Q  (4.16a) 

(1 ) ,α= −c c cR Q  (4.16b) 

* * * ,α= ∀ ∈Ωw w wE Q w  (4.16c) 

* * *(1 ) ,α= − ∀ ∈Ωw w wR Q w  (4.16d)  

* ,α α= ∀ ∈Ωc
w w  (4.16e) 
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4.6.3 Stochastic approach under McCormick relaxation 
In the view of turning convex the previous problem, convex relaxation methods can be 
performed. McCormick’s relaxation is a relaxation method that has the ability to 
perform a tight approximation gap of the bilinear system of constraints, as explained in 
Section 3.2 and implemented in Paper F. Besides that, a coefficient to limit the 
influence of the balancing stage information in the day-ahead decision-making process 
is included. Within this scope, the WPP gains controllability of the influence of 
information near the real-time in the day-ahead decisions. Thus, the WPP wind offering 
problem is reformulated as  

where ε is a coefficient that defines the difference between the share parameter in both 
day-ahead and balancing stages. The coefficient varies between 0 and 1, thus 
influencing the behavior of the split between energy and reserve. If ε is closer to 0, the 
behavior of this approach will be closer to the fixed stochastic approach. On the 
opposite, when ε is closer to 1 this approach behaves similarly to the flexible stochastic 
approach. The formulation is completed by including equations (4.15a), (4.15c) to 
(4.15f) and (4.16c), representing the objective function and the general constraints of 
the problem. 

4.6.4 Piecewise linear decision rules with axial segmentation 
Linear Decision Rules (LDR) is a different way of modeling the recourse function of a 
two-stage stochastic problem. In fact, it linearizes the uncertainty of the stochastic 
problem, through upper and lower tractable limits of the uncertainty interval. Thus, this 
model does not require discrete distribution of the uncertain parameter in contrast to 
stochastic programming. However, the linear approximation of the uncertain parameter 
can lead to a rough approximation of the natural distribution of the uncertain parameter. 
Hence, the PLDR can be modeled, reducing the approximation gap for the natural 
uncertain distribution, but at the cost of increasing the complexity of the formulation. 
Based on Section 3.5.2 and Paper F, the equivalent PLDR formulation of the WPP 
offering problem in the energy and reserve markets under the flexible stochastic 
approach is given by 

* ,α≥ ∀ ∈Ωc Min
wE P w  (4.17a) 

* ,α≤ + − ∀ ∈Ωc Min c Min
wE P Q P w  (4.17b) 

* ,α≤ ∀ ∈Ωc Mαx
wE P w  (4.17c) 

* ,α≥ + − ∀ ∈Ωc Mαx c Mαx
wE P Q P w  (4.17d)  

* ,ε α α ε− ≤ − ≤ ∀ ∈Ωc
w w  (4.17e) 

 



 
Renewable energy trading in energy and reserve markets 54 

where the recasting of the objective function under PLDR is presented in (4.18a). The 
constraints (4.18b) and (4.18c) represent the equality constraint reformulation of 
constraint (4.15d) of the flexible approach. Similar reformulation of constraints (4.15e) 
is given by (4.18d) and (4.18e). Additionally, the reformulation of the inequality 
constraints of the recourse problem in the flexible approach (4.15f) is given by the 
system of constraints from (4.18f) to (4.18g). Under this system of constraints, μ is the 
dual variable of the inequality constraint, and V a square matrix with information about 
the characteristics of the piecewise linear function. A similar recast for all positive 
decision variables of the recourse problem are performed as explained in the Section 
3.5.2. The model is completed by including the first stage constraints (4.15b) and 
(4.15c) of the flexible approach. 

4.6.5 Optimal energy and reserve bids 
All the optimization methods outlined above were tested and performed under different 
cases studies in Papers D and F, allowing a proper analysis of the impact of each 
method on the energy and reserve split. Below, the results of an illustrative example to 
test all the optimization methods are shown. Let a 12 MW installed wind power plant 
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with a set of 100 wind power scenarios, with a lower bound of 3 MW for offering in the 
market. Additionally, a set of expected prices and penalties are illustrated in Table 1, 
encouraging WPP to distribute expected wind power to the energy and reserve markets. 
Besides, the set of breakpoints defined for the PLDR method corresponds to the 25%, 
50% and 75% quantile of the wind power distribution. 

Table 1 – Prices and unit penalty costs for energy and reserve. 

Energy Price (€/MWh) Reserve Price(€/MW) 

spλ  40 capλ  41 

,cλ +  30 ,bptλ +  0 

,cλ −  50 ,ptλ −  96 

Each optimization method was tested under the above conditions, revealing its behavior 
of splitting the available wind power in energy and reserve, as well as its economic 
performance. In fact, Figure 4.4 illustrates the participation of each technique in the 
energy market, i.e., the amount of energy offered in the day-ahead stage Ec, and its 
expected share of delivered energy in the balancing stage E*.  

 
Figure 4.4 – Behavior of energy offered (Ec) and delivered (E*) in the market for fixed, 
flexible, McCormick with ε=1 and piecewise linear decision rules methods. 

The performance of the fixed approach incites all expected available wind power to be 
submitted to the energy market, thereby reducing the risk of high penalties in the 
reserve market. In contrast, flexible, McCormick and PLDR approaches offer similar 
bids in the energy market, providing small amounts of expected available power and 
taking advantage of the expected higher revenue from the reserve market. It is 
noteworthy that the expected energy delivered depends on the x-axis, i.e., the expected 
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available wind power in the balancing stage. Predictably, the expected delivered energy 
from PLDR, follows piecewise linear function considering the three breakpoints based 
on the wind power distribution. 

In contrast, the bids in the reserve market (illustrated in Figure 4.5) follow a different 
trend from the energy market. In fact, there is no fixed approach participation, since this 
method does not take advantage of better forecast information closer to real-time to 
influence its day-ahead decisions, thus avoiding offering in the reserve market, unless 
the margin between offering in energy and reserve is significantly higher. On the 
contrary, the remaining approaches try to increase the expected revenues from the 
reserve market even knowing that reserve penalties for not providing the offered reserve 
are significantly higher comparing to energy penalties in the energy market.  

 
Figure 4.5 – Behavior of reserve offered (Rc) and deployed (R*) in the market for fixed, 
flexible, McCormick with ε=1 and piecewise linear decision rules methods. 

Taking Figure 4.4 and Figure 4.5 for analysis, flexible, McCormick and PLDR 
approaches fully allocate the available wind power (only to lower levels of available 
wind power, i.e., up to 7 MWh) to the reserve market. This occurs until the reserve 
offered in the day-ahead stage is covered by the actual available wind power, thus 
minimizing the impact of the reserve penalty (λbpt,−) in the balancing stage, which is 
significantly higher than the energy penalty λ∗,−. On the other hand, for available wind 
power levels (in the balancing stage) greater than the reserve offered in the day-ahead 
stage, both flexible and McCormick approaches deploy the reserve level offered in the 
day-ahead stage. Thus, the remaining available wind power is allocated to produce 
energy. Even knowing that there is a penalty for energy surplus, flexible and 
McCormick approaches produces it, since the spot price for energy production is greater 
than the penalty on energy surplus (λsp ≥ λ*,+), thereby creating an incentive for WPP 
delivering the remaining available power as energy. Similar behavior is shown for 
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PLDR, however, PLDR allocates more wind available power at the balancing stage than 
required to cover the offered reserve, thus inflecting a loss of opportunity cost in order 
to ensure such robustness. 

Economically speaking, the flexible approach is the one that ensures higher expected 
revenues, followed by the McCormick, PLDR and fixed approaches. Although, 
McCormick with ε=1 approach presents behavior close to the flexible approach, 
different values of ε (e.g., 0) leads to behavior and results closer to the fixed approach. 
The controllability of using better forecast information close to real-time is deeply 
discussed in Paper F. 

4.7 Conclusions 
Throughout the continuous penetration of renewables in power systems, renewables 
production has been gaining importance and will play a key role in the electricity 
markets in the not-so-distant future. Thus, renewables producers (namely WPP) are 
willing to offer their available production to the energy market and, more recently, to 
the reserve market as well. 

The models presented in this thesis address the optimal offering of WPP in energy and 
reserve markets under expected characteristics of future electricity markets. The 
developed methods result from the consequent transformation of power systems, where 
WPP are able to provide energy and reserve services to the market, accounting for their 
intrinsic characteristics regarding their uncertain and variable production. 

This section presents an overview of the characteristics of all proposed methods for 
solving the wind offering problem in the energy and reserve markets. Table 2 presents a 
summary of the characteristics and an evaluation of the performance of each method.   

Table 2 – Summary of the proposed methods characteristics for solving the wind 
offering problem in the energy and reserve markets. 

Method Analytical Fixed Flexible McCormick  PLDR 

Constant wind control Yes No No No No 

Proportional wind control Yes Yes Yes Yes Yes 

Ability of using better 
forecast information 

No No Yes Yes Yes 

Controllability of better 
forecast information 

n/a n/a + +++ ++ 

Simultaneous energy and 
reserve offering 

+ + ++ ++ +++ 

Formulation complexity ++ + + ++ +++ 

Economic performance + + +++ ++ + 

 * n/a – not applicable 
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One of the characteristic that all methods support is the use of proportional wind 
control. This control has been thoroughly studied in all methods, since it has been 
mathematically proven from the analytical approach that proportional wind control 
obtains higher expected market revenues for the WPP than the constant wind control 
(for more details, see Paper C). Then, to the proportional wind control, a market 
mechanism that allows different shares of energy and reserve between day-ahead and 
balancing market can be implemented, thus improving the performance of optimization 
techniques. This is true because of the ability to use better forecast information of the 
wind power production when it is close to real-time. Under this market and wind 
controller characteristics, the flexible approach is the one that gets higher market 
revenues, followed by McCormick and PLDR approaches, respectively. Besides, the 
flexible approach also offers in both energy and reserve markets simultaneously, as well 
as is the best method in terms of formulation complexity (the “+” symbol in 
characteristic of formulation complexity stands for higher complexity, e.g., methods 
with “++” are more complex than methods with a single “+” ). However, a drawback of 
the flexible approach to the PLDR and especially to McCormick is the lack of flexibility 
to control the influence of forecast information closer to real-time. The ability of the 
McCormick approach to control the influence of the information (through a coefficient) 
can be used to control the risk in some extent. Similarly, PLDR can be improved 
depending on the number and value of the breakpoints to approximate the piecewise 
function to the natural recourse function.  

Nonetheless, to ensure the participation of the WPP in the energy and reserve markets, a 
set of prices and penalties are assumed following a specific rationale. That is, the 
behavior of WPP depends heavily on expected prices and penalties for energy and 
reserve. Under normal operating conditions (where WWPs split available power for 
energy and reserve), the expected reserve market price must be higher than the energy 
price ( λcap ≥  λsp), and the reserve penalty for negative deviations greater than the 

energy penalty (λbpt ,– ≥ λ* ,–). Otherwise, in some operational situations, prices and 
penalties may have different ratio, which leads to different offering strategies in the 
market. For instance, in cases where the reserve market price is lower than the energy 
price ( λcap ≤  λsp) and reserve penalty for negative deviations is greater than the energy 

penalty (λbpt ,– ≥ λ* ,–) the WPP will offer all available power to the energy market. In 
contrast, in cases where the reserve market price is greater than the energy price 
( λcap ≥  λsp) and reserve penalty for negative deviations is lower than the energy 

penalty (λbpt ,– ≤ λ* ,–) the WPP will offer only in the reserve market. In this context, it 
is imperative that the market operator provides adequate economic signals to guarantee 
that WPP offer in both energy and reserve markets. 

 

 



 

5  
Renewables flexibility from the 
market and system operation 
perspective 
The continuous integration of renewables in power systems (incentivized by many 
governments with recent targets of 100% renewables by 2050) is awakening market and 
system operators to assess and change their actual way of operating electricity markets 
and power systems at different levels. Indeed, future participation of renewables in 
energy and reserves markets create some concerns for the market operator in order to 
maintain low levels of energy deviations and to provide adequate economic signals to 
market participants. Furthermore, DER such as RES are challenging the current 
operation rules of the distribution system. DER will bring more uncertainty to the 
distribution grid, but also more flexibility to assist the DSO in the management of the 
distribution network. Thus, a local flexibility market has been discussed allowing DSOs 
to contract sufficient flexibility to carry out an adequate network management. In 
addition, the costs for network management under such circumstances must be covered 
by both, consumers and DER. In this context, new methods and studies for assessing 
such enumerated challenges should be developed. 

This chapter assesses renewable participation in electricity markets and distribution 
grids, taking into account the market and system operator perspective. The assessment 
of renewable offering in electricity markets from the market operator perspective is 
addressed and detailed in Paper B. In more detail, Section 5.1 assesses the energy 
market equilibrium by considering new offering strategies for WPP in the energy and 
reserve markets. Furthermore, a novel operating model for procurement of flexibility 
from DER at distribution level is presented in Section 5.2 and detailed in Paper E. 
Therefore, a preventive distribution grid management for DSOs, operating future 
distribution grids with high levels renewable sources is performed under a robust 
optimization model ensuring a proper level of system reliability. The cost allocation for 
managing such a distribution grid with high penetration of renewables is introduced in 
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Section 5.3. This cost allocation model reflects the impact of each producer and 
consumer entity on the distribution grid.  

The methodologies presented in this chapter are based on the market and system 
operator perspective. In addition, the assumption that the DER provide flexibility to the 
distribution system has been made on top of the recent trends supported by several FP7 
European projects [10], [11].  

5.1 Electricity market equilibrium 
Currently, in many countries, wind power remuneration schemes have been updated, 
encouraging WPP to compete actively in electricity markets. Consequently, the energy 
spot price tends to decline as WPP participate with low-price bids in the market due to 
its near-zero marginal operating cost. In fact, some studies in several markets such as 
MIBEL [77], Nord Pool [78] and EPEX [79], reveal that WPP will most likely submit 
their bids with extremely low prices (close to zero) to ensure their scheduling in the 
market. 

In this context, the impact of WPP strategic behavior in electricity markets equilibrium 
has been widely addressed and indeed, the participation of WPP in electricity markets 
may lead to a change in the market price. Offering wind power bids at a price close to 
zero decreases the market price, while at same time it may increase the power 
imbalances in the balancing market due to the uncertain production of renewables 
sources. 

An emerging challenge is the ability of WPP to participate in reserve markets, so that 
WPP strategic bidding will affect both energy and reserve markets. This is especially 
important for the reserve market since this market is designed to maintain the proper 
levels of security and reliability of the power system. Besides, the reserve market is 
naturally a small volume market compared to the energy market, so it is expected that 
not all WPP will be scheduled to provide this service when the system needs it. 

Under these challenges, Paper B focuses on analyzing the impact of WPP strategic 
offering in electricity markets. The analysis undertakes the proportional strategic 
offering of WPP in energy and reserve markets, which is thoroughly discussed 
throughout Chapter 4. Additionally, the analysis is carried out taking into account the 
market equilibrium perspective, based on a multi-agent system for simulating 
competitive electricity markets. 

5.1.1 Multi-agent system 
Multi-agent system simulators are often used to simulate the complexity of current 
electricity markets. In this thesis, the MASCEM simulator has been used for evaluating 
the energy market equilibrium considering the proportional control strategy behavior of 
the WPP. 
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In short, MASCEM is a multi-agent based electricity market simulator which is a 
modeling and simulation tool to study complex restructured electricity markets 
operation. It provides market players with simulation and decision-support resources, 
being able to give them competitive advantage in the market [80]. Furthermore, the 
simulator can simulate the intrinsic characteristics of some of the most relevant markets, 
such as the Iberian market – MIBEL, the central European market – EPEX and the 
northern European market – Nord Pool. Furthermore, the decision support system 
includes the RealScen tool to automatically define realistic scenarios. This tool uses real 
data that are usually available on the market operator’s website, to generate realistic 
scenarios. Besides, this scenario generation tool combines real data with simulation data 
and, can generate scenarios for different types of electricity markets by, taking 
advantage of MASCEM’s ability to simulate a broad range of different market 
mechanisms. 

Additionally, the decision support system integrates another multi-agent system 
(namely, Adaptive Learning Strategic Bidding System – ALBidS [81]) to automatically 
adapt the players’ strategic behavior according to the operation context and the players’ 
own goals. In fact, the system provides agents with the capability of analyzing contexts 
of negotiation, allowing players to automatically adapt their strategic behavior 
according to their current situation. Figure 5.1 presents the integration of MASCEM 
with ALBidS, as well as their basic structure. 

 
Figure 5.1 – Platform structure and connection of MASCEM and ALBidS [82]. 

For an in-deep disclosure of the multi-agent system platforms that are used to perform 
the energy market equilibrium analysis under proportional strategic offering of WPP, 
the interested reader is referred to [80]–[83]. 

5.1.2 Wind offering assessment 
The assessment of the wind offering has been focused on the Iberian electricity market, 
considering real data from the first week of January 2012. Sellers and buyers have been 
identified and proportional control strategy have been applied to sellers who consider 
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wind power in their portfolio mix. Then one part of the available wind power is 
submitted to energy market and the remaining part is submitted to the reserve market. 

To some extent, the energy price in the energy market increases as less available power 
is allocated to the energy market. This makes the supply curve moving to the left in the 
market clearing, which means that the amount of demand supplied in the market is 
reduced and hence the market price is increased. Consequently, the social welfare in the 
market may slightly reduce because of this ability of WPP to participate in the reserve 
market. From the simulation presented in Paper B, it is considered that 5% of the total 
available wind power is submitted to the reserve, while the remaining 95% is submitted 
to the energy market. This means that all WPP will perform this strategy of allocating 
5% of their expected available wind power to participate in the reserve market. This 
results in a small decrease of the demand supply in the energy market by about 0.28% 
on average. In contrast, the energy market price can increase by about 4%, in average. 
Furthermore, the social welfare in the energy market can reduce by about 0.15%, on 
average. This impact on the energy market may vary, since in some periods the wind 
impact is very high, while in periods with little available wind power, the impact is even 
smaller. Thus, the results present only an overview for the entire considered period of 
the wind control strategy impact in the energy market. 

Nevertheless, the impact of the WPP strategy in the day-ahead market will not create 
very significant changes in the market equilibrium in the long run. In fact, the volume of 
trading on the reserve market is very small in comparison to the global energy market. 
Thus, potential available wind power that is allocated to the reserve market rather than 
being fully allocated to the energy market does not reveal major changes in the energy 
market equilibrium. However, in scenarios with higher volume of renewable power in 
the market, the impact of such WPP strategy may be more significant. 

5.2 Preventive distribution grid management 
Considering the increasing participation of DER (namely, composed by RES) in 
distribution grids, DSOs have to cope with new challenges arising from the stochastic 
nature of these resources. On the one hand, renewable production is variable, which 
leads to changes in network power flow within short time periods. In addition, RES 
have uncertain production, which generates a greater energy imbalance between the 
expected and the real-time production. In this context, DSOs can no longer fully support 
their operation and management of the distribution network based on conventional 
methodologies, which were created based on a system with very limited levels of 
uncertainty and intermittency. In fact, such conventional methodologies for the 
operation of distribution networks were based on a passive management of the network 
to solve local problems. 

Today’s DSOs have been concerned with such intermittent and uncertain DER 
production and have been discussing new designs of operation and management 
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distribution systems with high penetration of DER. In fact, DSOs have started to look at 
the DER as additional flexibility in the network that can allow them to solve local 
technical problems in the operational domain, rather than solve those problems only in 
the planning phase. For this purpose, the DSO needs to operate in an operational 
planning domain to anticipate potential network problems and contract DER day-ahead 
flexibility to be ready to solve these potential problems in real-time. Additionally, the 
use of DER flexibility for managing technical problems can be of greater interest to the 
DSO, for a deferral of very expensive network investments and expansion. 

Nevertheless, the flexibility potential of DER (including flexible operation of the RES) 
requires a significant change in the present paradigm. The trend in scientific literature 
and industry is to implement proactive and preventive grid management functions based 
on forecast information with the possibility to reserve or control DER allocated in the 
distribution grid [10], [11], [84]. That is, take advantage of some flexibility that DER 
can provide to the system to assist in the grid management. 

In this regard, this section investigates the potential use of DER flexibility to support 
partially the future operation and management of the distribution network. This research 
has been built under the assumptions of a proactive and preventive distribution grid 
management that allows DSOs to improve their capability to solve congestion and 
voltage problems in distribution systems with high penetration of RES. In fact, such 
innovative methodology has been proposed and deeply discussed in Paper E. Section 
5.2.1 outlines the general framework of the methodology for preventive grid 
management. Complementarily, Section 5.2.2 provides the main results of the case 
study of Paper E. 

5.2.1 Framework for preventive distribution grid management 
A new framework to help the DSO to solve technical problems through contracting 
flexibility from DER has been designed. The conception and design of this 
methodology (illustrated in Figure 5.2) is based on two distinct stages. The first stage 
consists of DSOs that contracts upward and downward flexibility from DER at day-
ahead stage to manage the grid in real-time during the second stage problem. In fact, the 
DSO needs to contract flexibility in advance to use it when needed in real-time 
operation. Thus, the amount of contracted flexibility will depend on the expected needs 
for solving potential congestion and voltage problems in the distribution grid which are 
correlated with the uncertain production of RES.  
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Figure 5.2 – Diagram of framework for a preventive management of distribution grid. 

It is noteworthy that within this framework, DER (such as, wind, PV, other distributed 
generators and demand response programs) are able to provide upward and downward 
flexibility bids in the day-ahead stage. In fact, DER aggregators or individual players 
must, to some extent, ensure the provision of such flexibility bids. This means that they 
need to know their expected operating point in advance to submit such offers to the 
DSO. For example, suppose a wind power plant participates in the market and 
simultaneously offers flexibility to the DSO, as shown in Figure 5.3. The wind power 
plant uses only a part of the expected wind power forecast to participate in the energy 
market – establishing an operating point. That is, the energy bid is now the expected 
operating point of the wind power plant. The difference between the expected forecast 
and the operating point is provided as upward flexibility for the DSO. Therefore, the 
downward flexibility can be offered by taking the operating point as the upper limit. 

 
Figure 5.3 – Illustrative example of wind power split in energy and upward and 
downward flexibility. 
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Strategic bidding for renewables (wind and PV) can follow similar approaches as 
discussed in Chapter 4, i.e., it can provide flexibility bids based on the expected profit 
from supplying this upward and downward flexibility to the DSO, accounting for the 
costs of changing their operating point, as well as their uncertain production.  

Following these assumptions, the DSO contracts the flexibility of the DER based on 
capacity payments. 

The second stage of the model consists of the real-time management of the distribution 
grid considering the contracted flexibility in the day-ahead stage and the energy 
operating point of each DER. In addition, grid management is completed by the internal 
flexibility of the DSO (this includes transformers with on-load tap-changing, capacitor 
banks and ESS), accounting for the technical limitations of the network. Under this 
design, ESS are fully managed by the DSO to assist in system management and to 
mitigate the effects of uncertain RES production. In addition, storage systems allow for 
a multi-period flexibility helping to avoid grid congestion. Furthermore, the model 
incorporates an AC OPF to validated and respect the technical network limits. 

Overall, the two-stage model for operating the distribution grid aims in minimizing the 
operating costs of the DSO by contracting flexibility of the DER in day-ahead stage 
(first stage) to solve and operate potential congestion and voltage problems in the real-
time operation (second stage). To this aim, a two-stage robust optimization approach 
able to deal with uncertain production of DER, while providing robust solutions that 
include high reliability levels is performed. More specifically, the problem is modeled 
as a multi-period and multi-stage robust optimization problem where the uncertainty of 
the RES production is modelled based on the worst-case scenario. A general 
mathematical form of the above problem follows  

where model (5.1) has a min-max-min structure that allows the determination of the 
minimum cost for contracting flexibility under a minimum recourse operating cost in 
real-time considering the worst-case realization of the uncertainty. Indeed, the 
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maximization problem chooses the worst-case realization of the uncertainty set W 
(5.1e). The corresponding full adaptive robust formulation can be found in Paper E, 
following the theoretical principles presented in Section 3.4.2. In more detail, the day-
ahead function of (5.1a) for contracting flexibility Ct

DA, considers the upward and 
downward offers in power and price from DER, namely wind, PV, other small 
generators and demand response. All the flexibility offers are constrained by the internal 
limits of each producer, given by inequalities constraints (5.1g). The vector x 
parameterizes all the first-stage decision variables related to the upward and downward 
flexibility of distributed generation, wind, PV and demand response. In contrast, the 
vector y of recourse optimization variables consists of actions taken during real-time 
operation for solving congestion and voltage problems. The set of equality equations 
(5.1.b) includes active and reactive power balance, reactive power consumption, 
capacitor banks tap-changing, transformers with on-load tap-changing, and energy 
storage balance. In parallel, the set of inequality constraints (5.1c) includes operating 
costs for balancing the system, upper and lower bounds of active and reactive power to 
the upward and downward flexibility of all energy resources (distributed generation, 
wind, PV, demand response and ESS). Additionally, non-simultaneity of storage 
systems, transformers capacity, lines capacity, and upper and lower bounds of voltage 
angles and magnitude are considered. It is noteworthy that the costs for activating the 
flexibility of DER in real-time operation, as well as for the use of tap-changing in 
capacitor banks and transformers are considered. Charge and discharge costs for internal 
management of the ESS are also included. All problem constraints mentioned above are 
not presented in this thesis, but interested readers are referred to Paper E for in-depth 
detail and explanation. 

5.2.2 Assessment of preventive distribution grid management 
The proposed preventive distribution grid management was applied in a distribution 
network with high penetration of RES to evaluate its effect in solving potential 
congestion and voltage problems. Detailed system data and uncertainty modeling 
assumptions are provided in Paper E. It is assumed that the DSO fully controls the 
transformers with on-load tap-changing, capacitor banks and ESS. 

To assess the value of the proposed methodology, it is studied the difference between 
the robust solution proposed in this method and a deterministic solution (somehow 
closer to the reactive management of today’s DSO operation mode). The deterministic 
solution is based on the deterministic version of the proposed robust model, where the 
conditional mean forecast for renewable production is settled as the expected power 
generation for those resources, i.e., the deterministic version does not account for 
uncertain production from RES. In contrast, the robust model considers the uncertain 
production through the uncertainty set. Modelling the uncertainty set for robust 
optimization through vertices can lead to numerous vertices that increase the 
computational effort. Thus, the uncertainty set was delimitated by only selecting a 
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limited number of vertices based on the efficiency ratio of the methodology in terms of 
computational effort and solution quality. 

In addition to the model simulation, a validation of the proposed solution was 
accomplished under real-time operation. The validation stage entails performing an 
hourly optimal power flow that considers out-of-sample data of potential realization of 
wind and PV resources. During the real-time operation process, it is assumed that only 
the flexibility, contracted by the DSO, can be used to solve potential congestion and 
voltage problems. In cases where contracted flexibility is not sufficient to solve the 
congestion problem, wind and PV curtailment and load shedding are used as last resort 
measures to balance the system. Thus, the performance of the proposed methodology 
can be assessed together with the conventional deterministic approach. In fact, Paper E 
shows that the proposed approach is 1.07% more economical than the deterministic 
approach for the considered case study. This is due to the broad flexibility that is 
scheduled under the worst-case scenario in every operating hour. This only occurs in 
cases and hours of congestion and voltage problems, where the amount of flexibility 
required to solve the problems is considerably greater than in cases without significant 
congestion problems. 

The usefulness/performance of both methodologies for solving congestion problems in 
an entire day is illustrated in Figure 5.4. The blue area represents the flexibility 
contracted by the DSO in the day-ahead stage, while the red area represents the load 
shedding needed by the approach to solve the congestion problem in real-time 
operation. In parallel, the green line illustrates the total power used by the DSO to 
manage the grid during the validation process, while the blue line accounts for the 
flexibility activated during the real-time process. 

From Figure 5.4 it can be seen that the amount of flexibility that the DSO contracts in 
day-ahead stage from the DER is different for the deterministic (left) and the robust 
approach (right). In fact, the flexibility that is contracted in the deterministic approach is 
not sufficient to meet the needs during the real-time operation in periods 17 to 23. This 

Figure 5.4 – Contracted, used flexibility and load shedding (in expectation) over 24-
hour for deterministic (left) and robust (right) approaches under real-time operation. 
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means that the DSO has to shed demand during these periods to solve the congestion 
and voltage problems that have arisen. In contrast, the robust approach had mostly 
enough contracted flexibility to solve the problems during real-time operation, only in 
period 17 there was a need for shedding. The shedding in this period occurred because 
the expected worst-case in that period differed from the true worst-case. These kinds of 
events can occur, because of limitations in the modulation of the uncertainty set. By 
ensuring an uncertainty set with a low number of vertices (to decrease the 
computational effort), some of the robustness is lost in the process. Indeed, the 
uncertainty set of the robust approach in this figure contains 6 vertices. This large 
complexity of the model leads to high computational time which is the main drawback 
of the proposed methodology. Thus, reduced numbers of vertices for modeling the 
uncertainty set are required to achieve lower computational effort. In more detail, the 
deterministic approach takes about 8 minutes to converge to an optimal solution, while 
robust approach (considering 6 vertices) can take up to 16 hours. 

Nevertheless, the robust approach is more economical by ensuring a higher reliability 
than the deterministic approach for periods where congestion problems are expected. In 
contrast, in periods where the expectation of congestion problems is not of concern (i.e., 
in periods where a deterministic approach is enough to solve the expected problems), 
the robust approach is more expensive for the DSO. An ideal approach would combine 
the best performance of the deterministic and robust approach. 

Additionally, Figure 5.5 shows the empirical cumulative distribution function of the 
expected operating costs of the entire day for deterministic and robust approaches 
(considering different number of vertices that model the uncertainty set).  

 
Figure 5.5 – Empirical cumulative distribution function of expected operating costs for 
deterministic (blue line), robust 3 vertices (green line), robust 4 vertices (red line) and 
robust 6 vertices (brown line) approaches. 
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From Figure 5.5 one can evaluate the probability of the expected realization of 
renewables power production and consequently the congestion problems that might 
occur in a range of estimated operating costs. For an illustrative example, an expected 
operating cost of up to 24.148 m.u. is expected to happen in 80% of the scenarios of the 
robust approach with 6 vertices. In contrast, the same operating costs should occur in 
14.69% of the realization scenarios for the deterministic approach. Aa a general 
conclusion, the enhanced flexibility helps the DSO to deal with severe congestion 
problems in the network. 

As general remarks, one can state that the proposed method can be useful to the DSO to 
contract sufficient flexibility of the DER to assist the management of the distribution 
grid. Compared to the proposed robust approach, the deterministic approach is cheaper 
in the day-ahead stage, but more expensive in real-time operation, i.e the robust 
approach provides some savings to the DSO by reserving some extra flexibility at day-
ahead stage to be used during real-time operation, thereby avoiding load shedding. 
Furthermore, the level of robustness of the proposed methodology depends on the 
number of vertices that model the uncertainty set, however such additional robustness is 
paid in the computational effort, since the problem becomes more complex to solve.  

5.3 Grid cost allocation 
Along with this new paradigm of power system operation, considering high penetration 
of distributed generation (including wind and PV), the existence of ESS, the growing 
introduction of EV and the active participation of consumers through demand response 
programs, make conventional methods no longer suitable to determine the costs 
allocation of the distribution grid. In fact, current cost allocation methods for 
distribution grids equally allocate all costs to consumers, without considering the 
individual impact of each participant (supplier and consumers) in the network usage. 
Under the expected characteristics of future distribution grids, some grid participants 
will play different roles from time-to-time. For instance, ESS and EV with vehicle-to-
grid ability can behave as consumers or producers in different periods. Furthermore, 
consumers with demand response programs can have a distinct impact on network usage 
compared to conventional consumers. Furthermore, other DER, including wind and PV, 
can use the network to supply consumers or help in network congestion management. 

Within this scope, this section investigates new methods and mechanisms for 
distributing distribution network usage costs among all users of the network (producers 
and consumers), promoting equity, fairness, impartiality and equality. A methodology 
combining fixed, network usage and losses costs for all network users is investigated in 
Paper A. The method combines different approaches of cost allocation by developing a 
hybrid approach that fills the gaps of each individual conventional cost allocation 
method. Besides, costs for any type of producers and consumers are allocated according 
to their intrinsic characteristics and impact on the distribution network. In more detail, 
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the general framework of cost allocation to all network users in the distribution grid is 
discussed in Section 5.3.1. Finally, the main results of the impact of this methodology 
on a common distribution grid with high penetration of DER is evaluated in Section 
5.3.2 and deeply discussed in Paper A. 

5.3.1 Framework for cost allocation of distribution grids 
A cost allocation model for DER in the distribution grid, considering the combination of 
three distinct allocation methods (fixed, network use and losses costs) with the aim of 
take advantage of the main qualities of each one, is proposed in Paper A. An illustration 
of this model is shown in Figure 5.6. In fact, the cost allocation model is divided into 
three different sequential phases to properly determine the costs for each participant in 
the network. The first phase considers an economic dispatch algorithm for the 
distribution grid that is used to schedule all DER. This algorithm aims to minimize the 
operation costs of the DSO considering all types of DER (distributed generation 
including wind and PV, ESS, EV with capacity to charge and discharge energy, as well 
as consumers with demand response programs), as well as external suppliers (i.e, 
suppliers that provide energy through upstream connections of the distribution grid). 
This algorithm considers the feed-in contracts that impose the energy delivery by some 
DER, especially the RES. In addition, the algorithm contains an AC optimal power flow 
to validate the dispatch of DER in the distribution grid. From this algorithm, the 
Locational Marginal Price (LMP) will be determined in each node of the network. The 
full length of the optimization process to dispatch all the energy resources in the 
distribution grid can be found in Paper A. 

Note that the optimization algorithm of the first stage can be replaced by any other 
algorithm that the DSO can use to obtain the DER scheduling and, consequently, the 
LMP in each node. For instance, the results of the preventive distribution grid 
management methodology proposed in Paper E and discussed in the previous Section 
5.2 can partly be used in the first stage of the cost allocation methodology. 

