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Connectivity between the terrestrial and marine environment in the Artic is changing

as a result of climate change, influencing both freshwater budgets, and the supply of

carbon to the sea. This study characterizes the optical properties of dissolved organic

matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across

the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine

humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with

a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and

dissolved organic carbon (DOC) were highly correlated and had their distribution coupled

with hydrographical conditions. Higher DOM concentration and degree of humification

were associated with the low salinity waters of the Lena River. Values decreased toward

the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of

DOM mixing in relation to the vertical structure of the water column, as reflecting the

hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In

surface waters above the pycnocline there was a sharper decrease in DOM concentration

in relation to salinity indicating removal. In the bottom water layer the DOM decrease

within salinity was less. We propose there is a removal of DOM occurring primarily at the

surface layer, which is likely driven by photodegradation and flocculation.

Keywords: DOC, CDOM, FDOM, PARAFAC, optical indices, hydrography, Laptev Sea, Arctic

INTRODUCTION

Colored or chromophoric dissolved organic matter (CDOM) is the fraction of DOM that absorbs
light and it is one of the dominant components influencing the underwater light field in coastal
and inner-shelf waters (Siegel et al., 2002; Nelson and Siegel, 2013). CDOM absorbs light in the
ultraviolet (UV) and visible wavelength ranges and thus it is able to shield aquatic biota from
harmful UV radiation (Arrigo and Brown, 1996) and can be detected by ocean color remote sensing
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(Siegel et al., 2002, 2005). As a result of its UV absorbing
properties, CDOM is susceptible to photodegradation,
which either induces direct mineralization or produces
microbiologically labile low molecular weight compounds,
which are subsequently utilized by bacteria (Mopper and Kieber,
2002). Fluorescent DOM (FDOM), which is the part of CDOM
able to fluoresce, can be used to trace the supply, mixing,
and removal of different fractions of DOM (Yamashita and
Tanoue, 2003, 2004; Coble, 2007; Chari et al., 2013; Fukuzaki
et al., 2014). With the recent adaptation of the Parallel Factor
Analysis (PARAFAC) for analysis of DOM, a more holistic
analysis of excitation-emission matrices (EEMs) allows for the
differentiation of wider range of underlying DOM components
(Stedmon and Bro, 2008). A recent study showed significant
associations between molecular groups and PARAFAC-derived
DOM components (Stubbins et al., 2014). For instance, the
humic-like fluorescent peak A (e.g., Coble, 2007) is associated
with high molecular weight compounds with little nitrogen,
whereas the humic-like peak C correlated to lignin-derived
phenols and the amino acid-like peak T was associated to low
molecular weight and aromatic content compounds, such as
hydrolysable amino acids (Stubbins et al., 2014).

By applying the EEMs/PARAFAC technique, the distribution
and dynamics of fluorescent DOM have been studied in a
wide range of environments varying from lakes (Zhang et al.,
2009), estuaries (Stedmon and Markager, 2005; Singh et al.,
2010), coastal and shelf (Murphy et al., 2008; Kowalczuk et al.,
2010; Para et al., 2010) to pelagic waters (Yamashita et al.,
2010; Jørgensen et al., 2011; Kowalczuk et al., 2013). In coastal
regions, especially in areas close to river outflows, the riverine
input, and its mixing with marine waters are the major factors
controlling the distribution and composition of DOM (Stedmon
and Markager, 2003; Guo et al., 2007; Alling et al., 2010). In these
waters processes such as photobleaching (Opsahl and Benner,
1998; Stubbins et al., 2006; Helms et al., 2008, 2014; Porcal et al.,
2013, 2015), sorption to sediments, flocculation (Uher et al.,
2001; Shank et al., 2005; Guo et al., 2007; von Wachenfeldt
et al., 2008; Asmala et al., 2014), biological uptake (Boyd and
Osburn, 2004), biological release (Romera-Castillo et al., 2010),
and photo-production of DOM (Helms et al., 2014) can also
play a crucial role in controlling the amount, composition, and
reactivity of DOM in these environments.

The Arctic Ocean receives considerable input of terrigenous
carbon mobilized from high latitude carbon-rich soils and
peatlands (Opsahl et al., 1999; Benner et al., 2004). This
terrigenous material is supplied by Arctic rivers, which account
for more than 10% of the total riverine and terrestrial organic
carbon into the global ocean waters (Opsahl et al., 1999; Benner
et al., 2004). Among those rivers, the Lena River (eastern Siberia)
accounts for the highest annual DOM discharge into the Arctic
Ocean (Raymond et al., 2007; Stedmon et al., 2011), with a peak
discharge in June (Amon et al., 2012; Fedorova et al., 2015). It
contributes approximately 20% to the total fresh water discharge
into the Arctic Ocean through its delta into the Laptev Sea
(Cauwet and Sidorov, 1996). The Lena Delta and the Laptev Sea
inner shelf encompass a large, shallow environment characterized
by pronounced physical-chemical gradients (Bauch et al., 2009;

Fofonova et al., 2014) and considerable amounts of sediments,
dissolved, and particulate organic matter over the water column
(Semiletov et al., 2011; Vonk et al., 2012, 2014; Wegner et al.,
2013; Heim et al., 2014; Sánchez-García et al., 2014). Eastern
Siberia (including the Lena River and its delta) is known to be
affected by global warming with a thawing permafrost (Yang
et al., 2002; Schuur et al., 2008), which subsequently affects
the fresh water discharge, the production of DOM in river
catchments and the riverine transport of organic material input
into the shelf seas (Frey and McClelland, 2009; Lyon and
Destouni, 2010; Semiletov et al., 2012, 2013; Vonk et al., 2012,
2014; Sánchez-García et al., 2014; Fedorova et al., 2015).

