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DOCK8-DEFICIENT CD4+ T CELLS ARE BIASED TO A TH2 EFFECTOR FATE AT 1 

THE EXPENSE OF TH1 AND TH17 CELLS. 2 
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ABSTRACT 44 

Background: Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined 45 

immunodeficiency caused by autosomal recessive loss-of-function mutations in DOCK8. This 46 

disorder is characterised by recurrent cutaneous infections, elevated serum IgE, and severe 47 

atopic disease including anaphylaxis to foods. However, the contribution of defects in CD4+ T 48 

cells to disease pathogenesis in these patients has not been thoroughly investigated.  49 

Objective: To investigate the phenotype and function of DOCK8-deficient CD4+ T cells to 50 

determine (1) intrinsic and extrinsic CD4+ T cell defects (2) how defects account for the clinical 51 

features of DOCK8 deficiency.   52 

Methods: We performed indepth analysis of the CD4+ T cell compartment of DOCK8-deficient 53 

patients. We enumerated subets of CD4+ T helper cells and assessed cytokine production and 54 

transcription factor expression. Finally, we determined the levels of IgE specific for staple 55 

foods and house dust mite allergens in DOCK8-deficient patients and normal controls. 56 

Results: DOCK8-deficient memory CD4+ T cells were biased towards a Th2 type, and this was 57 

at the expense of Th1 and Th17 cells. In vitro polarisation of DOCK8-deficient naive CD4+ T 58 

cells revealed the Th2 bias and Th17 defect to be T-cell intrinsic. Examination of allergen 59 

specific IgE revealed plasma IgE from DOCK8-deficient patients is directed against staple food 60 

antigens, but not house dust mites.  61 

Conclusion: Investigations into the DOCK8-deficient CD4+ T cells provided an explanation for 62 

some of the clinical signs of this disorder - the Th2 bias is likely to contribute to atopic disease, 63 

while defects in Th1 and Th17 cells compromise anti-viral and anti-fungal immunity, 64 

respectively explaining the infectious susceptibility of DOCK8-deficient patients.  65 

  66 
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KEY MESSAGES 67 

• DOCK8-deficient CD4+ T cells present with a Th2 cytokine bias, but also defects in 68 

Th1 and Th17 cells 69 

• The Th2 cytokine bias by DOCK8-deficient cells contributes to atopic disease such as 70 

eczema and food allergies in DOCK8 deficiency 71 

• Th17 cell defect is T cell intrinsic and contributes to compromised anti-fungal immunity 72 

in DOCK8-deficient patients. 73 

 74 

CAPSULE SUMMARY 75 

DOCK8-deficient CD4+ T cells exhibit dysregulated cytokine responses, with exaggerated 76 

production of Th2 cytokines, and impaired production of Th1 and Th17 cytokines. Collectively 77 

these findings provide explanations for some of the clinical features of DOCK8 deficiency, 78 

such as eczema and food allergies, and recurrent viral and microbial infections. 79 

 80 

KEYWORDS: Dedicator of cytokinesis 8, CD4+ T cell differentiation, Th2 skewing, allergy, 81 

atopic disease, chronic mucocutaneous candidiasis, viral immunity 82 

 83 

ABBREVIATIONS USED: 84 

AR-HIES: autosomal recessive hyper IgE syndrome 85 

BCG: Bacille Calmette-Guerin 86 

CMC: chronic mucocutaneous candidiasis 87 

CMV: cytomegalovirus 88 

DOCK8: Dedicator of cytokinesis 8 89 

EBV: Epstein-Barr virus 90 

HHV6: human herpes virus 6 91 

HPV: human papilloma virus 92 

HSCT: Hematopoietic stem cell transplant 93 

HSV: herpes simplex virus 94 

STAT: signal transducer and activator of transcription 95 

TAE: T cell activation and expansion  96 

TCM: central memory T cell 97 

TCR: T cell receptor 98 

TEM: effector memory T cell 99 
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Tfh: T follicular helper 100 

Tregs: regulatory T cells 101 

VZV: Varicella-zoster virus 102 

XLP: X-liked lymphoproliferative disease 103 

 104 

  105 
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INTRODUCTION 106 

Bi-allelic loss-of-function mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined 107 

immunodeficiency also known as an autosomal recessive form of hyper IgE syndrome (AR-108 

HIES)1, 2. Affected patients typically present with recurrent Staphylococcus aureus skin 109 

infections, recurrent and severe cutaneous viral infections (HSV, HPV, Molluscum contagiosum 110 

virus), elevated serum IgE levels, lymphopenia, eosinophilia and an increased risk of 111 

malignancy1-3. DOCK8-deficient patients also exhibit impaired humoral immune responses 112 

against protein and polysaccharide antigens following natural infection or vaccination. 113 