The second stage of the cost allocation model uses the energy resources scheduling 
from the first stage to determine the contribution of each single energy resource (both 
suppliers and consumers) to the use of each network branch. To this end, two distinct 
tracing algorithms, namely Kirschen’s [85] and Bialek’s [86], were implemented and 
tested. Both algorithms estimate the network use of each resource type via proportional 
sharing principle, i.e., quantifying the percentage of power that each resource imposes 
in the power flow of each network branch.  

Both tracing methods uses upstream and downstream-looking algorithms to determine 
the impact of each generation and consumption resource on the network power flow, 
respectively. The main differences and characteristics of both tracing algorithms can be 
found in more detail in Paper A. 
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Figure 5.6 – Diagram of costs allocation model for distribution grids with high 
introduction of DER. 
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Nevertheless, some considerations must be taken into account when using such 
algorithms for tracing the power flow of DER. More precisely, in such algorithms, 
demand response programs are not directly seen as network participants. Unlike energy 
scheduling, demand response is not seen as a generator but rather as part of the load 
entity that reduces the load consumption. In practice, the demand response is not 
divided from the consumption entity. This means that the demand response curtailment 
is deducted from the initial energy consumption of that load. Thus, it can be represented 
as a negative cost for the load entity due to less load impact on the system. In contrast, 
resources like ESS and EV are divided into two distinct functions (i.e., the discharge 
and charge processes) and are considered in the tracing algorithms as both generators 
and loads. The allocated cost for the ESS and EV considers the impact of charge and 
discharge processes in the distribution grid. 

This is done in the third stage of the model where three distinct costs (fixed, network 
usage, and losses) are allocated to each resource. A variant of the MW-mile [87] is used 
to cost allocate the resource according to its impact in each branch of the network. The 
fixed cost considers the network operation and maintenance costs that the distributed 
system operator can have to ensure the proper functioning of the different equipment’s. 
Additionally, the fixed costs may cover also the investment costs of network expansion 
and new equipment. The formula for fixed costs by distributed generation unit is given 
by 

where Flowi,j is the power flow in the branch i,j, DFi,j,dg is the distributed generation 
contribution in the power flow of the branch i,j, CBranch i,j

Fixed  is the fixed cost associated 
with the branch i,j, and XDG is the payment factor for distributed generation units. The 
pay factor is used to establish the contribution that each type of resource has in the fixed 
costs. This factor ranges from 0 to 1, and is imposed by the DSO based on strategic, 
political and environmental reasons. Each type of resource has a specific payment factor 
and the sum of all factors is equal to 1. Note that the factor is assigned to the entity type, 
i.e., load entities with DR programs share the same pay factor. 

In the case of ESS and EV with vehicle-to-grid ability, t fixed costs are determined 
similarly to distributed generation resources. However, different to distributed 
generation the charge and discharge capability are considered. The fixed costs of ESS 
considering the charge and discharge process is as  
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where DFi,j,st
Ch  is the contribution of the ESS to the power flow of branch i,j during the 

charging process, while DFi,j,st
Dch  is the contribution of the energy storage unit to the 

power flow of branch i,j during the discharging process. The pay factor is assigned to 
the entity, regardless if the resource is charging or discharging. The same formula (5.3) 
is applied to EV with vehicle-to-grid capability. 

Nevertheless, the use of such ability of sharing costs among several types of energy 
resources can create some economic inefficiency, due to the use of distribution factors 
that quantify the impact on the network. Thus, the costs related to this inefficiency are 
allocated to load entities by 

where CLTC i,j,l
Fixed  are the total fixed costs associated to each load unit in branch i,j, and 

Cψ i,j
Fixed are the inefficiency costs in the branch i,j. The inefficiency costs of branch i,j are 

determined by the difference between the fixed costs of branch i,j and the sum of all 
fixed costs determined for each type of resource in branch i,j, hence 

For more detail on determining inefficiency costs, see Paper A. 

In what concerns to the costs of network usage, a similar approach to fixed costs is used. 
Indeed, the costs concerning the network usage are related to the power flow in each 
branch of the network,  

where CBranch i,j
NetUse  is the difference between the LMP of each bus that belongs to branch 

i,j. In usual operation, the difference between LMPs of each bus can reflect the losses, 
however, under critical operation conditions, this difference of LMPs may reflect the 
congestion LMP. 

Regarding the losses cost in the network, the model uses a formula similar to the other 
fixed and network usage costs. However, the cost of losses in each branch is determined 
based on the highest LMP of the buses that connect branch i,j. The total costs for each 
type of energy resource are determined as the sum of all fixed, network usage and losses 
costs in all branches of the network. The detailed formulation of the entire cost 
allocation model can be found in Paper A. 
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5.3.2 Assessment of cost allocation method 
The method outlined in the previous section is applied in a case study based on a 
distribution grid with high DER penetration, where it is compared the performance and 
impact of the Kirschen’s and Bialek’s tracing algorithms in the cost allocation model. 
This section focuses on the total costs for type of energy resource and for each branch of 
the distribution network. Detailed system data and results of each stage of the model can 
be found in Paper A. 

The total costs allocation of the Kirschen’s and Bialek’s approaches for each energy 
resource type in each network branch at hour 21 is illustrated in Figure 5.7 and Figure 
5.8, respectively. The period 21 has been chosen because of the large dispatch of DER 
in this period, evidencing the distribution costs for different types of resources in the 
network. From both figures, it can be seen that external suppliers and loads are the 
energy resources with the highest share of total network costs. External suppliers are the 
main provider of the system as it contains the energy that flows through the upstream 
connection and supplies most of the internal energy consumption of the distribution 
grid. 

Comparing both approaches, Kirschen’s approach assigns higher costs to DER than the 
Bialek’s approach. Thus, the consumer entities have higher costs in the Bialek’s than in 
the Kirschen’s approach. On average, Bialek’s approach allocates 70% of the total 
system costs for consumer units, while the Kirschen’s approach reaches 54%. This 
significant difference in cost allocation stems from the different intrinsic characteristics 
and considerations on tracing the flow contribution of each resource in the grid. In fact, 
Kirschen’s approach behaves well in small networks with a single direction of flow, 
while Bialek’s distribution factors fit easily into large networks with distinct directions 
of the power flow in branches. Within this scope, one can draw the conclusion that 
Bialek’s approach is probably more suitable for future distribution grids than Kirschen’s 
approach. This general remark is also corroborated by the significant costs for ESS and 
EV under Kirschen’s approach, especially when the power production of these 
resources is not as prevalent as the remaining DER. Similarities between both 
approaches occur in the branches close to the upstream connection, where external 
suppliers collect a significant amount of the costs of those branches. 

In summary, the different results of the proposed model cover several cost allocation 
methodologies under the future paradigm of distribution grid operation with large-scale 
DER integration. Moreover, this complete cost allocation model is of greater interest for 
distribution operators allocate network usage costs in a fair way and enables energy 
resources and retailers to simulate and evaluate their potential expected network usage 
costs. 



 
Renewables flexibility from the market and system operation perspective  75 

 
Figure 5.7 – Total costs in each branch of the network by resource considering 
Kirschen’s approach in period 21 of the energy scheduling. The figure is divided by 
sections representing the radial sections derived from the main branch of the distribution 
grid. 

 
Figure 5.8 – Total costs in each branch of the network by resource considering Bialek’s 
approach in period 21 of the energy scheduling. The figure is divided by sections 
representing the radial sections derived from the main branch of the distribution grid. 

 

 





 

6  
Conclusions and future research 
The increasing integration of renewable resources into power systems as result of 
ambitious government targets, has been introducing new challenges that call into 
question the efficiency of the existing operational market and power system models. 
More precisely, the high-share of renewable production forces decision-makers to adapt 
their models for power systems and electricity markets considering the uncertain and 
variable production of renewable resources. Market and system operators should find 
solutions for the challenges arising from large-scale integration of stochastic renewable 
generation, as well as investigate new possibilities to enhance the flexibility provided by 
these resources to the power system. 

This thesis addresses two main issues related to the large-scale integration of RES in 
electricity markets and system operation both from the perspective of renewables 
producers and system/market operator. The first issue considers the strategy of 
renewable resources offering in energy and reserve markets. The second challenge 
concerns the preventive management of distribution networks with high penetration of 
DER, including renewables, and considering the flexibility of such resources to solve 
congestion problems. In the same topic, the allocation of network usage costs is also 
considered. 

6.1 Overview of contribution 
New business opportunities are arising for the wind power producers. These result from 
the recent technological advances associated with the increasing penetration of 
renewables, in particular, the wind power control technology that allows wind power 
producers to provide reserves. In fact, the development of new market designs for the 
participation of RES in reserve markets is a topic recently discussed in the literature 
with the aim of fully integrating renewable energy in various market products. To cope 
with this complex participation of uncertain resources in different markets, new market 
mechanisms must be developed to encourage and enable renewables producers to 
provide both energy and reserve services. A new market model for the optimal offering 
of renewable producers in energy and reserve markets such as those proposed in this 
thesis and presented in Papers C, D and F, is crucial to bring renewable production to 
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the reserve markets. These models clearly open the door for RES to participate in the 
energy and reserve markets. The models enable improved revenue for renewable power 
producers and greater integration of renewables into the power system. 

In more detail, Paper C, shows that the participation of WPP in a new market where 
wind can offer both energy and reserve can increase the expected revenue of WPP in 
comparison with energy-only participation. This approach considers energy and reserve 
costs for energy and reserve power imbalances. Indeed, through the analytical 
derivation of two distinct control strategies for wind supplying energy and reserve to the 
system (namely, proportional and constant wind power control) and assuming that the 
wind producer behaves as a price-taker, it was found that such optimal participation in 
both markets is of greater interest to wind power producers. Furthermore, the outcomes 
of the case study revealed that proportional wind control strategy provides higher 
expected revenue than constant wind control strategy. However, the optimal offering in 
the energy and reserve markets depends heavily on the expectation of prices and 
penalties for energy and reserve services. This means that even though it is technically 
possible, it is not always optimal for wind power to provide reserve in a market 
environment. 

Moving beyond the proportional wind power control to offer in energy and reserve 
markets, a stochastic model was developed in Paper D to determine the optimal bid of 
energy and reserve, considering different share of energy and reserve between the day-
ahead and balancing markets. The main focus of this work was to assess the effect of 
strategic bidding of a wind power producer, bringing decisions close to real-time. The 
aim of this approach is to enable wind power producers to use better forecasts of their 
wind power production to adjust their potential energy and reserve penalties for energy 
and reserve imbalances at the balancing stage. The offering strategy for energy and 
reserve is formulated as a two-stage stochastic model considering two options: (i) a 
fixed share, and (ii) a flexible share of energy and reserve between the day-ahead and 
balancing stages. From the case study, it was concluded that allowing a different share 
of energy and reserve between the day-ahead and balancing stages can increase the 
expected revenue of a wind power producer. Thus, bringing decisions close to real-time 
can improve the quality of wind power producers’ decisions and reduce the lead time 
effect between day-ahead and balancing stages. 

Under such a flexible sharing mechanism between the day-ahead and balancing stages, 
decisions should be evaluated under the different strategic behaviors of wind power 
producers. In fact, decisions made under a full flexible mechanism require a certain 
level of perfect information on the possible realization of uncertain wind power 
production at the balancing stage, which is difficult to obtain. Within this scope, Paper F 
proposes and develops models that allow a certain degree of freedom to make decisions 
between the fixed and flexible share mechanisms, while reducing the risk of insufficient 
knowledge of the balancing stage, which generates poor decisions. Indeed, two 
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additional methods based on PLDR and McCormick relaxation were proposed to give 
different decisions between the fixed and flexible stochastic mechanisms. The piecewise 
linear decision rules support their decisions based on linear approximation 
characteristics that allow them to perform decisions close to the fixed stochastic model. 
On the other hand, the McCormick relaxation associated with a coefficient to adjust the 
share of energy and reserve between the day-ahead and balancing stages gives a full 
degree of freedom for wind power producers to impose their decisions depending on 
their own risk assessment. Such methodologies provide a range of solutions and 
decisions that may fulfill different goals and behaviors of wind power producers. 

In the context of these techniques to support wind power offering in both energy and 
reserve markets, market operators will play a key role in encouraging or discouraging 
wind power producers from participating in the reserve market. In fact, the market 
operator has to assess the impact of such simultaneous renewable participation in both 
energy and reserve markets, and ensure that appropriate price signals will encourage the 
participation of wind power producers in both markets. In this context, Paper B presents 
an assessment of the energy market equilibrium considering different levels of RES 
participation in the reserve market. The case study, carried out in the MASCEM 
simulator, allowed to evaluate the impact of this RES participation in today’s energy 
market. This work showed that the renewable participation in the reserve market may 
slightly reduce the social welfare in the energy market, resulting in an increase of the 
spot price. Still, this impact is not of great concern to the market operator, since the 
volume of trading in the reserve market corresponds to a very small part of the energy 
market hence, the energy market equilibrium over time does not reveal major changes. 
However, it is possible to see a different impact on markets with high share of 
renewable energy, since the difference between the marginal price of renewable energy 
and others generators is significant. This work can be further used to evaluate the 
equilibrium of the energy and reserve markets in markets with high RES penetration. 

Towards a power system based on DER, the conventional operation and management of 
distribution systems are no longer suitable to the new characteristics of the system. 
Distributed energy resources, which mainly comprise renewable sources, will bring 
uncertain and intermittent production to distribution systems. As a result, they will 
induce a different flow in the network branches, whereby the level of intermittent 
production in the network’s power flow can either solve or create congestion and 
voltage problems. In addition, tariffs for the use of the distribution grid need to be 
updated because there are new energy resources that can behave as producers or 
consumers, thus imposing different impact on the network usage. To this end, Papers E 
and A focus on the preventive grid management and cost allocation methods for future 
distribution grids with high penetration of renewable sources, respectively.  

The issue described above about the need of new operation and management methods 
for distribution grids was investigated in Paper E. In fact, this work proposes a new 
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preventive operation and management method to cope with the challenge of DER 
(mainly comprising RES) in distribution grids. This approach considers a preventive 
distribution network management able to solve potential congestion and voltage 
problems in future distribution grids with a high level of uncertain production. More 
precisely, a robust optimization framework was proposed to solve congestion and 
voltage problems in the distribution network based on the flexibility provided by all 
types of DER. The flexibility of DER can be contracted on a day-ahead basis to be used 
by the DSO during real-time operation. It was shown that the uncertain and variable 
production can actually provide flexibility to the system for solving congestion and 
voltage problems. The test-case results have shown that the proposed method is more 
efficient than deterministic methods for dealing with uncertain and variable production 
of renewable sources in the distribution grid. In fact, using the flexibility of DER to 
solve operational and management problems can defer investment costs and expansion 
of the distribution system. 

Under this new operational planning paradigm of high integration of DER in 
distribution grids, network tariffs must be updated considering the new characteristics of 
these resources in order to share fairly the costs among all users of the network. To this 
end, this thesis proposed through, Paper A, a new method for the cost allocation of 
network usage in a fair way, taking into account fixed, network usage and losses costs. 
The method follows the principle of proportional sharing to estimate costs among all 
network users. One of the main advantages of this approach is the ability to differentiate 
the impact of suppliers and active consumers in network usage, allowing the distinction 
of resources able to behave as suppliers and consumers (e.g., energy storage systems 
and electric vehicles with vehicle-to-grid ability) over time. The test-case exploited the 
features of this model, revealing the importance of this method for energy resources and 
retailers to simulate and evaluate their potential network costs in network usage of 
future distribution grids. Additionally, and based on local electricity markets, this PhD 
work opens the door to further studies on the competition for network usage between 
small producers and active consumers. From the perspective of local electricity markets 
(where local producers and consumers exchange energy) at a district, municipal or 
community level, who uses the network should share fair cost allocation. Moreover, the 
network usage will be even more crucial in local electricity markets that follow the 
recent trend of a peer-to-peer market as it will reflect the network usage cost of every 
small producer and active consumer. 

Lastly, all the methodologies for participation in electricity markets and operation of 
future systems with high penetration of renewable sources, proposed and implemented 
in this thesis and in the six enclosed papers (four published and two under review), 
clearly show the relevance of the achieved findings to the literature. Moreover, the 
success of this PhD work is also sustained by the accomplishment of the defined 
objectives. 
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6.2 Future research 
Throughout the development of this thesis, a number of potential future research 
directions to improve the integration of renewable sources in power systems have 
emerged. The first one entails the bids of RES in the energy and reserve markets. 
Secondly, the recent trend towards preventive management of distribution grids has to 
be improved. 

Regarding the offering in energy and reserve markets, four relevant extensions can be 
carried out. i) Improving the performance of the piecewise linear decision rules by 
optimizing the number and value of the breakpoints in the piecewise function. This can 
be done by studying the advanced version of piecewise linear decision rules with 
general segmentation. This approach can approximate the piecewise function to the 
natural recourse function of the problem. ii) The mathematical modulation, 
implementation and validation of different control policies for the split of wind power 
available in energy and reserve markets can be extended. The study of different wind 
power control strategies, such as the ΔP control and output cap, can provide different 
market and operation strategies for wind power producers. iii) Extending the optimal 
bid definition considering the intra-hour variability can reduce the potential balancing 
costs for energy and reserve deviations. This direction points up to intermittent wind 
production in smaller periods than one hour, giving a better understanding of the 
potential bid of the wind power available over the hour. iv) From the market point of 
view, a certain relationship must be ensured between energy and reserve prices and 
penalties to allow joint participation in both market products. These proper price signals 
or penalties should be studied from the market operator’s perspective to ensure that 
wind power producers (and others) do not present binary bidding behavior in only one 
market. In particular, the assumption proposed in this thesis in generating a penalty for 
the negative reserve imbalance should be very well planned to encourage wind power 
producers to offer on the reserve market, but at the same time ensuring that producers 
will not exercise market power. This means that the reserve penalty should be neither 
too low nor too high in comparison to the price and penalties for the energy market. 

In what concerns the second direction of future research, regarding the preventive grid 
management with a high level of renewable penetration, the extensions are twofold. 
Firstly, the complexity of the proposed robust model makes the methodology 
impractical in real networks for the DSO, since the computational effort is excessive, 
taking several hours. Thus, several ways of reducing problem complexity or 
computational effort can be studied. On the one hand, reducing the complexity of the 
methodology can be done through the linearization of the nonlinearities of the model, 
such as the AC OPF. For instance, the AC OPF can be formulated in the form of a 
second-order cone programming or semidefinite programming that makes the model 
convex at the price of giving approximate solutions. On the other hand, computational 
performance can be improved by considering different optimization algorithms, such as 
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meta-heuristics, that can significantly reduce the computational effort of the model, also 
at the price of only guaranteeing approximate solutions. In addition to these two 
suggestions, the construction of the uncertainty set for the robust approach by other 
means (such as ellipsoidal uncertainty set) may most likely yield good representation of 
the worst-case solution. The second extension follows the idea of improving the 
developed model by adding conventional tools used by the distribution operators to 
manage the network. For instance, network reconfiguration and acceptance of voltage 
deviations. However, these tools can increase the complexity of the model and therefore 
may be more difficult to solve. Nonetheless, these novel extensions are necessary to 
improve the integration of renewable sources in the power system, as well as to reduce 
the computational burden of the proposed complex model, thus allowing its application 
in real-world cases. 
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a  b  s  t  r  a  c  t

The  high  penetration  of distributed  energy  resources  (DER)  in distribution  networks  and  the  competitive
environment  of  electricity  markets  impose  the use  of  new  approaches  in  several  domains.  The  network
cost  allocation,  traditionally  used  in  transmission  networks,  should  be adapted  and  used  in  the distribu-
tion  networks  considering  the  specifications  of the  connected  resources.  The  main  goal  is to  develop  a
fairer methodology  trying  to  distribute  the distribution  network  use  costs  to all  players  which  are  using
the  network  in  each  period.  In  this  paper,  a model  considering  different  type  of  costs  (fixed,  losses,  and
congestion  costs)  is  proposed  comprising  the  use of  a large  set  of  DER,  namely  distributed  generation
(DG),  demand  response  (DR)  of  direct  load  control  type,  energy  storage  systems  (ESS),  and  electric  vehi-
cles with  capability  of discharging  energy  to  the network,  which  is known  as  vehicle-to-grid  (V2G).  The
proposed  model  includes  three  distinct  phases  of operation.  The  first  phase  of the  model  consists  in  an
economic  dispatch  based  on an  AC optimal  power  flow  (AC-OPF);  in the  second  phase  Kirschen’s  and
Bialek’s  tracing  algorithms  are  used  and  compared  to evaluate  the  impact  of  each  resource  in  the  net-
work. Finally,  the  MW-mile  method  is  used  in the  third  phase  of the  proposed  model.  A distribution
network  of  33  buses  with  large  penetration  of DER  is  used  to illustrate  the  application  of  the  proposed
model.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Background, methodology and aim

The design and development of cost allocation methods applied
to users of transmission systems is a topic widely studied, resulting
in several different methods for cost allocation. However, at the dis-
tribution system level, the cost allocation topic has been the target
of deep study because its technical and operation characteristics are
different from transmission systems requiring the development of
new methodologies.

Traditionally, the operation costs in distribution systems are
allocated to consumers connected in the network based on average

∗ Corresponding author at: AUTomation and Control Group, Department of Elec-
trical Engineering, Technical University of Denmark (DTU), Elektrovej, Building 326,
DK-2800 Kgs. Lyngby, Denmark. Tel.: +351 228340500; fax: +351 228321159.

E-mail address: hmm.hugo@gmail.com (H. Morais).

operation costs [1]. With the increasing penetration of distributed
energy resources (DER) in distribution systems, the traditional cost
allocation methods are no longer valid, due to different directions
of power flow in distribution systems caused by DER  [2]. Thus it is
necessary to develop new methodologies more adequated for the
new operation paradigm.

In fact, the actual power systems are no more characterized by
a central generation units connected to transmission systems and
a passive consumers most of them connected to medium and low
voltage distribution networks. This operation paradigm has grad-
ually changed to a more decentralized one. Nowadays, most of the
power systems are characterized by the high penetration of dis-
tributed generation connected in all voltage levels, the existence
of storage systems (pumped hydro power plants and few batteries
based systems), the growing introduction of electric vehicles and
the active participation of consumers through the demand response
programs and a more conscience concerning the efficiency use of
the energy. Taking this reality into account, the methods tradi-
tionally used to determine the costs allocation of the distribution

http://dx.doi.org/10.1016/j.epsr.2015.03.008
0378-7796/© 2015 Elsevier B.V. All rights reserved.
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Nomenclature

Parameters
�c grid-to-storage/vehicle efficiency
�d storage/vehicle-to-grid efficiency
B imaginary part in admittance matrix (S)
c resource cost in period t [m.u./kWh]
DF pay factor used to determine the fixed costs alloca-

tion for each type of resource
DN pay factor used to determine the network use costs

allocation for each type of resource
DL pay factor used to determine the system losses costs

allocation for each type of resource
E stored energy in the battery of storage system or

vehicle at the end of period t (kWh)
EInitial energy stored in the battery of storage system or

vehicle at the beginning of period 1 (kWh)
ETrip energy consumption in the battery during a trip that

occurs in period t (kWh)
F branch power flow (kW)
G real part in admittance matrix (S)
L branch Losses (kW)
LMP  locational marginal price (m.u/kWh)
N number of resources
S apparent power flow in branch (kVA)
T total number of periods
X payment factor
Ū voltage in polar form (V)
ȳ series admittance of line that connects two buses (S)
¯ysh shunt admittance of line that connects two  buses (S)

Superscript
Fixed fixed costs (m.u.)
Loss losses costs (m.u.)
NetUse network use costs (m.u.)

Indices
i,j node index
dg distribution generation index
sp external suppliers index
st energy storage system index
t time index in hours (h)
v2g vehicle-to-grid index

Variables
� voltage angle
C cost (m.u.)
P active power (kW)
Q reactive power (kVAr)
TC total allocation cost (m.u.)
V voltage magnitude (V)
Y binary variable

Subscript
  inefficiency costs
A fixed component of cost function (m.u./h)
B linear component of cost function (m.u./kWh)
Branch branch
C quadratic component of cost function (m.u./kWh2)
Ch storage or V2G charge process
Dch storage or V2G discharge process
DG distribution generation
DR A active power reduction of load
DR B active power curtailment of load

GCP generation curtailment power
Load loads
LTC loads total cost
Max upper bound limit
Min lower bound limit
NSD non-supplied demand
SP external supplier
V2G vehicle-to-grid

network, in which the consumers pay all the costs, are no more
adequate. A new methodology is proposed in this paper for the
costs allocation in distribution network, taking into account the
new operation paradigm with large penetration of several types
of DER. The main goal of the proposed method is to distribute
the costs fairer to all players connected to the distribution net-
works taking into account the effective use of the network in each
period (15, 30 or 60 min). As mentioned, the proposed methodol-
ogy considers several types of DER, namely distributed generation
(DG); direct load control demand response (DR); energy storage
systems (ESS); and electric vehicles with the capability to charge
and discharge energy, usually referred as vehicle-to-grid (V2G)
resources.

The methodology considers the combination of three different
cost allocation methods with the aim of take advantage of the
main qualities of each one, to develop a more fairly cost alloca-
tion model. The methodology comprises three levels. The first level
consists in the energy resources schedule optimization consider-
ing the merit order, in this case the operation cost. By considering
an AC OPF it is also possible to obtain the locational marginal
prices (LMP) in each bus, including the energy LMP, the losses
LMP, and the congestion LMP  (marginal method). The second level
intends to determine the share/impact that each energy resource
has on the network power flow (tracing method). Two differ-
ent approaches based on the proportional sharing principle are
tested and compared to determine the impact of each resource in
the network. The third level consists in the application of alloca-
tion costs method to each type of resource (variant of MW-mile
method).

1.2. Literature review and specific contributions

The cost allocation is a topic widely studied in transmission
networks [3–24]. However, the increasing penetration of DER at
distribution level forces the need to adapt traditional cost allo-
cation methods used in transmission system to the distribution
level. In general, the cost allocation methods for transmission
systems may  be classified into three distinct categories: nodal
marginal methods [3–7]; rolled-in methods [8–11]; embedded-
methods [12–24]. The cost allocation based on nodal marginal
pricing for transmission systems is presented in [3–5], in which
are considered the long-term and short-term marginal costs
related to energy, reliability, investments and demand side. Sim-
ilar approaches for distribution networks considering distributed
generation are proposed in [6,7]. These approaches have some lim-
itations. In [6] the tariff scheme only considers the consumers
disregarding the generation units. In [7] the fixed costs scheme
for demand and DG resources are considered but only for extreme
scenarios.

The rolled-in methods are characterized by their easy imple-
mentation ensuring return on the total system operation costs.
These methods allow getting a tariff based on the average cost
of the system. The postage stamp [8,9], contract path [10], and
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mean participation factors [11] are the most important rolled-in
methods.

The embedded methods based on power flow analysis are char-
acterized by the inclusion of network technical characteristics,
resulting in a proper cost allocation method to each entity involved
in the system. In this class, there are several cost allocation meth-
ods. The MW-mile [12] method is widely used in transmission
networks, in which considers the changes in MW transmission flow
and transmission line length in miles. Several other methods were
developed based on MW-mile method, such as the unused capac-
ity [13], the zero counter-flow [14], the dominant flow [15], and
the MVA-mile [16]. Based on the power flow, the equivalent bilat-
eral exchange method for cost allocation is proposed in [17]. In this
method, it is considered that a portion of each generator, being
the portion divided uniformly by all generators, supplies each load.
Thus, each generator provides a portion of each load uniformly
divided by all the loads of the system. The general agreement on
parallel paths method [18] consists in a set of rules to reward the
system operator considering the impact of each resource in the net-
work. This method is based on getting parallel paths of the power
flow when a single contract path between two parts is not good
enough. Thus, the method considers an initial set of criteria and
rules based on system reliability to perform parallel paths that are
used to remunerate the system. The rated system path [19] is a
method based on the study of the transmission capacity in the sys-
tem. The transmission capacity is obtained by conducting several
studies of the power flows, considering different situations of sys-
tem operation which results in the cost allocation of the system.
The Zbus method is based on circuit theory and it can determine
how an injection of power of a given resource uses the network.
Thus, it is possible to allocate the costs of network usage to the
energy resources [20]. Others embedded cost allocation methods
such as the generalized distribution factors [15], Bialek’s [21], and
Kirschen’s [22] tracing algorithms are based on the definition of dis-
tribution factors in order to know the share that each user has in the
network. An hybrid method called “Amp-mile” [23] combines the
use of power flow distribution factors in order to know the impact
that each user has on each network branch, with some characteris-
tics of the MW-mile. A complete distinct approach based on game
theory is proposed in [24], which allocates the cost of DG embed-
ded distribution network based on Nucleolus and Shapley value
approaches. For distribution systems a methodology considering
Bialek’s tracing algorithm to trace the power flow and a variant of
MW-mile to tariff each resource use on the network is proposed by
[25].

As it is possible to see by the large number of different tech-
niques proposed in literature, the network costs allocation is a
very important topic for power systems. However, most of the
techniques were developed to be used at the transmission level
considering a centralized generation approach and passive con-
sumer’s behavior. These traditional characteristics will change in
future power systems. Furthermore, most of the techniques use
different variants of MW-mile to tariff each resource without con-
sidering improvements on the efficiency of the method. The original
MW-mile model presents some inefficient results as identified in
[15]. The MW-mile inefficiency means that some costs are not allo-
cated to any player. To avoid this inefficiency it is necessary develop
some inefficiency compensation scheme improving the sustain-
ability of the model as well as properly and fairly allocate the
costs to all resources of the system. Moreover, future distribution
systems will include several types of different generation and con-
sumers resources, such as V2G resources. V2G resources increase
the complexity of the distribution system management. The abil-
ity to be a consumer or a generation resource should be taken into
account in order to properly allocate impact costs of this resource in
the system. The main objective of the present work is to propose a

model able to properly and fairly allocate the distribution network
operation costs to all players connected in this network. The main
contributions of this paper are:

(a) To propose a model to tariff distribution network use, consid-
ering large penetration of distributed energy resources, namely
distributed generation, demand response, energy storage sys-
tems, and vehicle-to-grid.

(b) To propose a model to cost allocation of storage base distributed
resources, such as ESS and V2G, considering the ability act as a
generator or as a consumer among time horizon.

(c) To design a complete model able to take advantage of three
different known cost allocation methods. Marginal method to
obtain economic signals for network use and losses costs, trac-
ing method to proportional determine the share for each type
of resource, and a variant of MW-mile method to allocate costs
to resources considering the marginal and tracing methods.

(d) To implement, evaluate and compare two different methods of
tracing power flow (Kirschen’s and Bialek’s tracing algorithms)
considering future distribution network characteristics.

(e) To integrate a new inefficiency penalty scheme to improve MW-
mile method and the full sustainability of the model avoiding
the existence of costs not allocated to any player.

1.3. Paper organization

The paper is structured as follows: Section 2 presents the
detailed tariff model definition considering all the assumptions and
features of the model; Section 3 illustrates the model operation in
a distribution network considering the large penetration of DER;
Section 4 exposes the most important conclusions.

2. Distribution network tariffs definition

The proposed methodology consists in three main steps rep-
resented in Fig. 1. The method starts by obtaining the locational
marginal prices (LMP) [26–28] through an economic dispatch algo-
rithm. Then is determined the network use by each energy resource
based on distribution coefficients models. The last stage deals with
the network allocation costs for each resource based on a vari-
ant of the MW-mile method. The combination of the advantages
of three different methods leads to a more efficient, properly and
fairly model to allocate distinct distribution network costs to all
type of distributed energy resources.

2.1. First step – energy resources scheduling and locational
marginal prices definition

To obtain locational marginal prices in each bus an economic
dispatch algorithm is used to schedule the DER units connected to
the distribution network, based on their operation cost and on the
contracts established with these DER. The objective function has
the main goal of minimizing operation costs of distribution system
operator taking into account several types of DER. The DER con-
sidered in the present methodology are the distributed generation
(DG), the active participation of consumers in direct load con-
trol demand response events (DR), electric vehicles with capacity
to charge and discharge energy (V2G), and energy storage sys-
tems (ESS). Additionally, part of the power demand is supplied by
external entities through the transmission network. These external
entities are called external suppliers in this method. The external
suppliers, represents the suppliers connected to upstream network
levels of the distribution network that supply energy to satisfy the
demand required in the distribution network. This energy can be
bought in different markets sessions or in bilateral contracts. In
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Fig. 1. Diagram of the proposed model.

a normal operation (without congestion situations and when the
consumption is higher than the generation), the price of energy
supplied by the external suppliers will impose the energy locational
marginal price. However, some DER units have “feed-in” contracts
imposing the delivery of all generated energy. In specific situations,
such as when internal resources with “feed-in” contracts produce
more energy than required, the energy LMP  will be imposed by
the price of these resources and not by the external suppliers. The
energy resources scheduling can be solved as an optimization prob-
lem considering the minimization of the operation costs (1).

Minimize f = min

T∑
t=1

⎡
⎣ NDG∑
dg=1

⎛
⎝ BDG(dg,t) × cA(dg,t) + PDG(dg,t) × cB(dg,t)+

P2
DG(dg,t) × cC(dg,t) + PGCP(dg,t) × cGCP(dg,t)

⎞
⎠+

NV2G∑
v2g=1

(
PDch(v2g,t) × cDch(v2g,t)

−PCh(v2g,t) × cCh(v2g,t)

)

+
NL∑
l=1

(
PDR A(l,t) × cDR A(l,t) + PDR B(l,t) × cDR B(l,t)

+PNSD(l,t) × cNSD(l,t)

)
+
NST∑
st=1

(
PDch(st,t) × cDch(st,t)

−PCh(st,t) × cCh(st,t)

)
+
NSP∑
sp=1

PSP(sp,t) × cSP(sp,t)

] (1)

The optimal energy resources scheduling includes several con-
straints related with the DER units and the distribution network
[29]. An AC-OPF [30] is included to determine the active and reac-
tive power that flows in each branch of the distribution system.
Active balance (2) is determined based on all resources available
in the system. Reactive balance (3) is determined considering only
the resources able to provide reactive power as distributed gen-
eration and external suppliers. The AC-OPF determines the bus
voltage magnitude (4) and voltage angles (5) taking into account
the branch thermal limits (6) and (7). Besides AC-OPF constraints it
is also considered technical constraints regarding the intrinsic char-
acteristics of each type of resource (8)–(26). For external suppliers
active (8) and reactive (9) limits of power delivery is considered.
Distribution generators comprise active generation limits (10) and
generation curtailment in active power (11), as well as reactive
power (12). Demand reduction (13) and curtailment (14) through
direct load control of demand response. Vehicle-to-grid resources
will be an important resource in future distribution systems, but it
increases the complexity of the problem (15)–(20). In this way, is
essential to optimize the amount of energy stored (15) at the end

of each period in each V2G. To determine the amount of energy,
it is usual to consider typical daily travel profile of each V2G as
well as efficiency of charge and discharge energy in the grid. The
energy stored on the battery of each V2G requires minimum (16)
and maximum (17) limits. Charge (18) and discharge (19) rates
present itself maximum limit. Charge and discharge energy for each
V2G cannot occur at same time, so non-simultaneity of charge and
discharge (20) is ensured. Technical constraints for energy storage
systems (20)–(26) follow the same principle of constraints regard-
ing V2G resources. The main difference between both resources is

that energy stored systems does not need reserve energy for travel,
since they are not vehicles.