The Lena Delta region and Laptev Sea have high DOC
concentrations (>500µM) and high CDOM associated with
low salinity waters (Alling et al., 2010; Stedmon et al., 2011;
Semiletov et al., 2013; Walker et al., 2013; Heim et al., 2014;
Dubinenkov et al., 2015a), decreasing toward higher salinities
through conservative mixing (Cauwet and Sidorov, 1996; Kattner
et al., 1999). This is a characteristic also thought to be shared
by other Arctic rivers (Dittmar and Kattner, 2003). However,
a recent study has indicated non-conservative mixing of DOC
within the Lena Delta region, with average losses of 30–50%
during mixing along the shelf (Alling et al., 2010). These authors
also identified additional sources of DOC in the region (such
as primary production and coastal erosion), and pointed out
photodegradation, flocculation, sedimentation, and microbial
activity as possible processes to be responsible for the removal of
DOC and humic substances, although currently poorly resolved.
Rectifying this is difficult due to not only the remoteness of
the location but also because there is a lack of information
on the composition, amount, reactivity, and fate of DOM in
these waters. Despite the recent techniques applied for DOM
analysis and the advances in the knowledge of the dynamics and
composition of DOM in some aquatic environments, there is still
a considerable lack of information on this important component
of the global carbon pool. This is particularly compounded when
accounting for the composition and processes modulating the
distribution and reactivity of DOM in the Arctic regions. Hence,
further studies addressing these issues are essential for a better
understanding of the role of DOM in the carbon cycle within the
aquatic environments, especially the Arctic Ocean.

In this study DOM characteristics within the Lena Delta
region based on fluorescent properties was investigated. The
distribution and transformation of the DOM along the fresh
water-marine gradient were investigated, using samples collected
in September 2013 at the Lena Delta region in the southern
Laptev Sea. The findings provide an insight into the fate of Arctic
riverine DOM while it is mixed at the shelf with the waters from
the Laptev Sea.

MATERIALS AND METHODS

Sampling
The Lena Expedition was conducted in late summer 2013 (1–
7 September) on board the Russian R/V “Dalnie Zelentsy” of
the Murmansk Marine Biological Institute, in the surrounding
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areas of the Lena River Delta region, Laptev Sea, Siberia. A
total of 18 oceanographic stations were occupied and split into
four transects (Figure 1A). The hydrographic characteristics of
the water column were assessed from vertical profiles acquired
with a CTD-profiler SEACAT SBE 19+. Prior to the cruise,
temperature, conductivity, and pressure sensors were calibrated
at laboratories of the All-Russia D. I. Mendeleyev Scientific and
Research Institute for Metrology. Water samples were taken
using Niskin bottles at surface and discrete depths chosen based
on CTD profiles. The amount of samples per profile and station
varied according to the local depth, ranging from two samples at
shallow water (<5m) and six samples at deeper water stations
(e.g., 20–35m). The full data set used to compose this work is
available online in two published datasets (Dubinenkov et al.,
2015b; Gonçalves-Araujo et al., 2015a).

Water Column Structure Assessment
To assess the structure of the water column, vertical profiles of
temperature and salinity from the CTD casts were used to obtain
potential water density (ρ) profiles. The depth where variations in
density were equal or greater than 0.125 kg m−3 over a 5-m depth
interval was considered the upper mixed layer depth (UMLD),
as adapted from Levitus (1982) and Kara et al. (2000a). The
bottom depth was adopted as UMLD for inner shelf stations with
vertically mixed profiles. The water column stability parameter
(E) was obtained from vertical density variations assessed by
the buoyancy or Brunt-Väisälä frequency (N2), which is defined

by N2 =
g
ρ

∂ρ
∂z (rad2 s−2) leading to E = N2

g (10−8 rad2

m−1), where g is gravity. The maximum stability immediately
below the UMLD was considered to represent the strength of
the pycnocline/stratification (Gonçalves-Araujo et al., 2015b; and
references therein).

DOC and DOM Sample Processing and
Data Analysis
Water samples for DOC analysis were filtered through 0.7µm
GF/F filters (Whatman, pre-combusted, 4 h, 450◦C) and dark

stored in a freezer until further analysis in the laboratory. DOC
concentrations were measured using high temperature catalytic
oxidation (TOC-VCPN, Shimadzu). For external calibration of
the instrument potassium hydrogen phthalate (KHP, Merck) was
used. All samples were acidified (0.1M HCl suprapur, Merck)
and purged with O2 for >5min. Performance of the instrument
was recorded by daily analysis of in-lab KHP standard solutions
and reference samples (deep sea reference, DSR, Hansell research
lab). The instrument blank was ∼2µM C and quality of analysis
was monitored continuously based on results of DSR reference
samples.

