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We have witnessed a rapid development of brain-computer interfaces (BCIs) linking

the brain to external devices. BCIs can be utilized to treat neurological conditions

and even to augment brain functions. BCIs offer a promising treatment for mental

disorders, including disorders of attention. Here we review the current state of the art

and challenges of attention-based BCIs, with a focus on visual attention. Attention-based

BCIs utilize electroencephalograms (EEGs) or other recording techniques to generate

neurofeedback, which patients use to improve their attention, a complex cognitive

function. Although progress has been made in the studies of neural mechanisms of

attention, extraction of attention-related neural signals needed for BCI operations is a

difficult problem. To attain good BCI performance, it is important to select the features of

neural activity that represent attentional signals. BCI decoding of attention-related activity

may be hindered by the presence of different neural signals. Therefore, BCI accuracy

can be improved by signal processing algorithms that dissociate signals of interest from

irrelevant activities. Notwithstanding recent progress, optimal processing of attentional

neural signals remains a fundamental challenge for the development of efficient therapies

for disorders of attention.

Keywords: visual attention, electroencephalography, brain-computer interface, feature extraction

INTRODUCTION

The visual system in both human and non-human organisms transforms complex input
information into robust neural representation of the visual world. Because the amount of
information can only decrease during stochastic neural processing, it is crucial for the visual system
to selectively process behaviorally relevant information (Sprague et al., 2015). For instance, when
a driver approaches a busy intersection it is important to detect and respond to the relevant traffic
light rather than any light source in the visual scene. Attention is the ability to block the irrelevant
information to the current task and to enhance the processing of the important information. This
key neural function can deteriorate due to some disorders. Patients with disorders of attention
are unable to allocate their focus of attention continuously to one task or easily get distracted
by irrelevant information. One of the most common disorders of attention, attention deficit
hyperactivity disorder (ADHD), is a mental condition characterized by inattention, hyperactivity
and impulsivity. ADHD symptoms are dominant in childhood, and extend to adulthood in 15–40%
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of cases (Biederman et al., 2000; Faraone et al., 2006). ADHD
impairs performance in academic, occupational and social tasks
(Fleming and McMahon, 2012). According to a meta-regression
analysis of 102 studies, ADHD has 5% prevalence worldwide
(Polanczyk and Rohde, 2007; Skounti et al., 2007; Millichap,
2008). Treatment strategies have been mostly pharmacological,
such as prescription of psychostimulants. However, long-term
treatment with pharmacological agents is hindered by side-effects
(Conners et al., 2001; Greenhill et al., 2001). Children develop
anxiety symptoms after being treated with psychostimulants
for 6 months and longer (Vance et al., 1999). There is also a
considerable risk of drugmisuse and abuse (Kollins, 2008; Steiner
et al., 2014a). Psychological therapy, an alternative approach,
relieves ADHD symptoms in 30% of cases (Zarin et al., 1998).
Overall, currently available therapies for ADHD are only partially
effective.

Here we review a novel strategy for enhancing the attention
capability in patients with disorders of attention. This strategy is
based on brain-computer interface (BCI) approach (Arns et al.,
2009; Lim et al., 2010, 2012). BCIs establish uni- or bidirectional
communication between the brain and external devices (Wolpaw
et al., 2000; Donoghue et al., 2004; Lebedev and Nicolelis, 2006;
Nicolelis and Lebedev, 2009; Lebedev, 2014; Schwarz et al., 2014).
BCIs decode neural signals using mathematical algorithms. Such
decoding often utilizes templates of neural patterns defined based
on prior knowledge of the characteristics of different neural
states. A computer algorithm then compares neural activities
with the set of templates to find the best match and determine
the current neural state. Additionally, the algorithm can evaluate
how well the brain signals match certain requirements, and
generate a feedback based on the difference. Such feedback
can be used to improve neural function in patients: patients
observe their own brain activity in real time, and learn to
self-regulate this activity in order to bring it to normal state.
This paradigm is called “neurofeedback” and the corresponding
therapeutic approach is called “neurofeedback therapy.” BCIs for
humans most commonly utilize electroencephalographic (EEG)
recordings (Kus et al., 2013; Tonin et al., 2013; Bamdadian
et al., 2014; De Vos et al., 2014; Kashihara, 2014; Yang et al.,
2014). Additionally, BCIs can employ magnetoencephalography
(MEG) (Mellinger et al., 2007; Bianchi et al., 2010; Ahn et al.,
2013), near infrared spectroscopy (NIRS) (Coyle et al., 2004;
Sitaram et al., 2007; Power et al., 2012; Waldert et al., 2012; Khan
et al., 2014), functional magnetic resonance imaging (fMRI)
(Logothetis, 2003; deCharms et al., 2005; Ruiz et al., 2013; Sato
et al., 2013), electrocortigraphy (ECoG) (Freeman et al., 2003;
Leuthardt et al., 2004, 2009; Schalk, 2010), and multi-electrode
intracranial implants (Nicolelis and Ribeiro, 2002; Carmena
et al., 2003; Nicolelis et al., 2003; Lebedev et al., 2005, 2011;
Zacksenhouse et al., 2007; Peikon et al., 2009; Ifft et al., 2013; see
Figure 1 for comparison).

Neurofeedback therapy is applicable to a number of
neurological disorders of attention (Lofthouse et al., 2012b;
Hillard et al., 2013; Gevensleben et al., 2014; Steiner et al., 2014c;
Zandi Mehran et al., 2014). Attention-based neurofeedback
paradigms for ADHDs are usually based on visual attention
(Arns et al., 2014). As to recording methods, some (EEG, NIRS,

FIGURE 1 | Temporal and spatial resolution of different BCI techniques.

Although EEG has a relatively poor spatial resolution, its high temporal

resolution is an adequate characteristic for real-time BCIs. Abbreviations: EEG,

electroencephalography; MEG, magneto-encephalogram; NIRS, near-infrared

spectroscopy; fMRI, functional magnetic resonance imaging; ECoG,

electro-corticogram; LFPs, local field potentials. Image is inspired from Van

Gerven et al. (2009).