2.2. Second step – tracing algorithms

Based on the resources scheduling results and on the obtained
LMPs, the second step of the proposed methodology aims to
determine the contribution of each resource in the use of each
network branch. In order to determine the resource contribution,
two different techniques were implemented and tested. The
first one is the Kirschen’s tracing method proposed in [22]. This
technique defines the assumptions of domains, commons and
links in order to determine the contribution of each resource in the
network power flow. The second technique, called Bialek’s tracing
method uses the topological distribution factors, which consider
the proportional sharing of a network node assumption to deter-
mine the contribution of each resource in the network power flow
[21]. Both techniques consider the proportional sharing principle.
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Furthermore, the Bialek’s tracing method uses two  distinct algo-
rithms (upstream and downstream-looking algorithms) in order
to determine the impact of each generation and consumption
resource in the network power flow.

Using these techniques to determine the impact that each
resource has in each network branch is essential for the proper
functioning of the proposed model. The model includes the use of
these techniques in all types of DER in order to account the impact
of such resources in a distribution system. DG, DR, ESS and V2G
resources are considered in this model. Additionally, the loads are
also considered as an active player in the cost allocation model.
This means that in the proposed method the loads can be seen as
an energy resource. Regarding the demand response programs, this
resource is seen as a generation resource in the scheduling process,
being considering the contracts costs. However, regarding the net-
work use, the DR represents a load reduction. By taking this aspect
into account, the DR is not included directly in the cost allocation
problem, yet it is deducted from the load consumption. In practice,
this means a negative cost due to the less load contribution in the
cost distribution. In fact, the use of DR will improve the global sys-
tem efficiency, at least during the DR use periods. The power flow
caused by the load entity considers the difference between the ini-
tial energy required by the consumer, minus the power curtailed
due to the participation on DR programs.

2.3. Kirschen’s tracing method

The Kirschen’s tracing method is a technique which aims
to determine the impact that the generation and consumption
resources have on the use of the distribution network. This tech-
nique is based on a set of definitions [22]:

• Domains – set of buses that are reached by power produced by
particular generator.

• Commons – set of contiguous buses supplied by the same set of
generators.

• Links – branches that connect with the commons.

This set of assumptions results in a simplification of the graph-
ical structure of the network. Thus, it is used the proportional
sharing principle to determine the share of each resource in each
common, link, loads, and in the power flow of each common. This
simplification may  lead to imperfect results, especially when the
network has a meshed structure and/or there is opposite power
flow in the direction of the main flow of the system. Distribution
networks are typically operated in radial mode and with unidi-
rectional power flow. However, with high penetration of DER, the
opposite power flows can occur in several periods throughout the
day.

The method can be applied to all kinds of resources. However,
there are two different algorithms (upstream and downstream-
looking algorithms) that are used to trace the power for
generation and consumption resources. The upstream-looking
algorithm determines the share of generation resources, while the
downstream-looking algorithm determines the impact of the con-
sumption resources in the system.

2.4. Bialek’s tracing algorithm

The Bialek’s approach consists in the use of topological dis-
tribution factors in order to determine the share of the energy
resources in the power system [21]. This method is based on
the proportional share principle of power that considers the
incoming flows and outflows in a node. This approach assumes
that all topological distribution factors are positive, so the model is
immune to counterflow problems in the branches that may  occur

in networks with high DER penetration. Similar to the Kirschen’s
method, this technique also uses two tracing flow algorithms,
upstream-looking algorithm to determine the share of generation
resources, and downstream-looking algorithm to determine the
share of consumption resources.

2.5. Third step – cost allocation

The cost allocation model corresponds to the last stage of the
proposed methodology that is based on the MW-mile approach
[12,15]. Indeed, this stage uses a variant of the MW-mile method
proposed in [15] in order to allocate the system costs. The pro-
posed MW-mile variant tends to be fairer to the resources than
the traditional MW-mile approach. The proposed variant of MW-
mile allocates the costs to the resource according to its impact
in each network branch, while the traditional method uses the
branch length or the total capacity of the branch. In addition,
the proposed variant of MW-mile takes into account the previous
stages of the model, where marginal and tracing methodologies are
applied. Thus, the proposed cost allocation model for each resource
comprises a combination of three different methods studied in lit-
erature.

This stage considers the allocation of three distinct kinds of costs
for each resource based on the share of each resource in the system.
The costs are divided into fixed, network use and losses costs. The
total cost comprises the sum of the fixed, network use, and losses
costs for each resource. The sum of each total cost results in the
global allocation costs associated with the system.

TC(dg) =
NB∑
i=1

NB∑
i=j

(
CFixed(i,j,dg) + CNetUse(i,j,dg) + CLoss(i,j,dg)

)

TC(l) =
NB∑
i=1

NB∑
i=j

(
CFixedLTC(i,j,l) + CNetUseLTC(i,j,l) + CLossLTC(i,j,l)

)

TC(v2g) =
NB∑
i=1

NB∑
i=j

(
CFixed(i,j,v2g) + CNetUse(i,j,v2g) + CLoss(i,j,v2g)

)

TC(st) =
NB∑
i=1

NB∑
i=j

(
CFixed(i,j,st) + CNetUse(i,j,st) + CLoss(i,j,st)

)

(27)

2.6. Fixed costs

The fixed costs are related to the network operation and main-
tenance costs, as well as to the network initial investment costs.
Contribution of DG in fixed costs of each branch is determined by
knowing the power flow in branch, the contribution for DG in power
flow of the branch, fixed cost of the branch and payment factor for
DG units. The pay factor DF(i,j,dg) is used to establish the contribu-
tion that each kind of resource has in fixed costs. The factor ranges
from 0 to 1 and it is imposed by the distributed network operator
based on strategic, political and environmental reasons. Similarly,
the fixed costs for loads are allocated based on the same principle.
The demand response programs will decrease the load consump-
tion. Consequently, the payment fees applied to the loads will be
reduced. This means an indirect incentive to increase consumers
participation on these programs.

CFixed(i,j,dg) =
DF(i,j,dg) × CFixed

Branch(i,j)

F(i,j)
× XDG (28)

Regarding the ESS and V2G resources, the principle to deter-
mine the fixed costs is similar to the DG resources. However, it is
necessary to consider the charge and discharge capability of these
resources. Therefore, the costs for charge and discharge must be
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considered, based on the participation that charge and discharge
ability has on network power flow.

CFixed(i,j,v2g) =
(
DFCh(i,j,v2g) × CFixed

Branch(i,j)

F(i,j)
+
DFDch(i,j,v2g) × CFixed

Branch(i,j)

F(i,j)

)

× XV2G (29)

The distribution of the payment factor for different kind of
resources can lead to inefficiency in the total cost allocation of
the system. The difference between the fixed costs of the branch
and the sum of all costs determined for each resource will give the
economic inefficiency of the model for that branch.

CFixed (i,j) = CFixedBranch(i,j)

−

⎡
⎣ NDG∑
dg=1

CFixed(i,j,dg) +
NL∑
l=1

CFixed(i,j,l) +
NST∑
st=1

CFixed(i,j,st) +
NV2G∑
v2g=1

CFixed(i,j,v2g)

⎤
⎦ (30)

This implies that the system operator cannot be fully refunded
for the use of the system by the energy resources. In order to
address the inefficiency in the distribution of the payment factors,
it is assumed that the costs associated with the inefficiency will be
supported by the loads entities. This means, an extra incentive to
increase the consumption efficiency.

CFixedLTC(i,j,l) = DF(i,j,l)∑NL
l=1DF(i,j,l)

× CFixed (i,j) + CFixed(i,j,l) (31)

2.7. Network use costs

The network use costs are associated, as the name suggests,
with the use of network related to the power flow in each branch
of the network, i.e., the costs are determined taking into account
the impact of the power flow in each network branch. This cost is
distributed among all resources (DG, ESS, V2G and loads) consid-
ering the impact of each one in the network. The network use cost
by branch for distribution generation is determined based on DG
payment factor with power flow on branch and total the cost of
network use of the branch, while it is considered the distribution
factor for DG DN(i,j,dg). DN factor is similar to the DF factor used to
determine the fixed cost. The same value can be used for both.

CNetUse(i,j,dg) =
DN(i,j,dg) × CNetUse

Branch(i,j)

F(i,j)
× XDG (32)

As for the fixed costs, for electric vehicles and storage systems,
it is important to consider both the charge and discharge processes.
Thus, it is considered charge and discharge distribution factors to
determine the contribution of the electric vehicles in the network
use costs. The same principle is applied for storage systems.

CNetUse(i,j,v2g) =
[
DNCh(i,j,v2g) × CNetUse

Branch(i,j)

F(i,j)
×
DNDch(i,j,v2g) × CNetUse

Branch(i,j)

Fl(i, j)

]

× XV2G (33)

The cost CNetUse
Branch(i,j) can be obtained considering the difference

between the LMPs in the bus connected by the branch. In usual
operation, the difference between LMP  of each bus will reflect the
LMP  regarding the losses. However, in critical operation conditions
with situations of congestion, the LMP’s difference will also reflect
the congestion LMP. In order to penalize the use of network near

by the boundaries, CNetUse
Branch(i,j) can be determined as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CNetUse
Branch(i,j) = |LMP(j) − LMP(i)|; if

F(i,j)

FMax(i,j)
(%) ≤ 85%

CNetUse
Branch(i,j) = 5 × |LMP(j) − LMP(i)|; if 85% <

F(i,j)

FMax(i,j)
(%) ≤ 98%

CNetUse
Branch(i,j) = 10 × |LMP(j) − LMP(i)|; if

F(i,j)

FMax(i,j)
(%) > 98%

(34)

The main idea it is to penalize the use of the network near the
boundaries. If the use of the network was higher than 85% of its
capacity aSMax(i,j), the cost will be five times higher, if the use of the
network was higher than 98%, the network use cost increases ten
times. Thus, the resources are actively encouraged to contribute to
system’s efficiency.

As fixed costs, the method can lead to inefficiencies due to the
mathematical rationality between distribution factor and payment
factor. Thus, the costs of system inefficiency related to power flow
costs can be determined as

CNetUse (i,j) = CNetUseBranch(i,j)

−

⎡
⎣ NDG∑
dg=1

CNetUse(i,j,dg) +
NL∑
l=1

CNetUse(i,j,l) +
NST∑
st=1

CNetUse(i,j,st) +
NV2G∑
v2g=1

CNetUse(i,j,v2g)

⎤
⎦ (35)

where the difference of the branch cost for network use and all the
costs for network use by each type of resource results in inefficiency
cost to be charged in order to maintain economic balance of system
operator.

Moreover, the costs of system inefficiency related to the net-
work use costs are allocated to the loads. Thus, total power flow
costs for loads are determined taking into account the addition of
inefficiency costs to the already cost for the use of the network.

CPFLTC(i,j,l) = DF(i,j,l)∑NL
l=1DF(i,j,l)

×
(
CNetUse (i,j)

)
+
(
CNetUse(i,j,l)

)
(36)

2.8. Losses costs

The system losses cost is allocated to each resource according to
the impact that each one has on losses. The proposed methodology
determines the share that each resource has in the branch losses
by rating it according to the losses cost CLoss

Branch(i,j) of each branch.
The system losses cost in a branch is determined by multiplying
the power losses in that line, obtained at step 1, by the higher LMP
value in the buses connected to the branch. The contribution of
distribution generators to the system losses is determined as

CLoss(i,j,dg) =
DL(i,j,dg) × CLoss

Branch(i,j)

L(i,j)
× XDG (37)

where DL(i,j,dg) is the distribution factor of distribution generation
considering losses flow in branch i,j, i.e., the contribution of DG unit
to the losses in branch i,j. For loads impact determination, similar
assumptions are made. For electric vehicles and storage systems
determination of losses costs are determined as

CLoss(i,j,v2g) =
[
DLCh(i,j,v2g) × CLoss

Branch(i,j)

L(i,j)
×
DLDch(i,j,v2g) × CLoss

Branch(i,j)

L(i,j)

]

× XV2G (38)

where charge and discharge distribution factor for losses in each
branch it is considered.
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Fig. 2. Network configuration adapted from [31].

The losses costs related to the system inefficiency are given

CLoss (i,j) = CLossBranch(i,j)

−

⎡
⎣ NDG∑
dg=1

CLoss(i,j,dg) +
NL∑
l=1

CLoss(i,j,l) +
NST∑
st=1

CLoss(i,j,st) +
NV2G∑
v2g=1

CLoss(i,j,v2g)

⎤
⎦ (39)

The inefficiency costs of the system are allocated to the load
entity. In this way, the determination of the total losses cost for
each load entity in the system is determined as

CLossLTC(i,j,l) = DF(i,j,l)∑NL
l=1DF(i,j,l)

× CLoss (i,j) + CLoss(i,j,l) (40)

where total costs for load entities consider not only the impact
of loads in system losses, but also inefficiency costs related to the
system losses.

3. Case study

A case study considering the simulation of the proposed model
based on a distribution system with large penetration of DER is
described. The case study is divided into two sections – the case
study characterization and the results analysis.

3.1. Case characterization

The case study is conducted based on a distribution network
with 33 buses [31], taking into account a scenario of high pene-
tration of distributed energy resources [32], as shown in Fig. 2. The
tested network includes 66 DG units with different generation tech-
nologies, namely 32 photovoltaic systems, 15 combined heat and
power (CHP), 8 fuel cell systems, 5 wind turbines, 3 biomass plants,
2 small hydro, and 1 waste-to-energy (WTE) units. The network is
connected to the transmission system through the bus 0. There are

32 consumption points throughout the network representing the
medium/low voltage (MV/LV) power transformers. The consumers
are aggregated at these consumption points. Similarly, demand
response programs can be scheduled by consumption point and not
directly by each consumer. Two types of loads are considered for DR
participation, namely the continuous regulation loads, with capa-
bility of reducing the consumption, and the discrete loads (ON/OFF)
that are used for load curtailment. The network contains 10 ESS and
50 V2G resources able to charge and discharge energy. The num-
ber of electric vehicles is relatively small, yet enough to evaluate
the impact of this type of resource in the cost allocation methodol-
ogy. The total generation capacity and the resources operation costs
are presented in Table 1. In this table the ESS and V2G total storage
capacity are also represented. The costs are applied in the discharge
process and only consider the degradation costs of the batteries. The
values are obtained considering the studies presented in [33,34].

The system operation costs should be allocated to each kind of
resource. Currently, most of the system operators allocate all the
costs related to the network tariffs to consumers. However, some
system operators (such as the Statnett SF in Norway or the Nation-
alGrid in the UK) allocate more than thirty percent of the costs
to generators and less than seventy percent to consumers [35]. In
the proposed approach, the costs are allocated by generation and
consumption equally. However, inefficiency penalties are allocated
only to the consumers (40). Additionally, in some periods, besides
the generation and the consumption resources, the scheduling of
storage and electric vehicles charge and/or discharge can occur. To
take care of these different operation scenarios, a variable costs
share is used. Table 2 shows the share in four possible operation
scenarios.

Regarding fixed costs CFixed
Branch(i,j), there is no information on

investment, operation, and maintenance costs for the considered
network. In this way, and based on the Portuguese energy author-
ity (ERSE) [36] a percentage value of the system operation cost is
considered. In the present case study, the average daily operation
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Table  1
Resources characteristics.

Resources Installed/contracted capacity (kW) Resources operation cost (m.u./kWh)

Minimum Maximum Total capacity Minimum Mean Maximum

Photovoltaic 3 30 558 0.08000 0.13940 0.25400
Wind  20 150 525 0.05000 0.06520 0.08000
CHP  1 600 1200 0.00106 0.01790 0.06500
Biomass 100 150 350 0.06000 0.26530 0.65000
WTE  10 10 10 0.03000 0.04840 0.05600
Small  hydro 30 40 70 0.03200 0.04320 0.04900
Fuel  cell 10 50 235 0.09500 0.10210 0.11000
External supplier – – 15,000 0.01500 0.06050 0.21000
Reduce 7.15 250.19 834.83 0.10000 0.27270 0.80000
Cut  7.15 147.50 633.89 0.09000 0.49920 1.20000
ESS capacity (MWh) –  – 1200 0.04500 0.05250 0.07000
V2G  capacity (MWh)  – – 7828 0.04500 0.05250 0.07000
Load  86.63 833.95 7245.20 – – –

Table 2
Payment factor distribution.

Payment factor (%) DG and external suppliers Load Storage V2G

1 50.0 50.0 0.0 0.0
2  35.0 35.0 30.0 0.0
3  35.0 35.0 0.0 30.0
4  35.0 35.0 15.0 15.0

cost is of 16,000 monetary units (m.u.), and fifteen percent is con-
sidered corresponding a daily fixed costs of 2400 m.u., and 100 m.u
in each hour. These values can vary for different networks, and they
can be higher in future smart grids due to the high investment in
new control and protection equipment. However, the definition of
these values is out of the scope of the present paper.

3.2. Results

The case study performs several results for each step of the
model application. For first step it is performed an energy resource
management of the distribution network with all resources
included. The impact and contribution that each type of resource
has on network power flow is shown in second step. Third step
depicts all the costs allocated to each resource of the network, as
well as the system remuneration for network use.

3.2.1. Energy resources schedule results (first step)
The first step of the application model consists on energy

resource management of the distribution network to perform
scheduling for each resource and determine nodal prices in each
node of the network. The energy schedule and nodal prices are the
basis for the application tool. Thus, Fig. 3 presents the day-ahead
scheduling, regarding the first step of the proposed methodol-
ogy for 24 periods during the day. One can see in this figure the
high impact of the DG throughout the day, ensuring around 35%
of the energy requirements. The external suppliers are responsi-
ble for supplying around 61%, and the other resources ensure the
remaining 4%. In fact, the ESS and V2G discharge, and mainly the
DR programs only are used in very specific situations due to the
higher use costs. In the present simulation scenario, a specific con-
straint in the external supplier’s energy availability is imposed in
periods 20–22 to force the use of these resources. This constraint
allows the simulation of the proposed methodology considering
different schedule scenarios, namely with high storage and V2G
charge, with high storage and V2G discharge, with DR and consid-
ering only the loads and generators. Period 21 is the one with higher
DER contribution.

The second output of the first step of the proposed methodol-
ogy comprises the LMPs values in each bus. In fact, the LMPs are
also different in each scheduling period resulting from different
consumption/generation conditions. Due to the big diversity of the
resources used, period 21 was  selected for a more detailed evalua-
tion. In Fig. 4 it is possible to see the LMP  in each bus, as well as the
obtained resources scheduled in each bus. Bus 0 is not considered
in Fig. 4 as it is the upstream connection bus, in which the external
suppliers are allocated. The external suppliers are the main sup-
pliers of the network, and contribute with about 2229 kW,  and a
LMP  of 0.21 m.u./kWh. By analysing the LMPs values it is possible
to verify some steps in the LMPs curve resulting from the network
topology. The difference in the LMPs results from losses in a more
detailed evaluation it is also possible to see that the high genera-
tion in bus 26 provided by a CHP unit results in counterflow in the
branch between buses 26 and 25. This phenomenon is reflected in
the slope inversion of the LMP  curve in bus 26.

3.2.2. Tracing algorithms results (second step)
The second step of application model relates to the evaluation

of the impact of each type of recourse in the distribution network
based on two different techniques for determination of network
usage. The impact that each type of resource has on a given net-
work branch for Kirschen’s and Bialek’s approaches are presented
in Fig. 5, which corresponds to the second stage of the method-
ology. Fig. 5 depicts the impact of each type of resource in each
network branch. The range of the gradient color is given between
the white (without impact in the branch) and black (high impact
in the branch). The maximum value is of 50% due to the adopted
share values presented in Table 2. Additionally, Fig. 5 is split in
four areas according the network topology, so it is easier to under-
stand and evaluate. Through Fig. 5 one can identify that the load
has a high network usage, which is expected due to the fact that
in each node of the distribution system there are consumption
resources. The Bialek’s approach results in a larger impact of the
load use in the network instead of the generation. On the other
hand, the Kirschen’s approach shows a larger distribution of the
network usage by all the energy resources. It is also noteworthy
that storage units and V2G resources have a greater impact on sev-
eral branches of the network. This results are due to the Kirschen’s
approach be more simplified and less precise comparing to Bialek’s
approach. Thus, Kirschen’s approach results in a wider distribution
of the network usage, when the network tends to be meshed or if
there are counterflows in the network. This aspect is more relevant
in the branches between the buses 25–32.

In order to obtain a more detailed view of the proposed
methodology, the resources impact in branch 11-12 are presented.
This branch was selected based on the good participation of the
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Fig. 3. Energy resources schedule in the distribution system.

different types of DER and because this branch has lower trans-
mission capacity when compared to the remaining branches of
the distribution system. Fig. 6 illustrates the share of different DER
units in the power flow of branch 11-12. Moreover, it is possible
to see the total costs (fixed, network use and system losses costs)
that each resource has on the branch.

For the Bialek’s approach, the contribution of the DG and of the
external supplier in the power flow of branch 11-12 is of about
55.4%, while the storage units and V2G have an impact of about
11.3% and 21.4%, respectively. The remaining part (11.9%) corre-
sponds to the impact of loads in the branch. On the other hand, the
DER participation by the Kirschen’s approach is significantly dif-
ferent. Thus, the DG contribution in the branch 11-12 is of about
38%, while the storage and V2G resources reaches 14.5% and 26%,
respectively. The demand influence in the branch reaches to 21.5%.
The DG with greater contribution in this branch corresponds to two
biomass generation units that are connected closer to branch 11-
12. The resource labeled as “Other DGs” corresponds to the impact
of other DG units in this same branch. This portion is obtained based
on the sum of all DG units with less impact in the branch. It is also
possible to verify that the allocation costs follow the trend of the
impact that each resource has in the network.

In general, the Bialek’s approach indicates a greater share of
the DER in the branch power flow than the Kirschen’s approach.
Regarding the V2G resources, the Kirschen’s approach tends to

spread the impact on the power flow through several units of V2G
resources. This results in a uniform distribution of V2G by this
approach.

3.2.3. Cost allocation results (third step)
The third step of application model is related to costs to be

allocated to each resource ensuring the system economic sustain-
ability. Each resource is charged for fixed, network use and losses
costs. The results regarding the fixed, network use and systems
losses costs are presented in Table 3. The results combine all the
three different philosophies of allocation costs: (i) the marginal
philosophy applied to define the network use and loss cost in each
branch, (ii) tracing algorithms used to determine the share of each
resource in the network use, and (iii) the MW-mile used to allo-
cate the costs for each resource taking into account the previous
methods. Thus, the results comprising the combination of the three
different philosophies are presented. Furthermore, a comparison of
the costs considering the Bialek’s and Kirschen’s tracing approaches
is provided for a better understanding of the proposed model. The
results are divided by each type of distributed energy resource,
considering the loads and external suppliers. In a generalized
way, the Kirschen’s approach assigns greater costs to generation
resources, when compared with the Bialek’s approach. On the other
hand, the opposite is verified for the consumption resources. Thus,
the consumption resources have a major impact on the Bialek’s

Fig. 4. Distributed energy resources dispatch and LMP  by bus in period 21.
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Fig. 5. Total DER impact in each branch in hour 21 considering Kirschen’s and Bialek’s approaches.

Fig. 6. Contribution of generation resources for branch 11-12 use in period 21.

methodology than in Kirschen’s. On average, the Bialek’s approach
allocates 70.1% of the system costs to the consumption resources,
while the Kirschen’s approach reaches 54.3%. These differences
result from the intrinsic characteristics and considerations of each
approach, which are compounded with the penalty cost of the sys-
tem’s inefficiency for the consumption resources. This means that
the Bialek’s approach is more accurate to determine the impact of
each resource in the network, yet it leads to an efficiency penaliza-
tion factor in the cost allocation.

In both approaches, consumers and external supplier are the
main users of the network, so they have the largest share of the
total costs – 70.1% and 12.2% for Bialek’s, and 54.3% and 14.5%
for Kirschen’s, respectively. The V2G resources take 2.78% and
7.76% of the total costs for Bialek’s and Kirschen’s approaches. This

indicates a considerable share of these resources in the network
costs, especially in Kirschen’s approach.

Fig. 7 illustrates the total allocation costs for each kind of
resource in each network branch considering the Bialek’s and
Kirschen’s approaches for hour 21. The external supplier is one of
the bigger providers of the network. This influence is more impor-
tance in branches closer to the upstream interconnection bus. On
the other hand, the DER has major influence in the more distant
branches.

Fig. 7(a) depicts the costs allocated to the energy resources for
each branch of the distribution system, considering the Kirschen’s
tracing method. On average, the contribution of V2G resources in
the branches of the distribution system is of about 17%. The high-
est concentration of costs for V2G occurs in branch 26-27, while
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Table 3
Distribution costs allocated to DER and load.

Resources Bialek’s
approach

Kirschen’s
approach

Fixed cost
(m.u./h)

Power flow
cost (m.u./h)

Loss cost
(m.u./h)

Total costs
(m.u./h)

Fixed cost
(m.u./h)

Power flow
cost (m.u./h)

Loss cost
(m.u./h)

Total costs
(m.u./h)

Photovoltaic 0.3236 0.0002 0.0197 0.3435 0.4844 0.0003 0.0281 0.5128
Wind  1.6908 0.0008 0.1176 1.8092 2.6839 0.0014 0.1866 2.8719
CHP  6.8843 0.0055 0.3546 7.2445 9.5124 0.0072 0.5095 10.0291
Biomass 3.0130 0.0016 0.2099 3.2246 4.5083 0.0023 0.3143 4.8249
WTE  0.1020 0.0001 0.0071 0.1091 0.1364 0.0001 0.0095 0.1460
Small  hydro 0.3584 0.0003 0.0244 0.3831 0.5761 0.0004 0.0391 0.6156
Fuel  cell 1.4779 0.0008 0.0727 1.5514 2.5776 0.0011 0.1075 2.6862
External supplier 12.2229 0.0168 0.8363 13.0760 14.5209 0.0182 0.9941 15.5332
Storage discharge 1.0258 0.0005 0.0608 1.0871 2.8940 0.0013 0.1685 3.0639
Storage charge 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
V2G  discharge 2.7801 0.0015 0.1720 2.9536 7.7563 0.0049 0.4646 8.2258
V2G  charge 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Load  70.1213 0.3826 5.0270 75.5308 54.3497 0.3736 4.0801 58.8034

Total  100.0000 0.4107 6.9021 107.3129 100.0000 0.4108 6.9019 107.3128

Fig. 7. Total costs in each branch by resource considering Kirschen’s and Bialek’s approaches in period 21.

for storage units it occurs in branch 31-32, and branch 27-28 for
DG resources. Regarding the Bialek’s approach, Fig. 7(b), on aver-
age, DG, storage and V2G have 46.1%, 3.4% and 9.3% of the total
costs in the network related to generation resources, and the peak
contribution is in branch 26-27, 31-32 and 20-21, respectively.

The results presented by Kirschen’s and Bialek’s approaches
have some similarities. By comparing Fig. 7(a) and (b), it is
possible to verify that the costs allocated to external suppliers
in the branches closer to the upstream connection are similar.
Furthermore, it seems that the DER allocation costs are higher
in Fig. 7(a), which results from a lower cost allocation to the
loads.

4. Conclusions and discussion

The main motivation behind this work is to argue for the
proposal of adaption and or develop new methodologies to cost
allocate and critically analyze DER in future distribution systems.
In this work is proposed a methodology able to consider all types of
DER in the scope of the distribution networks. The model is a hybrid
methodology that uses an economic dispatch problem, Kirschen’s
and Bialek’s tracing approaches and a variant of the MW-mile
method to allocate costs to all energy resources connected to the
distribution network. The model is able to determine the contribu-
tion that each resource has in each branch of the network through
Kirschen’s and Bialek’s tracing methods, as well as to allocate dif-
ferent types of costs according to the LMP  of each bus and based on
a variant of the MW-mile method. In this way, the model provides
a comparison between Kirschen’s and Bialek’s approaches in order
to highlight the importance and impact of different approaches to

the problem of tariffs allocation definition in distribution systems.
In addition, it is noteworthy that Bialek’s technique is more accu-
rate in determining distribution factors than Kirschen’s technique.
Although both approaches are based on proportional sharing
concept, Kirschen’s technique use a simplified way to determine
distribution factors, which is not so efficient as Bialek’s technique
for meshed networks and or with network counterflows.

Afterwards, the model proposes the use of three different types
of costs, namely the fixed, network use and losses costs, to tariff
resources and ensure network sustainability. Moreover, the model
considers different tariffs approaches for each type of resource
(namely, DG, DR, ESS, V2G and loads resources) taking into account
their intrinsic characteristics. The two applied tracing techniques
(Kirschen’s and Bialek’s) have different considerations for alloca-
tion costs. The contribution of each energy resource is different,
resulting in different allocation costs. However, the introduction,
conception and design of inefficiency penalty strategy cover the
limitations of both methodologies. In this way, the overall results
cover the total cost of the system operator for the network usage.
Inefficiency strategy schemes for improvement of DER participa-
tion and incentive in the energy scheduled may lead to a new
challenge in the way  that allocation costs are spread through all
types of resources. In addition, the model has the ability to adapt to
different network conditions. Different network configuration and
resources management leads to different results, since the model
considers the integration of power flow and locational marginal
costs allowing the evaluation of the network’s use and to deter-
mine the allocation costs. Indeed, the proposed methodology only
considers the resources that are scheduled in the first step and
then fairly allocate the costs according to the network use by each
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resource. Thus, the methodology adapts itself to the network con-
ditions in each period to fairly allocate the costs.

The use of the proposed methodology allows reaching a number
of practical conclusions. The most important ones relate to (i) the
adaption of tracing algorithms (usually used on transmission sys-
tems) to distribution systems with future characteristics, (ii) the
noteworthy improvement of use a variant of MW-mile to cost allo-
cate different types of resources, (iii) the impact of different types
of costs in distribution system operator revenue, (iv) increasing the
efficiency of the model based on a penalty scheme ensuring system
operator sustainability, (v) fairer distribution of allocation costs for
all types of resources, including emerging resources, and (vi) easy
adaption of the model to different network conditions.

The results support our expectations such that the model is quite
diverse and able to cover several allocation costs methodologies to
different types of resources. Moreover, the model effectively solves
the cost allocation problem and it is illustrated by the case study
considering different DER scheduling contexts.

These several conclusions are of particular relevance for several
entities in electrical power systems, such as distribution operators
to fair allocate all costs related to network usage, and to resources
and retailers entities to simulate and evaluate its costs in network
usage.

Future developments will focus on the possibility of use optimal
power flow methods to deal with the unbalance on distribution net-
works. Finally, it will be of particular interest to analyze real-large
networks with high penetration of distributed energy resources.
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Appendix A.

Ni
DG∑

dg=1

(PiDG(dg,t) − PiGCP(dg,t)) +
Ni
SP∑

sp=1

PiSP(sp,t)

+
Ni
V2G∑

v2g=1

(PiDch(v2g,t) − PiCh(v2g,t)) +
Ni
ST∑

st=1

(PiDch(st,t) − PiCh(st,t))

−
Ni
L∑

l=1

(PiLoad(l,t) − PiNSD(l,t) − PiDR A(l,t) − PiDR B(l,t))

= Gii × V2
i(t) + Vi(t) ×

∑
j∈Li
Vj(t) × (Gijcos �ij(t) + Bijsin �ij(t)) (2)

Ni
DG∑

dg=1

QiDG(dg,t) +
Ni
SP∑

sp=1

QiSP(sp,t) −
Ni
L∑

l=1

(QiLoad(l,t) − QiNSD(l,t))

= Vi(t) ×
∑
j∈Li
Vj(t) × (Gij sin �ij(t) − Bij cos �ij(t)) − Bii × V2

i(t)

∀t ∈ {1, . . .,  T}; ∀i ∈ {1, . . .,  NB}; �ij(t) = �i(t) − �j(t) (3)

ViMin ≤ Vi(t) ≤ ViMax (4)

�iMin ≤ �i(t) ≤ �iMax (5)∣∣ ¯Ui(t) × [ȳij × ( ¯Ui(t) − ¯Uj(t)) + ¯ysh i × ¯Ui(t)]
∗∣∣ ≤ SMaxBranch(i,j) (6)

∣∣ ¯Uj(t) ×
[
ȳij ×

(
¯Uj(t) − ¯Ui(t)

)
+ ¯ysh j × ¯Uj(t)

]∗∣∣ ≤ SMaxBranch(i,j)

∀t ∈ {1, . . .,  T}; ∀i, j ∈ {1, . . .,  NB}; i /= j; ∀k ∈ {1, . . .,  NK } (7)

0 ≤ PSP(sp,t) ≤ PMax(sp,t) (8)

0 ≤ QSP(sp,t) ≤ QMax(sp,t) (9)

PMin(dg,t) × YDG(dg,t) ≤ PDG(dg,t) ≤ PMax(dg,t) × YDG(dg,t) (10)

PDG(dg,t) + PGCP(dg,t) ≤ PMax(dg,t) × YDG(dg,t) (11)

QMin(dg,t) × YDG(dg,t) ≤ QDG(dg,t) ≤ QMax(dg,t) × YDG(dg,t)

∀t ∈ {1, . . .,  T}; ∀dg ∈ {1, . . .,  Ndg} (12)

PDR A(l,t) ≤ PDR A;Max(l,t) (13)

PDR B(l,t) = PDR B;Max(l,t) × YDR B(l,t) (14)

EStored(v2g,t) = EStored(v2g,t−1) − ETrip(v2g,t) + �c(v2g) × PCh(v2g,t)

− 1
�d(v2g)

× PDch(v2g,t) ∀t ∈ {1, . . .,  T}; ∀v2g ∈ {1, . . ., NV2G};

�t = 1; t = 1 → EStored(v2g,t−1) = EInitial(v2g) (15)

EStored(v2g,t) ≥ EBatMin(v2g,t) (16)

EStored(v2g,t) ≤ EBatMax(v2g,t) (17)

PCh(v2g,t) ≤ PMax(v2g,t) × YCh(v2g,t) (18)

PDch(v2g,t) ≤ PMax(v2g,t) × YDch(v2g,t) (19)

YCh(v2g,t) + YDch(v2g,t) ≤ 1; YCh(v2g,t) and YDch(v2g,t) ∈ {0, 1} (20)

EStored(st,t) = EStored(st,t−1) + �c(st) × PCh(st,t) − 1
�d(st)

× PDch(st,t)

∀t ∈ {1, . . .,  T}; ∀st ∈ {1, . . .,  NST }; �

t = 1; t = 1 → EStored(st,t−1) = EInitial(st) (21)

EStored(st,t) ≥ EBatMin(st,t) (22)

EStored(st,t) ≤ EBatMax(st,t) (23)

PCh(st,t) ≤ PMax(st,t) × YCh(st,t) (24)

PDch(st,t) ≤ PMax(st,t) × YDch(st,t) (25)

YCh(st,t) + YDch(st,t) ≤ 1; YCh(st,t) and YDch(st,t) ∈ {0, 1} (26)

References

[1] P.M. De Oliveira-De Jesus, M.T. Ponce de Leão, J.M. Yusta-Loyo, H.M. Khodr,
Cost allocation in distribution networks with high penetration of distributed
renewable generation – a comparative study, in: International Conference on
Renewable Energies and Power Quality, March, Zaragoza, Spain, 2005.