The samples for CDOM analysis were immediately syringe-
filtered after sampling with Whatman Spartan 13 filters (0.2µm)
and then stored in amber glass bottles (100mL) and kept
cooled in the fridge (4◦C) until further analysis. Before analysis,
the samples were mixed and filtered once more through
Whatman Spartan 13 syringe filters (0.2µm). Fluorescence EEMs
were collected using an Aqualog R© fluorescence spectrometer
(HORIBA Jobin Yvon, Germany). Freshly produced Milli-Q
water was used as reference. Fluorescence intensity wasmeasured
across emission wavelengths 220–620 nm (resolution 1.77 nm, 4
pixel) at excitation wavelengths from 240 to 600 nm with 3 nm
increments, and an integration time of 2 s. The blank-corrected
absorbance spectra was converted into Napierian absorption
coefficient (a) at each wavelength (λ), using the given equation:
aλ(m−1) = (2.303 × Aλ)/L, where Aλ is the absorbance
at specific wavelength and L is the cuvette path length in
meters. The absorption coefficients in the visible (440 nm—
a440) and UV (350 nm—a350) bands are generally adopted as
indicators of CDOM magnitude. Although many studies have
presented their results using the absorption coefficient at 440 nm
(a440) due to its application to ocean color remote sensing
(e.g., Siegel et al., 2005; Heim et al., 2014), in this study we
determined the absorption coefficients in both visible (a440)
and UV (a350) ranges. Nevertheless, we focus our results and
discussions on the a350 coefficient because of its correlations
to DOC and lignin concentrations and to permit comparison

FIGURE 1 | (A) View of the Northern Hemisphere with the coverage of the sampled area in the black box, which is zoomed in highlighting the Lena delta region and

southern Laptev Sea, as well as oceanographic stations and transects occupied during the Lena Expedition 2013. (B) Surface distribution of salinity (colorbar) and

a350 (m−1; solid black lines). (C) T-S diagram for all the stations, with the plume-influenced and marine-influenced stations displayed in blue and red, respectively.

Marine-influenced stations (surface salinity >10) are displayed in red in (A) and in the transects. Produced with Ocean Data View (Schlitzer, 2015).
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with earlier results (Spencer et al., 2009; Stedmon et al., 2011;
Walker et al., 2013). The raw EEMs acquired with Aqualog R©

were corrected for inner-filter effects and for the Raman
and Rayleigh scattering (Murphy et al., 2013). The different
fluorescent components of DOM were isolated from combined
signal by PARAFAC modeling using the “drEEM Toolbox”
and following the recommendation of Murphy et al. (2013).
The DOM components derived from PARAFAC modeling
were compared with PARAFAC components from other studies
through the OpenFluor database (Murphy et al., 2014). The
complete absorption and emission spectra of the fluorescent
components derived from PARAFAC are available on the
OpenFluor database after publication (http://www.openfluor.
org). We have estimated the hypothetical conservative mixing
of DOM (i.e., a350, DOC, and fluorescence intensity of each of
the PARAFAC components) by considering the average of two
values of the respective parameter at the highest and at the
lowest salinity extremities, respectively, as the end points of the
conservative line.

DOM Modification Indices, Statistical
Analyses, and Graphical Tools
Besides the determination of the magnitude and characterization
of DOM components, the optical characteristics of CDOM
and FDOM can also be used to assess the origin and degree
of transformation of DOM through the calculation of optical
indices. By applying an exponential function to the 275–295 nm
spectral range it is possible to derive the spectral slope of
absorption spectra (SCDOM, inµm−1) that varies in relation to
the source of CDOM. It has also been shown to be inversely
correlated with the molecular weight of DOM and can be related
to photobleaching (Helms et al., 2008; Fichot and Benner, 2012;
Fichot et al., 2013). The specific UV absorbance (SUVA) is used
as a proxy for the degree of aromaticity in CDOM samples
(Weishaar et al., 2003) and it is defined by SUVA = A254/[DOC],
where A254 is the absorbance at 254 nm and the concentration
of DOC, [DOC], is measured inmg CL−1. Due to the high
absorption of aromatic compounds in the UV-visible, higher
SUVA values indicate higher aromaticity from allochthonous
input (e.g., humic compounds), while lower SUVA values are
associated to more autochthonous or modified terrestrial CDOM
with lower aromaticity (Weishaar et al., 2003).