ECoG) have been already shown effective for attention control
and for treatment of ADHDs, whereas the applicability of others,
such as MEG and fMRI, is being researched (Ahn et al., 2013;
Sulzer et al., 2013; Sokunbi et al., 2014; Stoeckel et al., 2014;
Bruhl, 2015; Okazaki et al., 2015). Implementing an attention-
based BCI is a challenging task because the neural representation
of attention is highly complex (Ming et al., 2009; Rossini et al.,
2012). A good understanding of neurophysiology of attention is
required to extract attentional signals from neural recordings and
dissociate them from the other ongoing activities in the brain
(Sanei and Chambers, 2008). Notwithstanding these difficulties,
visual-attention based BCI systems have been already developed
and applied to ADHD (Christiansen et al., 2014; Heinrich et al.,
2014; Holtmann et al., 2014a,b; Micoulaud-Franchi et al., 2014;
Steiner et al., 2014b). In this article, we cover the current state of
the art and future challenges in this research.

DECODING OF VISUAL ATTENTION FROM
NEURAL SIGNALS

Neural Mechanisms of Visual Attention
In everyday life, we constantly deal with multiple sensory streams
from our complex and dynamic environment. The brain starts
the processing of this incoming information by filtering out
irrelevant signals, which are not consciously experienced because
of the filtering. Only a tiny amount of the incoming information
enters the higher-order processing levels and becomes available
to consciousness (Posner, 1994, 2012). Selective attention is
a key function that enables the brain to effectively use its
limited information processing capability when confronted with
an immense number of inputs from all sensory modalities.
High-level cortical areas, particularly the areas of the frontal
cortex, play a key role in attentional control. It has been long
known that damage to prefrontal cortex (PFC) causes mental
deficits which are consistent with a loss of attentional control
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(Ferrier, 1876). Neurophysiological and functional neuroimaging
studies by Posner’s group (Fan et al., 2005; Posner and Rothbart,
2007; Petersen and Posner, 2012) have provided a wealth of
information on cortical circuitry for attentional control. The
main conclusion of these studies is that attention is controlled
by a network of interconnected areas that also involved in
oculomotor control. These areas include the frontal eye field
(FEF), parietal areas and subcortical structures, importantly
superior colliculus. This attentional selection network works
together with yet another, overlapping network of areas that
sustains the focus of attention, called sustained attention. The
latter system maintains the focus of attention on the selected
stimulus. It is composed of the parietal cortex, right frontal cortex
and locus coeruleus (Corbetta et al., 2008). Volumetric analysis
in ADHD subjects showed that they have smaller frontal cortex
compared to healthy subjects (He et al., 2015). This finding
explains the deficits in both selective and sustained attention
(Pritchard et al., 2008; Avisar and Shalev, 2011; Gomes et al.,
2012; Wang et al., 2013). Notably, attention-based BCIs usually
require both selecting a visual target and focusing on it (i.e.,
selective attention) andmental endurance training (i.e., sustained
attention).

Selective attention is not a unitary process; it is driven
by distinct functional sub-processes associated with different
selection criteria (Brosch et al., 2011). Two major sub-processes
are: stimulus-driven (exogenous) attention and observer-
dependent (endogenous) attention. Exogenous attention is driven
by intrinsic low-level features of sensory inputs (Egeth and
Yantis, 1997; Wolfe and Horowitz, 2004). Low-level properties
include such features as stimulus intensity, color and contrast.
They all trigger involuntary responses. Endogenous attention
refers to selection of a target based on an internal state and
conscious expectation of a specific object or location (Posner
et al., 1980; Desimone and Duncan, 1995). Endogenous selection
is performed based on the current aim of the observer. In the
classical Posner experiment that dissociated endogenous and
exogenous effects, participants were instructed to press a button
in response to a visual stimulus that appeared either to the left or
right of a central fixation point (Posner, 1980). They were asked
to keep their eyes fixed at the center of the screen throughout
the task and covertly (i.e., without looking at the target) attend
to the peripheral location. To guide this covert attention, a
symbolic cue was presented at the center of the screen, which
instructed the location to attend. This cue preceded the stimulus
onset, and correctly specified the upcoming stimulus location
in 80% of the trials. In the remaining 20% of trials, the target
appeared at a location that disagreed with the cue. This study
showed that the reaction time was significantly shorter when the
stimulus was presented at the attended location than when it
appeared in the opposite location and there was a misalignment
between the endogenous and exogenous attention. Busse et al.
investigated neurophysiological mechanisms underlying these
two types of attention (Busse et al., 2008). They recorded from
single neurons in macaque middle temporal area while monkeys’
endogenous and/or exogenous attention was manipulated by the
task events. They used a double-cueing paradigm where the first
cue instructed the monkey to attend (endogenous attention) to

one of three moving random dot patterns (RDPs) until a second
cue. The second cue was unpredictable, and therefore captured
exogenous attention. It signaled to either shift or maintain
the current focus of attention. Findings of this experiment
showed that the neural activity was enhanced when attention
was endogenously shifted to the first cue. Then, attention was
exogenously attracted to the second cue, which was manifested
by a transient interruption of neural activity for approximately
70ms, after which the endogenous attention restored neural
representation of the previously relevant stimulus. These
results showed that the interruption of endogenous attention
by exogenous attention is not a simple refocusing to the new
stimulus. Rather, there are separate ongoing processes with
distinct neural correlates for endogenous and exogenous effects,
as well as an interaction between these mechanisms.

Both endogenous and exogenous attention can be maintained
with and without eye movements (i.e., overtly or covertly,
respectively). The premotor theory of attention (Rizzolatti et al.,
1987) suggests that essentially the same neural circuits in the
frontal and parietal areas control the orientation of both overt
and covert attention. For overt shifts of attention, eye movements
are prepared and executed, whereas for covert shifts they are
prepared but not executed. The premotor theory of attention
is supported by the fMRI studies showing an overlap between
the frontal and parietal regions activated for covert and overt
attentional tasks (de Haan et al., 2008). Additionally, neurons in
the intermediate layer of superior colliculus which has been long
known for their involvement in saccades, are also engaged in the
covert attentional shifts (Ignashchenkova et al., 2004). Golla et al.
reported a clinical case of impaired overt attention in a cerebellar
disorder, and suggested that the cerebellum plays a role in spatial
attention (Golla et al., 2005).