Strikingly, DOCK8 deficiency predisposes most affected patients to developing asthma and 114 

severe allergies against food and environmental antigens1-5. However, the mechanisms 115 

underlying severe allergy are currently unknown.  116 

 117 

DOCK8 functions as a guanine nucleotide exchange factor to activate Rho-family GTPases 118 

such as CDC42, which mediate events including cell activation, division, survival, 119 

differentiation, adhesion, and migration6-8. Despite this, it is not immediately clear how DOCK8 120 

mutations result in the devastating immune abnormalities characteristic of patients with AR-121 

HIES. However, as DOCK8 is predominantly expressed by hematopoietic cells, it is likely to 122 

play critical lymphocyte-intrinsic roles in cellular and humoral immune responses against 123 

infectious diseases. Consistent with this, allogeneic hematopoietic stem cell transplant (HSCT) 124 

overcomes recurrent cutaneous viral infections, eczematous rash, and reduces IgE levels and 125 

eosinophilia9-14. In regards to food allergies in DOCK8 deficiency, some reports have 126 

documented improvement post-HSCT10, 11, 14, while others reported amelioration to symptoms13 127 

or no change9, 15.  128 

 129 

Ex vivo and in vitro analyses of lymphocytes from DOCK8-deficient patients have shed some 130 

light on disease pathogenesis. For instance, DOCK8-deficient patients have normal to increased 131 

numbers of total B cells but decreased circulating memory (CD27+) B cells5, 16. Functionally, 132 

compared with normal B cells, DOCK8-deficient B cells exhibit poor responses to the TLR9 133 

ligand CpG, while CD40-mediated responses were largely intact5. In B cells, DOCK8 acts as an 134 

adaptor protein connecting the TLR9-MYD88 pathway to STAT3 signalling, which is required 135 

for B cell proliferation and differentiation, as evidenced by defective function of STAT3-136 

deficient human B cells in vivo and in vitro17-20. These defects underlie poor humoral immunity 137 

in DOCK8-deficiency. Paradoxically, an increase in autoantibodies directed against nuclear, 138 
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cytoplasmic and extracellular matrix antigens has been detected in DOCK8-deficient patients, 139 

possibly due to decreased regulatory T cells (Tregs) in these patients21.  140 

 141 

Our previous study of T cells in DOCK8-deficient individuals revealed a severe reduction in 142 

naïve, central memory (CD45RA-CCR7+) and effector memory (CD45RA-CCR7-) CD8+ T 143 

cells but a marked accumulation of CD45RA+CCR7- terminally differentiated (i.e. “exhausted”) 144 

effector memory cells22. Strikingly, central and effector memory CD8+ T cells from DOCK8-145 

deficient individuals displayed phenotypic features of exhaustion, with increased expression of 146 

CD57, 2B4 and CD95, and accelerated loss of CD28 and CD127 (IL-7Rα)22. Furthermore, 147 

DOCK8-deficient naïve and memory CD8+ T cells failed to proliferate in vitro in response to T 148 

cell receptor (TCR) stimulation22. More recently, DOCK8-deficient CD8+ T cells were reported 149 

to undergo “cytothripsis”, a form of cell death associated with defects in morphology and 150 

trafficking that prevented the generation of long-lived resident memory CD8+ T cells in the skin 151 

and subsequently impaired immune responses to herpes virus infection at this site23. Taken 152 

together, these defects in CD8+ T cells provide a plausible explanation for viral susceptibility in 153 

DOCK8-deficient patients. DOCK8-deficient patients also have defects in the development of 154 

NKT cells and function of NK cells24, 25 which may contribute to increased susceptibility to 155 

viral infections and malignancies.  156 

 157 

In contrast to these established defects in B cells, Tregs, CD8+ T cells, NK cells and NKT cells, 158 

much less is known about the consequences of DOCK8 mutations in other human CD4+ T 159 

helper cells. While it has been reported that the frequencies of naïve and memory CD4+ T cells 160 

in DOCK8-deficient patients are normal, DOCK8-deficient naïve and memory CD4+ T cells do 161 

have a defect in TCR-induced proliferation, albeit less severe than DOCK8-deficient CD8+ T 162 

cells22. Consequently, this deficit is unlikely to cause clinical features such as atopic disease 163 

(dermatitis, severe food allergies) and increased IgE in DOCK8 deficiency. For this reason, we 164 

have undertaken a detailed analysis of the CD4+ T cell compartment in DOCK8-deficient 165 

patients. We found that DOCK8-deficient memory CD4+ T cells have a bias towards Th2 166 

cytokine expression (ie IL-4, IL-5, IL-13) and concomitant defective production of Th1 (IFNγ) 167 

and Th17 (IL-17A, IL-17F, IL-22) cytokines. Furthermore, the Th2 cytokine bias and impaired 168 