[2] A.A. Abou El Ela, R.A. El-Sehiemy, Transmission usage cost allocation schemes,
Electr. Power Syst. Res. 79 (6) (2009) 926–936.

[3] A. Bakirtzis, P. Biskas, A. Maissis, A. Coronides, J. Kabouris, M.  Efstathiou,
Comparison of two methods for long-run marginal cost-based transmission
use-of-system pricing, IEEE Proc. Gener. Transm. Distrib. 148 (2001) 477–481.

http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0185
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0190
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195
http://refhub.elsevier.com/S0378-7796(15)00068-1/sbref0195


132 T. Soares et al. / Electric Power Systems Research 124 (2015) 120–132

[4] R.E. Rotoras, T. Lefevre, R.B. Pacudan, Marginal transmission pricing and sup-
plemental cost allocation method: a case of Philippines, Electr. Power Syst. Res.
63 (2002).

[5] M.  Murali, M.S. Kumari, M.  Sydulu, A comparison of fixed cost based transmis-
sion pricing methods, Electr. Electron. Eng. 1 (2011) 33–41.

[6] P.M.D.O.D. Jesus, M.T.P. de Leao, J.M. Yusta, H.M. Khodr, A.J. Urdaneta, Uniform
marginal pricing for the remuneration of distribution networks, IEEE Trans.
Power Syst. 20 (2005) 1302–1310.

[7] J. Mutale, G. Strbac, D. Pudjianto, Methodology for cost reflective pricing of
distribution networks with distributed generation, in: IEEE Power Engineering
Society General Meeting, 2007, 2007, pp. 1–5.

[8] D. Shirmohammadi, X.V. Filho, B. Gorenstin, M.V.P. Pereira, Some fundamental,
technical concepts about cost based transmission pricing, IEEE Trans. Power
Syst. 11 (1996) 1002–1008.

[9] P. Van Roy, T. Van Craenenbroeck, R. Belmans, D. Van Dommelen, G. Peper-
mans, S. Proost, Comparison of transmission tariff methods in a free market for
electricity, in: International Conference on Electric Power Engineering, 1999.
PowerTech Budapest 99, 1999, p. 159.

[10] H.H. Happ, Cost of wheeling methodologies, IEEE Trans. Power Syst. 9 (1994)
147–156.

[11] F.J. Rubio-Oderiz, I.J. Perez-Arriaga, Marginal pricing of transmission services:
a  comparative analysis of network cost allocation methods, IEEE Trans. Power
Syst. 15 (2000) 448–454.

[12] D. Shirmohammadi, P.R. Gribik, E.T.K. Law, J.H. Malinowski, R.E. O’Donnell, Eval-
uation of transmission network capacity use for wheeling transactions, IEEE
Trans. Power Syst. 4 (1989) 1405–1413.

[13] R.R. Kovacs, A.L. Leverett, A load flow based method for calculating embedded,
incremental and marginal cost of transmission capacity, IEEE Trans. Power Syst.
9  (1994) 272–278.

[14] J.W.M. Lima, Allocation of transmission fixed charges: an overview, IEEE Trans.
Power Syst. 11 (1996) 1409–1418.

[15] M.  Shahidehpour, H. Yamin, Z. Li, Market overview in electric power systems,
in:  Market Operations in Electric Power Systems, Wiley-IEEE Press, 2002, pp.
1–20.

[16] P. Jiuping, Y. Teklu, S. Rahman, J. Koda, Review of usage-based transmission
cost allocation methods under open access, IEEE Trans. Power Syst. 15 (2000)
1218–1224.

[17] F.D. Galiana, A.J. Conejo, H.A. Gil, Transmission network cost allocation based on
equivalent bilateral exchanges, IEEE Trans. Power Syst. 18 (2003) 1425–1431.

[18] S.M. Harvey, W.W.  Hogan, S.L. Pope, Transmission Capacity Reservations and
Transmission Congeestion Contracts, FERC – Federal Energy Regulatory Comis-
sion, 1997.

[19] FERC – Federal Energy Regulatory Commission, Rated System Path Methodol-
ogy, 2007.

[20] A.J. Conejo, J. Contreras, D.A. Lima, A. Padilha-Feltrin, Z bus – transmission
network cost allocation, IEEE Trans. Power Syst. 22 (2007) 342–349.

[21] J. Bialek, Topological generation and load distribution factors for supplement
charge allocation in transmission open access, IEEE Trans. Power Syst. 12 (1997)
1185–1193.

[22] D. Kirschen, R. Allan, G. Strbac, Contributions of individual generators to loads
and flows, IEEE Trans. Power Syst. 12 (1997) 52–60.

[23] P.M. Sotkiewicz, J.M. Vignolo, Allocation of fixed costs in distribution networks
with distributed generation, IEEE Trans. Power Syst. 21 (2006) 639–652.

[24] R. Bhakar, V.S. Sriram, N.P. Padhy, H.O. Gupta, Cost allocation of DG embed-
ded  distribution system by game theoretic models, in: Power & Energy Society
General Meeting, 2009. PES’09, IEEE, 2009, pp. 1–7.

[25] T. Soares, P. Faria, Z. Vale, H. Morais, Definition of distribution network tariffs
considering distribution generation and demand response, in: Presented at the
2014 IEEE Transmission & Distribution Conference & Exposition (T&D2014),
Chicago, USA, 2014.

[26] A.J. Conejo, E. Castillo, R. Minguez, F. Milano, Locational marginal price sensi-
tivities, IEEE Trans. Power Syst. 20 (2005) 2026–2033.

[27] M.E. Hajiabadi, H.R. Mashhadi, LMP  decomposition: a novel approach for struc-
tural market power monitoring, Electr. Power Syst. Res. 99 (6) (2013) 30–37.

[28] Á. Lorca, J. Prina, Power portfolio optimization considering locational electricity
prices and risk management, Electr. Power Syst. Res. 109 (4) (2014) 80–89.

[29] M.  Silva, H. Morais, T. Sousa, Z. Vale, Energy resources management in three dis-
tinct time horizons considering a large variation in wind power, in: Proceedings
of EWEA Annual Event 2013, Vienna, Austria, 2013.

[30] J. Grainger, W.  Stevenson, Power Systems Analysis, Mcgraw Hill, 1994.
[31] M.E. Baran, F.F. Wu,  Network reconfiguration in distribution systems for loss

reduction and load balancing, IEEE Trans. Power Deliv. 4 (1989) 1401–1407.
[32] M.  Silva, H. Morais, Z. Vale, An integrated approach for distributed energy

resource short-term scheduling in smart grids considering realistic power sys-
tem simulation, Energy Convers. Manage. 64 (12) (2012) 273–288.

[33] S.B. Peterson, J. Apt, J.F. Whitacre, Lithium-ion battery cell degradation result-
ing from realistic vehicle and vehicle-to-grid utilization, J. Power Sources 195
(2010) 2385–2392.

[34] S.B. Peterson, J.F. Whitacre, J. Apt, The economics of using plug-in hybrid electric
vehicle battery packs for grid storage, J. Power Sources 195 (2010) 2377–2384.

[35] ENTSO-E, ENTSO-E overview of transmission tariffs in Europe: synthesis, in:
European Network of Transmission System Operators for Electricity, 2013.

[36] ERSE, Regulamento de Acesso às Redes e às interligaç ões, in: Entidade Regu-
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Abstract—In recent years the reassessment of remuneration 
schemes for renewable sources in several European countries 
has motivated the increase of wind power generation 
participation in electricity markets. Moreover, the continuous 
growth of wind power generation, as well as the evolution of 
wind turbines technology, suggests that wind power plants may 
participate in both energy and ancillary services markets with 
strategic behavior to improve their benefits. Thus, wind power 
generation with strategic behavior may have impact on market 
equilibrium and pricing. This paper evaluates the impact of a 
proportional offering strategy for wind power plants to 
participate in both energy and ancillary services markets. 
MASCEM (Multi-Agent System for Competitive Electricity 
Markets) is used to simulate and validate the impact of wind 
power plants in market equilibrium. A case study based on real 
and recent data for the Iberian market and its specific rules is 
simulated in MASCEM.  

Index Terms—Bidding strategy, energy and ancillary services 
market, market simulation, multi-agent systems, wind power. 

I. INTRODUCTION 
All around the world, wind power generation is growing 

fast and has became one of the most important energy 
resources in power systems [1]. This growth became possible 
due to high governmental incentives to increase renewable 
energy in power systems. Moreover, in recent years, 
especially in Europe, governments are trying to reduce the 
incentives on feed-in tariffs and enabling wind power 
generation to participate in the electricity market [2]. 

Currently in Europe, the most common schemes for wind 
power remuneration are: (i) feed-in tariff, (ii) feed-in premium 
tariff and (iii) market price plus renewable obligation 
certificate price [2]. Feed-in tariff is a traditional scheme that 
ensures a fixed price for the total wind power generation 
provided to the grid [3]. Feed-in premium tariff is a variant of 
feed-in tariff and establishes that the remuneration of a wind 
power plant is given by the electricity market price plus a 
fixed regulated premium for producing renewable energy [2], 
[4]. In the third scheme wind power plants sell the energy in 
the electricity market and can get extra remuneration by 
selling green certificates. Green certificates are issued to 

renewable energy generators for their renewable generation. 
Wind power plants sell these green certificates in a specific 
certificates market. Traditionally, suppliers must procure 
“green electricity” or buy green certificates to fulfill certain 
levels of renewable generation obligations. These levels are 
established by governments and are usually imposed on 
suppliers. This way, wind power plants get remuneration in 
the electricity market and from the certificates market [2].  

These schemes have enabled the high penetration of 
renewables sources in power systems and also in electricity 
markets. Consequently, the energy price tends to decrease 
since wind power plants participate with low price bids in the 
market [5] due to their low generation costs. In certain markets 
such as the Iberian market – MIBEL [6], Nord Pool [7] or 
EPEX [8], wind power plants usually submit their bids with 
extremely low prices, even with the value of zero. 

On the other hand several studies can be found in literature 
analyzing the effect that strategic behavior of wind power 
plants may have on the market equilibrium and on wind power 
plant remuneration. To increase wind power owners profit, [8] 
and [9] propose strategic participation on both energy and 
regulation reserve markets. Following the market equilibrium 
perspective, the impacts of intermittent resources on electricity 
markets considering a supply function is studied in [11]. It is 
concluded that the behavior of wind power plants as a price 
taker compared to a traditional power plant can change the 
market price due to several reasons. On one hand, market 
competition can be reduced by increasing the offered price. 
On the other hand, the establishment of wind power bids at a 
price of zero decreases the market price, while at same time 
the uncertainty in wind power generation can increase the 
balancing price. In short, wind power plants decrease the 
market price since submitting bids with the price of zero, 
which can be interpreted as the reduction in the residual 
demand of the system, resulting in the decrease of the market 
price. The decrease of market price due to large penetration of 
wind power plants is also shown in [12] and [13]. In [14] wind 
power plants have strategic behavior on power generation 
considering the uniform price mechanism of electricity 
markets for mid and short-terms. A wind power 
accommodation mechanism based on bidding integration is 
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shown in [15]. In addition, [5] presents several market 
strategies in competitive market with wind power generation. 
From these it is observed that wind power generation can play 
an important role in mitigating the power market, but should 
be fairly remunerated to recover its costs. 

In this scope, this work presents a study focusing on the 
analysis of the impact of wind power plants participation in 
electricity markets considering strategic behavior on wind 
power level to be offered in the market. A proportional 
offering strategy for wind participation in the energy and 
reserve market is implemented. However, this study does not 
perform an evaluation of the balancing market which may 
affect the strategic behavior of wind power plants. In the 
balancing market, benefits or penalties can be allocated to 
wind power plants due to its uncertainty to provide the 
expected power. Besides that, the analysis is conducted taking 
into account the perspective of the market equilibrium. The 
proposed strategy is implemented, tested and validated in 
MASCEM (Multi-Agent System for Competitive Electricity 
Markets) [16]. This simulator is able to simulate different real 
electricity markets with distinct characteristics. The study is 
performed from a market perspective and it is based on the 
supply and demand bids of the Iberian market. Moreover, 
Iberian market rules are used during the study simulation.   

The paper is structured as follows: Section II presents the 
detailed structure of the MASCEM simulator. Section III 
introduces the wind power strategy applied on the simulator. 
Section IV describes our empirical investigation based on the 
MIBEL case-study, from an economical perspective. Section 
V assembles the most important conclusions and discussion. 

II. ELECTRICITY MARKETS SIMULATION IN MASCEM 
MASCEM [16], [17] aims to facilitate the study of 

complex electricity markets. It considers the most important 
entities and their decision support features, allowing the 
definition of bids and strategies, granting them a competitive 
advantage in the market. Players are provided with biding 
strategic behavior so they are able to achieve the best possible 
results depending on the market context. MASCEM players 
include: market operator agents, independent system operator 
agents (ISO), market facilitator agents, buyer agents, seller 
agents, Virtual Power Player (VPP) [17] agents, and VPP 
facilitators.  

MASCEM allows the simulation of the main market 
models: day-ahead pool (asymmetric or symmetric, with or 
without complex conditions), bilateral contracts, balancing 
market, forward markets and ancillary services. Hybrid 
simulations are also possible by combining the market models 
mentioned above. Also, the possibility of defining different 
specifications for the market mechanisms, such as multiple 
offers per period per agent, block offers, flexible offers, or 
complex conditions, as part of some countries’ market models, 
is also available. Some of the most relevant market models 
that are fully supported by MASCEM are those of the Iberian 
electricity market – MIBEL, central European market – 
EPEX, and northern European market – Nord Pool. Some 
other market types can be provided by different external 
systems, by using an upper-ontology, which defines the main 
concepts that must be understood by agents that participate in 
power systems and electricity markets’ related simulations. 

Simulation scenarios in MASCEM are automatically 
defined, using the Realistic Scenario Generator (RealScen) 
[18]. RealScen uses real data that is available online, usually 
in market operators’ websites. The gathered data concerns 
market proposals, including quantities and prices; accepted 
proposals and established market prices; proposals details; 
execution of physical bilateral contracts; statement outages, 
accumulated by unit type and technology; among others. By 
combining real extracted data with the data resulting from 
simulations, RealScen offers the possibility of generating 
scenarios for different types of electricity markets. Taking 
advantage on MASCEM’s ability to simulate a broad range of 
different market mechanisms, this framework enables users to 
consider scenarios that are the representation of real markets 
of a specific region; or even consider different configurations, 
to test the operation of the same players under changed, 
thoroughly defined scenarios [18]. When summarized, yet still 
realistic scenarios are desired (in order to decrease 
simulations’ execution time or facilitate the interpretation of 
results), data mining techniques are applied to define the 
players that act in each market. Real players are grouped 
according to their characteristics’ similarity, resulting in a 
diversity of agent types that represent real market participants.  

In order to allow players to automatically adapt their 
strategic behavior according to the operation context and with 
their own goals, a decision support system has been integrated 
with MASCEM. This platform is ALBidS (Adaptive Learning 
Strategic Bidding System) [19], and provides agents with the 
capability of analyzing contexts of negotiation, allowing 
players to automatically adapt their strategic behavior 
according to their current situation. In order to choose the 
most adequate strategy for each context, ALBidS uses 
reinforcement learning algorithms (RLA), and the Bayesian 
theorem of probability. The contextualization is provided by 
means of a context definition methodology, which analyzes 
similar contexts of negotiation (e.g. similar situations in the 
past concerning wind speed values, solar intensity, 
consumption profiles, energy market prices, and types of days 
and periods, i.e. business days vs. weekends, peak or off-peak 
hours of consumption, etc.). This contextualization allows 
RLAs to provide the most adequate strategic support to market 
players depending on each current context. ALBidS strategies 
include: artificial neural networks, data mining approaches, 
statistical approaches, machine learning algorithms, game 
theory, and competitor players’ actions prediction, among 
others. Fig. 1 presents the integration of MASCEM with 
ALBidS. 

 
Figure 1.  MASCEM’s connection to ALBidS, adapted from [17]. 
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ALBidS is implemented as a multi-agent system itself, in 
which each agent is responsible for an algorithm, allowing the 
execution of various algorithms simultaneously, increasing the 
performance of the platform. It was also necessary to build a 
suitable mechanism to manage the algorithms efficiency in 
order to guarantee the minimum degradation of MASCEM 
execution time. For this purpose, a methodology to manage 
the efficiency/effectiveness (2E) balance of ALBidS has been 
developed [19]. 

III. WIND POWER PARTICIPATION IN  
ELECTRICITY MARKETS 

A. Energy market 
Presently and with an increasing tendency, the continuous 

penetration of wind power generation in power systems affects 
the market structure and players behavior [20]. In 2012, 
Portuguese wind power generation presents, on average, 20% 
of the total generation to supply Portuguese system demand 
[21]. Part of the wind power generation is traded in MIBEL, 
the Iberian wholesale electricity market. In Portugal the 
remuneration of wind power generation owners is based on 
two different schemes: (i) feed-in tariffs and (ii) market price 
plus green certificates [22]. Green certificates are issued to 
renewable energy generators for their renewable generation. 
These tradable certificates are implemented only after expiry 
the period of feed-in tariffs, or to renewable generators that 
prefer to change for the scheme of market price plus green 
certificates. Wind power generation owners can trade these 
certificates in a specific certificates market, in order to ensure 
higher return. Thus, most of wind power offers are usually 
submitted to the market at prices with the value of zero [5]. 

B. Strategical Wind Offer 
In recent years, several works have already discussed and 

studied a significant number of strategies for trading wind 
power in electricity markets, with regards to the economic 
benefit of wind power plants. However, this issue is not the 
main topic studied in this work. For further interest some 
works on wind power strategies considering the uncertainty in 
production [23], [24] and in market prices [25]–[27] are 
recommended.  

In the future, wind power plants shall be able to participate 
not only in the energy market but also in other markets such as 
the reserve market [28]. Wind generators technology have 
been improved in recent years and now are able to provide 
some ancillary services [29], [30]. This way, participation of 
wind power plants in such markets can represent a new 
business opportunity for wind generators owners, as well as 
can represent an alternative to traditional generators to support 
such services contributing to the power system security and 
reliability. However, for wind power plants participate in these 
markets, is necessary to develop new market mechanisms. In 
addition, it is also necessary to modify some rules imposed by 
system operators on wind power plants generation [31]. 

In addition, wind power plant owners will develop future 
strategies and behaviors for simultaneous participation in 
different markets to improve their benefits. Thus, participation 
of wind power plants in both markets can be done by splitting 
the available wind power by energy and reserve. A 

proportional wind strategy (PWS) for bidding in energy and 
reserve market is considered [32]. 

 

Figure 2.  PWS operation (reproduced from [32] with permission) . 

The PWS strategy consists on a proportional splitting of 
the available wind generation for energy and reserve, where 

(1 )Reserve AvailableP Pα= −  (1)

Energy AvailableP Pα=  (2)

such that α is a parameter that establishes the amount of 
available power divided for both markets and can be set 
between 0 (total curtailment) and 1 (no reserve). 

The development of new wind participation strategies will 
affect the energy market and the energy price, since wind 
participation on energy market will be different. The effect 
can be significant considering that wind penetration in power 
systems has been increasing continuously. 

IV. CASE STUDY 
An empirical investigation for the evaluation of the impact 

of strategic bidding of wind power generation in energy 
market is carried out in this section. The case study is divided 
into two subsections – case study characterization and analysis 
of results. 

A. Case-study Characterization 
The presented case study is focused on the Iberian 

electricity market, which is composed by Portugal and Spain 
areas. In order to perform the analysis of the impact of wind 
power strategy on electricity market, offers from all players of 
the day-ahead market are used. The used data concerns the 
period between January 1st, 2012 and January 7th, 2012. The 
purchase and sale offers of each player are provided by the 
market operator OMIE (Operador del Mercado Ibérico de 
Energía) [33]. This data regards 826 distinct players, from 
which 714 are sellers and the remaining 112 players are 
buyers. From the sellers, about 397 players consider wind 
power generation in their portfolio mix. For each of the wind 
offers, PWS strategy is applied. Thus, only part of the power 
is submitted into the market auction. It is assumed that the 
remaining part of the available wind power is used by the 



wind power plant player to submit in other market frame, 
which is independent of this work.  

B. Results 
1) Base case scenario 

The market is cleared by MASCEM for each hour of each 
day of the simulation period. Fig.3 shows the purchase and 
sale market curves of the sixth hour of January 1st. 

 

Figure 3.  Purchase and sale market curves in January 1st at period 6. 

The aggregation of the supply and demand curves 
presented in Fig. 3 considers that all the available wind power 
is participating on the energy market. It is noteworthy that 
most of wind offers in the market are settled at price of zero to 
ensure that wind is scheduled in the market. 

The market results for the 24 hourly periods of January 1st, 
2012 are illustrated by Fig. 4. One can verify the significant 
wind share on the market. On average, wind energy provides 
about 31% of the total generation scheduled in the market. 
This value can be higher in cases where weather conditions 
are favorable to wind power generation. 

 

Figure 4.  Day-ahead market scheduling for base case scenario. 

2) Strategy evaluation 
A sensitivity analysis for the evaluation of the impact of 

wind strategic offers in the energy market is presented. This 
analysis is performed throughout the entire period of market 
simulation (January 1st, 2012 to January 7th, 2012). Fig. 5 
depicts an overview of the evolution of the market clearing 
price according to the strategic behavior of wind power 

players. The horizontal axis represents the amount of available 
wind power (in percentage) submitted to the energy market. 
The vertical axis represents the evolution of the market price 
taking into account the amount of wind submitted in the 
market. 

 

Figure 5.  Impact of wind strategic behavior on market price. 

From Fig. 5 it can be seen that, as expected, the energy 
market price increases according to the wind strategy 
evolution. In fact, the lowest participation of wind power 
generation in the energy market (wind strategy share at 75%) 
leads to an increase of about 25% in the market price when 
comparing to the base case scenario (full participation of wind 
power generation in the energy market). 

With the increase of the market price it is understandable 
that the demand supplied in the market tends to decrease, 
since there is a larger amount of demand offers that are not 
scheduled in the market (Fig. 6). The vertical axis represents 
the evolution of the demand supplied in the market 
considering the amount of wind submitted in the market. 

 

Figure 6.  Impact of wind strategic behavior on supplied demand. 

From Fig. 6 it is visible that, in fact, the lowest level of 
wind power participation in the energy market (of 75%) leads 



to a decrease on demand of nearly 1.4%. The impact of the 
increase of the energy market price and consequent decrease 
of demand in the social welfare of the market is presented in 
Fig. 7, which shows the evolution of the social welfare 
throughout the application of the several values of wind power 
participation. The social welfare is determined based on the 
principle presented in [34]. 

 

Figure 7.  Impact of wind strategic behavior on social welfare. 

Fig. 7 shows that the social welfare of the energy market 
decreases according to the decrease of power of the wind 
offers. The impact of wind power generation with strategic 
behavior on the social welfare is about 1.3% when comparing 
the case with the smaller strategic wind share of 75% with the 
base case scenario of 100% participation in the energy market. 

A visual illustration of the effects of wind power strategy 
in the energy market mechanism for the January 1st in hour 6 
is presented in Fig. 8. 

 

Figure 8.  Impact on market uniform price mechanism. 

From Fig. 8 it is visible that with the decrease of wind 
power participation in the market, the supply curve tends to 
move, resulting in higher market prices, with less supplied 
demand and with a consequent decrease on social welfare. 
With the wind strategy share at 75% of the available power 
forecast, the market is cleared at 28 €/MWh, while without the 
strategy is cleared at 10 €/MWh. It is noteworthy that the wind 

power strategy causes that effect on energy market because 
the wind power generation is on the basis of the supply curve. 
Usually, the price of the wind offers is close to zero, hence, a 
smaller share of wind power participation in the energy 
market leads to a smaller amount of power placed in the 
market at low prices, which leads to the verified increase of 
the market price. 

V. CONCLUSIONS AND DISCUSSION 
The increasing penetration of wind power generation in 

power systems and consequent integration in electricity 
markets is leading to the need for the development of new 
strategies and market mechanisms to adapt current market 
designs for a proper and reliable operation. This issue has been 
the focus of the present work, where a proportional offering 
strategy has been implemented and its impact on the energy 
market has been evaluated. The main motivation behind this 
work is to argue for the need to verify whether wind power 
participation in energy markets with strategic behavior may 
actually cause a greater impact on the market price and social 
welfare. Currently, wind power producers are assessing other 
opportunities in electricity markets (e.g. ancillary services 
market) to improve their economic benefit. Wind turbines 
technology has been evolving and it now allows wind power 
plants to provide certain ancillary services (e.g. frequency and 
voltage control with fast response). Thus, wind power plants 
are willing to participate in other markets; which leads to 
some difficulties in order to accommodate their integration 
and at the same time ensure system reliability. Wind power 
generation is an intermittent resource, increasing the 
management complexity in order to guarantee the required 
reliability levels, as it is required in traditional ancillary 
services. However, some flexible market mechanisms should 
be developed to allocate wind power participation in some 
ancillary services. This type of market integration will affect 
the energy market since wind power producers will be able to 
participate strategically in different markets. Thus, the impact 
on energy market price and on equilibrium should be analyzed 
from the market operator standpoint (in order to mitigate 
possible scenarios of market power participation). 

In this context, one straightforward strategy that has 
already been proposed in the literature has been considered. 
The proportional wind strategy splits a percentage of the 
power expected from the wind power forecasts for energy and 
reserve. The energy share of the strategy is used in MASCEM 
to simulate the possible behavior of wind power plants in the 
day-ahead energy market. On the most extreme case presented 
in this work, wind power strategy reserves 25% of the 
available power to participate in other market frame. Thus, 
75% of the available wind power is submitted to the energy 
market. This strategy results in an increase of the market price 
of about 25%, while leading to a decrease of 1.4% and 1.3% 
on the supplied demand and social welfare, respectively. The 
behavior on market price during the periods can be very 
different, since in some periods the effect of the strategy is 
low, while in other periods the effect is very high. Thus, the 
results achieved in this work present an overview of the 
strategy impact on energy market for the entire considered 
time horizon. 



Besides the main message, this work has allowed to reach 
a number of practical conclusions from the evaluation of 
strategic behavior of wind power plants in energy market. The 
most important conclusions are that: (i) need for balancing 
market simulation in order to evaluate the strategy under 
penalties resulting from the wind power generation 
uncertainty. Penalties/benefits from the balancing market 
applied to wind power players can modify its remuneration 
and consequently its strategy behavior on future participation 
in the energy market; and (ii) future wind offering strategies 
should be further developed considering possible future 
scenarios where wind power plants have no more government 
incentives to produce energy. 

The achieved results support the initial expectations that 
the participation of wind power generation with strategic 
behavior may increase the energy market price and 
consequently reducing the demand supplied in the market and 
the social welfare. Future work will focus on the integration of 
wind power participation in the balancing and reserve market 
in order to further evaluate the impact on the entire market and 
in wind power remuneration. Moreover, the design of flexible 
market mechanisms for energy and ancillary services will be 
implemented, evaluated and validated under realistic 
simulation scenarios in the MASCEM simulator. 
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Optimal Offering Strategies for Wind Power in
Energy and Primary Reserve Markets

Tiago Soares, Pierre Pinson, Senior Member, IEEE, Tue V. Jensen, and Hugo Morais, Member, IEEE

Abstract—Wind power generation is to play an important role
in supplying electric power demand, and will certainly impact
the design of future energy and reserve markets. Operators of
wind power plants will consequently develop adequate offering
strategies, accounting for the market rules and the operational
capabilities of the turbines, e.g., to participate in primary reserve
markets. We consider two different offering strategies for joint
participation of wind power in energy and primary reserve mar-
kets, based on the idea of proportional and constant splitting of
potentially available power generation from the turbines. These
offering strategies aim at maximizing expected revenues from both
market floors using probabilistic forecasts for wind power genera-
tion, complemented with estimated regulation costs and penalties
for failing to provide primary reserve. A set of numerical exam-
ples, as well as a case-study based on real-world data, allows
illustrating and discussing the properties of these offering strate-
gies. An important conclusion is that, even though technically
possible, it may not always make sense for wind power to aim at
providing system services in a market environment.

Index Terms—Ancillary services, decision-making under
uncertainty, electricity markets, offering strategies, wind power.

NOMENCLATURE

The main notation used throughout the paper is stated next for
quick reference. Other symbols are defined as required.

A. Variables
α Proportional strategy split for energy and reserve
λ Prices and costs in the electricity market
E Energy
P Power (reserve)
Q Total amount bid into day-ahead stage [MW]
R Total revenue
T Regulation energy market revenue
W Potential penalty for primary reserve market

B. Indices
+ Positive imbalance (downward regulation)
− Negative imbalance (upward regulation)
∗ Available energy/power at real-time stage
bpt Penalty cost for reserve imbalance [C/MW]
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c Contracted energy/power at day-ahead stage
cap Reserve price at day-ahead stage [C/MW]
obs Total eventually observed power [MWh]
pt Penalty for reserve imbalance [C/MW]
r Fixed reserve [MW]
sp Spot market

I. INTRODUCTION

T HE continuous deployment of wind power generation
capacities in several countries, and especially in coun-

tries like Denmark, has an increasing impact on power sys-
tem operation and electricity markets. For instance according
to Energinet.dk (the Danish Transmission System Operator
– TSO), December 2013 was an exceptional month where,
on average, 54.8% of the electrical energy consumption was
supplied by wind power [1]. According the same report, on
December 1st, an extreme scenario with wind generation equal
to 136% of the Danish power consumption was observed.

In the future, situations with very high wind (and most cer-
tainly also solar) generation will be more and more common,
resulting in new challenges in power system operation [2]. The
variability and limited predictability of wind power genera-
tion force the system operator to procure additional reserves
to ensure adequate reliability of the electric power system [3].
However, according to [4] among others, wind power plants are
able to provide reserves themselves, thereby reducing the addi-
tional procurement of reserves from other traditional resources.
Thus, new mechanisms for reserve procurement, as well as
for the participation of wind generation in providing reserves
should be developed and implemented [5], [6]. Currently, wind
turbine technology and wind farm control allow providing dis-
tinct ancillary services such as frequency and voltage control.
Thus wind farms are able (i) to provide and control active power
injection in a few seconds, (ii) to respond to reactive power
demands in less than 1 second, (iii) to support and maintain
voltage levels, and (iv) to provide kinetic energy (virtual inertia)
[4], [7]–[9].

Traditionally, primary reserve markets are designed to assist
in dampening deviations from nominal frequency. Generators
supply the service based on their inertia characteristics.
Depending on the country rules, this service can either be
supplied and priced through market mechanisms [4] or made
mandatory without payment. With high penetration of variable
generation, the service design tends to change, since reserve
requirements may dynamically vary on an hourly or even
minute basis [10], while the system may have lower inertia.
Wind power plants and other emerging generating technologies

1949-3029 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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may then be asked to contribute to this new service design
[11], [12].

For optimal integration of wind power in energy and primary
reserve markets, new business models and remuneration mech-
anisms should be thought of. The literature on optimal offering
strategies for wind power producers in the day-ahead market
while accounting for potential balancing costs has been flour-
ishing over the last few years. This includes a number of studies
(assuming that wind power producer act as a price-taker) on
expected utility maximization strategies [13], [14], additional
consideration on risk-aversion and temporal dependencies [15],
extension to LMP markets [16] and multi-period setting to
adjust contracted offerings [17], appraisal of uncertainties on
both wind and market quantities [18], bidding under one-price
and two-price system [19], generalized opportunity cost bid-
ding [20], as well as minimizing imbalance costs accounting
for wind power predictions and imbalance prices [21], among
others. Although it is not the goal of the present paper to work
on optimal strategies assuming that the wind power producer
acts as a price-maker, readers are encouraged to consult these
recent works [22]–[27] for detailed information.