Two optical indices, that take FDOM into account, were
also used to investigate both the degree of humification and
biological degradation of the DOM. The humification index
(HIX) estimates the degree of maturation of DOM (Zsolnay et al.,
1999; Zsolnay, 2003), considering that humification is associated
with an increase in the C/H ratio (Stevenson, 1982) and is thus
reflected in emissions at longer wavelengths (Senesi et al., 1991).
The HIX index is the ratio of the areas of two spectral wavelength
regions in the emission spectra for an excitation at 254 nm and
it is obtained as: HIX = H/L, where H is the area between
435 and 480 nm in the emission spectra and L is the area in the
emission spectra between 300 and 345 nm (Zsolnay et al., 1999).
An increase in the degree of aromaticity (humification) leads to a
red shift in the emission spectrum, which will be associated with
higher HIX values. The biological/autochthonous index (BIX) is

used to assess the biological modification of DOM based on UV
fluorescence. The BIX index is obtained by calculating the ratio
of the emission at 380 and 430 nm, excited at 310 nm: BIX =

IEm380/IEm430 (Huguet et al., 2009). High BIX values correspond
to autochthonous origin of DOM, i.e., freshly released DOM,
whereas low BIX values indicate allochthonous DOM (Huguet
et al., 2009).

The relationships between all pairs of variables were
investigated using Spearman correlation coefficients. To compare
the variables among themselves or among different groups of
samples, Kruskal–Wallis H tests were applied, after performing
normality tests. Furthermore, the relationship between each pair
of variables was determined based on linear regressions.

RESULTS

Hydrography and Water Column Structure
Pronounced environmental variability was observed within the
studied region, with sampling varying from fresh to marine
waters, as demonstrated by the noticeable hydrographical
gradients in the T-S diagram (Figure 1C). Salinity varied between
0.90 and 32.63, with the lowest values associated with fresh
water input from the Lena River and plume (Figures 1B,C).
Temperature ranged from -1.2 to 10.3◦C, with higher values
related to the warmer and fresher Lena river plume and the lowest
values attributed to the presence of the colder and saltier Laptev
Sea shelf waters. In addition, a strong horizontal frontal zone was
found within the NWportion of the study area, with the isohaline
of 10 depicting the surface limit between two hydrographic
provinces observed: the sites under direct influence of fresher
Lena River plume and the sites under influence of the saltier
waters from the Laptev Sea shelf (Figures 1A,B), hereafter named
as plume- and marine-influenced stations. Note that, although
named marine-influenced stations, those sites were still under
influence of the continental fresh water input, however less than
the plume-influenced ones, given the still low salinity observed at
surface (varying from 13.21 to 25.60; Figure 1B).

A low salinity surface layer generated by the influence of
the fresh waters from the Lena River was observed along the
entire sampled area (Figure 1). The occupation of the surface
layer by the river plume leads to the establishment of an upper
mixed layer of ∼10m and a pronounced vertical gradient of
density. Nevertheless, a few shallower stations (<5m deep)
close to the main outflows of the Lena River (Bykovskaya and
Trofimovskaya) were characterized by vertically mixed profiles
with very low salinity (<3) waters from the Lena plume.
The stability parameter (E) was obtained for all the stations
where a vertical stratification was observed. The strength of the
pycnocline was inversely related to the surface salinity (r2 =

0.82; p < 0.01). Thus, the plume-influenced stations exhibited
a greater stratification in comparison to the marine-influenced
ones, with averaged E-values of about 7.01± 2.84× 10−8, 4.32±
1.79 × 10−8, and 3.98 ± 1.80 × 10−8 rad2 m−1 for stations
located at the inner-plume (surface salinity<5), outer-plume
(5<surface salinity<10) and marine-influenced stations (surface
salinity>10), respectively).
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CDOM and DOC Spatial Variability
CDOM displayed a distribution tightly coupled with salinity (see
Figures 1B, 2). a350 ranged from 0.9 to 15.7 m−1 (Figure 2) and
showed a significant negative correlation with salinity [a350 = −

0.377(salinity) + 12.774; r2 = 0.96; p < 0.0001]. The highest
a350 values were observed within the fresher waters under the
influence of the Lena plume with a decrease in a350 toward the
saltier waters from the Laptev Sea. DOC ranged from 110 to
732µMandwas highly correlated to a350 [DOC= 38.529(a350)+
106.889; r2 = 0.99; p < 0.0001], exhibiting a very similar
behavior as CDOM across the salinity gradient [DOC = −

14.878(salinity) + 605.236; r2 = 0.96; p < 0.0001] (Figure 2).
Additionally, a440 varied between 0.12 and 2.97 m−1 and it was
significantly highly correlated to a350 [a350 = 5.188(a440)+ 0.361;
r2 = 0.99; p < 0.0001] and DOC [DOC = 199.057(a440) +
121.760; r2 = 0.98; p < 0.0001].

When taking into account the relationship between DOM and
salinity for each of the hydrographic provinces separately, some
features/patterns become clear (Figures 2, 3): a higher DOM
amount is associated to the plume-influenced sites; a steeper
curve is exhibited by samples above the pycnocline in relation
to the samples below it; and there is low variability in DOM
along the pycnocline itself. In addition, the a350 vs. salinity
curve above the pycnocline displayed by the plume-influenced
sites was even steeper then the same curve for the marine-
influenced sites (Figure 3). Overall, a non-conservative behavior

is observed in the low salinity, surface layer (given the deviation
in relation to the hypothetical conservative mixing line) with an
indication of removal of DOM (deviating up to 56% from the
hypothetical conservative mixing line). That deviation decreases
at the underlying layer, suggesting a conservative mixing of DOM
in those waters (see Figures 2, 3).