Lebedev, Wise and their colleagues compared neural
representation of attention with the representation of other
behavioral variables, such as spatial memory, target of movement
and gaze angle, which often coincide with the orientation of
attention, but still can be controlled independently by the
brain. In one study (Lebedev and Wise, 2001), they compared
neuronal activity in monkey’s dorsal premotor cortex (PMd)
that reflected the orientation of selective spatial attention with
neuronal activities that represented motor preparation, gaze
angle, and saccades. The monkeys’ attention was attracted by
a robot, to which they attended in order to know when to
initiate a reaching movement. The target of movement varied.
It was either the location of the feeder mounted on the robot
or a location of a different feeder. This study showed that
approximately 20% of PMd reflected the orientation of selective
spatial attention, which could be disengaged from the other
spatial variables. These attention-tuned PMd neurons could
account for gaze-independent (covert) attentional effects in
behaviors with stimulus-response incompatibility. In another
study (Lebedev et al., 2004), Lebedev et al. tested the theory that
the main function of prefrontal cortex (PF) is the maintenance of
working memory. To investigate alternative possibilities, activity
of PF neurons was recorded while the monkeys performed an
oculomotor task that required remembering one location, but
attending to a different location. The largest subpopulation of
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PF neurons was linked to attention, not to working memory,
which indicated that PF has a major contribution to selective
spatial attention. Consistent with these findings, studies in
human subjects demonstrated the crucial role of frontal cortex
in ADHDs (Praamstra et al., 2005; Dirlikov et al., 2015). Dirlikov
et al. (2015) used brain imaging technique to explore the
cortical morphology in 93 children with ADHD. They found
a reduction in cortical surface of PF and premotor cortex
(Dirlikov et al., 2015). Several neuroimaging studies suggested
that visual attention is controlled by a network of cortical areas
interconnected with the FEF. Graymatter is substantially affected
in ADHD in the structures of this network, including dorsal and
ventral prefrontal cortices, dorsal anterior cingulate area and
inferior parietal cortex (Valera et al., 2007; Szuromi et al., 2011).
Jonkman and colleagues suggested that the frontal lobe performs
early selective filtering, and disorders of this function cause
ADHD (Jonkman et al., 2004). A recent resting-state EEG study
also suggested that frontal cortex abnormalities are a reliable
marker for ADHD (Keune et al., 2015).

Neural oscillations is another neural marker of attention.
Oscillations represent synchronous activity of neuronal
populations of different sizes, from local to very large. They can
be detected in local field potentials (LFPs) recorded with invasive
electrodes, or EEGs recorded non-invasively from the scalp
(Kahana, 2006). Oscillations are conventionally classified into
five frequency bands: δ (1–4Hz), θ (4–8Hz), α (8–12Hz), β (12–
30Hz), and γ (30–80Hz). Attentional effects have been reported
for each of these bands. For instance, attending to a spatial
location and anticipating a stimulus at that location is associated
with α rhythm attenuation (Rohenkohl and Nobre, 2011). α

oscillations are involved in attentional gating of information
flow between brain regions (Fu et al., 2001; ter Huurne et al.,
2013). To investigate the relationship between brain oscillations
and ADHD, ter Huurne used a motion coherence detection
task where subjects were instructed to direct attention to either
left or right visual field. The attended stimulus was a random
dot kinematogram, a field of chaotically moving dots. Subjects
were instructed to respond after the dot pattern started to move
coherently in the horizontal, but not vertical dimension in the
attended hemifield. Dot movements in the unattended hemifield
had to be ignored. In healthy subjects, lateralized and sustained α

oscillations were detected in the visual cortex during the period
when the subjects prepared to respond. In patients with ADHD,
oscillations started, but they were not sustained and often
stopped before the stimulus onset. Furthermore, lateralization
of α oscillation was highly correlated with the degree of spatial
attention in the healthy group, but not in the ADHD group (ter
Huurne et al., 2013). In neurofeedback training experiments,
children with ADHD were able to increase α-power following
18 training sessions (Escolano et al., 2014). Overall, these studies
suggest that brain oscillations can be used to monitor neural
regulation of attention and improve it using neurofeedback
therapy.

BCIs for Visual Attention
Early attempts to treat disorders of attention using
neurofeedback date back to the mid-eighties and nineties (Elbert
et al., 1980; Lutzenberger et al., 1980; Wolpaw et al., 1991). Since

then, considerable progress has been made in the development
of computer algorithms for the decoding of attention-related
neural signals. In a typical setting, subjects endeavor to keep
their visual attention while playing a video game. Attention
related brain signals are extracted from the neural recordings
and fed back to the subjects using visual feedback. Successful
performance is rewarded. Repeated training sessions with such a
BCI system engage brain plasticity mechanisms, and eventually
improve attention (Dobkin, 2007; Rossini et al., 2012).

Both invasive and non-invasive recordings have been used
in BCIs. Invasive BCIs utilize electrodes that penetrate the
brain (LFPs and single-unit recordings) or are placed on the
brain surface (ECoG). These systems require an invasive surgical
procedure to implant the electrodes. Non-invasive BCIs, on
the other hand, do not require any surgery and can be safely
and easily implemented. Non-invasive sensors are placed on
the scalp (EEG, fNIRS), or in some implementations make no
contact with the head (fMRI, MEG) (see Table 1 for details).
Additionally, hybrid or multimodal BCIs employ combinations
of different recording methods in order to improve performance.
Fazli et al. (2012) developed a multimodal BCI consisting of
the combination of EEG and NIRS that improved the signal
classification accuracy in 90% of participants. That multimodal
BCI had higher sensitivity and specificity and were resistant to
environmental noise. Such combined EEG-NIRS neurofeedback
can be used by subjects who cannot operate a BCI solely by their
EEG activity (Fazli et al., 2012).