In contrast, little attention has been paid to the joint offer-
ing under uncertainty of wind power generation in both energy
and reserve markets [12], [28]. Liang et al. [12] proposes an
analytical approach (based on the so called multi-newsvendor
problem with budget constraint) for wind power participating in
energy and reserve, assuming that offers for energy and reserve
can be freely determined (i.e., independently of any control
paradigm), since only subject to this budget constraint. Such
joint offering strategies are expected to bring additional rev-
enue streams to wind power plant operators. However, wind
power plants face the challenge to guarantee that power sched-
uled as primary reserve is available at any time without failure.
The reserve market is designed to ensure the operation of elec-
tric power systems with appropriate levels of stability, safety,
quality, reliability and competitiveness. In this way, intermit-
tent energy resources, such as wind power, have difficulties to
ensure and fulfil power scheduled as primary reserve. Thus, a
future reserve market must be designed to account for the possi-
bility of wind failing to provide reserve, e.g. through penalties,
if wind (or demand-response) is to participate in these markets.

This paper proposes an analytical approach for wind power
participating in both energy and primary reserve markets tak-
ing into account the market penalties. The aim is to maximize
the expected revenue from optimal offering on both energy
and primary reserve markets. Our approach takes a different
starting point is compared to previous work in the literature,
e.g. [12], as instead of considering a budget constraint for the
joint offering of energy and reserves, we first start from the
various control paradigms described in the literature for wind
to offer system services in practice. A major contribution of
this work is the implementation, evaluation and comparison
of two different offering strategies, namely the proportional
and the constant wind strategies proposed in [29], [30], for
the splitting of potentially available wind power considering
the same wind distribution probability for the two services. In
practice, they are easy to implement since uses simple con-
trollers due to the locking of energy and reserve quantities
[30], while strategies that utilize all operational degrees of

freedom would require advanced controllers that are unlikely
to admit analytical treatment, and may be highly susceptible
of misestimate due to forecast errors. An advantage of our
approach is then to show how offering behavior and market rev-
enues can be highly affected by the control paradigm originally
adopted. Both strategies are introduced with the motivation
of allowing the split of the available wind power for energy
and reserve. Furthermore, an economical evaluation of both
strategies illustrating their advantages and inconveniences is
undertaken. Optimal offers are determined under uncertainty
based on probabilistic forecasts of potential power generation
for the market time unit considered. Additional input variables
include expected market prices (for energy and reserve) as well
as expected penalties on balancing and reserve mechanisms.
The methodology is applied and demonstrated on numerical
examples. Wind power plants increase their profit by using
these strategies for optimally offering in energy and reserve
markets, thereby reducing the deviation penalties from the bal-
ancing market. Additionally, these strategies seek to motivate
wind power penetration on power system, thereby, increasing
the competition in both markets, as well as ensuring a cheap
resource in the system operator standpoint. Besides that, future
wind power plants will be able to provide fast reserve services
that will be crucial in the operation of future power systems
with high penetration of renewable resources [12]. Thus, sys-
tem operators have interest in wind power participating in both
energy and reserve markets.

The paper is structured as follows. Section II describes
electricity markets characteristics with a perspective on future
energy and reserve market trends. Section III presents the
detailed formulation of joint offering strategies (for propor-
tional and constant strategies) in energy and primary reserve
markets. Section IV describes our empirical investigation based
on a set of numerical examples. Section V assembles the most
important conclusions.

II. WIND POWER IN ELECTRICITY MARKETS

A. Current Day-Ahead and Balancing Market

The increasing penetration of wind power generation in
electric power systems has been changing wholesale market
characteristics. In Denmark, wind power producers trade in
the wholesale market and are remunerated through a combi-
nation of market price and premium [28]. This remuneration
mechanism allows wind power owners to submit bids into the
day-ahead market with zero or negative prices [29].

The balancing market is used to compensate for energy devi-
ations in real time from the day-ahead and intra-day schedules.
In a European context these are run by the local TSO [30]. For
the example of Denmark, this market is cleared just before the
operating hour and is divided into a regulating power market
(where the system operator purchases the required regulating
power to balance the system) and a balancing power market
(where correction of the system and market participant imbal-
ances is performed) [31]. For the case of wind power, the
balancing market is the final mechanism permitting to mitigate
forecast errors, and it can be highly penalizing.
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Fig. 1. Schematic representation of the market structure for the wind offering
strategies.

B. Joint Offering in Energy and Primary Reserve Markets

Currently and even more in the future, wind power plants
will be able to provide some type of ancillary services, such as
frequency and voltage control [4]. Wind power plants are will-
ing to participate in energy and primary reserve market only
in the case where wind power producers may receive increased
benefits from joint market participation, instead of participat-
ing in the energy market only. With that objective in mind,
we will examine an analytical model for obtaining the optimal
quantile bid of wind power participating in multiple markets
with different expected prices and penalties for deviation from
schedule.

The energy and reserve markets have different character-
istics. On the one hand, wind energy bids submitted in the
day-ahead market should account for potential imbalance sit-
uations and their asymmetric penalties. On the other hand, bids
submitted in the primary reserve market are to accommodate
the possibility to fail in providing the service, certainly associ-
ated with a much higher penalty. Fig. 1 presents the structure of
the market for the offering strategies determination.

The bids submitted at the day-ahead market consider the
expected costs in the balancing stage. In the formulation out-
lined here, the effect which the day-ahead bid has on the
penalties of the balancing market, known as the time coupling
effect, is not captured. We assume that any differences arising
from this effect cancel out over time.

The formulation considers the important assumption of the
split between energy and primary reserve remain the same in
both day-ahead (αc) and balancing stages (α∗). This allows
us to develop an analytical formulation to solve the prob-
lem. Future work may involve stochastic programming [32]
allowing different energy and reserve share between day-ahead
and balancing stages, thereby, reducing the time coupling
effect.

III. METHODOLOGY

A. General Formulation of Market Revenues

The objective function to be optimized directly relates to
the maximization of the combined revenue from day-ahead
and reserve markets considering the penalties from the bal-
ancing market. Time indices are not used, since all variables
and parameters are for the same market time unit. This com-
bined revenue R in real-time for a given wind power producer

is expressed as

R = λspE∗ + λcapP ∗ − T ∗ −W ∗ (1)

where λsp is the spot price, E∗ is the amount of delivered
energy, λcap is the capacity price for primary reserve alloca-
tion, P ∗ is the deployed level of primary reserve in real-time,
T ∗ is the regulation costs from the regulation market and W ∗

is the penalty cost for wind power plant failing to provide the
scheduled primary reserve.

In addition, we assume that the wind power producer acts
as a price-taker. This means that the production of the wind
power producer is independent of market prices and penalties.
Because of this independence, and the fact that all prices enter
linearly in the expressions below, all calculations depend only
on the expected mean prices, rather than their full distribution.
This reduction follows from certainty equivalent theory [36],
and removes the need for a full stochastic description of prices
using, e.g., scenarios [18]. In the following, we will refer to
the sum of λspE∗ and λcapP ∗ as the expected inflow. In par-
allel, the sum of T ∗ and W ∗ is referred to as expected costs.
Subtracting the expected costs from the expected inflow yields
the expected revenue of the wind power producer. In (1), the
regulation costs are defined as

T ∗ =

{
λ∗,+ (E∗ − Ec) , E∗ − Ec ≥ 0

−λ∗,− (E∗ − Ec) , E∗ − Ec < 0
(2)

where (E∗−Ec) is the energy imbalance between the energy
delivered E∗ and the energy contracted (offered) Ec. The vari-
ables λ∗,+ and λ∗,−− are the regulation unit costs for positive
and negative deviations, i.e.,

λ∗,+ = λsp − λc,+

λ∗,− = λc,− − λsp
(3)

where λc,+ is the unit down-regulation price for being long,
while λc,−− is the up-regulation price for being short.

We place ourselves here in under two-price settlement rule,
as in the NordPool [13]. In cases where the system imbalance
is negative (energy surplus – need for downward regulation), it
holds that

λc,+ ≤ λsp

λc,− = λsp
(4)

In contrast, when system imbalance is positive (energy deficit
– need of upward regulation), one has

λc,+ = λsp

λc,− ≥ λsp
(5)

While finally during hours of perfect balance both λc,+ and
λc,−− are equal to the spot price λsp. In parallel, the penalty
costs for reserve imbalance can be written as

W ∗ =

{
λbpt,+ (P ∗ − P c) , P ∗ − P c ≥ 0

−λbpt,− (P ∗ − P c) , P ∗ − P c < 0
(6)



SOARES et al.: OPTIMAL OFFERING STRATEGIES FOR WIND POWER 1039

Fig. 2. Proportional wind offering strategy (reproduced with authorization
from [29], [30]).

where (P ∗−P c) is the primary reserve power imbalance
between the realized level of reserve P ∗ and the reserve
contracted (offered) P c. λbpt,+ is a unit penalty when wind
producer generator more power than the contracted (surplus),
and λbpt,−− is the unit penalty cost when wind power producer
generate less than contracted. These are given by

λbpt,+ = λcap − λpt,+

λbpt,− = λpt,− − λcap
(7)

hence λpt,+= 0 since (extra) positive reserve is not detrimental
to the system’s reliability. λpt,−− is the penalty for negative
reserve imbalance, weighted by the probability that reserve is
needed.

In principle, a wind power producer can bid any Ec,P c ≥ 0
into the day-ahead market, and choose to deliver any amount
E∗,P ∗ ≥ 0 in real time, bounded by E∗+P ∗ ≤ Eobs, the
observed energy. To make the problem analytically tractable,
we proceed by constraining the choice of E∗ and P ∗ based
on Ec and P c. This restriction is performed through the use
of two known strategies, which have been previously shown
to be operationally feasible [26], [27]. The following subsec-
tions define these strategies, while the analytical optimal bids
are finally given.

B. Proportional Wind Offering Strategy

The proportional wind offering strategy (illustrated in Fig. 2)
consists in a proportional curtailment of available power gener-
ation to yield an energy offer Ec and a primary reserve offer P c

[29], where

Ec = αcQ

P c = (1− αc)Q
(8)

In the above, Q denotes the total power bid in MW for that
market time unit and αc is the strategy parameter controlling
the proportional split between energy and primary reserve bids.
This last parameter naturally varies between 0 (for full reserve
allocation) and 1 (for full energy allocation).

Fig. 3. Constant wind offering strategy (reproduced with authorization from
[29], [30]).

On the other hand, the eventually observed wind power pro-
duction Eobs is similarly composed of an energy portion E∗

and P ∗ the amount of primary reserve actually available,

E∗ = α∗Eobs

P ∗ = (1− α∗)Eobs
(9)

where α∗ is the strategy parameter used when reaching real-
time operation. It is assumed that strategy parameter in day-
ahead and real-time are the same α∗=αc.

C. Constant Wind Offering Strategy

The constant wind offering strategy (Fig. 3) is based on a
constant curtailment of energy when the expected energy pro-
duced is over a certain expected level of wind power [26],
where

Ec = Q− P c

P c = PR
(10)

PR is the amount of fixed reserve to be submitted in the pri-
mary reserve market, and X% is the percentage of installed
wind power.

Similar to the proportional strategy, the observed wind pro-
duction Eobs is related to E∗. The reserve amount is assumed
to be constant and fixed in day-ahead decision. That is, prior-
ity delivery of the reserve is assumed. The delivered amount of
energy and primary reserve may be written as

E∗ = Eobs − P ∗

P ∗ = P r
(11)

IV. ANALYTICAL DERIVATION OF OPTIMAL BIDS

A. Proportional Strategy Optimization Problem

Assuming that the wind power plant acts as a price-taker,
the maximization of its expected revenues is equivalent to the
minimization of the expectation of regulation and penalty costs.
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Optimal offers are then the solution of

(Q̃, α̃c)= arg
E

min
Q,αc

{T ∗ +W ∗ − λspE∗ − λcapP ∗} (12)

The loss function in the above comprises an extended version
of that used in [13], where here, the available wind power is
split into two different market products. The share of the avail-
able expected power αc and observed power α∗ for energy and
reserve participation is the same (α∗ = αc). Consequently, the
total expected costs O are given by

O (Q,αc) =

∫ Q

0

⎡
⎢⎣

λ∗,−αc (Q− x)+

λbpt,− (1− αc) (Q− x)−
λspαcx− λcap (1− αc)x

⎤
⎥⎦f (x) dx

+

∫ 1

Q

[
λ∗,+αc (x−Q)−

λspαcx− λcap (1− αc)Q

]
f (x) dx

(13)

where f(x) is the forecast probability density function of the
wind power plant production. To analytically solve the prob-
lem the Leibniz rule is used. The Leibniz rule, for an arbitrary
function f , parameters θ, and integration bounds a and b, tells
that

∂

∂θ

(∫ b(θ)

a(θ)

f (x, θ)

)
=

∫ 1

0

∂θf (x, θ) dx+ f (b (θ) , θ) .b′ (θ)

− f (a (θ) , θ) .a′ (θ) (14)

Thus, the derivative of (13) with respect to Q is given by

∂O

∂Q
(Q,αc) =

∫ Q

0

[
λ∗,−αc + λbpt,− (1− αc)

]
f (x) dx

− [λspαcQ+ λcap (1− αc)Q] f (Q)

+

∫ 1

Q

[−λ∗,+αc − λcap (1− αc)
]
f (x) dx

+ [λspαcQ+ λcap (1− αc)Q] f (Q) (15)

The optimal bid is obtained by equating the derivative in (15)
to 0, then yielding an optimal quantile of the predictive cumu-
lative distribution function F for wind power generation at that
lead time

Q = F−1

[
λ∗,+αc + λcap (1− αc)

(λ∗,− + λ∗,+)αc + (λbpt,− + λcap) (1− αc)

]
(16)

Similarly, the derivative of (13) with respect to αc writes

∂O

∂αc
(Q,αc)=

∫ Q

0

[
λ∗,− (Q−x)−

λbpt,−(Q−x)− λspx+λcapx

]
f (x) dx

+

∫ 1

Q

[
λ∗,+ (x−Q)−λbpt,+ (x−Q)−λspx+ λcapx

]
f (x) dx

(17)

Equation (17) is a nonlinear equation in Q. Its solutions
determine the possible Q values that may be used. Note that
Eq. (13) is affine in αc, with the sign of the coefficient of αc

Fig. 4. Illustrative behaviour of Eq. (13) under different relations for energy
and reserve penalties. Note, that revenues are maximized for αc = 0 or 1, i.e.
the wind power producer participates fully in one market or the other.

depending on Q̃. This means that Eq. (13) will be maximized
for one of αc = 0 or αc = 1. Bids from this proportional strat-
egy will take place in either the energy or the reserve market,
but never in both (see Fig. 4). In this way, the energy bid is
equal to the total expected energy when the reserve penalty
is higher than the energy penalty (λbpt,−− > λ∗,−−), so total
availability is submitted to the energy market. On the con-
trary, when the energy penalty is higher than the reserve penalty
(λ∗,−− > λbpt,−−), the total expected power is submitted to the
primary reserve market.

B. Constant Strategy Optimization Problem

The constant strategy assumes that a certain amount of the
available power is fixed to participate in the primary reserve
market, while the remaining available power is submitted in
the energy market [26]. The strategy splits into three distinct
domains according to the relationship between the prices on
day-ahead markets, and the penalties for energy and reserve
deviations.

1) Normal Operation: Under current electricity markets
regulatory framework it is more advantageous for wind power
plants to provide energy than to provide reserve, since the
energy price is usually higher than the reserve price [37]. If
renewable energy producers are able to provide in reserve mar-
kets, market operators should ensure appropriate price signals
to provide incentive for wind power plants to offer their flexi-
bility [4]. I.e. the reserve price must be higher than the energy
price (λcap ≥ λsp). The normal operational hierarchy of elec-
tric power systems implies that not meeting a call for reserve
is worse than not producing the energy promised, such that
the reserve penalty should be higher than the energy regulation
penalty (λbpt,−− ≥ λ∗,−−). The derivation below assumes that
these relations hold. The derivation is also valid for the inverse
case λ∗,−− ≥ λbpt,−− and λsp ≥ λcap, but for the above rea-
sons, we expect that the inverse case is unlikely to occur in
practice.

Again assuming the wind power plant is a price-taker, the
expected available power Q, and the primary reserve offer
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Fig. 5. Regions of operation of constant strategy.

PR, are determined from a minimization of the expectation of
regulation and penalties costs. This writes

(Q̃, P̃R)= arg
E

min
Q,PR

{T ∗ +W ∗ − λspE∗ − λcapP ∗} (18)

This problem contains three different regions of operation
(Fig. 5): (i) observed wind energy lower than fixed reserve
offer PR ≥ Eobs, (ii) observed wind power between fixed
reserve offer and expected wind power Q ≥ Eobs ≥ PR, and
(iii) observed power higher than expected wind power Eobs ≥
Eexp.

The mathematical formulation which minimizes the total
expected costs (O) is as follows

O (Q,P r) =

∫ P r

0

[
λ∗,− (Q− P r)+

λbpt,− (P r − x)− λcapx

]
f (x) dx

+

∫ Q

P r

[
λ∗,− (Q− x)− λsp (x− P r)− λcapP r

]
f (x) dx

+

∫ 1

Q

[
λ∗,+ (x−Q)− λsp (x− P r)− λcapP r

]
f (x) dx

(19)

The integrals correspond respectively to the operation
regions 1, 2, and 3 in Fig. 5. We proceed to minimize this func-
tion by differentiation. The derivative of (19) with respect to Q
is given by

∂O

∂Q
(Q,P r) =

∫ P r

0

λ∗,−f (x) dx+

∫ Q

PR

λ∗,−f (x) dx

− [λsp (Q− P r) + λcapP r] f (Q) +

∫ 1

Q

−λ∗,+f (x) dx

+ [λsp (Q− P r) + λcapP r] f (Q) (20)

which leads to

Q = F−1

[
λ∗,+

λ∗,− + λ∗,+

]
(21)

The derivative of (18) with respect to P r is

∂O

∂P r
(Q,P r) =

∫ P r

0

[
λbpt,− − λ∗,−] f (x) dx

+
[
λ∗,−(Q−P r)−λcapP r

]
f (P r)+

∫ Q

P r

[λsp−λcap] f (x) dx

− [λ∗,−(Q−P r)−λcapP r
]
f (P r)+

∫ 1

Q

[λsp−λcap] f (x) dx

(22)

This finally yields the optimal bid for reserve participation

P r = F−1

[
λcap − λsp

λbpt,− − λ∗,− + λcap − λsp

]
(23)

2) Special Operation—Reserve Only Market: There are a
few cases where the strategy should be decoupled to participate
in a single reserve market: when the energy bid is negative –
only reserve market participation; and when λbpt,−− < λ∗,−−

and λcap ≥ λsp, the full availability of the wind producer
should be submitted to the reserve market.

In that case, the objective function is a special case of that in
Eq. (19), i.e.,

O (P r) =

∫ P r

0

[
λbpt,− (P r − x)− λcapx

]
f (x) dx

+

∫ 1

P r

[
λ∗,+ (x− P r)−

λsp (x− P r)− λcapP r

]
f (x) dx (24)

The derivative with respect to PR is obtained as

∂O

∂P r
(P r) =

∫ P r

0

λbpt,−f (x) dx − [λcapP r] f (P r)

+

∫ 1

P r

[
λsp − λ∗,+ − λcap

]
f (x) dx+ [λcapP r] f (P r)

(25)
resulting in the optimal quantile bid for reserve participation,

P r = F−1

(
λ∗,+ + λcap − λsp

λbpt,− + λ∗,+ + λcap − λsp

)
(26)

3) Special Operation—Energy Only Market: In cases
where λbpt,−− ≥ λ∗,−− and λcap < λsp, it is intuitive that the
wind power producer will opt to participate in the energy mar-
ket only. The objective function for this case is a particular case
of Eq. (19), given by

O (Q) =

∫ Q

0

[
λ∗,− (Q− x)− λspx

]
f (x) dx

+

∫ 1

Q

[
λ∗,+ (x−Q)− λspx

]
f (x) dx

(27)

The derivative of (27) with respect to Eexp becomes

∂O

∂Q
(Q) =

∫ Q

0

λ∗,−f (x) dx+

∫ 1

Q

λ∗,+f (x) dx (28)

which results in the well-known quantile for energy-only par-
ticipation

Q = F−1

(
λ∗,+

λ∗,− + λ∗,+

)
(29)

C. Strategies Summary

A general overview of the analytical formulas to obtain opti-
mal offers in both markets and for both strategies is given in
Table I.
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TABLE I
SUMMARY OF OPTIMAL BIDS

TABLE II
PRICES AND PENALTIES IN ENERGY AND RESERVE MARKET

TABLE III
SIMULATION RESULTS FOR STRATEGIES BASED ON PROPORTIONAL,

CONSTANT, AND ENERGY-ONLY MARKET STRATEGY

TABLE IV
SIMULATION RESULTS FOR λcap LARGER THAN λsp FOR

PROPORTIONAL, CONSTANT, AND ENERGY-ONLY MARKET STRATEGIES

V. EVALUATION OF OFFERING STRATEGY

A. Test Cases

1) Base Case: The base case is based on the following
parameters and assumptions. The wind power plant has a
30 MW installed capacity. An example probabilistic wind
power forecasts takes the form of a beta distribution with shape
parameters α = 2 and β = 4. The expected revenue is evalu-
ated using 1000 samples for wind production drawn from this
distribution. Besides, Table II gathers the prices for energy and
reserve in our numerical example, as well as the unit penalty for
up and down deviations from contract.

The evaluation of the proportional strategy is performed by
an iterative process. αc is assumed to vary between 0 and 1 with
steps of 0.03. Q is determined based on Eq. (16) for each αc.
The total revenue for each given αc is determined.

The constant strategy is first analyzed based on the most real-
istic assumption on the relation between penalties and market
prices, i.e., such that λbpt,−− ≥ λ∗,−− and λcap ≥ λsp. In this
case, Eqs. (21) and (23) are used to determine the energy and
the reserve bid, respectively.

Fig. 6. Objective function behavior for constant strategy, based on base case
data.

Fig. 7. Expected revenue for constant strategy under variation of day-ahead
energy and primary reserve market prices.

Fig. 8. Expected share of energy and reserve for constant strategy under vari-
ation of day-ahead energy and primary reserve market prices. Dashed lines
represents the primary reserve share for each case of primary reserve price (case
1 – reserve price of 25 C/MW; case 2 – reserve price of 35 C/MW; and case 3
– reserve price of 50 C/MW).

Table III shows a comparison between three different strate-
gies for participation in electricity markets (proportional, con-
stant and energy-only). The expected revenue is the difference
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TABLE V
CUMULATIVE SIMULATION RESULTS OF TWO YEARS DATA FOR PROPORTIONAL, CONSTANT, AND ENERGY-ONLY MARKET STRATEGIES

Fig. 9. Constant and proportional strategies behavior over the time, under real data adapted from [13].

between the expected inflow and expected costs (defined in
Sect. IV). The energy-only strategy is based on the common
newsvendor problem [13]. Thus, the quantile for this strategy
is given by Eq. (29). Observing the behavior of the strategies
in Table III, one can verify that constant strategy has higher
expected return than the other strategies.

2) Full Reserve Case: Assuming that λcap is much larger
than λsp, for instance λcap = 40 C/MW, the strategies may
split the energy and reserve bids differently. Table IV compare
the strategies participation in both energy and primary reserve
market for this capacity price.

One can verify that there is a change in the behavior of both
proposed strategies. Both strategies allocate all the available
energy to the primary reserve market. This is since the rev-
enue from the primary reserve market is much higher than the
revenue from the energy market. Both proposed strategies get
better results than the energy-only strategy.

B. Constant Strategy Behavior

1) Objective Function Behavior: The objective function for
the base case is depicted in Fig. 6. One can verify that this func-
tion is convex, allowing to obtain a unique optimal solution. The
expected reserve bid can never be higher than the total expected
energy, hence the triangular cutoff for higher expected reserve.

2) Constant Strategy Performance Under Different Spot and
Primary Reserve Market Prices: The behavior of the constant
strategy strongly depends on the difference between day-ahead
energy and primary reserve market prices. Fig. 7 depicts the
behavior of the strategy under different spot and reserve market

prices. The simulation is performed under the base case data
with variation in spot and primary reserve prices.

The spot prices varies between 17 and 32 C/MWh, while the
primary reserve market price is represented by three cases, 25,
35 and 50 C/MW, respectively.

The simulation shows that increasing primary reserve price
leads to higher revenue, as expected. As long as the spot price
increases, the expected revenue increases too, since the strategy
splits its available power for energy and reserve. Thus, as long
as one of the day-ahead energy spot or capacity price improves,
the revenue tends to increase.

Fig. 8 illustrates the dependency of the share of the offers
into the energy and reserve markets as a function of day-ahead
energy and reserve capacity prices. The reserve share tends
to reduce with the increase of the spot price, as expected.
However, at a certain point, the reserve market no longer gen-
erates higher profit than the energy market, making that full
availability is submitted to the energy market. This occurs when
the spot price is higher than 25 C/MWh. In case 1 (reserve price
of 25 C/MW) this occurs because the primary reserve penalty
is higher than the energy penalty, so there is no incentive to par-
ticipate in the primary reserve market. The intersection between
energy and reserve curve for case 1, gives precisely the result
of the base case for the constant strategy.

C. Strategies Behavior Over Time—Real Data

The data and assumptions used for simulation of both strate-
gies over time are the same used in [13]. We consider a wind
farm of 15 MW participating in the Nord Pool, where the wind
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farm data is based on power measurements and a series of 48 h-
ahead point predictions between March 2001 and April 2003
[13]. Nord Pool prices and penalties between 2001 and 2003
are used. Reserve penalty is assumed to be 50% higher than the
capacity price in the primary reserve market.

The cumulative data results for energy and revenue over the
two years for each strategy are shown in Table V. In overall, one
can see that the proportional strategy submits more power to the
energy and reserve markets than the constant strategy. In the
same perspective, the proportional strategy gets more expected
revenue than constant strategy. Furthermore, proportional and
constant strategies improve the revenue of wind power pro-
ducers relative to the energy-only strategy by about 12% and
3%, respectively. In addition, Table V provides a comparison
for each strategy between the expected results under forecast
scenarios and under deployed wind power.

Fig. 9 illustrates the different behavior of both proportional
and constant strategies over time. It can be seen that in most
of the periods, the constant strategy splits the available power
for participation in both markets. On contrary, the proportional
strategy tends to submit all the available power to one mar-
ket only. From the economic point of view, both strategies are
balanced. I.e., in some periods, the constant strategy may get
more revenue than the proportional one, however, the opposite
also occur. This is because of the different assumptions on the
formulation of each strategy, yielding different behavior in the
market.

VI. CONCLUSION

The increasing flexibility of wind power plants will allow
them to provide more market services, such as primary reserve,
in the future.

This work formulates and derives optimal offering strate-
gies for wind power plants participation in energy and primary
reserve markets. Two strategies (proportional and constant
reserve offering strategies) were considered. Both strategies
have different behavior and flexibility, however, they increase
wind power owners expected profits as compared to an energy-
only bid. The results show that such strategies provide addi-
tional profits in expectation. The proportional strategy leads
to a binary behavior where all the available energy is submit-
ted in either the energy or the reserve market. In contrast, the
constant strategy enables a joint participation of wind power
plants in both energy and primary reserve markets. In addition,
results show that these offering strategies strongly depend on
the market prices and penalties for energy and primary reserve.
An important conclusion from this work is that, even though
turbines may have the technical ability to provide reserves,
they may not always do so in the current market framework,
since the relative profitability and penalties in both energy
and reserve markets will drive the behavior of wind power
producers.

Future work will focus on improvements of the strategies
considering that the share for energy and reserve submit-
ted in the day-ahead market can change in the balancing
market.
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Abstract. The increasing penetration of wind generation in power systems to fulfil the 

ambitious European targets will make wind power producers to play an even more important 

role in the future power system. Wind power producers are being incentivized to participate in 

reserve markets to increase their revenue, since currently wind turbine/farm technologies allow 

them to provide ancillary services. Thus, wind power producers are to develop offering 

strategies for participation in both energy and reserve markets, accounting for market rules, 

while ensuring optimal revenue. We consider a proportional offering strategy to optimally 

decide upon participation in both markets by maximizing expected revenue from day-ahead 

decisions while accounting for estimated regulation costs for failing to provide the services. An 

evaluation of considering the same proportional splitting of energy and reserve in both day-

ahead and balancing market is performed. A set of numerical examples illustrate the behavior 

of such strategy. An important conclusion is that the optimal split of the available wind power 

between energy and reserve strongly depends upon prices and penalties on both market trading 

floors. 

1.  Introduction 

In last two decades electricity markets have been evolving in different ways with the aim to improve 

the competition among the different players without compromising the required reliability and stability 

in the electric system. In this scope, electricity markets are composed by different market stages for 

different commodities. Besides the energy commodity traded in energy auctions, there are ancillary 

services commodities (usually traded in reserve markets) that are used by power system operators to 

ensure proper levels of reliability, stability and security in the power system. 

With the continuous introduction of wind generation in the electricity market, the behavior of 

electricity market participants has been changing. Currently, multiple methodologies for optimizing 

the strategic behavior of wind power producers (WPP) in the energy market have been proposed, 

accounting for expected costs from the balancing market [1–8]. Part of this work has been conducted 

based on the assumption that the strategic behavior of wind power plants does not have a significant 

impact on the market equilibrium, thereby, assuming price-taker behavior, i.e. the WPP does not exert 

market power [1–5]. In an opposite direction, several works exist, claiming that WPP may have a 

significant impact in the market equilibrium, and somehow may exert market power – yielding a price-

maker assumption [6–8]. 

Nevertheless, wind power generators are now able to provide ancillary services, such as frequency 

and voltage control [9]. Namely, wind power plants can control active power injection in a few 

seconds; injecting/consuming reactive power while maintaining proper voltage levels, as well as 

providing virtual inertia to the system [10–12]. Thus, new business models may emerge, stimulating 
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the willingness of wind power producers to participate and take advantage of reserve markets to 

increase their profit, as detailed in [13–15]. A analytical approach based on probabilistic forecast for 

wind power participating in the energy and reserve market is proposed in [13,14]. In [13], a simplistic 

strategy for splitting the available wind power in energy and reserve is applied, while [14] uses two 

different control strategies (proportional and constant wind power control) for WPP to participate in 

both energy and reserve markets. 

We place ourselves under the proportional control strategy used in [14], contributing with a new 

stochastic methodology that maximizes the expected revenue of the WPPs in the day-ahead energy 

market and in the reserve market, while accounting for expected costs from failing to provide the 

energy and reserve products at the balancing stage. Besides that, this work contributes with a new 

perspective of facing the lead time of the WPP between the day-ahead and balancing stage by 

considering that energy and reserve bids submitted in the day-ahead market by the WPPs can be 

changed in the balancing market, i.e. the use of more accurate forecast of the wind power production 

in the balancing stage reduces the deviation between the power production committed in day-ahead 

stage and the effective production during the energy delivery. This may allow WPPs to bid in both 

market stages with more precise information about their wind power production, thereby, reducing 

expected energy and reserve costs in the balancing market. The results show that allowing a change in 

the proportionality of energy and reserve between day-ahead and balancing market, improves the 

expected revenues of the WPP, as well as, reduces the expected power deviation between the day-

ahead and the energy delivery. 

The paper is structured as follows. Section 2 describes the market structure for wind power 

producers participating in energy and reserve markets. Section 3 presents the detailed mathematical 

formulation of the optimal offering strategy for wind power producers. Section 4 numerically 

evaluates the offering strategy in expectation under different prices and penalties schemes that may 

occur in the market. Section 5 assembles the most important conclusions. 

2.  Wind power in electricity markets 

2.1.  Day-ahead and balancing participation 

Currently, wind power producers can participate in the wholesale market by submitting their power 

bids (usually, their expected production) in the day-ahead market. The uncertainty of the wind power 

production is usually mitigated through the balancing market (the last mechanism for correcting the 

system and market participant imbalances), where the deviations of the wind power producers (the 

difference between their day-ahead market bids and the expected power production close to real-time) 

may induce some penalties for the wind power producers by failing to provide their day-ahead bids 

(either in deficit or surplus of power production) [16,17]. 

In that context, the expected costs to the wind power producers depend on the energy imbalance of 

the power system and of the difference between the sell and the delivered energy by the WPP. 

Furthermore, two different penalty mechanisms (one-price settlement and two-price settlement) can be 

applied depending on the characteristics and of the market rules [18,19]. For instance, the two-price 

system is assumed in the balancing mechanism in Denmark [20]. 

In what concerns the price bids of wind power plants in the day-ahead market, usually, WPPs 

places their power bids in the market at zero price or even negative price. This behavior depends on 

the internal rules of each market, as well as, on the different incentive schemes that wind power 

producers are submitted in each country. For instance, in Denmark, wind power producers are 

remunerated based on a scheme that lies on a combination of market participation (negative prices are 

allowed in NordPool) plus a premium [14]. In Portugal, similar schemes have been followed, yet most 

of wind power producers are still under fixed feed-in tariffs [21]. Besides, the Iberian market does not 

allow for negative bids [22,23]. 
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2.2.  Energy and reserve markets model 

WPPs are willing to provide some ancillary services, since in their perspective, providing reserve 

(even with uncertainty and under high penalties when failing to provide the service) can somehow 

increase their revenue. Thus, the development of a methodology for wind power participation in 

energy and reserve markets at the day-ahead market, while accounting with expected costs in the 

balancing market is proposed and illustrated in Figure 1. The energy and reserve markets assume 

different characteristics, so different considerations are taken. On the one hand, wind energy bids 

submitted in the day-ahead market should account for potential imbalance situations and their 

asymmetric penalties. On the other hand, bids submitted in the reserve market should take into account 

the possibility to fail in providing the service. 

Nevertheless, this model allows WPPs to submit bids into the energy and reserve market at day-

ahead stage, following a proportional strategy for the split of the available power into energy and 

reserve (a share parameter is obtained by the split between energy and reserve). The bidding strategy 

for the day-ahead market assumes an expected energy market price, while the reserve market 

participation strategy takes into account the capacity reserve price. 

At the balancing stage, expected costs for energy and reserve deviations are considered. On the one 

hand, expected costs for energy surplus or deficit of the WPP are considered. In contrast, reserve costs 

are only accounted for deficit of reserve, since the reserve surplus is not detrimental to the system. 

Additionally, this models assumes that the share parameter (split between energy and reserve) at the 

balancing stage can assume a different value from the one used for the day-ahead market decision. 