FDOM Components by PARAFAC
Six fluorescent components (C1-C6) were identified by the
PARAFAC model (Figure 4). Four components had broad
emission and excitation spectra, with emission maxima at visible
wavelengths typical of humic-like material (C1, C2, C4, and C5).
C3 and C6 had comparably narrow UVA emission maxima. The
fluorescence intensity of the components differed greatly, with C1
having the greatest values (reaching up to 2.08 nm−1) and C6 the
lowest (up to 0.18 nm−1; Figure 4). The humic-like components
C1 and C2 were the dominant fluorescent signals, accounting for
more than 50% of total FDOM in all the samples. The humic-like
contribution to total FDOM reached up to 86% at low salinity
(see colorbar in Figure 5), and was inversely related to salinity
(p < 0.0001). C1, C2, C3, and C4 presented a similar scattered
pattern in relation to salinity. A steeper curve at low salinity
(<10) suggests removal in that layer, whereas a less steep curve
fit at high salinity (>10) indicates the presence of a conservative
mixing (Figure 4, right panel). Although being likewise inversely
correlated with salinity, C5 and C6 presented distinct patterns

FIGURE 2 | (A) DOC (µM) against salinity and depth for all the samples related to this study (m; colorbar). (B) a350 (m−1) against salinity and DOC for the entire

dataset used in this study (µM; colorbar), which was split into two subsets regard to the hydrographical conditions: the plume-influenced stations (C) and the

marine-influenced stations (D) that are plotted against salinity and DOC (µM; colorbar). In all the plots, samples above the pycnocline are displayed as circles, samples

at the pycnocline as squares, and samples below the pycnocline are displayed as triangles. Gray dashed-lines indicate the hypothetical conservative mixing line

between DOM (or DOC) and salinity. Inset graph in (A) shows the relationship between a350 (m−1) and DOC (µM) and the dashed line shows the fit exhibited for the

coastal Canadian Arctic (Walker et al., 2009). Inset graph in (B) exhibits vertical distribution of salinity (red dots) and a350 (m−1; blue line) for one typical

plume-influenced station.
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FIGURE 3 | a350 against salinity plot for the Plume-influenced (A) and Marine-influenced (B) stations. Samples above the pycnocline are displayed in blue

whereas the ones below it are presented in red. Samples located at the pycnocline are displayed in black. All the fits presented in this figure are significant

(p < 0.0001). Gray dashed-lines indicate the hypothetical conservative mixing line between DOM and salinity for each of the plots.

when compared to the other components (Figure 4). Both
components exhibited a non-conservative mixing, however with
indication of release/production during the transit from the river
to the outer shelf (Figure 4, right panel).

Optical Indices of DOM Modification
Different optical indices including SCDOM, SUVA, HIX, and BIX
indices (in Figure 5 shown in relation to salinity), as well as
the slope ratio (SRatio; Helms et al., 2008) and the fluorescence
index (FI; McKnight et al., 2001; not shown) were evaluated
within all samples. All indices, except SRatio (p > 0.05), were
significantly correlated with salinity, a350, DOC and FDOM,
and by that also to each other (p < 0.0001). Although it
was not significantly correlated to salinity (p > 0.05), the
SRatio indicated a dominance of terrigenous signal over the
entire sample area, given that most of the samples (∼93%)
presented SRatio values below 1 (Figure 5E). In addition, the
lack of significance between Sratio and salinity might be due
to an increase in the signal-to-noise ratio for the absorbance
spectra at wavelengths longer than 350 nm observed in samples
at higher salinity that, in turn, presented the greatest variability
in SRatio values. SCDOM ranged from 15.5 to 21.4µm−1 and was
directly related to salinity (Figure 5A), suggesting a decrease in
the molecular weight with increased salinity (Helms et al., 2008).
The values observed for the SUVA index were high, ranging from
1.33 to 4.80m2 g−1, and was inversely related to salinity (p <

0.0001), evidencing a decrease in the aromaticity of the molecules
toward high salinity (Figure 5B). The HIX index values ranged
from 3.4 to 16.6, and the BIX index values were lower than
0.73 (Figures 5C,D, respectively), indicating a high degree of
humification and low autochthonous contribution within our
sample set, respectively. Moreover, HIX and BIX showed a
decrease (increase) in the degree of humification (DOM from
biological activity) with increase in salinity, given the significant
relationship (p < 0.0001) displayed by those indices and salinity
(Figures 5C,D). FI presented values below 1.3 and was inversely
related (p < 0.0001) to salinity (not shown), indicating a
consistent predominance of terrestrial sources of DOM to the
region.