The research on BCIs that improve attention has experienced
a steady growth, especially BCIs for ADHD patients. Some of
these results are controversial. A number of studies reported
positive outcome of neurofeedback training (Leins et al., 2007;
Gevensleben et al., 2009; Steiner et al., 2011; Wangler et al.,
2011), whereas others questioned these findings. In the camp of
neurofeedback advocates, Arns et al. (2009) analyzed literature
on neurofeedback therapy for ADHD and concluded that
this treatment was “efficient and specific” (Arns et al., 2009).
Lofthouse et al. (2012a) called this therapy “probably efficacious”
based on their analysis of research conducted from 1994 to
2010, where the majority of studies utilized θ/β ratio (see below)
(Lofthouse et al., 2012a). However, Vollebregt et al. (2014a)
came to a different conclusion in their systematic review of
frequency-band based BCIs for ADHD. They concluded that
there was no significant effect of treatment on any neurocognitive
variables affected by ADHD (Vollebregt et al., 2014a). This
negative result highlights the need for further research on EEG
features that would better suit attention-based BCIs. Here we
review these features and the ways they could be used to improve
neurofeedback therapy for ADHD.

FEATURE EXTRACTION FOR
VISUAL-ATTENTION BCIs

Feature extraction is a critical part of BCI implementation and
design (Shahid and Prasad, 2011). During this processing stage,
a specific characteristics are extracted from brain recordings,
which are then decoded and converted into control commands
or neurofeedback. Depending on the recording method, different
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TABLE 1 | Comparison of different signal acquisition methods used for BCI application.

BCI method (measured signal type)
Advantages Disadvantages

LFPs

(Firing rate of bundles of neurons)

High SNR; low variability during the experiment; targeting the

activity in specific brain areas; higher resolution of detecting

temporal and spatial features in several parallel-activated

brain regions.

Intracranial surgery; very susceptible to signal-loss in

long-term implantation (Shain et al., 2003; Donoghue

et al., 2004); requires precise source localization in

order to implant the electrodes in the right location;

less common in human studies.

ECoG

(Electrical activity from brain surface)

Supports accurate BCI operation with little training (Leuthardt

et al., 2004); higher spatial resolution and amplitude than EEG

(Freeman et al., 2000; Leuthardt et al., 2009); far less EMG

and EOG artifacts (Freeman et al., 2003; Ball et al., 2009);

greater long-term functionality compared to LFPs (Margalit

et al., 2003); more stable SNR compared to EEG (Schalk,

2010).

Intracranial surgery; Limited long-term functional

stability and signal loss (Schalk and Leuthardt, 2011);

very rare research application (Sutter and Tran, 1992).

EEG

(Electrical activity from the scalp)

Superior temporal resolution (suitable for real-time

experiments); ease of use (non-invasive) even by inexpert

individuals; inexpensive (compared to other devices); least

ethical concern and medical risks compared to other

methods; portable.

Susceptible to noise (EMG, EOG and environmental);

Low spatial resolution (harder to localize brain

activities); requires a substantial degree of user training

in BCI development.

fMRI

[Blood oxygenation level dependent (BOLD)]

Superior spatial resolution (deCharms et al., 2005; Lee et al.,

2009); signal detection from whole brain including the

subcortical structures (Logothetis, 2003; Weiskopf et al.,

2004).

Signal drift due to imperfection of magnetic gradient

field (Lee et al., 2009); limited to BOLD-signal-based

analysis (can be done in ERP experiments but not in

frequency-range analysis); less suitable for real-time

BCI due to low temporal resolution; strict physical

restriction of subjects inside the scanner due to motion

artifacts; requires expensive devices and expertise to

operate the system.

NIRS

(Measure of oxygenated hemoglobin)

Robust when dealing with noise (Coyle et al., 2004; Waldert

et al., 2012); superior in detection of stimulation onsets and

offsets (reducing the false positive commands) (Tomita et al.,

2014); precise parameter setting to extract features is not

needed to detect information on the brain (Kanoh et al.,

2009).

Lower temporal resolution compared to EEG (Tomita

et al., 2014).

MEG

(Magnetic field)

Higher spatiotemporal resolution (Mellinger et al., 2007) than

EEG; less training sessions than EEG; more robust in

detectability of different frequency-band compared to EEG

(Mellinger et al., 2007).

Expensive (at least 10 times more expensive than EEG

cost) and non-portable; lower spatial resolution

compared to fMRI; poorer localization for deeper brain

structures compared to fMRI.

features can be used. For example, single-unit recording are
usually converted into neuronal firing rates, and EEGs are
converted either into the spectral power or parameters of event
related potentials. The selection of features depends on the way
the user communicates with the BCI system. In the BCI design
called endogenous BCI, subjects self-generate neural patterns
(Nicolas-Alonso and Gomez-Gil, 2012). Alternatively, in the BCI
design called exogenous BCI, neural responses are evoked by an
external stimulus, and subjects modulate these responses, usually
by focusing attention on relevant stimuli. Table 2 compares these
two BCI types.

Endogenous BCI
Attention-Based BCIs That Utilize Neural Oscillations
Spectral analysis of EEGs recorded at different scalp locations
is commonly used to extract features for endogenous BCIs.
Here, time-dependent changes in the EEG spectra for different
electrodes are detected using EEG time-frequency (TF) analysis.

For example, TF analysis can detect the occurrence of brain
oscillations that result from transient synchronization of
neuronal discharges over a millisecond time scale (Sanei and
Chambers, 2008). This method can be applied to measure
EEG changes associated with attention, such as synchronization
of specific EEG bands associated with attention to an object.
Attention-related synchronization of neural activity can be
detected using a variety of recording methods, including single-
unit recordings from brain neurons. Fries et al recorded from
individual neurons in cortical area V4 while macaque monkeys
attended to behaviorally relevant stimuli and ignored distractors
(Fries et al., 2001). The neurons increased their gamma-
band synchrony while decreasing low-frequency (<17Hz)
synchrony when the monkeys attended. Several studies showed
attention related effects in ECoGs. Rougeul-Buser and Buser
recorded ECoGs in freely moving cats and observed that 10–
14Hz oscillation over sensorimotor cortex, called µ-rhythm or
“expectancy rhythm,” increased when an animal actively attended
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TABLE 2 | Comparison of endogenous and exogenous BCIs and their corresponding protocols.