Thus, WPPs have the opportunity to reduce some energy or reserve deviations, thereby, increasing its 

expected revenue. 

 

 

Figure 1. Wind power participation model in the energy and reserve market. 

2.3.  Wind power control to provide energy and reserve 

Currently, wind power plants have developed several ways of active power control to provide energy 

and reserve, thereby, ensuring the stability of the power system. The use of these controls has been 

required by the system operators in different countries with high penetration of wind power, thereby, 

updating the grid-codes with new active power controls methodologies. System operators may require 

the use of such controls in cases of excess of wind power, to decrease congestion or even just for 
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reserve provision. In this context, four methods for active power control of wind power for providing 

energy and reserve are described in detail. 

2.3.1.  Proportional wind control. This control mechanism consists in the proportional split of the 

available active power in energy and reserve, as illustrated in Figure 2. In terms of market strategy, the 

proportional wind offering strategy is used to define the share of energy Ec and reserve Pc to be 

submitted in the market [14,24], where Q is the total power bid and αc the strategy parameter 

controlling the share of energy and reserve bids at day-ahead stage, which varies between 0 and 1. 

 

Figure 2. Proportional wind offering 

strategy (reproduced with authorization 

from [24]). The blue line Q stands for the 

available wind power production, while 

the red curve 𝐸𝑐 comprises the energy part 

of Q to offer in the energy market. The 

reserve bid 𝑃𝑐 to offer in the reserve 

market is equal to area between the blue 

and red curve. 𝛼𝑐 is the proportional share 

parameter that splits the available wind 

power into energy and reserve assuming a 

value between 0 and 1. 

 

2.3.2.  Constant wind control. The constant wind power consists in a constant curtailment of energy in 

case that the expected forecast is bigger than a specified level of wind power (Figure 3) [14,24]. The 

strategy, reserves a fixed amount of power reserve to face system imbalances. The remaining active 

power is dispatched for the energy service. In this control, wind power plant has a fixed amount of 

power reserve for ancillary services, when the wind power available is above of a certain percentage 

X% of the installed wind power. Otherwise, the available wind power is offered to the energy market. 

 

Figure 3. Constant wind 

offering strategy (reproduced 

with authorization from 

[24]). The blue line Q stands 

for the available wind power 

production, while the red 

curve 𝐸𝑐 is the remaining 

part of Q to offer in the 

energy market assuming a 

certain fixed amount of 

reserve 𝑃𝑐. 

2.3.3.  ΔP control. This control is similar to the constant wind power control. The control curtails a 

certain and fixed amount of the maximum available power in function of the system operator 

requirements [15,25,26]. The biggest difference between the ΔP control and the constant control is the 

use of a minimum threshold (X% of the installed wind power) in the constant control to allocate part 

of the available wind power as power reserve. 

2.3.4.  Output cap. The output cap is an active power control for wind turbines establishing a 

maximum level of active power that can be provided to the energy service [15]. In cases of the 
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available wind power higher than the output cap, the power that exceeds the output cap is curtailed by 

the wind turbine. Thus, system operator can require low levels of output cap to decrease the variability 

of the wind power production. However in the WPP standpoint, this control most likely reserves a 

significant part of the available energy to power reserve, which may result in a small but somehow 

constant provision of the energy service. 

3.  Wind offering methodology 

3.1.  General optimization framework 

A methodology for the optimal offering of a WPP in energy and reserve markets at the day-ahead 

stage, while accounting for the expected penalties in the balancing market is proposed. A two-stage 

stochastic approach is used to optimize the revenue R for a given WPP, and is expressed as 

*

* * *

, ,c
w

cap c sp

w w w w
Q

w

Maximize R P E T W
 

  


       (1) 

where λ
cap

 is the capacity price for primary reserve allocation, Pc is the reserve contracted (offered) in 

the day-ahead market, λ
sp

 is the spot price, Ew
*  is the delivered energy in scenario w, Tw

*  is the 

regulation costs from the regulation market, and Ww
*  is the penalty cost for wind power plant failing to 

provide the scheduled reserve. 

Additionally, it is assumed that the WPP acts as a price-taker. Thus, the market prices and penalties 

are independent of the WPP production. Then, the regulation costs from the regulation market can be 

defined as 

 

 

*, * *

*

*, * *

, 0

, 0

c c

w w

w
c c

w w

E E E E
T

E E E E









   
 

   

 (2) 

where (Ew
* - Ec) is the difference between the delivered energy Ew

*  and the amount of energy offered at 

day-ahead market Ec. The variables λ
* ,+

 and λ
* ,–

 are the regulation unit costs for positive and negative 

deviations, respectively, 

*, ,

*, ,

sp c

c sp

  

  

 

 

 

 
 (3) 

where λ
c ,+

 is the unit down-regulation price for being long, while λ
c ,–

 is the up-regulation price for 

being short. In addition, a two-price settlement rule (as in NordPool) is assumed [1]. Thus, when the 

power system imbalance is negative, there is a need for downward regulation (energy surplus), which 

is given by 

,

,

c sp

c sp

 

 








 (4) 

On the other hand, when the power system imbalance is positive, there is a need for upward 

regulation so the prices and penalties hold that 

,

,

c sp

c sp

 

 








 (5) 

The penalty costs for reserve imbalance is given by 

WindEurope Summit 2016 IOP Publishing
Journal of Physics: Conference Series 749 (2016) 012021 doi:10.1088/1742-6596/749/1/012021

5



 

 

 

 

 

 

 

 

, * *

*

, * *

, 0

, 0

bpt c c

w w

w
bpt c c

w w

P P P P
W

P P P P









   
 

   

 (6) 

where (Pw
* - Pc) is the reserve power imbalance between the deployed level of reserve Pw

*  in real-time 

and the reserve offered, λ
bpt ,+

 is a unit penalty when wind producer generates more power than the 

contracted (surplus), and λ
bpt ,–

 is the unit penalty cost when the WPP generate less than contracted. 

These are given by 

, ,

, ,

bpt cap pt

bpt pt cap

  

  

 

 

 

 
 (7) 

hence λ
pt ,+

=0 since (extra) positive reserve is not detrimental to the system’s reliability. λ
pt ,–

 is the 

penalty for negative reserve imbalance, weighted by the probability that reserve is needed. 

3.2.  Proportional wind offering strategy 

In this work and by simplicity, the proportional wind offering strategy is applied for splitting the 

available wind power for energy and reserve, as illustrated in Figure 2. The objective function is 

subject to the following constraints regarding the proportional strategy split of energy and reserve. The 

proportional wind offering strategy is used to define the share of energy Ec and reserve Pc to be 

submitted in the market [14,24]. 

c cE Q  (8) 

(1 )c cP Q   (9) 

max1 Q E   (10) 

Under some support schemes, the WPPs are required to participate in the day-ahead market, 

thereby, the bounds of the total power bid Q reflects the minimum power bid to participate in the 

market (1 MW in most of electricity markets) and the installed capacity of the WPP. 

Equations (11) and (12) concerns the wind offering strategy under the balancing power market 

* * ,obs

w w wE E w    (11) 

* *(1 ) ,obs

w w wP E w     (12) 

where Ew
obs donates the eventually observed wind power production, composed by energy Ew

*  and 

reserve Pw
* share actually available. αw

*  is the strategy parameter for the splitting in real-time operation. 

3.3.  Fixed and relaxed approach of wind strategic split in day-ahead and balancing market 

Under the fixed approach (problem with “non-anticipativity” constraints), it is assumed that the share 

of energy and reserve established in the balancing stage cannot be different from the day-ahead stage. 

This ensures that perfect information on real-time cannot be used to change the share of energy and 

reserve decided on the first-stage problem, thereby avoiding the decision process to play with full 

degree of freedom. Equation (13) represents the “non-anticipativity” constraint of the wind offering 

problem. 

* ,c

w w     (13) 

On the other hand, a simplification of the proportional strategy in the stochastic problem can be 

performed, assuming that the wind power producer can change the share of energy and reserve in both 
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day-ahead and balancing stages (relaxed approach). This means that the wind power producer can 

adjust the share of energy and reserve in real-time, accordingly with the expected power production in 

each scenario w. Thus, the WPP can improve their revenue by changing their bid according with better 

information of their production when closer to real-time operation. The mathematical formulation for 

that case relies on equations (1) to (12). 

The wind power producer problem presented here has been modelled as two-stage stochastic 

approach in GAMS [27] modelling language and carried out with CONOPT [28] as a NLP solver on 

an Intel Core i5 2.70 GHz processor with 8 GB RAM. 

4.  Evaluation of offering strategies 

A wind power plant with 15 MW of installed power is considered. The wind total bid offer is 

subjected to a minimum amount of power to participate in the markets. Currently, electricity markets 

settle 1 MW as the minimum power for the bidding process. A set of 100 wind power scenarios for a 

single period presented in [29], has been considered for evaluating the proposed methodology. It is 

assumed that all the scenarios have equal probability. 

The evaluation of the proposed strategy is performed according with a set of prices and penalty 

costs combination allowing us to test the behavior of the strategy for different assumptions, such as 

αw
* =αc and allowing that αw

*  can be free (i.e., αw
*  can be equal or different of αc) – stochastic approach 

with and without “non-anticipativity” constraint. 

4.1.  Normal operation 

Under normal operation in the electricity market, adequate price signals for wind participate in both 

energy and reserve markets should be ensured. In this scope, the capacity price in the day-ahead 

market should be higher than the spot price (λ
cap ≥ λ

sp
). Besides that, the reserve penalties in the 

balancing stage for failing to provide the bid offered in the day-ahead stage should be higher than the 

penalty for failing to provide the energy (λ
bpt ,− ≥ λ

* ,−
), since for the power system is much worse a 

unit failing to provide reserve rather than energy. 

Thus, the prices for energy and reserve, and the unit penalty costs for up and down deviations 

under normal operation for the power system (our base case) are presented in Table 1. 

 

Table 1. Prices and penalty costs in energy and reserve market for base 

case. 

Energy Price (€/MWh) Reserve Price (€/MW) 

λ
sp

 40 λ
cap

 41 

λ
c ,+

 30 λ
bpt ,+

 0 

λ
c ,-

 50 λ
pt ,-

 96 

Under the normal operation case, it is expected that both strategies may behave differently, since 

the allocation of the available energy to one of the markets is not straightforward. One can expect the 

strategy with fixed share parameter base their decision with the information available in the day-ahead 

stage, while the approach with the flexible share parameter may use the better information of the 

balancing stage to reduce expected costs. Figure 4 illustrates the energy market participation for both 

stochastic approaches with standard and flexible share parameter relationships between day-ahead and 

balancing market. The standard approach chooses to participate only in the energy market, since the 

gain from participating in the reserve market is not much higher than participating in energy-only, and 

account with a high penalty when failing to provide the offered power reserve (risk adverse behavior). 

In contrast, the flexible approach (without “non-anticipativity” constraint) presents a different 

behavior (closer to the risk neutral), since participating in both energy and reserve markets. The 

participation in both energy and reserve can in one way give flexibility to the wind power producer to 
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increase the expected revenue while taking the risk of getting penalties from failing to provide energy 

and reserve. Thus, for lower levels of available wind power (until wind available power equal to P
c
, as 

can be seen in Figure 5) it is allocated all the available power to the reserve market (E
*
=0, in Figure 4), 

where the penalty for failing is higher. 

 

Figure 4. Energy bid in the day-ahead (E
c
) and balancing stage (E

*
) for 

both approaches under the normal operation case. 

The reserve bids in day-ahead and balancing stage for both strategies are shown in Figure 5. 

 

Figure 5. Reserve bid in the day-ahead (P
c
) and balancing stage (P

*
) for 

both approaches under the normal operation case. 

Moreover, the expected revenue that the WPPs may achieve by participating in energy and reserve 

market with different behavior of the share between energy and reserve in day-ahead and balancing 

market is 387 € and 395 €, respectively. In this case, the opportunity to change the energy and reserve 

share in the balancing market improves the revenue of the WPPs about 2%.  

4.2.  Special operation – single market participation 
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In cases of occur different schemes of prices and penalties, the participation in the market behaves 

differently, as expected. For instance, in cases where the capacity price is higher than the spot price 

(λ
cap ≥ λ

sp
) and the reserve penalty lower than the energy penalty (λ

bpt ,− ≤ λ
* ,−

), both strategies fully 

offers in the reserve only market. In this case, make total sense to offer only in the reserve market 

since there is no gain on participating in the energy market. 

On the opposite case, when the capacity price is lower than the spot price (λ
cap ≤ λ

sp
) and the 

reserve penalty is higher than the energy penalty (λ
bpt ,− ≥ λ

* ,−
), both strategies assumes the same 

behavior by participating in the energy only market. One can notice that participating in the energy 

market will results in higher revenues in the day-ahead market and less expected costs in the balancing 

stage. 

Both special cases implies a logical participation in a single market, however, these cases are 

unlikely to happen in future electricity markets with competitive integration of wind power generation 

in the reserve market. 

 

5.  Conclusions 

With the introduction of new business models where the WPPs can provide energy and reserve bids in 

the day-ahead market while accounting for the expected cost from the balancing market, new strategic 

bidding for WPPs is crucial to increase their profit. 

This work presents two ways for WPPs to submit their bids in the energy and reserve markets 

based on the assumption of WPP behaving as a price-taker. One of the approaches considers fixed 

share of energy and reserve in the stochastic general problem, i.e. the share parameter in both day-

ahead and balancing stages remains the same. The other approach sets the share parameter to be free 

between the day-ahead and balancing stages. Although the strategy with flexible share parameter can 

increase the revenue of the WPP, this requires a certain level of perfect information of the balancing 

stage, since the “non-anticipativity” constraint between first and second stage of the problem is not 

applicable in this case. However, this strategy allows the WPP to change their bids in the market when 

getting close to the market closure gate, where information of its available production is more reliable.  

Notwithstanding, future electricity market may face some changes on this topic, since new 

behavior and market opportunities for WPPs may influence the market design and mechanisms 

specially in reserve markets. On the one hand, system operators can require some guarantees from the 

WPPs, controlling somehow the level of uncertainty in the reserve product and maintaining proper 

levels of system reliability. On the other hand, market operators must develop mechanisms to ensure a 

fair participation of all type of market participants in both energy and reserve products and avoiding 

market power. Pushing decisions close to real-time is of the most interest of WPPs, since it will 

improve the quality of their decisions and to some extent reduce the lead time effect between the day-

ahead decisions and the energy and services delivered. 
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Abstract—Further integration of distributed renewable energy 

sources in distribution systems requires a paradigm change in 
grid management by the distribution system operators (DSO). 
DSOs are currently moving to an operational planning approach 
based on activating flexibility from distributed energy resources 
in day/hour-ahead stages. This paper follows the DSO trends by 
proposing a methodology for active grid management by which 
robust optimization is applied to accommodate spatial-temporal 
uncertainty. The proposed method entails the use of a multi-
period AC-OPF, ensuring a reliable solution for the DSO. Wind 
and PV uncertainty is modeled based on spatial-temporal 
trajectories, while a convex hull technique to define uncertainty 
sets for the model is used. A case study based on real generation 
data allows illustration and discussion of the properties of the 
model. An important conclusion is that the method allows the 
DSO to increase system reliability in the real-time operation. 
However, the computational effort grows with increases in 
system robustness. 
 

Index Terms — Decision-making; uncertainty; distribution 
system operator; robust optimization; solar power; wind power. 

NOMENCLATURE 
The main notation used throughout the paper is stated next 

for quick reference. Other symbols are defined as required. 

A.  Parameters 
P∆  Power deviation of the vertices of the uncertainty set 

B  Imaginary part in admittance matrix  
Bus  Number of buses 
C  Cost 

BatCapE
 Maximum capacity of energy storage systems 

MinE  Minimum energy in the energy storage system 

G  Real part in admittance matrix  
N  Number of unit resources 
T  Time horizon 
y  Series admittance of line that connects two buses 

shy  Shunt admittance of line that connects two buses 

B.  Variables 
θ  Voltage angle 

storedE  State of charge of the battery 

P  Active power 
Q  Reactive power 
r  Power flexibility used in the real-time stage 
S  Apparent power 
V  Voltage magnitude 

V  Voltage in polar form 

sbV  Voltage at slack bus 

V∆  Voltage level activated by the DSO in the transformer 
X  Binary variable 

C.  Subscripts 
cb  Index of capacitor bank units 
CB  Capacitor bank abbreviation 
Ch  Storage charge process 
Dch  Storage discharge process 
dg  Index of distributed generation units 

DG  Distributed generation abbreviation 
DR  Demand response abbreviation 
,i j  Bus index 

l  Index of load consumers 
L  Load consumers abbreviation 

lv  
Index of levels (tap changing) for capacitor banks and 
transformers 

pv  Index of photovoltaic power units 
PV  Photovoltaic power abbreviation 
s  Index of the vertices of the uncertainty set 
st  Index of energy storage system units 
su  Index of external supplier units 
SU  External supplier abbreviation 
t  Time index 
trf  Index of transformer units 

TRF  Transformer abbreviation 
w  Index of wind power units 
W  Wind power abbreviation 

D.  Superscripts 
act  Activation cost of resources in real-time stage 

_bid dw  Maximum offer of downward flexibility 

_bid up  Maximum offer of upward flexibility 
cut  Generation curtailment power for distributed generation 
dw  Downward flexibility 
op  Operating point of the power resource 
shed  Load shedding 
spill  Spillage of renewable energy 
up  Upward flexibility 

I.  INTRODUCTION 
HE continuous integration of distributed energy resources 
(DER) [1], specially renewable energy resources (RES), at 

the distribution grid level will lead to the development of new 
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models and methodologies to deal with the uncertainty of 
these resources [2]. Hence, traditional methodologies for 
operation and management of the distribution grid must be 
replaced by new active management methodologies, by which 
distribution system operators (DSOs) can contract/control 
power generation/consumption (flexibility) from DER to solve 
congestion/voltage problems in the distribution network [3]. 

An ideal approach would be to accommodate all traditional 
distribution grid management methods with new proactive 
management methods adapted to future distributions systems 
that include DER controllability to help in grid management. 
For instance, problems concerning network reconfiguration, 
voltage limit violation and overcurrent during short periods 
can be added to the proactive management method. 

Currently, DSOs in most European countries employ a 
reactive approach for grid management, imposing limits in 
terms of DER (mainly RES) integration in MV and LV levels. 
For instance, a survey applied under an EU project in several 
European countries showed that very few DSOs use the 
forecasts for operational purposes, as well as, contracting 
services to handle network constraints [4]. Furthermore, the 
degree of coordination between DER and the DSO control 
centers is very limited or non-existent in almost all countries. 

The flexibility potential from DER (including flexible 
operation/bids from RES) requires a change in the present 
paradigm. The trend is to implement proactive and preventive 
grid management functions based on forecasts with the 
possibility of reserving/controlling DER connected to the 
distribution grid. The goal of the DSO remains the same, i.e. 
to ensure that congestion, voltage and energy delivery 
problems are solved, while maintaining the proper operation 
of the system with adequate levels of safety, reliability and 
power quality. Under high RES integration levels, this goal 
can be met by combining multi-period optimal power flow 
(OPF) with uncertainty forecasts. 

Most of the literature proposals for the distribution grid 
management problem are based on stochastic methods with 
relaxation approaches to the OPF. However, DSOs usually 
operate under the premise of procuring a solution or scenario 
that ensures proper levels of robustness and reliability in the 
system. The regulatory framework “induces” risk aversion to 
both the DSO and TSO.  

In this context, several methodologies have emerged for 
distribution grid management considering RES uncertainty. 
These methodologies are most often based on stochastic 
programming and robust optimization [5], [6]. A decentralized 
stochastic approach to manage a distribution network with PV 
production is proposed [7]. However, the model only ensures 
effectiveness under radial networks. In [8], a stochastic 
method based on chance-constrained optimization for voltage 
control under PV uncertainty production is proposed, 
however, the method considers a probabilistic load flow that 
analyses the injection of PV power in the distribution system. 
The authors in [9] consider a point-estimate method to deal 
with wind uncertainty and a probabilistic OPF. However, the 
output from the stochastic OPF is a distribution of the decision 
variables. Nevertheless, for a DSO, a more appropriate output 

would be a single solution that is robust in all or a pre-defined 
percentage of the scenarios. 

In contrast with the literature, this paper contributes with a 
new methodology based on a robust optimization for solving 
technical problems in the distribution network under RES 
forecast uncertainty, ensuring a single and safe solution that is 
more reliable than traditional approaches. The model 
minimizes the operating costs (flexibility activation) of the 
DSO, without relaxing any network constraints under a set of 
spatial-temporal trajectories. The methodology is proposed for 
a paradigm whereby the DSO preventively manages the 
distribution grid by contracting flexibility from DER in 
advance based on forecasted information. This is a recent 
trend in the scientific community [10]–[12]. Thus, the DSO 
will have more flexibility capacity to use in real-time 
operation, thereby increasing the safety and reliability of the 
system. This work has two major contributions to the state of 
art: (a) integration of spatial-temporal trajectories [13] to 
model RES, while using convex hull based techniques to 
model the uncertainty set; (b) active distribution grid 
management in a multi-period AC OPF, which is able to 
ensure the most reliable solution for the distribution grid. 

The paper is structured as follows. Section II describes the 
DSO management problem with a perspective on current and 
future trends. Section III presents the detailed formulation of 
the robust approach for the DSO problem on energy resources 
management under uncertainty. Section IV describes our 
empirical investigation based on a case study with real data. 
Section V gathers the most important conclusions. 

II.  FRAMEWORK FOR DISTRIBUTION GRID MANAGEMENT 

A.  Current Management 
The mission of a DSO is to ensure the quality and 

continuity of supply levels imposed by the regulatory 
framework. In the past, technical problems such as overcurrent 
and voltage limit violation were mitigated by planning 
network investments and changing the network configuration 
to meet the loads. Now, DSOs have additional flexibility in 
the network that allows them to solve the local technical 
problems in the operational domain, instead of solving them in 
a planning phase. The main benefits are investment deferral 
and reduced curtailment of DER.  

In the operating domain, the typical control actions are 
network reconfiguration, control of capacitor banks and 
activation, though in a very limited way, of non-firm 
connection contracts associated with industrial loads and some 
DER. Information about forecasts and corresponding 
uncertainty is not embedded in the current grid-management 
functions. 

Nevertheless, the use of DER flexibility to help in the 
management of technical problems is of most interest to the 
DSO. The DER flexibility stands for the amount of power 
provided by the DERs that assist the DSO in grid 
management. This means that is a kind of ancillary services, 
but used by the DSO to solve congestion and voltage problems 
in the distribution system. As proposed in this work, a better 
use of DER flexibility can delay or even avoid the need for 
network expansion. That is, the DSO can use power flexibility 
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provided by DERs to decongest the main power 
lines/transformers and control the voltage levels in the 
distribution grid. This gives a certain control freedom to DSO 
grid management. However, a long-term evaluation is 
recommended to estimate the savings of the proposed method 
in the system. Such economic savings must be compared with 
equivalent costs of network reinforcement to assess the 
usefulness of the proposed method in long-term. 

B.  Future Management 
With the continuous introduction of DERs, DSOs have been 

changing their operation and control paradigms. Thus, fully 
proactive grid management, by which DERs can be part of the 
solution for proper operation of the distribution system, is 
considered. However, RES are part of the problem since they 
have uncertain generation, thereby increasing the system 
operation uncertainties. Nevertheless, current developments in 
wind power technology mean that, to some extent, it is 
possible to reserve the available wind power to provide power 
flexibility [14]. In fact, field-tests with the real provision of 
ancillary services (such as frequency restoration reserves) 
from renewable power plants performed in Germany [15] and 
Belgium [16] have demonstrated that it is possible to provide 
reserve capacity with acceptable accuracy. In this way, future 
DSO management should integrate new methodologies to deal 
with RES uncertainty while considering this new capability of 
RES, as well as considering energy storage systems to help the 
DSO solve congestion problems and efficiently deliver energy 
[4]. 

A new structure for solving technical problems in the 
distribution grid is illustrated in Fig.1. The structure is divided 
into two stages is used: (i) contract of upward and downward 
flexibility services from DER at day-ahead time-horizon; and 
(ii) distribution grid management considering the flexibility 
contracted in the first stage and internal resources of the 
distribution network, accounting for the worst-case of 
uncertainty in the system. 

The first stage (day-ahead stage) is based on contracting 
upward and downward flexibility to be used during the real-
time stage (second stage) to manage the grid and solve 
congestion problems, accounting with the uncertainty of 
renewable sources. In the first stage, upward and downward 
flexibility bids, respectively given by Pbid_up and Pbid_dw, from 
the DER aggregators are provided to the DSO. The DSO 
contracts the flexibility to the DER aggregators based on 
capacity payments. It is noteworthy that wind and PV 
aggregators should guarantee the provision of the submitted 
upward and downward flexibility. For instance, by contracting 
generators or demand response electrically closes to their 
point of power production. The DER aggregators provide to 
the DSO the flexibility bids of changing the operating point of 
their own resources for upward and downward power. The 
flexibility bids are defined based on the strategy of each 
aggregator to provide flexibility to the DSO. Wind and PV 
aggregators can define their bids based on expected profit 
from supplying this upward and downward flexibility to the 
DSO, accounting for the costs for changing their operating 
point [17]. 

In the real-time stage (second stage), the DSO manages the 
grid considering the flexibility contracted at day-ahead and the 
operating point of each DER, as well as its own internal 
flexibility under the limitations of the technical characteristics 
of the grid. We understand DSO internal flexibility as the use 
of static equipment, such as transformers with on-load tap-
changing (OLTC) ability, capacitor banks and storage 
systems. Storage systems owned or managed by the DSO help 
in the system management, providing additional multi-period 
flexibility and avoiding constrained situations. Additionally, 
the storage system contributes to face with high uncertainty 
production in the distribution system. 

Nevertheless, the DSO may contract all the flexibility 
needed to cover foreseen distribution network problems, 
considering RES uncertainty and accounting for the economic 
efficiency of the process. That is the flexibility contracted 
should be optimized at least cost. Moreover, the core of the 
methodology lies on the use of a two-stage robust optimization 
approach to accommodate RES uncertainty, while providing 
solutions with high reliability levels. 

III.  METHODOLOGY 
The methodology is based on robust optimization to model 

RES uncertainty and solve the DSO management problem. 

A.  Uncertainty Set Definition 
Robust optimization requires the definition of uncertainty 

sets, e.g. vertices representative of the worst-case solution, as 
explained in [18]. Uncertainty sets can take different forms, 
for instance, constructing the uncertainty set through a 
polyhedral, ellipsoid or scenario set with spatial-temporal 
correlation is the most common in literature, among others 
[19]. 

In our proposed methodology, construction of the 
uncertainty set is modeled through a scenario set with spatial-
temporal correlation. The methodology entails some 
assumptions. For simplicity, the uncertainty modeled in the 
methodology refers only to wind and solar power. Thus, the 

Second Stage – Grid Management

Upward Downward

Technical Characteristics

Distribution
Network Limits

First Stage – Contracting Flexibility

Reserve Flexibility Bids

Wind + PV

Full AC OPF

Worst-case scenarios

Transformers (OLTC)

Capacitor Banks

DSO/network own resources

Storage Systems
(Charge/Discharge)

 
Fig. 1.   Diagram of the developed methodology. 
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load profile for the next 24 hours is assumed to be known. 
Furthermore, note that spatial-temporal correlation is modeled 
in scenario generation for wind and solar power 
independently. This means that uncertain variables for wind 
and solar power are independent of each other. 

The uncertainty sets for wind and PV generation are 
constructed using a scenario set. The scenario set J is obtained 
through the generation of spatial-temporal trajectories (or 
scenarios). For each period, the deviation between the scenario 
set and the conditional mean forecast creates a cloud of 𝑁𝑁𝐽𝐽 
points representative of the uncertainty space. Then, the 
uncertainty set Ω is defined as the convex hull of these points 
constructed through the quickhull algorithm [20]. The vertices 
u of the uncertainty set Ω that are selected for the optimization 
process are represented by ΔPw(w,t,s) in the full problem 
formulation. In addition, the number of vertices of the convex 
hull can increase significantly when considering a large 
amount of intermittent resources, which can be intractable in 
the time frame available to the DSO to solve the problem. 
Thus, algorithms to reduce the number of vertices can be 
considered. The recursive Douglas-Peucker algorithm [21] is 
based on polyline simplifications and can reduce the number 
of vertices that characterize the uncertainty set. An improved 
and accelerated version of the algorithm [22] can be used to 
significantly reduce the vertices of the uncertainty set. 

B.  General Problem Formulation 
The problem relates to minimizing the operating costs of 

the DSO. A multi-period and multi-stage robust optimization 
problem is modeled. In the first stage (day-ahead stage), the 
DSO contracts the flexibility to the DER to be used in the 
second stage (real-time operation), where the power system is 
operated under the uncertainty of the renewable energy 
resources. In the second stage, the DSO manages the 
distribution system based on the worst-case of the uncertainty. 
Thus and based on the flexibility contracted at day-ahead, the 
DSO is prepared to manage the grid under any realization of 
wind and solar power covered by the uncertainty set. Similar 
problems are commonly solved in the literature using multi-
stage robust optimization techniques [5], [18]. A general form 
of the robust optimization problem is expressed as 

( ) ( )+∑ ∑
T T

DA RT
t tx u yt t

min C x max min C y  (1) 

( ). . 0,DA
ts t A x ≤  (2) 

( ), 0,RT
th y u =  (3) 

( ), 0,RT
tg y u ≤  (4) 

where the vector x includes the day-ahead decision vectors for 
contracting flexibility, while real-time adjustments with 
respect to the contracted flexibility are included in the vector 
of recourse variables y, accounting for the vertices u of the 
uncertainty set Ω, i.e. u ∈ Ω. Ct

DA(x) stands for the cost 
function of contracting flexibility in day-ahead that composes 
the objective function of the first-stage. On the other hand, 
Ct

RT(y) is the cost function of operating the distribution system 
in real-time that composes the recourse function. All the 
constraints involving only first-stage variables are modeled in 

the form of (2). In contrast, constraints including recourse 
variables are divided into equalities (3) and inequalities (4).  

C.  Full Mathematical Formulation 
This section starts by presenting and explaining the full 

objective function and respective constraints of the first-stage 
problem, followed by the full objective function and 
constraints relating to the recourse stage. It is noteworthy that 
the problem is modeled as a mixed-integer nonlinear 
optimization problem, by comprising a full AC OPF model.  

The first-stage decisions comprise the flexibility contracted 
by the DSO in the day-ahead market, where the objective 
function Ct

DA(x) is modeled as 

( )

( )

( )
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=
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∑
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up up dw dw
DG dg t DG dg t DG dg t DG dg t

dg

N
up up dw dw
W w t W w t W w t W w t

w
N

up up dw dw
PV pv t PV pv t PV pv t PV pv t

pv

N
up up dw dw
DR l t DR l t DR l t DR l t

l

C P C P

C P C P

C P C P

C P C P { }1,..., ,∈t T

 (1a) 

The decision variable vector x considers the first-stage 
variables 

{ }, , , , , , , ,= up dw up dw up dw up dw
DG DG W W PV PV DR DRx P P P P P P P P   

The first-stage constraints considering the upper bound of 
upward and downward flexibility offers for DG units (2a) and 
(2b), respectively, are given by 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈up bid up

DG dg t DG dg t DGP P t T dg N  (2a) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈dw bid dw

DG dg t DG dg t DGP P t T dg N  (2b) 
In addition, wind and PV aggregators are modeled with the 

ability of upward and downward flexibility, i.e. it is assumed 
that wind power producers can provide some flexibility [14]. 
The wind power for downward flexibility is constrained by the 
operating point of the wind power aggregator PW(w,t)

op , as in 
(2c), while the wind power for upward flexibility is 
constrained by the wind bid for reserving power, as in (2d). 

{ } { }( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈dw op
W w t W w t WP P t T w N   (2c) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈up bid up

W w t W w t WP P t T w N  (2d) 
These constraints are also applied to the PV aggregators. 

Similarly, the upper and lower bounds for the DR aggregators 
are given by 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈up bid up

DR l t DR l t LP P t T l N   (2e) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈dw bid dw

DR l t DR l t LP P t T l N  (2f) 

where PDR(l,t)
bid_up is the maximum amount of load that can be 

reduced (offer). 
The objective function and constraints related to the 

recourse stage are then described. Following adaptive robust 
theory, the inner max min problem given by Ct

RT(y) can be 
replaced by an auxiliary variable β representing the worst-case 
recourse. 

In parallel, looking at equalities constraints from the 
recourse function (related to ht

RT(y,u) in equation (3)), the 
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decision variable vector y contains 
, , , , , , , , , , , , ,

,
, , , , , , , , , , , ,θ

 ∆ ∆ =  
∆  

up dw cut up dw spill up dw spill up dw
∆G ∆G ∆G W W W W PV PV PV PV ∆R ∆R

shed
L ∆ch Ch ∆G L CB stored CB TRF i sb TRF ij

r r P r r P P r r P P r r
y

P P P Q Q Q E X X V V V
  

including active and reactive power balance, reactive power 
consumption, capacitor banks tap-changing, transformers with 
on-load tap-changing, and energy storage balance. Thus, the 
active power balance in each bus yields, 
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( )
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(3a) 

where PW(w,t)
op  is the conditional mean forecast of wind 

producer scheduled at day-ahead market and ΔPW(w,t,s) is the 
deviation of wind power production in the vertices from the 
conditional mean forecast that models the uncertainty set. 
PSU(su,t,s) is the energy provided by external suppliers to the 
distribution system through upstream connections, i.e. the 
energy that comes from the transmission system to supply the 
consumption of the distribution network. In parallel, it is 
assumed that the reactive power balance only considers 
reactive power provided by DG (CHP) units, external 
suppliers and capacitor banks, formulated as 
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(3b) 

where the reactive power production for DG (CHP) units takes 
into account the active power production from the day-ahead 
market, as well as the upward and downward active power 
flexibility scheduled by the DSO with a fixed tanΦ = 0.3 [23]. 