DISCUSSION

Characterization and Transformation of
DOM
The results characterize the DOM composition (here using
the EEM/PAFARAC approach and optical indices of DOM
modification) along the fresh water-marine gradient within the
Lena delta region and Laptev Sea. Four of the six fluorescent
components identified by PARAFAC analysis, three humic-like
(C1, C2, and C5) and one protein-like (C6; see Figure 4-center),
were already reported in the Lena River and in other large Arctic
rivers (Walker et al., 2013). In addition, a recent study reported
the presence of three of those components (C1, C2, and C6) in
the Amerasian basin (Guéguen et al., 2015), which seem to be
common components of the Arctic DOM pool. Although, our
sampling was carried out during a period of mid discharge flow
(Stedmon et al., 2011), C1 and C2 presented similar fluorescence
intensities to the average observed for the Lena River during
the discharge peak (∼1.6 and 0.9 nm−1, respectively; Walker
et al., 2013). C5 and C6, on the other hand, presented intensities
close to the average observed in the Lena during the mid
discharge flow (see Figure 4-right column; Walker et al., 2013).
Our results demonstrate that the FDOM composition in the
Lena Delta region was mainly characterized by the dominance
of riverine humic-like compounds. This is evidenced by the high
contribution of the allochthonous humic-like components with
fluorescence in the visible range (C1, C2, C4, and C5) observed
in relation to the total FDOM (Figure 4), as well as by the
optical indices of DOM modification (Figure 5). A recent study
has identified PARAFAC components similar to our humic-
like C1 (also referred in the literature as the classical peak C)
and C4, which presented strong correlation to lignin phenol
concentrations (Yamashita et al., 2015). Dominance of humic-
like compounds has been already reported in the Lena Delta
in late summer 1995, when high concentrations of lignin, and
high contribution of terrigenous DOC (about 60% of total DOC)
were observed (Kattner et al., 1999). The humic-like component
1 is a dominant component of the FDOM signal not only in
the Lena River and Delta, but it has also been found to be
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FIGURE 4 | Three-dimensional fluorescence landscapes (left), the excitation (solid line) and emission (dashed line) spectra (center), and Fmax (nm−1)

against salinity and depth (m; right) for each of the six fluorescent components identified by PARAFAC model for all the samples. Gray lines displayed in

components spectra graphs (center) show the spectra for components previously found in the major Arctic Rivers (Walker et al., 2013). Gray dashed-lines in Fmax

against salinity plots (right) indicate the hypothetical conservative mixing line between each of the components and salinity. Red diamonds in y-axis indicate averaged

Fmax values for similar components found in the Lena River during periods of peak discharge (for C1 and C2) and mid flow (for C5 and C6; Walker et al., 2013).
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FIGURE 5 | The relationship between the optical indices of DOM modification and salinity for all the samples: SCDOM (µm−1) (A); SUVA (m2 g−1) (B);

HIX (C); BIX (D); Slope ratio (E). Colorbar indicates the relative contribution (%) of the humic-like signal (C1+C2+C4+C5) to the total FDOM (A–D) and depth (m;

E). Black lines indicate the regression lines between each parameter and salinity.

dominant in other Arctic rivers such as Mackenzie, Kolyma, Ob,
and Yenisei (Walker et al., 2009, 2013), in the Amerasian basin
(Guéguen et al., 2015) and in shelf waters in the North Atlantic
(Kowalczuk et al., 2009; Yamashita et al., 2013). In accordance
to the results obtained with the EEM/PARAFAC approach, the
optical indices of DOM modification have also pointed to a
dominance of humic-like compounds within the samples (see
Figure 5).

Despite the dominance of allochthonous humic-like
components over the entire sampled area, autochthonous
components (such as the marine-humic like C3 and the protein-
like C6) have their relative contribution (to total FDOM signal)
enhanced toward high salinity (see colorbar in Figure 5).
Increased relative contribution of C6 was also observed during
the base flow of the Lena River, when the terrestrial input is
reduced (Walker et al., 2013). In addition, the component
C6, also referred in other studies as tryptophan-like, seems

to be a useful indicator of bioavailability of DOM, given the
strong correlation showed by it and total dissolved amino acids
concentrations (Yamashita et al., 2015). The increase observed in
the relative contribution of autochthonous compounds toward
the high salinity waters of the Laptev Sea shelf region was also
evident when observing the ranges presented by the optical
indices of DOMmodification (see Figure 5). Furthermore, those
indices can provide more information on the transformation of
the DOM during the transit from the river to the outer shelf.
The use of optical indices has been successfully applied to assess
the transformation of DOM along wide salinity ranges in some
estuary regions worldwide (Benner and Opsahl, 2001; Helms
et al., 2008, 2014; Huguet et al., 2009; Asmala et al., 2014). The
values obtained for the optical indices at low salinity in our
study are in agreement with previous studies conducted in the
Lena River. For instance, those studies have reported SCDOM,
SUVA, and BIX values around 16µm−1, 2.8 m2 g−1 and 0.52,
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respectively (Stedmon et al., 2011; Walker et al., 2013). All the
optical indices taken into account in this study demonstrated
that the DOM in the Lena delta region experiences an evident
transformation along the riverine-marine transition. This is
supported by the reduction on the molecular weight, aromaticity
and humification degree of DOM observed toward high salinity,
with the more photochemically reactive compounds associated
to the surface (with lower salinity) layer and components with
more refractory character being associated to the high salinity-
Laptev Sea shelf waters (Figure 5). The possible mechanisms
driving the observed transformation in DOM are discussed in
the following section.