Category Protocol Advantages Drawbacks

Endogenous BCI - Source of the brain activity

- Frequency bands

- Independent of any specific task

- Useful for patients with sensory deficits

- Perfect for freely moving operations (since subjects are

not instructed to stare at specific stimulus)

- Requires several sessions of trainings

- Some patients may not be able to communicate

with BCI (BCI illiterate)

- Low information transfer rate

- Low signal-to-noise ratio

- Low spatial resolution of EEG-based BCIs (harder

for source localization analysis)

- Requires many EEG electrodes

Exogenous BCI - ERP

- SSVEP

- Low training session

- High information transfer rate (explained in the next

section)

- Feasible with a few EEG channels

- Higher signal-to-noise ratio

- System failure if the subject is not attending to the

stimuli

- Fatigue in subjects (especially in SSVEP tasks due

to constant flickering objects)

to a place where a mouse was expected to appear (Rougeul-
Buser and Buser, 1997). The µ-rhythm epochs were often
followed by a brief 20Hz (β-range) ECoG burst. Thorpe et al
reported topographical details of these ECoG patterns. Attention
was associated with µ-rhythm increases over parietal regions,
whereas, β-band activity increased in motor areas (Thorpe et al.,
2012). Daitch et al. suggested that these oscillatory patterns
serve to increase functional connectivity between the areas that
process relevant information while suppressing unwanted cross-
talk within the neural network areas that could be caused by
irrelevant stimuli (Daitch et al., 2013).

EEG studies have shown that high-frequency oscillations
(>30Hz) are correlated with increased attention (Kaiser and
Lutzenberger, 2005; Koelewijn et al., 2013; Musch et al., 2014).
Similar results were obtained using microelectrode recordings in
freely behaving monkeys (Fries et al., 2001). Attention-related
oscillations can have the frequency higher than the typical γ

-band range (30–80Hz) (Crone et al., 2006). Ray et al. (2008)
presented human subjects with a sequence of tactile and auditory
stimuli separated by pseudo-random time intervals. The tactile
stimuli were delivered using a tactile stimulating cylinder, which
the subjects gripped with their hands. The auditory stimuli were
delivered through a headset. The subjects were instructed to
attend to one of the two modalities (auditory or tactile) and
respond to the attended stimulus with a button press (Ray
et al., 2008). The attended stimuli enhanced high γ activity (80–
150Hz) in the cortical areas that processed the corresponding
modality: attention to auditory stimuli activated auditory cortex,
and attention to somatosensory stimuli activated somatosensory
cortex. Additionally, these high-gamma oscillations occurred
in PFC irrespective of the attended modality. This result is
consistent with PFC being involved in the global attentional
system (Dirlikov et al., 2015; Keune et al., 2015) regardless of
the modalities of input information. Another study reported
that attention in humans was associated with high frequency
oscillations of approximately 350Hz that occurred in frontal
and centro-parietal regions in response to somatosensory stimuli
(Ozaki et al., 2006). Several hypotheses have been proposed
to explain the role of high-frequency oscillations in attention.

One hypothesis states that low-amplitude, ultra-high frequency
activity is a background neural noise that enhances neural
processing (Benzi et al., 1982). For example, adding a small
amount of noise to a neural circuit makes its component fire
more synchronous (Ward et al., 2006). Here, the performance is
improved due to stochastic resonance (Benzi et al., 1982), where
high-frequency noise lowers detection threshold for the relevant
stimulus-. The stochastic resonance driven by γ waves can play
a role in high cognitive functions (Ward et al., 2006). A similar
resonance can be produced by injecting noise to the brain using
electrical stimulation (Medina et al., 2012).

A number of BCIs for controlling attention have been
developed based on EEG spectral bands. A recent study showed
that healthy subjects can quickly learn to self-modulate their γ -
oscillation in superior parietal cortex by alternating between the
attentive and rest states (Grosse-Wentrup and Scholkopf, 2014).
This BCI system correctly decoded brain state in 70.2% of cases.
Several of studies on attention-based BCIs employed the ratio
of power in specific spectral bands as the signal feature to be
classified. This ratio was calculated as β/(α+θ) in many reports
(Nagendra et al., 2015). The higher the ratio, the higher is the
level of attention. Other studies used θ/β ratio (Clarke et al., 2013;
Dupuy et al., 2013; Heinrich et al., 2014; Vollebregt et al., 2014b)
that decreased with enhanced attention. These ratios reflect the
fact that θ and α rhythms are stronger in drowsiness and the
inattentive states; whereas, β rhythm is stronger in attentive
states. For example, spectral EEG composition prior to stimulus
presentation is indicative of the level of visual attention (Busch
et al., 2009). Several characteristics of EEG rhythms can be also
used to assess the level of attention. Instantaneous phase of EEG
oscillations is one such characteristic (Busch et al., 2009). In the
experiments of Busch et al. (2009), subjects were instructed to
detect a brief (6ms) light flash presented either at an attended
or unattended location. Hit and miss rates were found to be
correlated with the phase of EEG oscillations at the time of
stimulus presentation. Additionally, stimuli preceded by strong
α activity were less likely to be detected, an observation reported
in the previous literature (Ergenoglu et al., 2004; Babiloni et al.,
2006; Thut et al., 2006; Hanslmayr et al., 2007). In the other
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study on the relationship between EEG phase and detection of
attended and unattended stimuli, Busch and VanRullen (Busch
and VanRullen, 2010) analyzed the relationship between the pre-
stimulus EEG pattern and the EEG response to the stimulus.
They found that EEG responses were higher when EEG was
at a certain phase the just prior to the stimulus onset and the
EEG response was the lowest for the opposite EEG phase (Busch
and VanRullen, 2010). The periodicity of EEG was 100–150ms
in these experiments. Several studies reported similar results
(Makeig et al., 2002; Lakatos et al., 2008; Busch and VanRullen,
2010).