( )
{ } { } { }

, , ,
( , , ) ( , ) ( , , ) ( , , ) ( , , ) tan

1,..., , 1,..., , 1,...,

φ= + − −

∀ ∈ ∀ ∈ ∀ ∈

op i up i dw i cut
DG dg t s DG dg t DG dg t s DG dg t s DG dg t s

DG S

Q P r r P

t T dg N s N
 (3c) 

Furthermore, the reactive power consumption in the system 
is modeled based on the relation between the total active 
power consumption and tanΦ for each load l. tanΦ for each 
load l is usually assumed as 0.3 [24]. 

( )
{ } { } { }

( , , ) ( , ) ( , ) ( , , ) ( , , ) ( , , ) tan

1,..., , 1,..., , 1,...,

φ= − + − −
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op dw up shed
L l t s L l t DR l t DR l t s DR l t s L l t s

L S

Q P P r r P

t T l N s N
  (3d) 

Furthermore, the reactive power consumption is partly 
provided by generators and static equipment in the network. 

Capacitor banks are used to provide reactive power to the 
transformer, located at the substation. It is assumed that this 
equipment is owned by the DSO. Traditionally, capacitor 
banks have levels of reactive power production, and can be 
modeled as 

{ } { } { } { }
( , , , ) ( , , ) ( , , , )
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∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

levels
CB cb t s lv CB cb t lv CB cb t s lv

CB S levels

Q Q X

t T cb N s N lv N
  (3e) 

{ } { } { }

( , , , )
1

1

1,..., , 1,..., , 1,...,
=

=

∀ ∈ ∀ ∈ ∀ ∈

∑
levelsN

CB cb t s lv
lv

CB S

X

t T cb N s N
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In addition, transformers with OLTC ability are used to 
ensure voltage control in the substation. It is assumed that the 
transformers are owned by the DSO. Thus, the voltage impact 
of each tap-changing level in the secondary bus of the 
transformer is known. The tap-changing constraints can be 
modeled as  

{ } { } { } { }
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where ∆VTRF(trf,t,s,lv) is the voltage level that will be activated 
by the DSO in the transformer unit at slack bus. In parallel, 
VTRF(trf,t,lv)

levels  depicts all the possible levels available on the 
OLTC ability of the transformer. Finally, XTRF(trf,t,s,lv) is a 
binary decision variable which defines the activation of the 
chosen level. Moreover, the battery balance of storage units 
follows 

{ } { } { }

( , , ) ( , 1, ) ( ) ( , , ) ( , , )
( )

1

1,..., , 1,..., , 1,...,
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h
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 (3j) 

where energy from previous period, and charge and discharge 
ability are considered. 

In parallel, inequalities constraints (related to gt
RT(y,u) in 

(4)), the decision variable vector y contains  
, , , , , , , , , ,

,
, , , , , , , , ,θ β

 ∆ ∆ =  
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and include operating costs for balancing the system, upper 
and lower bounds of active and reactive power to the upward 
and downward flexibility of all energy resources, as well as 
non-simultaneity of storage devices, transformers and lines 
capacity, upper and lower bounds of voltage angles and 
magnitude, and declaration of non-negative variables. 

Thus, the inequality constraint for the operating costs for 
upward and downward flexibility of different aggregators is 
considered (4a). Aggregators with distributed generation, wind 
and PV related with uncertainty and DR are modeled as 
external entities that provide flexibility and information about 
their resources’ electrical location to the DSO. On the other 
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hand, it is assumed that storage units, capacitor banks and 
transformers with OLTC ability are owned by the DSO, and 
therefore these resources are modeled to balance the 
distribution system, with 
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(4a) 

where the upper and lower bounds of the activation of active 
power for DG units considering the upward and downward 
flexibility are given by (4b) and (4c), respectively, while the 
generation curtailment power is expressed in (4d), where 
PDG(dg,t)

op  is the operating point of the DG units. This gives 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈up up
DG dg t s DG dg t DG Sr P t T dg N s N   (4b) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈dw dw
DG dg t s DG dg t DG Sr P t T dg N s N  (4c) 

{ } { } { }
( , , ) ( , ) ( , , )

1,..., , 1,..., , 1,...,

≤ −

∀ ∈ ∀ ∈ ∀ ∈

cut op dw
DG dg t s DG dg t DG dg t s

DG S

P P r

t T dg N s N
 (4d) 

In addition, wind and PV aggregators are modeled with the 
ability of upward and downward flexibility. The wind power 
for activating upward flexibility is constrained by the wind 
contracted in the first-stage decision for reserve power, as in 
(4e), while the wind power for activating downward flexibility 
is constrained by the downward flexibility contracted in the 
first-stage decision, as in (4f). When the downward flexibility 
is insufficient to the meet the DSO requirement, wind spillage 
can be used, being constrained by (4g). 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈up up
W w t s W w t W Sr P t T w N s N   (4e) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈dw dw
W w t s W w t W Sr P t T w N s N  (4f) 

{ } { } { }
( , , ) ( , ) ( , , ) ( , , )

1,..., , 1,..., , 1,...,

≤ − + ∆

∀ ∈ ∀ ∈ ∀ ∈

spill op dw
W w t s W w t W w t s W w t s

W S

P P r P

t T w N s N
 (4g) 

These constraints are also applied to the PV aggregators. In 
parallel, the upper and lower bounds for the activation of DR 
aggregators are given by 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈up up
DR l t s DR l t L Sr P t T l N s N   (4h) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈dw dw
DR l t s DR l t L Sr P t T l N s N  (4i) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,...,≤ ∀ ∈ ∀ ∈ ∀ ∈shed
DR l t s L l t L SP P t T l N s N  (4j) 

where the load shedding is limited by the load in the system. 

Storage technical limits in each period t combine distinct 
inequalities constraints. Thus, the storage devices are used to 
reduce congestion when needed. Furthermore, the cost of 
using charge and discharge ability is modeled in eq. (4a). It is 
assumed that the costs for charge and discharge already 
consider the battery degradation over time [25]. Upper and 
lower bounds for energy stored in the battery, as well as the 
charge and discharge limit per storage unit are modeled as  

( , ) ( , , ) ( , )Min st t stored st t s BatCap st tE E E≤ ≤   (4k) 

( , , ) ( , ) ( , )
Max

Ch st t s Ch st t Ch st tP P X≤  (4l) 

( , , ) ( , ) ( , )
Max

Dch st t s Dch st t Dch st tP P X≤  (4m) 

{ } { } { }
( , ) ( , ) 1

1,..., , 1,..., , 1,...,
Ch st t Dch st t

ST S

X X

t T st N s N

+ ≤

∀ ∈ ∀ ∈ ∀ ∈
 (4n) 

where the charge and discharge ability of each storage unit 
cannot occur at the same time, as in (4n). Furthermore, the 
energy flow from upstream networks is limited through 
transformers that adapt the voltage level from high voltage to 
medium voltage. Therefore, the external supplier provides 
energy to the DSO through these transformers, which results 
in a constraint considering the upper limit of the transformers, 
such that 

( ) { }

{ } { } { }

2 2
2

( , , ) ( , , )
1 1

, 1,..., ,

1,..., , 1,..., , 1,...,
= =

   
+ ≤ ∀ ∈   

   
∀ ∈ ∀ ∈ ∀ ∈

∑ ∑
SU SUN N

i i Max
SU su t s SU su t s trf

su su

Bus S TRF

P Q S t T

i N s N trf N
  (4o) 

Similarly, the thermal limit of distribution lines constrains 
the power flowing from bus i to bus j, and vice-versa, such as  

*

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),Max
i t s ij ij t s sh i i t s TL ij t s i t s j t sV y V y V S V V V + ≤ = −    (4p) 

{ } { } { }

*

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),

1,..., , , 1,..., , 1,..., ,

Max
j t s ij ji t s sh j j t s TL ji t s j t s i t s

Bus S

V y V y V S V V V

t T i j N s N i j

 + ≤ = − 

∀ ∈ ∀ ∈ ∀ ∈ ≠
 (4q) 

where the bus voltage magnitude limits are represented by 
{ } { }( , ) , 1,..., , 1,...,i i

Min i t s Max SV V V t T s N≤ ≤ ∀ ∈ ∀ ∈   (4r) 
assuming that the voltage magnitude is fixed and defined by 
the DSO for the slack bus (upstream bus connection).  

IV.  EVALUATION OF DISTRIBUTION GRID MANAGEMENT 
This section presents a case study that illustrates the 

application of the proposed models and their respective 
performance. The presented case study has been chosen to 
cover a diversity of uncertain situations, allowing 
demonstration of the proposed model. The simulation was 
performed with MATLAB and GAMS. 

A.  Outline 
The case study is partially based on the case study 

presented in [26]. The original distribution network is 
presented in [27], while the energy mix in 2050 used for 
updating the network is proposed in [28]. Fig. 2 shows an 11 
kV distribution network with 37 buses (NBus=37), connected to 
the high voltage network through two power transformers of 
10 MVA each. For simplicity in the analysis of the case study, 
the DERs are aggregated by technology, so one aggregator 
represents a specific type of DER technology. However, note 
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that the model has been designed to deal with aggregators with 
a mixed portfolio. In each consumption point (NL=22), the 
aggregation of the available DR is also considered. The 
distribution network supplies energy to 1908 consumers (1850 
domestic consumers, 2 industries, 50 commercial stores, and 6 

service buildings) [27]. The consumption characteristics in 
each consumption bus, as well as the consumption profiles of 
each type of consumer are the same as those used in [26]. 
Table I summarizes the consumption in each bus. The total 
load consumption in each period for the distribution network 
is shown in Fig. 3.  

    1)  DSO Internal Resources 
The DSO is the owner of some equipment installed in the 

network that supports grid management. Thus transformers 
with OLTC, capacitor banks and energy storage systems are 
considered. The general characteristics of the transformers and 
capacitor bank are shown in Table II. The on-load tap-changer 
of the transformers can lead to a maximum deviation in the 
voltage level of 0.1 p.u. A cost for using tap-changing ability 
based on [29] is considered, since its use reduces the lifetime 
and increases the maintenance of the equipment. The capacitor 
bank tap-changing of reactive power production can reach a 

TABLE I: CONSUMERS CHARACTERISTICS. 
 

Load Bus 
Active power consumption (kW) 

Max Mean Min 
1 3 1190.5 734.7 429.9 
2 4 1015.6 644.5 237.0 
3 6 1184.2 662.8 101.7 
4 7 1259.1 777.0 453.9 
5 9 1252.4 845.5 619.9 
6 10 1040.9 693.3 343.5 
7 12 1030.1 635.7 371.4 
8 14 1.9074 1210.3 445.1 
9 16 2598.3 1730.6 857.5 

10 18 1184.2 799.5 586.1 
11 20 1184.2 662.8 101.7 
12 21 1190.5 734.7 429.2 
13 23 1272.3 847.4 419.9 
14 24 1252.4 845.5 619.9 
15 26 1030.1 635.7 371.4 
16 28 878.8 557.6 205.0 
17 29 996.1 557.5 85.5 
18 31 1001.4 618.0 361.0 
19 32 1011.9 674.0 333.9 
20 34 1252.4 701.0 107.5 
21 36 1074.1 681.6 250.6 
22 37 1030.1 635.7 371.4 

 

TABLE II: TRANSFORMER AND CAPACITOR BANK CHARACTERISTICS. 
 

Equipment Number of 
units Tap-changing Tap-changing 

capacity 
Cost (m.u. per 

change) 
Transformer 2 21 0.1 p.u. 0.19 
Capacitor Bank 1 5 0.2 Mvar 0.47 

 

TABLE III: ENERGY STORAGE SYSTEM CHARACTERISTICS. 
 

Equipment Number 
of units 

Charge 
rate 

(kW) 

Discharge 
rate (kW) 

Capacity 
(kWh) 

Charge 
cost 

(m.u./kWh) 

Discharge 
cost 

(m.u./kWh) 
ESS 4 150 200 250 0.030 0.065 

 

TABLE IV: GENERAL CHARACTERISTICS AND OPERATING POINT FOR DER. 
 

DER Number of 
units 

Total installed 
power 

Operating point (MW) 
Max Mean Min 

CHP 3 2.5 (Mva) 1.5 1.15 1 
External 
supplier 1 20 (Mva) - - - 

PV 22 7.74 (MWp) 5.55 1.96 0 
Wind 2 2.5 (MW) 1.88 1.77 1.52 
DR 22 4.65 (MW) 0.1 0.03 0 

 

TABLE V: DER UPWARD AND DOWNWARD FLEXIBILITY AND COSTS. 
 

DER Upward cost (m.u./kWh) Downward cost (m.u./kWh) 
Max Mean Min Max Mean Min 

CHP 0.15 0.10 0.05 0.09 0.06 0.03 
PV - 0.11 - - 0.06 - 
Wind - 0.10 - - 0.05 - 
DR - 0.22 - - 0.17 - 

 

TABLE VI: DER ACTIVATION AND CURTAILMENT COSTS. 
 

DER Activation 
cost(m.u./kWh) 

Curtailment / spillage / load 
shedding (m.u./kWh) 

CHP 0.18 0.36 
PV 0.13 0.30 
Wind 0.12 0.30 
DR – load 0.26 0.90 

 
 

 
 

Fig. 2.   37-Bus distribution network (adapted from [27]). 
 

 
Fig. 3.   Profile of the total power consumption in the distribution grid.  
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maximum reactive power of 0.8 Mvar. As for the 
transformers, the capacity bank lifetime reduces with the 
number of changes of the tap position. The cost for tap-
changing is based on the formula for capacity bank tap-
changing [29]. Throughout the network, energy storage 
systems with charging and discharging ability are installed. 
All the ESS equipment has the same characteristics, shown in 
Table III. It is noteworthy that the discharge price incorporates 
a degradation cost of 0.03 m.u./kWh, based on the study in 
[25]. 

    2)  DER in the Network 
The distribution network considers different aggregators of 

DER, each representing a different DER. Table IV provides 
general information on the DER. In addition, the operating 
point of the DER is given by a previous dispatch from the 
market.  

All DERs are able to provide flexibility based on their 
generation level. Table V shows the costs of upward and 
downward flexibility of the different aggregators. The upward 
and downward flexibility of CHP, external suppliers and DR 
go from its level of operating point to its maximum and 
minimum level of output power, respectively. In addition, it is 

assumed in the validation stage (real-time simulation with 
measured data) of the robust solution that the upward and 
downward flexibility costs increases by 20% when procured 
during the validation stage. That is, it is assumed that the real-
time activation of these resources is more expensive. The costs 
for real-time activation, CHP curtailment, renewable spillage 
and load shedding are shown in Table VI. 

The PV and wind power from aggregators are modeled as 
random variables. Upward and downward flexibility is used 
according the bids that these aggregators submit to the DSO. 
The downward flexibility bid is equal to the energy operating 
point of these aggregators, previously scheduled in the market. 
The scenarios for wind power generation over the 24-hour 
periods can be found in [30], [31]. The offering bids were 
determined for a 24-hour period based on [17]. The use of the 
constant strategy has been assumed. The constant strategy 
splits part of the available wind power for energy and upward 
flexibility [17]. For PV aggregators, a scenario generation 
based on probability forecasts for short-term production has 
been performed. The probabilistic forecast was based on the 
quantile forecast from [32]. These quantiles were used to 
generate the scenarios and bids. The scenario generation 
process described in [33] has been used to generate the spatial-
temporal trajectories or scenarios. The bids were performed 
based on the constant approach shown in [17].  

A different number of vertices of the uncertainty set (NS) 
have been used in this study for comparison of the 
performance of the methodology, i.e. robust approach with 3, 
4 and 6 vertices has been selected. 

B.  Results 

    1)  Day-ahead Solution 
A number of simulations for the robust approach 

considering a different number of vertices have been 
performed. The number of vertices collected for building the 
uncertainty set was based on the efficiency of the 
methodology in terms of computational performance and 
solution quality. In contrast, the deterministic simulation is 
based on the deterministic version of the proposed robust 
model, where the conditional mean forecast of wind and PV is 
used as the expected power generation for these resources. 

The total operating costs for 24-hour period simulation 
considering a comparison between the deterministic and 
robust approach are shown in Table VII. It can be concluded 
that increasing the number of vertices of the robust 
optimization approach will generate a more robust solution to 
the system, which results in a higher cost to the DSO. The 
high cost of the robust model with 6 vertices is due to 
reserving more flexibility in the system for some periods. 

Fig. 4 presents an hourly comparison of the contracted 
flexibility for upward and downward for all resources (wind, 
PV, CHP and DR). In general, robust approach reserves a 
higher level of upward and downward flexibility, since the 
solution is based on the worst-case solution. Periods 18 to 23 
present higher contracted flexibility, since congestion 
situations are expected in the power transformer and in the 
network branches.  

    2)  Validation of the Day-ahead Solution 

TABLE VII: DAY-AHEAD TOTAL OPERATIONS COSTS, FLEXIBILITY AND LOAD 
SHEDDING FOR A 24-HOUR PERIOD SIMULATION. 

 

Model Deterministic Robust 3 
vert. 

Robust 4 
vert. 

Robust 6 
vert. 

DG flex (MW) 1.195 1.298 1.325 1.375 
DR flex (MW) 2.633 3.645 3.814 4.108 
Storage (MW) 0.511 0.450 0.455 0.461 
Load shedding (MW) 0 0 0 0 
Flex cost (m.u.) 23.722 23.95 24.01 24.063 
Operating cost (m.u.) 23.722 23.95 24.01 24.063 

TABLE VIII: TOTAL EXPECTED OPERATIONS COSTS; FLEXIBILITY AND LOAD 
SHEDDING OF 24 HOUR PERIOD SIMULATION AFTER THE VALIDATION PROCESS. 

 

Model Deterministic Robust 3 
vert. 

Robust 4 
vert. 

Robust 6 
vert. 

DG flex (MW) 1.192 1.229 1.250 1.314 
DR flex (MW) 2.923 3.112 3.168 3.215 
Storage (MW) 0.116 0.167 0.237 0.270 
Load shedding (MW) 0.698 0.421 0.273 0.130 
Flex cost (m.u.) 23.718 23.859 23.928 23.969 
Operating costs (m.u.) 24.413 24.234 24.155 24.053 

 

 
Fig. 4.   Contracted flexibility by the DSO under deterministic and robust 
approach with 6 vertices. 
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The validation stage entails performing an hourly optimal 
power flow considering out-of-sample data of wind and PV 
and the reserved/contracted flexibilities by the DSO. One 
hundred new wind and PV realization scenarios have been 
generated based on the real measurement data, accounting 
with upward and downward deviations of 20% from the 
measurement data. 

Besides this, only the flexibility contracted by the DSO to 
the aggregators can be used during the validation stage. 
Flexibility contracted is used to solve congestion in the 
system. In cases where contracted flexibility is not enough to 
solve the congestion problem, wind and PV curtailment and 
load shedding are used to balance the system as last resort 
measures. From this, it is possible to evaluate the robustness 
of the proposed solution and compare with the traditional 
deterministic approach. The traditional approach relies on an 
OPF scheduling based on point forecast information. Table 
VIII shows the total expected operating costs of each approach 
after the validation process. One can see that, as expected, the 
robust approach ensures lower operating costs than the 
traditional DSO approach (1.07% more efficient). This is due 
to the broad flexibility that is scheduled under the worst-case 

of the robust approach in each hour. 
Comparing the results of the traditional and the robust 

approach under the day-ahead scheduling and during the 
validation process (Table VII and Table VIII), one can verify 
that robust approaches reserve more flexibility during the day-
ahead scheduling that can be used during the validation 
process, resulting in lower expected operating costs after the 
validation stage. Thus, in this case study, from a financial 
point of view, the proposed approach is better than the 
traditional deterministic DSO approach (present-day practice). 
For instance, if the DSO chooses the robust approach instead 
of the deterministic in the day-ahead market for 0.341 m.u. 
more (24.063-23.722, Table VII), it would have a saving of 
0.360 (24.413-24.053, Table VIII) in the validation stage, 
which means 0.019 m.u. of net saving. 

Although the cost savings are small since the case study is 
a daily analysis, a yearly analysis can represent a significant 
saving for the DSO. However, it is possible that a different 
case study may show distinct behavior. That is, in cases with 
low levels of uncertain production and congestion problems, 
robust approach may be more expensive, yet ensuring high 
levels of system reliability. Additionally, the proposed 
approach also ensures higher reliability by requiring less load 
shedding than the traditional approach. 

The behavior of the deterministic approach under the 
validation process for the 24-hour period is illustrated in Fig. 5 
a). The blue area represents the flexibility contracted at the 
day-ahead stage, while the red area shows the load shedding 
used by the deterministic approach during the validation. The 
green line represents the total power used by the DSO to 
manage the grid during the validation process, while the blue 
line shows the flexibility used by the deterministic approach 
during the validation process. One can see that the flexibility 
contracted in the day-ahead is not enough to solve the 
congestion problem that occurred during the real-time 
operation. Thus, load shedding is used by the DSO to manage 
this congestion. 

Fig. 5 b) depicts the behavior of the proposed approach 
under the validation process. One can see that, in most of the 
periods, the contracted flexibility is more than enough to solve 
congestion problems that occur during real-time operation. 

       
 
Fig. 5.   Contracted, used flexibility and load shedding (in expectation) over 24-hour for a) deterministic and b) robust (6 vertices) approaches under real-time 
operation. 

a) b) 

 
Fig. 6.   Empirical cumulative distribution function of expected operating costs 
for deterministic (blue line), robust 3 vertices (green line), robust 4 vertices 
(red line) and robust 6 vertices (brown line) approaches.  
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However, between 17 and 18 periods, there is a need for extra 
power to solve congestion. Thus, load shedding is used to 
manage the congestion, accounting for a high penalty. 

Comparing the results of the deterministic - Fig. 5 a) - and 
proposed - Fig. 5 b) - approaches, one can identify different 
behavior and portions of the scheduled and used flexibility. 
The proposed approach reserves more flexibility than the 
deterministic approach, which is useful during the real-time 
operation. Thus, the proposed approach infers less operating 
costs than the equivalent deterministic approach after the 
validation process due to the lower need of load shedding 
(extremely expensive) to manage congestion in the system. 

In more detail, the difference between the expected 
operating costs of the deterministic and robust approaches is 
illustrated in Fig. 6. From the cumulative distribution function 
it is possible to evaluate the probability of the scenarios 
occurring in a range of expected operating costs. For instance, 
an expected operating cost of up to 24.148 m.u. is expected to 
happen in 80% of the scenarios for the robust 6 vertices 
approach, while the same cost is most likely to occur in 
14.69% of the scenarios for the deterministic approach. This 
highlights the effectiveness of the proposed approach to the 
problem. Additionally, one can see that there is always need 
for flexibility, and therefore the deterministic approach 
presents worst results than robust approaches. Moreover, it is 
noteworthy that the proposed methodology allows the DSO to 
control the number of vertices, thereby to some extent 
controlling the robustness of the obtained solution. 

    3)  Computational Performance 
The computations were carried out with DICOPT [34] as 

an MINLP solver on an Intel Core i5 2.70 GHz processor with 
8 GB RAM. All modeling was performed in the GAMS [35] 
modeling language. The deterministic approach was 
performed for 8 minutes, while the robust 3, 4 and 6 vertices 
were performed for 2.5h, 6.4h and 16.2h, respectively. The 
robust approach takes a high computational time to converge, 
due to the complexity of the proposed formulation. 

One way of reducing the complexity of the methodology is 
through linearization of the non-linearity. In this way, the AC 
OPF can be formulated in the format of a second-order cone 
programming [36] or semidefinite programming [37], which 
are convex models that can be efficiently solved. However, 
these models usually give approximate solutions for the non-
linear solution. Improved methods, such as strong second-
order cone programming relaxations based on McCormick 
relaxation to improve the approximation of the convex region 
of bilinear constraints have been emerging. Such advanced 
methods, reduce the optimality gap in relation to the 
traditional non-linear models [38]. Other recent developments 
in AC OPF can be found in [39]. 

On the other hand, the computational performance can also 
be improved by considering different optimization algorithms, 
such as meta-heuristics. These optimization algorithms are 
somehow able to provide approximate solutions of the AC 
OPF problem, requiring less computational effort to solve the 
problem [40]. 

Nevertheless, a combination of reducing the complexity of 
the problem through mathematical optimization techniques 
and the use of meta-heuristics to improve the computational 

performance is the most likely evolution for the proposed 
methodology. 

V.  CONCLUSIONS 
The increasing the flexibility of DER will allow the DSO to 

reserve this flexibility to handle local technical problems in 
the distribution system, thereby, improving security of supply. 

This work proposes a new method for DSO distribution 
grid management under spatial-temporal uncertainty. It is 
assumed that the DSO applies a preventive approach on grid 
management by reserving flexibility from DER at the day-
ahead stage. The results show that such an approach is more 
expensive than present-day practice at the day-ahead stage, but 
cheapest on the operating day, i.e. the robust approach 
provides savings in the DSO operating costs by reserving 
some flexibility at the day-ahead stage to be used during real-
time operation, avoiding extra penalties. In addition, results 
show that the level of robustness depends on the modeling of 
the uncertainty set, i.e. the number of vertices of the 
uncertainty set to use in the optimization process. However, 
the price of robustness is paid in the computational effort. An 
important conclusion from this work is that robust solutions 
increase the reliability of the distribution system, representing 
a preventive approach for grid management. 

Nevertheless, the use of this methodology by the DSO 
requires a yearly evaluation between the costs saved by this 
approach and its usefulness (perhaps, measured by the number 
of events in a year where the method is useful). Thus, future 
work should focus on this trade-off, as well as on improving 
the computational performance of the optimization algorithm, 
potentially by combining meta-heuristics with mathematical 
optimization techniques to assure tractable, robust solutions. 

 
APPENDIX 

The general adaptive robust optimization for a single period 
is formulated as the following three-level optimization 
problem: 

+DA RT
tx u y

minC x max minC y  (5a) 

. . : ,λ+ =s t Tx Hy u  (5b) 

0 : ,µ≥y  (5c) 
. . ∈s t u W  (5d) 

. . ,≤s t Ax a  (5e) 
0,≥x  (5f) 

where T and H are matrices defining the left-hand-side of 
recourse constraints, λ and μ are vectors of Lagrange 
multipliers associated with equalities and inequalities 
constraints of recourse stage. A is a matrix defining the left-
hand-side of first stage constraints and a is a vector defining 
the right-hand-side of first stage constraints. 

Considering that the optimization problem from (5) cannot 
be solved directly given its min-max-min structure, the inner 
minimization problem can be replaced by its dual formulation. 
Thus, the optimization problem assumes the form of 

( ) λ+ − TDA

x u y
minC x max max u Tx  (6a) 
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. . ,µ+ =T RTs t H y C  (6b) 

0,µ ≥  (6c) 
∈u W  (6d) 

. . ,≤s t Ax a  (6e) 
0,≥x  (6f) 

The two-level formulation in (6) is more complex due to 
the presence of the bilinear term arising as the product of the 
dual variable λ and the uncertain parameter u in the objective 
function. However, following the proof on [18] the optimal 
solution will be at one of the vertices of the polyhedral 
uncertainty set W. In addition, the vector x of first stage 
variables do not appear in the constraints of the single 
maximization problem, so the feasible polyhedral is 
independent of the first stage decisions, thereby it has a finite 
number of vertices s =1,…,Ns. Thus a variable β representing 
the worst-case recourse cost can be added to the model, 
replacing the max-max problem, such as 

β+DA

x
minC x  (7a) 

{ }. . 1,..., ,β ≥ ∀ ∈RT
s Ss t C y s N  (7b) 

{ }1,..., ,+ = ∀ ∈s s STx Hy u s N  (7c) 

{ }0 1,..., ,≥ ∀ ∈s Sy s N  (7d) 
,≤Ax a  (7e) 

0,≥x  (7f) 
where all the recourse constraints (7b) to (7d) are listed for all 
vertices s of the uncertainty set. 
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Abstract 

Proliferation of wind power generation is increasingly making this power source an important asset 
in designs of energy and reserve markets. Intuitively, wind power producers will require the 
development of new offering strategies that maximize the expected profit in both energy and 
reserve markets while fulfilling the market rules and its operational limits. In this paper, we 
implement and exploit the controllability of the proportional control strategy. This strategy allows 
the splitting of potentially available wind power generation in energy and reserve markets. In 
addition, we take advantage of better forecast information from the different day-ahead and 
balancing stages, allowing different shares of energy and reserve in both stages. Under these 
assumptions, different mathematical methods able to deal with the uncertain nature of wind power 
generation, namely stochastic programming, with McCormick relaxation and piecewise linear 
decision rules are adapted and tested aiming to maximize the expected revenue for participating in 
both energy and reserve markets, while accounting for estimated balancing costs for failing to 
provide energy and reserve. A set of numerical examples, as well as a case-study based on real data, 
allow the analysis and evaluation of the performance and behavior of such techniques. 

An important conclusion is that the use of the proposed approaches offers a degree of freedom 
in terms of minimizing balancing costs for the wind power producer strategically to participate in 
both energy and reserve markets. 

 
Keywords 
Energy and reserve markets; offering strategies; piecewise linear decision rules; stochastic 
programming; wind power 

 

Nomenclature 

The main notation used throughout the paper is stated next for quick reference. Other symbols are 
defined as required. 
Parameters 

ε  Coefficient to control the share deviation between both stages 



λ  Prices, penalties and unit costs for wind power producers 
capλ  Capacity price for power reserve 
spλ  Spot price for energy 

wπ  Probability in each scenario w 
G  Lifted support PLDR 
L  Lifting operator PLDR 

MaxP  Maximum total power offer 
MinP  Minimum total power offer 
*
wQ  Eventually observed wind power in scenario w 

ir  Line segment PLDR 
V  Square matrix with (r+1)*(r+1) dimensions for PLDR 

Ŵ  Conditional mean forecast of the wind power distribution 
i
jz  Breakpoints for PLDR  

Subscript 
w  Wind scenario 
,i j  Number of lines 

Superscript 
+  Positive deviation for being long (down-regulation) 
−  Negative deviation for being short (up-regulation) 
*  Balancing stage 
bpt  Unit penalty cost for the wind power producer 
c  Day-ahead stage 
pt  Penalty for reserve imbalance 

Variables 
α  Control strategy (proportional share) 
δ  Random variable in PLDR 

E∆  Energy deviation 
R∆  Reserve deviation 

µ  Dual variable associated to the inequality constraints in PLDR 
E  Energy offer 
K  Slope of the linear function for PDLR 
Q  Total power offer 
R  Power reserve offer 
 

1. Introduction 

In many countries, electricity markets are facing the challenge of integrating renewable power 
(mainly, wind power) into the system while taking into consideration the uncertain production of 
these type of power plants. Wind power has reached considerable levels of penetration in some 



power systems, but most of the wind power is not yet fully competitive in the electricity markets 
because of feed-in tariffs. 

Nevertheless, competition in the energy market has been increasing, since wind power plants 
have grown year after year. Thus, decision-making tools for wind power producers (WPPs) offering 
in the energy market have been developed in the last few years. In this respect, a large number of 
studies pursuing an optimal offering strategy for the WPPs in the day-ahead market, accounting 
with potential balancing costs (assuming a price-taker behavior) can be found in literature. Studies 
examine the use of strategies for maximizing the expected utility of wind power [1,2], strategies 
considering risk-analysis and temporal dependencies [3,4], offering in the one-price and two-price 
system [5], as well as offering under opportunity cost in the imbalance system [6], and many other 
aspects [7–10]. On the other hand, optimal strategies under the price-maker assumption have 
emerged [11–16]. Some of these strategies exploit the equilibrium in oligopolistic markets [15] or 
assume a risk-constrained behavior [16]. 

Currently, wind power technology allows the WPPs to allocate some of the available power to 
provide a reserve, thereby enabling them to support some type of ancillary services [17–19]. Thus, 
different control techniques for the curtailment of the wind power production have arisen in 
literature, such as proportional and constant control [20], as well as, ΔP and output cap control [21]. 
Furthermore, this ability will be in new business models for WPPs, since they are now able to 
initiate their participation in reserve markets. Thus, promising opportunities for increasing revenues 
by offering in two market products can be exploited. In this new context, with WPPs offering in 
both energy and reserve markets, it is crucial to develop methods for the optimal offering of wind 
power in both markets. In this way, some studies have emerged on joint offering of energy and 
reserve under uncertain production [22–25]. A multi-stage stochastic approach for evaluating under 
risk analysis the joint participation of wind in both the energy and reserve markets is proposed in 
[22]. Liang et al. [23] developed an analytical approach (based on the multi-newsvendor problem 
with budget constraint), but assumed that participation in the energy and reserve markets can be 
independently determined based on a budget constraint. In contrast, an analytical and stochastic 
approach for determining the wind offer in both energy and reserve markets, assuming wind 
correlation in both markets (under different control strategies) is proposed in [24] and [25], 
respectively. 

Notwithstanding this, to the best of our knowledge, none of the existing works simultaneously 
exploits the controllability of control strategies and takes advantage of better forecast information 
from the different day-ahead and balancing stages in the joint energy and reserve wind offering 
problem. Thus, this paper exploits the controllability of the proportional control strategy in the day-
ahead and balancing markets, taking advantage of the strategy simplicity to implement it in practice 
(as discussed in [20]). Under this control strategy, we prove that allowing use of different share 
parameters for energy and reserve between both the day-ahead (first-stage) and balancing markets 
(second-stage) can result in extra income for the WPPs. Furthermore, this work adapts, tests and 
validates a number of different approaches (fixed stochastic, flexible stochastic, McCormick 
relaxation and piecewise linear decision rules – PLDR) for optimal identification of the share of 
energy and reserve for the WPPs in both the energy and reserve markets. The fixed stochastic 
approach considers a fixed share of energy and reserve in both market stages and serves as the basis 



for comparison with the remaining methods. Moreover, all proposed methods are demonstrated, 
validated and compared on the basis of numerical examples (as well as on a case study based on 
real-data), while seeking to improve the income of the WPPs, as well as the wind power 
participation in a wide range of services in electricity markets. This allows increased penetration in 
the power system. 

The paper is organized as follows. Section 2 briefly introduces wind power participation in the 
energy and reserve markets, detailing the impact and required market changes for allowing WPPs to 
participate in the reserve market. Section 3 presents the general formulation for wind power revenue 
in both the energy and reserve markets. Section 4 describes in detail the proposed approaches (i.e. 
the fixed and flexible stochastic, the McCormick and PLDR methods). Section 5 verifies, tests and 
compares all approaches on a set of numerical examples, as well as on a case study concerning real 
data. Finally, conclusions and future work are gathered in Section 6. 