Dynamics and Fate of DOM in the Lena
Delta Region
The hydrographic observations during our campaign revealed
strong gradients, with noticeable northward propagation of
the Lena River plume along the study region. This generated
a shallow, low salinity surface mixed layer with strong
stratification, which separates the surface layer from the
underlying high salinity layer with Laptev Sea shelf water (see
Figure 1). The propagation of the plume along the Laptev Sea
shelf has also induced the establishment of a strong frontal
system in the NW part of our study area (see Figure 1).
Such hydrographic characteristics were previously described as
offshore wind conditions, when the predominant winds from
the continent drive the offshore propagation of the Lena waters
generating a strong stratification and a frontal system NW of the
Lena Delta region (Bauch et al., 2009; Wegner et al., 2013). Thus,
we have identified the presence of two hydrographic provinces
within the sampled area: the plume- and marine-influenced sites
(see Figure 1).

The noticeable variability in hydrographic conditions due
to the dynamics between fresh water input from the Lena
River and the Laptev Sea shelf waters were also reflected in
the striking differences of the amount and composition of
DOM (Figures 2, 3). The association of the highest DOM
concentrations with the low salinity waters of the Lena outflow
decreasing toward the high salinity Laptev Sea shelf waters (see
Figure 2) re-emphasizes the importance of the Lena River as a
major source of DOM to the Laptev Sea. Such inverse relationship
has previously been indicated for this region (Cauwet and
Sidorov, 1996; Kattner et al., 1999; Alling et al., 2010; Semiletov
et al., 2013; Heim et al., 2014) and it is the case for many
other estuary regions (Benner and Opsahl, 2001; Guo et al.,
2007; Huguet et al., 2009). Both CDOM and DOC were highly
correlated, displaying a similar relationship as found for the
coastal Canadian Arctic (Walker et al., 2009; see Figure 2),
although with a higher a350 relative to DOC in the Lena delta
waters. The presented values are comparable to other studies
previously conducted in this region, with a350 (a440) values of
about 15m−1 (2.9m−1) at low salinity and DOC concentrations
ranging from 500–700 to 100µM at low and high salinity,
respectively (Alling et al., 2010; Stedmon et al., 2011; Semiletov
et al., 2013; Walker et al., 2013; Heim et al., 2014; Dubinenkov
et al., 2015a).

Our results show a coupled relationship between DOM and
the two hydrographic provinces identified in this work. Plume-
influenced stations presented higher DOM concentrations at
surface as compared to marine-influenced stations (p < 0.001;
see Figure 1). Despite these differences within the surface layers,
both hydrographic provinces exhibited similar patterns regarding
the relationship between DOM and salinity. Distinct DOM
mixing patterns (in relation to salinity) were observed for
samples above and below the pycnocline, i.e., the low and high
salinity layers, respectively (Figure 6). The mixing curves derived
from samples above the pycnocline exhibited higher slope than
the ones below it (see Figures 2, 3, 6). The same pattern
is observed when looking at the results from an expedition
conducted at the Lena Delta region in September 2005 (see Figure
9 in Semiletov et al., 2013); however, the possible causes of this
pattern were not addressed in that study. We suggest that such
an increase in the slope of the relationship can be interpreted
as a non-conservative decrease in DOM concentration along
with the surface layer. This DOM removal in the surface (lower
salinity) layer occurred despite the short residence time (of
about 2 months) the Lena River plume waters in the Laptev Sea
(Alling et al., 2010). Release/production of the components C5
and C6 was observed along the entire riverine-marine transition
(see Figure 4, right panel). The autochthonous protein-like C6
is known to be released by microbial metabolism (Romera-
Castillo et al., 2010; Fukuzaki et al., 2014) and its release in
our sampling area can be related to the microbial community
presented within the region. On the other hand, the humic-like
C5 could have had its release associated with photoproduction,
given that some humic-like components, such as alkyl, have
been shown to be produced via that process (Helms et al.,
2014). Although the components C5 and C6 presented indication
of release/production along the riverine-marine transition, the
contribution of those components to the total fluorescence signal
was small (less than 20%). Thus, the overall DOM mixing
curve mirrored the curves displayed by C1-C4 (accounting for
more than 80% of the total FDOM signal), with a removal
of DOM at low salinities and a conservative mixing behavior
related to the saltier Laptev Sea shelf waters. Non-conservative
mixing characterized by removal at low salinities seems to be a
characteristic shared by other estuarine regions in the Baltic Sea
(Kowalczuk et al., 2010; Asmala et al., 2014).