Exogenous BCI
Event-Related Potential (ERP) Paradigms
Event-relate potentials (ERPs) represent a compound response
to a stimulus of large neuronal populations. An ERP consists
of several voltage deflections that occur on a millisecond time
scale. Specific ERP components have been linked to different
neural origins (Cohen, 2013), including the components that are
associated with attention. ERP is one of the most commonly
used protocols for attention studies (Wu et al., 2009; Gherri and
Eimer, 2011; Jones et al., 2013; Matheson et al., 2014; Zheng
et al., 2014). ERPs recorded in primary sensory areas increase
when the corresponding stimulus modality is attended to Harter
et al. (1984). Selection of the appropriate ERP components and
scalp locations to sample is essential to achieve good performance
of an ERP-based BCI. The first ERP-based BCI was designed
by Farwell and Donchin (1988). Subjects looked at a 6 × 6
matrix of alphanumeric characters. A single electrode was placed
over the Pz (central-parietal) site. Subjects were instructed to
attend to a specific character within the matrix while rows and
columns periodically flashed. Attended stimuli evoked stronger
ERPs and thus could be identified. Averaging over 30 trials was
required to improve the signal-to-noise ratio and assure BCI
accuracy.

For better design of ERP-based BCIs, it is important to take
into consideration the detailed sequence of ERPs components.
The first component is the C1-wave which is detected mostly
by the posterior midline electrodes in the EEG. The onset of
the C1-wave is typically 40–60ms after the stimulus with the
peak at 80–100ms post-stimulus. C1 is generated in the primary
visual cortex (Luck, 2014) and its polarity changes as a function
of location of the stimulus in the visual field, i.e., whether the
response comes from upper or lower bank of calcarine sulcus.
This change in polarity has been identified as a unique feature
for C1-wave compared to other components and has been used
by many studies as a marker for V1 sources. However, later
neuroimaging studies challenged this view. Ales et al. (2010) used
fMRI retinotopic mapping to identify the location of V1, V2, and
V3 overlaid on the high-resolution structural MRI (Ales et al.,
2010). This technique allowed them to acquire a 3D shape of the
upper and lower visual field projection in V1 and adjacent areas,
V2 and V3. Contrary to previous studies, they found that sources
in V1 do not fully conform to the sign reversal. Furthermore,
V2 and V3 also showed a polarity change for upper and lower
field stimuli. This suggested that the polarity inversion criterion
was not a reliable method for source localization. Yet another

study challenged this conclusion. Kelly et al. claimed that C1 does
initiate from V1 (Kelly et al., 2013). It has been also reported
that attention is not important to generate the C1 component
(Martinez et al., 1999; Fu et al., 2010). According to Martinez
et al., although primary visual cortex is involved in attention,
it does not serve as the locus of initial sensory gain control for
attended and unattended inputs. Kelly et al. (2008) disagreed with
this and proposed that attentional selection occurs at the early
visual processing stage reflected by C1 generation in V1 (Kelly
et al., 2008). In that study, target brightness and location were
adjusted for each participant in order to reduce inter-subjective
variability of C1. After this correction, it became clear that C1 was
enhanced due to spatial attention, which indicated that this early
sensory component was adjusted before the visual information
arrived in V1.

The second component is the P1-wave that starts 60–90ms
after the stimulus and peaks at 100–130ms. It contains an
early portion generated from middle occipital gyrus and a
late-portion generated more ventrally, from fusiform gyrus (Di
Russo et al., 2002). P1 is sensitive to the direction of spatial
attention (Hillyard and Anllo-Vento, 1998). Luck and Hillyard
(1995) studied attentional modulation of P1 using a stimulus
display that consisted of 14 gray items and 2 colored items
(Luck and Hillyard, 1995). Subjects were instructed to report
presence or absence of specific colored-item (feature detection
condition) or the shape of a specific colored-item (conjunction
discrimination condition). Just after the onset of the search
array, a task-irrelevant stimulus appeared either at the location of
relevant or irrelevant items. The irrelevant stimulus evoked larger
ERPs for the relevant location compared to irrelevant location.
P1-wave was present in that ERP only in the discrimination
condition and not in the feature detection condition, indicating
that conjunction discrimination recruited additional attentional
resources. In the traditional paradigm, where subjects are
instructed to pay attention to one direction and ignore the
other, Mangun et al. (2001) showed that the P1 magnitude is
larger for the attended compared to unattended location. The
study of Mangum et al. also showed that P1 response was
generated not only by the contralateral hemisphere but also by
the ipsilateral one, the observation that was difficult to explain
in terms of redistribution of attentional resources between the
hemispheres. Klimesch (2011) suggested that these results is due
to inhibition effect of the P1 in two different levels. In the task-
irrelevant pathways (e.g., ipsilateral hemisphere) inhibition is
used to block the information processing, whereas, in the task-
relevant pathways it is used to increase the SNR by enabling
precisely timed activity in neurons with high level of excitation
and suppressing the neurons with low-level of excitation.
It seems that the inhibition increased when an attentional
demand increases to make the response to the relevant stimulus
sharper.

N1-wave contains an early component generated in the
frontal (140ms) and two late components between 150 and
200ms generated parietal cortex and the lateral occipital cortex,
respectively (Clark and Hillyard, 1996; Luck, 2005; Ceballos
and Hernandez, 2015). The magnitude of N1-potential is highly
influenced by visual spatial attention (Hillyard et al., 1998). N1
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is insensitive to the physical properties of the paradigm such
as light intensity and the contrast. This point was clarified in
the experiment where a 6 × 6 matrix alphanumeric matrix
(similar to Farwell andDonchin’s paradigm) could be either high-
contrast or low-contrast (Shishkin et al., 2009). Although the
visual stimuli were designed in a very different contrasts, N1
characteristics between high- and low-contrast tasks remained
the same. N1 is an interesting feature from two aspects: first
N1 seems to be reproduce robust feature regardless of design
on the paradigm which makes it suitable to compare different
studies; second, there is no need to make detection paradigm
hard to enhance N1 as it works well for clearly visible stimuli,
and therefore, N1-based BCIs can be visually comfortable for
ADHD subjects. This is important for ADHD subjects as they
have higher tendency for fatigue or visual discomfort (Cao et al.,
2014; Kooij and Bijlenga, 2014). It has been shown that about
two-third of children with ADHD suffer from visual problems
such as irritability by light (Kooij and Bijlenga, 2014). If BCIs are
intended to be used on a daily basis for training and rehabilitation
purposes, the rapid visual fatigue would be a great disadvantage
(Sakurada et al., 2015). Therefore, presenting a paradigm with
less discomfort effect should enhance the endurance of patients
in long-lasting training sessions and consequently increase the
chance of successful therapy.