2. Wind offering in energy and reserve markets 

The current developments in wind-turbine technology have encouraged the WPPs to show interest 
in the reserve market, thereby seeking extra revenues. New supply of different market products has 
encouraged the WPPs to rethink their strategic behavior in the wholesale market. On the one hand, 
the WPPs may split their available wind power into different markets to improve profit and reduce 
the risk of participating on one single product. On the other hand, potential penalties for power 
balancing deviations in both market products must be taken into account to avoid significant 
penalties that may reduce the expected income from both market products. 

Day-ahead Stage
Expected market prices

Energy

Reserve

Offering bids

Energy

Reserve

Balancing Stage
Production

Energy delivered

Deployed reserve

Balancing costs

Energy

Reserve

 
Figure 1. Wind power model in the energy and reserve markets. 



 
In this respect, a strategic market model for the WPPs to participate in the energy and reserve 

markets is studied. This model allows WPPs to offer their bids for energy and reserve in the day-
ahead market while accounting with expected balancing costs for missing expected production of 
energy and reserve during the balancing stage (Fig.1). Additionally, (through control strategies) the 
model allows that the share of energy and reserve established in the day-ahead stage (ratio between 
energy and reserve) can be different in the balancing stage, thereby allowing WPPs to minimize 
their power deviations while reducing expected balancing costs. This model characteristic is 
important in that it allows WPPs to use better information about their wind power forecast (closer to 
the energy delivery) to define the share of energy and reserve assumed in the balancing stage. In 
more detail, this flexibility allows WPPs to push decisions close to the real-time, thereby improving 
the quality of their decisions and reducing the lead time effect between the day-ahead decisions and 
the energy and services delivered. 

In terms of system reliability, this flexible characteristic of the model may reduce to some extent 
the uncertainty of the wind power production, since it uses better forecast information (closer to 
real-time) to define the energy and reserve share in the balancing stage. Thus, the flexible approach 
can decrease the energy and reserve deviations between day-ahead and balancing stage in 
comparison to the approach of same energy and reserve share between the day-ahead and balancing 
stage. This means that, to some extent, the level of reserve needed in the system can be slightly 
reduced if the wind power producer can change its energy and reserve share. 

However, this strategic offering will require some changes in current market rules. For instance, 
the WPPs should be allowed to offer in the reserve market in a strategic way. A smart and smooth 
way of introducing wind power in current reserve markets is to allow the WPPs and conventional 
generators to jointly offer in the reserve market. Thus, conventional generators can be used to some 
extent to cover the uncertainty of the wind power producer. However, further changes are still 
required for full participation of wind power in the reserve market. For example, introducing a new 
reserve penalty scheme to penalize WPPs for power deviations in the reserve market could force 
uncertain WPPs to offer their potential available power with some level of certainty, as suggested in 
[23,24] and implemented in the proposed model. Furthermore, the reserve market design with high 
penetration of uncertain generation may require operating closer to the delivery, since reserve 
requirements may dynamically vary on and hourly or even minute-by-minute basis [26]. Thus, 
WPPs will very probably be called (even forced to some extent) to contribute under these new 
service conditions. In this context, the flexible characteristic proposed in this work may to some 
extent cover the participation of WPPs in these new market features, where market decisions are 
made closer and closer to the delivery.  

3. General formulation of market revenues 

A general formulation for the revenue of the WPPs in energy and reserve markets is presented in 
[24]. Following a stochastic programming approach from that, the maximization of the revenue 
from day-ahead and reserve markets, accounting for the penalties from the balancing market can be 
expressed as 



* * *cap c sp
w w w w

w
Rev R E T Oλ p λ

∈Ω

 = + − − ∑   (1) 

where λsp is the expected spot price,  Ew
*  is the amount of expected delivered energy in scenario w, 

λcap is the expected capacity price for contracting reserve, Rc is the expected contracted level of 
power reserve in day-ahead stage, Tw

*  is the balancing costs from the energy deviations, Zw
*  is the 

expected penalty cost for failing to provide the scheduled reserve and πw is the probability in each 
scenario w. Time indices are not used, since all variables and parameters are for the same market 
time unit. 

Additionally, it is assumed that the WPP behaves as a price-taker, which means that the 
production of the WPP is independent of market prices and penalties. Following that behavior and 
the certainty equivalent theory [9,27], all the prices are linear in the expressions below. 

The balancing costs for energy deviations are usually defined as  
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where (Ew
*  - Ec) is the energy imbalance between the energy delivered  Ew

*  and the energy contracted 

(offered) Ec. The variables λ* ,+ and λ* ,– are the regulation unit costs for positive and negative 
deviations, i.e., 
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where λc ,+ is the unit down-regulation price for being long, while λc ,– is the up-regulation price for 
being short. Additionally, we consider the two-price settlement rule as in the NordPool for mapping 
the balancing costs for energy deviations [1]. The settlement rule is part of the balancing 
mechanism for pricing the deviations from day-ahead contracts to the delivered production at the 
balancing stage. One-price and two-price system rules are not discussed in detail in this work. 
Instead, interested readers are referred to [28]. In cases of negative system imbalance (energy 
surplus – need for downward regulation), it holds that  

,

,
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Otherwise, when system imbalance is positive (energy deficit – need of upward regulation), it 
comes to 
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In hours of perfect balance, both λc ,+ and λc ,– are equal to the spot price λsp. In parallel, the 
costs for the imbalance on the reserve product are formulated based on the one-price system rule 
(since the penalty for failing to provide this service is directly related to the up/down-regulating 
price for imbalance of the power reserve), such that 
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where (Rw
*  - Rc) refers to the reserve power imbalance between the realized level of reserve Rw

*  in 
the balancing stage and the reserve contracted (offered) Rc in the day-ahead stage. λbpt ,+ is the unit 

penalty for the WPP when generating more power than that contracted (surplus). In contrast, λbpt ,– 
is the unit penalty cost when the WPP generates less power than that contracted. It holds that 

, ,

, ,
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bpt pt cap

λ λ λ

λ λ λ

+ +

− −

= −

= −
  (7) 

hence λbpt ,+=0 since (extra) positive reserve is not detrimental to the system’s reliability. λpt ,– is the 
penalty for negative reserve imbalance, weighted by the probability that reserve is needed. 

4. Optimal offer formulation 

Although, several wind control techniques have been emerging, few considerations on the strategic 
implementation of these control techniques in the market perspective have been made [24,25]. As 
demonstrated in [24], the proportional wind control technique [20] presents a logical and simple 
strategic behavior in terms of participation in the energy and reserve markets. Thus, we build our 
different optimization approaches based on this assumption. Furthermore, we have improved the 
proposed approaches, allowing the WPP to establish different shares of energy and reserve in both 
the day-ahead and balancing stages. 

4.1. Flexible stochastic approach 

The full flexible stochastic approach for the revenue of WPPs in the energy and reserve markets is 
given by 

* *, *, ,cap c sp bpt
w w w w w

w
max R E E E Rλ p λ λ λ λ+ + − − − −

∈Ω
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* * *
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*c
w wR R R w−− ≤ ∆ ∀ ∈Ω  (10f) 

where ∆E+ is the excess of energy incurred by the WPP, ∆E− is the deficit of energy incurred by 
the WPP, ∆R− is the deficit of reserve incurred by the WPP, PMin and PMax are the bounds of the 
total power offer in the day-ahead stage. This approach is characterized by its total freedom to 
choose the energy and reserve share in each stage of the problem, i.e. the WPPs can take advantage 
of the intermediate information about wind power production, thereby reducing the expected costs 
at the balancing stage. This means that the WPP can adjust the share of energy and reserve in the 
balancing stage in line with the expected power production in each scenario w. 



4.2. Fixed stochastic approach 

The fixed stochastic approach relies on the concept of constraining the use of information in the 
balancing stage to help in the day-ahead decision. For this purpose, the proportional control strategy 
is used. The control strategy consists in the proportional split of the energy and reserve given by αc. 
In addition to the mathematical formulation from the flexible approach, constraints (11a) to (11e) 
are included, thus representing the proportional strategy. 

c c cE Qα=  (11a) 

(1 )c c cR Qα= −  (11b) 
* * *
w w wE Q wα= ∀ ∈Ω  (11c) 
* * *(1 )w w wR Q wα= − ∀ ∈Ω  (11d) 
* c
w wα α= ∀ ∈Ω  (11e) 

where the energy and reserve offered in the day-ahead market is determined in (11a) and (11b), 
respectively. Both constraints contain bilinear terms (since two different variables are multiplying, 
the total power offer Qc and the control share αc which split the total power offer into energy and 
reserve to offer in the day-ahead market), thus forming a system of bilinear equations which is non-
convex. The non-convexity of both equations makes the problem more complex, but it is still 
feasible with proper solvers. The problem has been carried out with CONOPT [29] as a Non-Linear 
Programming (NLP) solver. 

Besides this, constraints (11c) and (11d) determine the energy and reserve share in the balancing 
stage for each scenario w. The fixed behavior of this approach is achieved by assuming that the 
control parameter for splitting the energy and reserve remains the same in both the day-ahead and 
balancing stages, i.e., α*=αc. This constraint (11e) is inferred in the stochastic models as the non-
anticipativity constraint, thereby preventing the WPPs from using information close to the 
balancing stage to influence day-ahead decisions. 

4.3. Stochastic approach under McCormick relaxation 

A hybrid system between the flexible and fixed approach is proposed in this section, with two 
distinct goals. The first one aims to turn convex the bilinear constraints from the fixed approach by 
using McCormick relaxation theory [30]. It is noteworthy that McCormick relaxation theory has 
been chosen among other relaxation techniques due to its ability to provide a tight approximation 
gap of the bilinear constraints and easy implementation. The second goal aims to control the 
influence of balancing stage information in the day-ahead decisions, by means of a coefficient to 
bound the deviation between the share parameter in the day-ahead and balancing stages. This goal 
emerges with the perspective of giving the WPP some controllability of the use of information close 
to the real-time, thereby allowing WPPs to quantify the level of anticipatory decision of the 
balancing stage, which cannot be provided through the fixed or flexible approaches. 

Under the assumptions of the fixed stochastic approach, the McCormick relaxation theory [30] 
is used to relax the bilinear constraints and turn the problem convex. McCormick’s relaxation 
provides a very good approximation of the bilinear terms, ensuring that the problem is convex, and 



thereby requiring only traditional Linear Programing (LP) methods to solve the problem, which 
ensures optimal solutions. Thus, the objective function (10a) is subjected to 

*c Min
wE P wα≥ ∀ ∈Ω  (12a) 
*c Min c Min
wE P Q P wα≤ + − ∀ ∈Ω  (12b) 

*c Max
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*c Max c Max
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*c
w wε α α ε− ≤ − ≤ ∀ ∈Ω  (12e) 

where (12a) to (12d) is the result of the relaxation of the two bilinear constraints of the fixed 
approach. On the other hand, the control of the influence of balancing stage information in day-
ahead decisions is modeled in (12e), where 𝜀𝜀 is a coefficient that defines the difference between the 
share parameter in both the day-ahead and balancing stages. The coefficient varies between 0 and 1, 
thus influencing the behavior of the split between energy and reserve. If 𝜀𝜀 is close to 0, the behavior 
of this approach is close to the fixed stochastic approach. Otherwise, when 𝜀𝜀 is close to 1, this 
approach tends to behave similarly to the flexible stochastic approach. Additionally, the model stays 
complete with the inclusion of (10c) to (10f), and (11c), representing the split of the available power 
in energy and reserve in both stages, and the deviation of energy and reserve in the balancing stage, 
respectively. 

4.4. Piecewise linear decision rules with axial segmentation 

A different and interesting way of modeling the recourse function of the two-stage stochastic 
problem of WPPs offering in day-ahead market while accounting for balancing costs is through 
linear decision rules. Linear decision rules are often used to linearly model the uncertainty of the 
problems, since it can provide tractable upper and lower bounds of the stochastic program. Indeed, 
the main reason why linear decision rules are used instead of stochastic programing is because it 
does not need discrete distribution of the uncertain parameter in contrast with stochastic 
programming. However, the linearization of uncertain variables often comes with rough 
approximations of the uncertainty, since the uncertainty can behave very differently from linear 
functions. Thereby, the solution’s quality provided by this method can leave much to be desired. 

One way to reduce the approximation gap of traditional linear decision rules is by defining 
uncertainty through a piecewise linear function. This approach increases the flexibility of the LDR 
method by approximating to the natural recourse function of the problem, however, the problem 
size grows significantly. An illustrative example of the decisions made by the PLDR is shown in 
Fig. 2. One can see that the piecewise approach improves the flexibility of the decisions in 
comparison with simple linear decision rules. 

 



 
Figure 2. Illustrative example of a natural recourse function (green), linear decision rules 
approximation (black) and piecewise linear decision rules approximation (blue) under the 
realization of the uncertain parameter. 

 
In this context, we apply the method of piecewise linear continuous decisions rules with axial 

segmentation, as developed in [31], to ensure that a good linear approximation to the recourse 
problem is achieved. The method requires the establishment of breakpoints to model the piecewise 
function. For instance, quantiles of the wind power distribution can be used to define manually 
these breakpoints. An improved technique of the PLDR (the PLDR with general segmentation) 
allows optimal estimation of these breakpoints, although the complexity of the problem increases 
significantly. Thus, we restrict our attention to the PLDR with axial segmentation, by which 
specific breakpoints for the piecewise function are defined. 

The PLDR with axial segmentation idea is to expand the sample space of the uncertain 
parameter δi into ri lines with ri –1 breakpoints zj

i for j∈{1,…,ri –1} and i ∈{1,…,k} 
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i

i i
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where δi is the lower bound and δ�i the upper bound of δi. 
Following [31], one can introduce the lifted space ℝ𝑘𝑘′  of the piecewise linear parameters 

𝛿𝛿𝑖𝑖′ ∈ ℝ𝑟𝑟𝑖𝑖 in the lifted support 𝐺𝐺′, where 𝛿𝛿𝑖𝑖′ ∈ 𝐺𝐺′ and 𝛿𝛿′ = (1, 𝛿𝛿2′⊤, … , 𝛿𝛿𝑘𝑘′⊤)⊤. 
Thus, the breakpoints are used to define the lifting operator Li,j as  
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where j ∈{1,…,ri} and i ∈{2,…,k}. The retraction operator converts the lifted parameters into the 
original parameters through 

𝐺𝐺�′ = �𝛿𝛿′ ∈ 𝑅𝑅𝑘𝑘′:𝑉𝑉𝑖𝑖′ �
1
𝛿𝛿𝑖𝑖′
� ≥ 0      ∀ 𝑖𝑖 ∈  {2, … ,𝑘𝑘}� (13c) 



such that V is a square matrix with (ri +1)x(ri +1) dimensions, defined as  
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By applying these theorems to the wind offering problem, it is assumed that the share of energy 
and reserve in the day-ahead and balancing stages can be different (same assumption of the flexible 
approach). Thus, the PLDR approach is applied under the flexible approach formulation detailed in 
section 4.1. Suppose that the wind power uncertainty is expressed in the following piecewise linear 
form 
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where 𝛿𝛿𝑖𝑖′ is the random variable in each line i, 𝐾𝐾𝑖𝑖𝑊𝑊 is the slope parameter of the linear function in 
each line i and 𝑊𝑊�  is the conditional mean forecast of the wind power distribution which does not 
depend on the actual realization of the uncertainty δ. The second stage variables also behave 
piecewise linearly 
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4.4.1. Equality constraints reformulation 
Let us consider the equality constraints (10d) and (10e) of the second stage problem (model in 
section 4.1. for the flexible approach) for reformulation. This means that only the equality 
constraints with uncertain variables from the flexible approach formulation are considered for 



reformulation. By replacing the recourse variables of (10e) with the PLDR previously defined, it 
gives 
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Following [32–34], this equality constraint can be reformulated in a way to eliminate the 
random variable δ and assure finite cardinality, hence 
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Similar reformulation is performed for the other equality constraint (10d), where its final form is 
assumed as  
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4.4.2. Inequality constraint reformulation 
Let us consider the inequality constraint (10f) of the second stage problem for reformulation. By 
replacing the PLDR for the recourse decision variables, this inequality can be reformulated as 
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where μi is the dual variable associated to the i-th inequality constraint. By applying duality theory 
[32,35] on the minimization problem on the left-hand-side of the above inequality, one can 
transform it to the following maximization problem 
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The equivalent representation of the above problem in a system of constraints is 
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0µ ≥ ∀i i  (17c) 
where the set of inequalities (17) has finite cardinality. Moreover, it is noteworthy that all recourse 
decision variables (in its piecewise linear form 14b – 14f) from the second stage problem are 



positive variables. Thus, it is required performing similar reformulations to all these inequality 
constraints affected by the uncertainty.  
4.4.3. Objective function reformulation 
The reformulation of the objective function leads to the employment of the PLDR as expressed in 
(14). This yields 
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The expectation over the uncertain parameter for the PLDR is a model based on the lifting 
operator matrix Li,j. and the probability for each line segment 𝜋𝜋𝑟𝑟 
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Thus, by replacing the expectation calculus (18b) of the uncertain parameter 𝛿𝛿𝑖𝑖′ in the objective 
function (18a), one can obtain the final form of the objective function for the PLDR model. 

 

4.4.4. Final model with compact formulation 
Finally, the wind offering problem under PLDR assumes its piecewise linear form as 

max (18 )a  

(19) 
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(17 ) (17 )

b e
a c
−
−  

* *, , , , 0E P E E P+ − −∆ ∆ ∆ ≥   in form of (17)  
where (10b) and (10c) represents the constraints for the first stage decision making process, detailed 
in section 4.1. Furthermore, all positive second stage decision variables must be in their piecewise 
linear form and represented by the set of inequalities as in (17). 

5. Evaluation of wind offering methods 

5.1. Illustrative case 

An illustrative example to test and evaluate the proposed approaches has been performed under 
specific assumptions and parameters. Supposing a wind power plant of 12 MW with a set of 100 
wind power scenarios from [36]. It is assumed that all the wind power scenarios have equal 
probability. Additionally, a minimum power offer of 3 MW is established as a minimum 
requirement to participate in the market, ensuring some proper profit to the wind power producer. 



Furthermore, a set of prices for energy and reserve, as well as unit costs for energy and reserve 
deviations during the balancing stage is gathered in Table I.  
 Table 1 

In order to design the piecewise function, a set of breakpoints needs to be defined. For this 
numerical example, three breakpoints have been established, corresponding to the quantiles of 25%, 
50% and 75% of the wind power distribution, respectively. 

The behavior of each approach under this test case for offering in the energy market is depicted 
in Fig. 3. Observe the different behavior for each approach. The fixed stochastic approach places a 
high offer of energy in the day-ahead market (about 7.8 MW), while the flexible, McCormick and 
the PLDR methods place small energy offers, thereby allocating most of the available power to the 
reserve market. In this case, the fixed approach is the most risk-averse method by offering a high 
bid in the energy market, to the detriment of participating in the reserve market. The behavior of the 
fixed method can be explained by the inclusion of the non-anticipativity constraint (fixing the share 
parameter in both day-ahead and market stages), since it blocks the proper use of the better 
information about the expected production during the balancing stage. The PLDR approach tends to 
follow the behavior shown by the flexible and McCormick approaches, however, one can observe 
the slope change of the linear function around the breakpoints. 

 
Figure 3. Behavior of energy offered (Ec) and delivered (E*) in the market for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rule methods. 

 
The participation of the wind power producer in the reserve market for each approach is 

presented in Fig. 4. One can verify that there is no participation in the reserve market through the 
fixed approach. The fixed approach presents an all-or-nothing behavior, where all the available 
power is submitted to one single market (energy or reserve, depending on the relation between 
prices and penalties for deviations). On the other hand, the remaining approaches reserve some 
power to participate in the reserve market. Thus, the flexible approach is the method that allows a 
full degree of freedom for the decision making process under the participation in both markets, 
taking into account penalties in the balancing stage. Furthermore, the McCormick approach presents 
a very similar behavior to the flexible approach, however the differences in the performance are due 
to the relaxation of the non-linearity in the proportional strategy.  



 
Figure 4. Behavior of reserve offered (Rc) and deployed (R*) in the market for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rules methods. 

 
It is noteworthy that, for lower levels of wind power available, both flexible and the PLDR 

approaches fully allocate the available wind power to the reserve market, thereby reducing the 
expected costs in the balancing stage. i.e. by allocating all the available power to the reserve market, 
the expected costs in this market will be lower, since the penalty for failing to provide power 
reserve (λbpt,−) is much higher than the penalty for failing to provide energy (λ∗,−). On the other 
hand, for levels of available wind power higher than the bid offered in the reserve market (Pc), both 
the flexible and McCormick approaches establish the deployed reserve (P*) as equal to that offered 
in the day-ahead market, then allocating the remaining available power to the energy market. In 
contrast, the PLDR approach reserves more power in the balancing stage (P*) than is offered in the 
reserve market (Pc), thus assuming a loss opportunity cost for ensuring this robustness. 

The parameter representing the share between energy and reserve at day-ahead and balancing 
stage is shown in Fig. 5. The flexible, McCormick and the PLDR methods have a behavior in which 
most of the available power is submitted to the reserve market in the day-ahead stage, while in the 
balancing stage there is a trend to increase the share for providing energy in cases of medium-high 
levels of the available power (above 7 MW). Permission to establish different share parameters 
among the trading floors increases the freedom for decision-making, thereby increasing the 
potential profit. 



 
Figure 5. Share parameter in the day-ahead (αc) and balancing stage (α*) for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rules methods. 
 

The expected revenue for each method is shown in Table 2. It is noteworthy that the flexible 
approach has the highest expected revenue, while in the opposite side is the fixed approach. The 
approach with McCormick relaxation has been performed for different ε (ε=1 and ε=0.01). In more 
detail, the approach with ε=1 obtains an expected revenue and behavior close to the flexible 
approach, while the approach with ε=0.01 performed closely to the fixed approach results, as 
expected. This is true, since ε defines the deviation between the share parameter in both the day-
ahead and balancing stages. The PLDR model obtains expected revenue very close to the fixed 
approach, although with distinct energy and reserve solutions. The PLDR model could get better 
expected revenue by allocating more available power (for middle-high levels of available wind 
power) to the energy market, thereby reducing the loss opportunity cost (i.e. reducing the excess of 
available power that is reserved).  
 Table 2 

In order to analyze the energy and reserve distributions under potential realization of the wind 
scenarios, box plots for energy (E*) and reserve (R*) are illustrated in Fig. 6 and Fig. 7, respectively. 
Thus, Fig. 6 displays the distribution in a standardized way of the expected delivered energy. One 
can see that each approach has a certain pattern for distributing the available wind power to energy 
in each scenario. The PLDR approach is the approach with the smaller interquartile range, which 
means that the dispersion of the data set is closer to the median of the distribution compared with 
the other approaches. It is noteworthy that the flexible, McCormick with ε=1 and PLDR approaches 
just focus on a small part of the available wind power to produce energy than the fixed and 
McCormick (ε=0.01) approaches. In contrast, the remaining available wind power is allocated to 
provide a power reserve, as can be seen in Fig. 7. 



 
Figure 6. Box plot for energy amounts settled through the balancing stage by the proposed 
methodologies (fixed, flexible, McCormick with ε=1 and ε=0.01, and piecewise linear decision 
rules). 

In what concerns the supply of power reserve, the fixed approach does not provide reserve, so 
the distribution data set of the variable R* is 0. From Fig. 7, one can observe a small range of 
variation in providing reserve, which makes sense, since the penalty for failing to provide reserve is 
substantially higher than the case of the energy penalties. Thus, the interquartile range is close to 
zero, i.e. the distribution data is concentrated in the median of the distribution. However, some of 
the approaches (e.g. flexible, McCormick with ε=1 and PLDR) scheduled low values of reserve in a 
few scenarios, being such scenarios represented by the suspected outliers and outliers depicted in 
Fig. 7. 
 

 
Figure 7. Box plot for reserve deployment in the balancing stage by the proposed methodologies 
(fixed, flexible, McCormick with ε=1 and ε=0.01, and piecewise linear decision rules). 



 

5.2. Sensitivity analysis for McCormick stochastic approach 

A sensitivity analysis for the stochastic approach under the McCormick relaxation is performed. We 
analyze different values for the deviation (ε) between the day-ahead and balancing share 
parameters. Thus, Fig.8 shows the behavior of the energy offered in the day-ahead stage and 
delivered in the balancing stage for this methodology under different values of ε. One can observe 
that, for small deviations of ε (αc-αw

* ), the energy offered and delivered approximates to the results 
of the fixed stochastic approach shown in Fig.4, as expected. Besides that, intermediate results are 
ensured by the methodology with ε=0.05. It is noteworthy that, as long as the coefficient ε 
increases, the methodology results tend to converge to the flexible stochastic approach presented in 
Fig.4. 

 
Figure 8. Energy offered (Ec) and delivered (E*) for McCormick approach under different share 
deviations (ε). 

 
The expected offer and deployed reserve for the McCormick approach with different values of 

ε, are depicted in Fig.9. As expected, the behavior of this approach in the reserve market is similar 
to what is presented in Fig.5. As long as the value of ε decreases, the power offered in the reserve 
market also decreases. It is noteworthy that there is similar behavior between the approach with 
ε=0.1 and ε=1, where a higher level of reserve offer is settled for the approach with ε=0.1. In a 
closer view of high levels of available wind power, the approach with ε=0.1 deploys more reserve 
than that offered in the day-ahead stage, resulting in a loss opportunity cost to the wind power 
producer. 



 
Figure 9. Reserve offered (Rc) and deployed (R*) for McCormick approach under different share 
deviations (ε). 

 
The performance of the share parameters in both stages is shown in Fig.10. Note that αw

*  tends to 
follow the share established in the day-ahead stage. Additionally, it is interesting to note that the 
performance of the share parameter based on ε=1 and ε=0.1 is very similar. In fact, for lower levels 
of available wind power (lower than 7 MW), both conjectures get similar results, which means that 
the constraints concerning ε are not bidding. Moreover, for the conjecture with ε=1, it is clear that 
αw

*  does not closely follow αc due to its degree of freedom in the methodology, while the opposite 
occurs for the conjecture of ε=0.1 with available wind power lower than 8 MW. 

 
Figure 10. Share parameter in the day-ahead (αc) and balancing stages (α*) for the McCormick 
approach under different share deviations (ε). 

5.3. Analysis of the methodologies under real data 

A case study based on a wind power plant with 15 MW of installed capacity participating in the 
Nord Pool is assumed. The wind data is based on power measurements and a series of 48 h-ahead 



point predictions between March 2001 and April 2003 taken from [1]. This data set contains the 
quantiles of the wind power distribution, as well as the measurement data for 48 h-ahead. To use 
this data for validation of the proposed methodologies, scenarios need to be generated. Thus, the 
quantiles for the point predictions were used to generate 100 scenarios for each time interval based 
on the scenario generation process described in [37]. Besides, prices and penalties for energy and 
reserve are required. Advance knowledge of the expected prices and penalties is assumed. However 
and for this specific case, we consider the Nord Pool prices and penalties for the same period of the 
wind data (between March 2001 and April 2003). It is noteworthy that traditional electricity 
markets have no penalties for wind failing to provide the reserve, since current market rules allow 
no participation of wind in the reserve market. In this context, a reserve penalty for failing to 
provide reserve market must be assumed. Thus, the reserve penalty for negative reserve imbalance 
(λpt,–) is assumed to be three times higher than the capacity price (λcap) from the reserve market, 
since the deficit of reserve in real-time may reduce significantly the proper levels of security and 
reliability of the system. 

Besides the common assumptions for all methodologies used in this work, the PLDR approach 
requires the definition of breakpoints. Thus, the definition of breakpoints for the PLDR approach 
follows the same assumptions as the numerical example, i.e., three breakpoints for modelling the 
piecewise function based on the 25th, 50th and 75th quantile of the wind distribution function for 
each hour and day are considered. 

The cumulative results for energy production and revenue over the two years for each 
methodology are shown in Table 3. The results depict the cumulative offering bids in day-ahead 
stage under forecast scenarios. Overall, one can see that the fixed approach offers most of the 
expected available wind power to the energy market. In contrast, the remaining methods offer the 
expected available wind power in both markets in a balanced way. i.e., they try improving the 
expected profit through participating in the reserve market, accounting with a high reserve penalty 
for failing to provide the contracted reserve. In terms of expected revenue, the flexible approach is 
the one with higher revenue, followed by the McCormick approach with ε=1. The worst expected 
revenue comes from the fixed approach, presenting a conservative behavior, since it practically only 
offers in the energy market. Thus, the flexible approach can improve the expected revenue by about 
3% over the fixed approach. Additionally, the McCormick approach with ε=0.01 presents a 
behavior closer to the fixed approach, as expected. This is due to the parameter ε that controls the 
deviation of the share in the energy and reserve markets between the day-ahead and the balancing 
stage, which in this case is too restrictive. 
 Table 3 

In contrast, the deployed wind power as energy and reserve and respective revenue is shown in 
Table 4. The results are based on an evaluation of the offered bids and share from the different 
approaches under the wind measurement data. Thus, the expected revenue (in Table 4) represents 
the evaluation of the offered bids (of each approach) under the realization of wind power. The wind 
measurement data concerns the realization of wind power generation for the two-year data set. 
Furthermore, the energy and reserve share of the realized wind power have been determined using 
the share parameter from the second stage problem of each method. 
 Table 4 



One can see that the behavior of the methods under the realization of wind power is similar to 
the expected results (from Table 3). However, the total amount of realized power is lower than the 
total expected power (from Table 3), which is also reflected in the energy and reserve share, as well 
as in the expected revenue. In more detail, the expected revenue under the measurement data of 
wind power is significantly lower than the expected revenue from the methods under expectation, 
which makes sense, since deviations of energy and reserve production from day-ahead and 
balancing take into account the balancing penalties for energy and reserve. It is noteworthy, that the 
deviation between the expected revenue from the optimization (Table 3) and validation (Table 4) 
process for each method is 34.30%, 18.36%, 18.25%, 30.07% and 31.96%, respectively. 

Nevertheless, the flexible approach is the one with higher expected revenue, while the fixed 
approach is the method with worst expected revenue. In fact, the difference between the flexible 
and fixed approach in terms of expected revenue exceeds 22%. Furthermore, it is noteworthy that 
the decrease of power is higher in the energy share than in the reserve share for most of the 
methods, which is understandable, since the penalties for energy deviations are considerably lower 
than the reserve penalty for missing the contracted offer.  

6. Conclusions 

The current participation of the wind power producers in electricity markets will constantly be 
changing, since wind turbines are now able to provide energy and reserve services in the electricity 
market. 

In this work, four different approaches (fixed and flexible stochastic, under McCormick 
relaxation and piecewise linear decision rules) for wind power producer’s offering in the energy and 
reserve market are formulated. All the approaches are based on the proportional control paradigm 
that allocates proportional share of the available wind power to the energy and reserve markets. The 
fixed stochastic approach shows a risk-averse behavior by fixing the share parameter between the 
day-ahead and balancing stages. On the opposite direction, the flexible stochastic approach presents 
a risk-neutral behavior (thereby, increasing the expected revenue), since this approach allows the 
share parameter assuming different values in both the day-ahead and balancing stages, however, 
requiring a certain level of perfect information on the balancing stage. On the other hand, piecewise 
linear decision rules incorporates a more conservative trend by allocating almost all the available 
wind power to single market participation. This method will always compete with the fixed 
stochastic approach, since it contemplates robust characteristics, which limits the economic 
performance of the method. Although, the method is likely to improve by considering better 
decision of the breakpoints, its improvement will most likely be small, thereby the interest of using 
piecewise linear decision rules is to some extent limited. In contrast, the stochastic approach with 
McCormick relaxation gives full degree of freedom to the wind power producers to impose a risk-
averse or risk-neutral behavior by just adjusting the coefficient that defines the difference between 
the share parameter in both the day-ahead and balancing stages. An important conclusion from this 
work is that all the proposed approaches provide a certain range of solutions that may cover 
different goals and behaviors of the wind power producer, e.g. maximizing revenue and 
participation in the energy and reserve market. Thus, the use of such proposed methods can improve 



the expected revenue of wind power producers compared to the revenue with current energy-only 
market participation. 

Future work will focus on improving the performance of the piecewise linear decision rules by 
optimizing the number and value of the breakpoints in the piecewise function. This may be done by 
studying the version of piecewise linear decision rules with general segmentation. 
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Table 1. Prices and units costs for energy and reserve 

Energy Price (€/MWh) Reserve Price(€/MW) 
spλ  40 capλ  41 

,cλ +  30 ,bptλ +  0 
,cλ −  50 ,ptλ −  96 

 



Table 2. Expected energy and reserve bids, as well as expected revenue of the simulation for all 
proposed approaches (fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy bid (MW) 7.84 0.98 1.33 7.13 0.21 
Reserve bid (MW) 0 6.86 6.34 0.72 7.33 
Total expected power (MW) 7.84 7.84 7.67 7.85 7.54 
Expected revenue (€) 305.74 311.75 310.95 306.13 305.92 

 
 



Table 3. Expected cumulative simulation results of two years of data for all proposed approaches 
(fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy bid (MW) 77 116.14 43 467.19 43 826.89 75 870.59 46 802.13 
Reserve bid (MW) 27.14 33 898.43 28 703.61 1 260.12 32 892.09 
Total expected power (MW) 77 143.28 77 365.62 72 530.50 77 130.71 79 694.22 
Expected revenue (€) 1 905 292.08 1 965 930.58 1 951 840.02 1 907 032.48 1 919 319.43 

 



Table 4. Deployed cumulative simulation results of two years of data for all proposed approaches 
(fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy share (MW) 66 075.92 33 608.11 38 309.53 64 989.56 44 622.15 
Reserve share (MW) 21.42 32 489.23 27 787.81 1 107.78 21 475.19 
Total expected power (MW) 66 097.34 66 097.34 66 097.34 66 097.34 66 097.34 
Expected revenue (€) 1 251 807.04 1 604 984.40 1 595 615.68 1 333 659.36 1 305 892.66 
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