Given the strong stratification observed within the sampled
area, we assume that exchanges between surface and underneath
layer are limited (Kara et al., 2000b) compared to well-mixed
conditions. As a result, the humic-like-dominated, highly photo-
reactive DOM (Helms et al., 2014; Timko et al., 2015) is
exposed longer to photochemical degradation (Fichot andMiller,
2010). This process is evidenced by the relationship between
SRatio and salinity (Figure 5E), with high SRatio values (>0.95)
observed in intermediate salinity (10–20). Furthermore, the
influence of particulate matter and sediments in coastal and
shelf environments has to be taken into account given their
influence on DOM removal through the process of sorption and
flocculation (Uher et al., 2001; Shank et al., 2005; Guo et al.,
2007; Asmala et al., 2014). The flocculation process, in turn,
can be increased either due to the presence of the salt in the
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FIGURE 6 | Schematic diagram showing the complex interactions occurring in the Laptev Sea continental shelf, close to the Lena River delta region.

The vertical distribution of the two water masses found within the region (Lena River plume and Laptev Sea Shelf waters) is presented. A strong gradient between the

two water masses with limited exchanges between them is depicted. Salinity, DOM concentration and the humic-like contribution are shown in the colorbar. The main

removal processes within the surface layer (photodegradation and flocculation) are demonstrated by the symbols presented in the inset legend. Inset graphs show the

DOM (a350; m
−1 ) against salinity plots for the Lena plume (A) and Laptev Sea shelf Waters (B).

marine water (Asmala et al., 2014, and references therein) and
to the exposition to high light intensities that, together with
photochemical processes, can synergistically enhance the DOM
removal from the dissolved phase (von Wachenfeldt et al., 2008;
Porcal et al., 2013, 2015). A sharp decrease in POC concentrations
at low salinity has been reported in the Lena delta region and
was attributed to sinking of particles (Cauwet and Sidorov,
1996). We speculate that the main drivers on the apparent
removal of highly humic content DOM observed within the
surface layer are the photodegradation and flocculation, given the
high susceptibility of those aromatic carbons to those processes
(von Wachenfeldt et al., 2008; Porcal et al., 2013, 2015; Asmala
et al., 2014; Helms et al., 2014). Those processes have also been
indicated to modulate the non-conservative mixing behavior
in other estuaries such as the Mississippi delta (Benner and
Opsahl, 2001). Our findings from late summer 2013 corroborate
the indication of DOM removal within the region as observed
in late summer 2008 (Alling et al., 2010); however, with a
more refined spatial coverage, we have demonstrated that the
removal of DOM occurs mostly in the low salinity surface layer
(Figure 6).

Considering that the impact of temperature increases to the
Arctic and Siberian environments, an increase in permafrost
thawing rates, changes in the freshwater budget, catchment
vegetation and hydrology, and subsequent DOM discharge
into the Arctic Ocean are expected (Peterson et al., 2002;
McClelland et al., 2004; Frey and McClelland, 2009). As a
consequence, changes in concentration and composition of
DOM are expected, given the release of ancient DOM trapped
in the permafrost layer due to its thaw (Aiken et al., 2014;
O’Donnell et al., 2014), and given the variability of DOM
composition in response to variations in river discharge (Walker

et al., 2013). Subsequently, with an enhanced input of DOM
(especially CDOM) into the Arctic Ocean, changes in the
radiant heating in the upper meters of the ocean as well as a
possible increase in the sea-ice melt rates might be foreseen
(Granskog et al., 2015). Furthermore, the characteristics of
DOM have been shown to be a powerful proxy for tracing
organic substances with permafrost origin (Aiken et al., 2014;
O’Donnell et al., 2014; Dubinenkov et al., 2015a). Moreover,
long-term studies concerning the quantification, composition
and dynamics of DOM, from fresh to marine waters in the
main rivers flowing into the Arctic Ocean, are needed to
improve the understanding of DOM dynamics, its role in the
carbon cycle pathways. Thus, a better comprehension of DOM
composition and its fate, as presented in this study, can be used
as baseline for further monitoring of the sources, biogeochemical
implications and export of riverine DOM with regard to climate
change effects in northern Siberian environments and Arctic
Ocean.

SUMMARY

This study brings new insights on the composition,
transformation and fate of DOM in the Lena Delta region.
DOM composition evaluated through PARAFAC modeling
showed dominance of strong humic-like signal over the entire
sampled area. We have demonstrated that the dynamics between
the Lena River outflow and Laptev Sea shelf waters is the
main driver controlling the hydrographical conditions and,
consequently, the DOM behavior within the region. Higher
DOM concentrations (also with higher humic-like content) were
associated to the low salinity waters of the Lena River that showed
to be the main DOM source for the region. The concentration of
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DOM, as well as its humic-like content and reactivity, decreased
along the fresh water-marine gradient toward high salinity.
Although being limited by sampling within a synoptic scale, we
have identified different mixing behaviors of DOM coupled with
the dynamics between the Lena River plume and the Laptev Sea
shelf waters, which were expressed through the vertical structure
of the water column: a sharper decrease in DOM concentration
in relation to salinity is observed in waters above the pycnocline,
under influence of the low salinity waters from the continental
runoff. This indicates that different processes modulating the
distribution, composition, and reactivity of DOM occur within
the two layers and that there is evidence of removal of DOM in
the surface mixed layer. Thus, we suggest photodegradation and
flocculation as the main drivers on modulating the removal of
highly humified DOM within the surface layer of the Lena Delta
region.
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