N1 properties are influenced by repetitive training which can
be a potential marker for evaluating the effect of neurofeedback
therapy. For example, training to play a video game affects
N1 (Latham et al., 2013). In that study, checkerboard stimuli
appeared for a short time (92ms) either in the left or right
hemifield against a gray background. Subjects were instructed
to respond to the flash of checkerboards by pressing a button
while EEG was being recorded. Participants were divided
into two groups: professional video-game players (VGP) and
non-professional VGP. Expert VGPs had significantly shorter
N1 latencies compared to inexperienced VGPs, and no other
difference in ERP components was found between the groups.

P2-wave, that follows N1, occurs mostly for the anterior
and central electrodes. P2 is larger when the stimulus occurs
relatively infrequently (oddball). From this point of view, the
anterior P2 is similar to P3-wave (see below) with the difference
that P2 represents simple features (e.g., color) of the stimulus,
whereas P3 is related to complex stimulus features (e.g., color and
shape). For posterior electrodes, P2 component is often difficult
to distinguish from the overlapping N1, N2, and P3 (Luck,
2014). P2 magnitude has been reported to differ between healthy
and ADHD individuals (Banaschewski et al., 2003, 2008; Broyd
et al., 2005). The P2 component is associated with automatic
processing and inhibition of irrelevant information (Barry et al.,
2003). Studies have shown that P2 has larger amplitude and
different topographical distribution in ADHD (Banaschewski
et al., 2003; Broyd et al., 2005; Barry et al., 2009; Ortega et al.,
2013). Therefore, P2 amplitude could be used in BCIs as an
indicator for improvement scale for ADHDs.

P3 component (also called the P300 since it peaks at 300–
500ms post-stimulus) consists of two sub-components P3a
and P3b. The P3b amplitude varies between 5 and 15µV for
the parietal electrodes (Soltani and Knight, 2000). It appears

following the occurrence of the oddball stimulus among a
sequence of frequently repeating background stimuli. P3a, on
the other hand, is distributed more in the fronto-central scalp
region and peaks about 60–80ms prior to P3b for all sensory
modalities. An important characteristic of P3a component is its
habituation in frontal sites within 5–10 stimulus presentations;
i.e., the P3a disappears when the same type of stimulus
is repeatedly presented (Lynn and Eysenck, 1966; Sokolov,
1969; Friedman et al., 2001). P3b, in many publications, is
simply referred to P3 or P300. It was proposed that P3 is
a possible endophenotype for ADHD (Doyle et al., 2005;
Szuromi et al., 2011). Patients with ADHD have significantly
lower P3 amplitude during the attention task (Szuromi et al.,
2011). Szuromi et al. (2011) proposed that the P3 may be
used as an ADHD marker that characterizes the deficits in
the level of attentional allocation and information processing.
P3 magnitude has been reported to represent the effort of
attentional allocation, whereas, the latency of P3 indexes the
processing speed of stimulus evaluation (Polich, 2007). Yet,
P3 should be considered conservatively as a unique indicator
for attention deficiency since its characteristics can be affected
also by other disorders such as externalizing psychopathology
(substance use, conduct disorder and antisocial behavior)
(Bertoletti et al., 2014; Burwell et al., 2014).

ERP-based BCIs is one of the early developed methods in the
field of BCI (Farwell and Donchin, 1988). ERP-based BCIs have
a relatively low information transfer rate (ITR) or bit-rate. Bit-
rate in a BCI system is an index of how much information can
be communicated between the brain and the computer in the
time-unit (van der Waal et al., 2012). In Farwell and Donchin’s
BCI, the ITR was about 12 bits min−1. Zhang et al developed
a visual P300-speller BCI which was able to communicate at 20
bits min−1. BCI performance is substantially higher for visual
ERPs compared to auditory (1.54 bit min−1) and tactile (7.8 bit
min−1) ERPs (Furdea et al., 2009; van der Waal et al., 2012).
Combination of ERP with other protocols such as steady-state
visual evoked potential (SSVEP) increases the ITR up to 19.05 bit
min−1 (Panicker et al., 2011).

ERP-based BCIs increase SNR by performing an ensemble
averaging across several responses. Only the time-locked
activities survive the averaging and irrelevant activities are
canceled out. However, averaging is also considered as a
drawback of ERP-based BCIs as the system has to obtain two
or more ERP events to improve performance. Collecting data in
multiple trials slows down the system speed. Thus, choosing this
ERP-BCI method is a trade-off between the speed and accuracy
of the system. Another limitation of ERP-based BCI is the across-
trial variability in ERP amplitude and timing. The amplitude
of P3 decreases if inter-trial intervals are short. To keep P3
amplitude in the standard range (10–20µV) inter-trial interval
should be around 8 s (Polich and Bondurant, 1997). This long
interval limits BCI performance. In most experimental designs,
intervals between oddball stimuli are random, which introduces
ERP variability. Variability in the P3-characteristics makes it an
unstable feature in attention experiments where the rigidity of
ERP depend both on factors such as the designed paradigm and
the mental states of the subjects.
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Signal Characteristics in Steady-State Visual Evoked

Potential (SSVEP) Paradigms
Another widely used BCI protocol is the SSVEP (Zhang et al.,
2010; Palomares et al., 2012; Lesenfants et al., 2014; Wu and
Su, 2014; Reuter et al., 2015). Visual evoked potential (VEP) is
the brain responses to a visual stimulus such as light flash or
flickering of a checker board at a specific frequency (Punsawad
and Wongsawat, 2012). Presentation of a flickering visual object
leads to VEPs entrained to the stimulus frequency. SSVEP-based
BCIs usually detect this entrained response in the EEG of the
visual and parietal cortices. These BCIs achieve high SNR over a
few seconds of stimulation (Dmochowski et al., 2015). In a typical
SSVEP-based BCI, several objects flicker at different frequencies
while the subject attends to one the object. The subject usually
looks at the attended object. SSVEP-based BCIs can be easily
implemented using graphical interfaces such as video games
(Leins et al., 2007; Lim et al., 2010, 2012; Bakhshayesh et al.,
2011).

SSVEP-based BCIs have good accuracy and resistance to
artifacts. As such, they can be used to build practical assistive
systems for disabled users (Muller-Putz and Pfurtscheller, 2008).
For example, Bin et al reported a SSVEP-based BCI that attained
95.3% accuracy and the ITR of 58 ± 9.6 bits min−1 (Bin
et al., 2009). This is a substantially higher ITR compared to
other BCI types, such as ERP-based BCIs. Muller and Hillyard
(2000) designed a paradigm in which ERPs were embedded
within a flicker sequence. They found that the magnitude
of SSVEP and that of the N1 and N2 component of ERP
varied together (positive correlation), whereas no significant
correlation was found with other ERP components (Muller and
Hillyard, 2000). SSVEP paradigms usually utilize the flickering
frequency greater than 6Hz. In a recent study (Dreyer and
Herrmann, 2015), flickering frequency of up to 100 Hz was
used by utilizing a novel technology. High-frequency SSVEPs
are of great advantage because subjects do not perceive the
flicker and are not annoyed. The flicker is not perceived
for stimulus frequencies higher than 40Hz (Lin et al., 2012).
Sakurada et al. (2015) demonstrated that using BCIs with
SSVEP frequency above 50–60Hz enhanced the classification
accuracy and decreased visual fatigue (Sakurada et al., 2015).
Training time is also improved, particularly in ADHD subjects,
as they are less irritated by light flicker (Kooij and Bijlenga,
2014).

SSVEPs can be detected not only in awake subjects, but in
anesthetized subjects, as well. Several experiments employed the
SSVEP technique in fully or partially anesthetized animals whose
eyes were kept open in front of a visual display (Harnois et al.,
1984; Xu et al., 2013). The flicker frequency was detected from
the occipital electrodes.

Harmonics of the flickering frequency in some cases give a
better BCI readout (Muller-Putz and Pfurtscheller, 2008; Allison
et al., 2010; Ordikhani-Seyedlar et al., 2014). Müller-Putz and
his colleagues reported particularly good results when they
used three harmonic peaks (Muller-Putz et al., 2005). In our
study (Ordikhani-Seyedlar et al., 2014) that employed a covert
attention paradigm, the power of the second harmonic was
higher compared to the first harmonic. This result is in agreement
with Kim et al. (2011) and others Garcia et al. (2013), Zhang et al.

(2015) who also reported that visual spatial attention modulates
the second, but not the first harmonic of the SSVEP frequency.

PROSPECTS FOR BCIs IN RESEARCH OF
ATTENTION

We are witnessing a rapid development of the BCI field. The
number of peer-reviewed articles has been rapidly increasing
over the past 20 years. Many of BCIs reported in the literature
enable sensorimotor functions (O’Doherty et al., 2011; Ifft et al.,
2013; Pais-Vieira et al., 2013; Yoo et al., 2013). While BCIs for
cognitive functions are less developed, there has been a growing
interest to such systems. In our opinion, the most important
future challenges for attention-based BCIs include:

(1) Filtering out noise: Noise can be caused by mechanical
and electrical artifacts, and it can be a neural signal
that is irrelevant to the function that the BCI enables
and/or augments. Noise can be reduced by proper selection
of features representing a brain function of interest.
Choosing the right features is especially important for
therapeutic BCIs because if features are selected incorrectly,
unwanted functions could be enhanced instead of the desired
alleviation of an individual’s disability. For instance, using
the α-band to regulate attention has certain caveats. Ideally,
the α-band represents suppression of irrelevant information
in an attention paradigm. However, if the subject is not
attending, such suppression could be confused with the
drowsiness state, and the BCI would enhance drowsiness
instead of working properly to enhance attention. This
problem could be addressed by adding features, such as
topographical information about the source of the α-
oscillations.

(2) Developing of reliable criteria to quantify BCI training
effects: Neurofeedback therapy is usually evaluated using a
comparison of specific features before and after the training.
However, enhancement in EEG features does not guarantee
a behavioral improvement. For example, increase in β-
band power is a popular feature indicating high attention
level. If the aim is just to increase β-band oscillation,
this frequency band might also be increased due to some
other brain function unrelated to attention per se. For
example, the β-band increased when motor movement had
to be voluntarily suppressed in macaque monkeys (Zhang
et al., 2008). Therefore, we suggest that the evaluation of
neurofeedback therapy outcome should include behavioral
and psychological tests to that evaluate the target function.

(3) Accounting for intra- and inter-individual variability:
Sources of variability include non-stationarity of EEG signals
(Vidaurre et al., 2011) as well as non-stationarities induced
by the task (Iturrate et al., 2013) and different mental states
of different subjects. The BCI algorithms should be able to
accommodate individual characteristics of subjects, and to
adapt to EEG variability during the neurofeedback therapy.

(4) Developing BCIs for individual use: current methods of NF-
training require the presence of an expert to conduct the
training session from the installation of scalp electrode to
running the programs and maintaining the system. These
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procedures impose restrictions on the usage of BCIs by
patients. More user-friendly, highly automated BCIs should
be developed in the future.

CONCLUSIONS

BCIs offer exciting opportunities for enhancing neural functions
and developing therapies for neural disabilities, including BCIs
that assist subject to regulate their neural function. Attention
is a fundamental brain mechanism for selection of relevant
and essential information while suppressing irrelevant signals.
Disorders of this mechanism result in dysfunctions, such as
ADHD. BCIs hold promise to provide effective rehabilitation
strategies for individuals with impairments of attention. Several
attention-based BCIs have been already developed whereas many
challenges still remain. The main challenge is to combine highly
technical knowledge needed to build effective BCIs with the

expertise from neuroscience and psychology. Merging these
multidisciplinary contributions is key to developing clinically
relevant BCIs to treat attentional dysfunctions.
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