Th17 immunity, in the absence of DOCK8 were T cell intrinsic and independent of defects in 169 

proliferation. This intrinsic Th2 bias of DOCK8-deficient CD4+ T cells may underlie atopic 170 

disease and hyper-IgE displayed by DOCK8-deficient patients. Additionally, impaired Th1 and 171 
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Th17 responses likely account for impaired viral immunity and fungal infections such as 172 

chronic mucocutaneous candidiasis, respectively in DOCK8-deficient patients. 173 

 174 

METHODS 175 

Human samples 176 

PBMCs and/or plasma were isolated from normal donors (Australian Red Cross) and patients 177 

with DOCK8 deficiency (Table 1). The genotype of some of these patients has been previously 178 

reported1, 2, 15, 22, 24. All studies were approved by Institutional Human Research Ethics 179 

Committees and written informed consent was obtained from patients. 180 
 181 
Antibodies and Reagents 182 

Alexa488-anti-GATA3, Alexa647-anti-CXCR5, APC-Cy7-anti-CD4, BUV395-anti-IFNγ, 183 

BV711-anti-CD69, BV711-anti-IL-2, PE-anti-CCR6, PE-anti-CD95, Pe-Cy7-anti-CD25, and 184 

anti-mouse IgG1, and PerCpCy5.5-anti-CD127 and anti-Tbet were from Becton Dickinson. 185 

Alexa488-anti-IL-10, APC-anti-ICOS, eFluor660-anti-IL-21, FITC-anti-CD45RA, PE-IL-22, 186 

Pe-Cy7-anti-IL-4 and mouse IgG1 were from eBiosciences. APC-Cy7-anti-IL-17A, BV421-187 

anti-CXCR3, and BV605-anti-TNFα were from Biolegend. FITC-anti-CCR7 and recombinant 188 

human IL-12 was from R&D Systems. Anti-DOCK8 mAb was from Santa Cruz 189 

Biotechnology. Recombinant human TGFβ, IL-1β, IL-6, IL-21 and IL-23 were from Peprotech. 190 

Prostaglandin E2, PMA, calcium ionophore (ionomycin), Brefeldin A, and saponin were 191 

purchased from Sigma-Aldrich. Recombinant human IL-4 was provided by Dr Rene de Waal 192 

Malefyt (DNAX Research Institute, Palo Alto, CA). T cell activation and expansion (TAE) 193 

beads (anti-CD2/CD3/CD28) were purchased from Miltenyi Biotec and CFSE was purchased 194 

from Invitrogen. 195 

 196 

CD4+ T cell phenotyping  197 

To identify naïve, central memory (TCM) and effector memory (TEM) CD4+ T cell populations, 198 

PBMCs were incubated with mAbs to CD4, CCR7 and CD45RA and the frequency of 199 

CD4+CCR7+CD45RA+ (naïve), CD4+CCR7+CD45RA- (TCM), and CD4+CCR7-CD45RA- (TEM) 200 

populations determined by flow cytometry.  To identify CD4+ T cell populations, PBMCs were 201 

incubated with mAbs to CD4, CD25, CD127, CXCR5, CD45RA, CCR6 and CXCR3, and the 202 

frequency of Tregs (CD4+CD25hiCD127lo), Tfh (CD4+CD25loCD127hi CD45RA-CXCR5+), Th1 203 

(CD4+CD25loCD127hiCD45RA-CXCR5-CXCR3+CCR6-), Th2 (CD4+ CD25loCD127hiCD45RA-204 
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CXCR5-CXCR3-CCR6-) and Th17 (CD4+CD25loCD127hiCD45RA-CXCR5-CXCR3-CCR6+) 205 

subsets determined20.  206 
 207 
Analysis of cytokine expression/secretion by CD4+ and CD8+ T cells  208 

Naive and memory CD4+ T cells or naïve, memory and TEMRA CD8+ T cells22 were isolated by 209 

sorting on a FACS ARIA (Becton Dickinson; > 98% purity) and cultured with TAE beads (anti-210 

CD2/CD3/CD28) in 96 well round bottomed well plates. After 5 days, supernatants were 211 

harvested and production of IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-17F, IFNγ and 212 

TNFα determined by cytometric bead arrays (CBA; Becton Dickinson). For cytokine 213 

expression, activated T cells were re-stimulated with PMA (100 ng/ml) and ionomycin (750 214 

ng/ml) for 6 hours, with Brefeldin A (10 µg/ml) added after 2 hours. Cells were then fixed with 215 

formaldehyde and expression of IFNγ, IL-4, IL-17A, IL-22, IL-21, IL-10, TNFα and IL-2 216 

detected by intracellular staining20, 26-28. 217 
 218 
Analysis of transcription factor expression by CD4+ T cells 219 

Expression of Tbet and GATA3 protein was assessed by intracellular staining using a Fix/Perm 220 

kit from eBioscience. Expression of RORC was determined by QPCR28. 221 
 222 
Analysis of DOCK8 expression 223 

To determine intracellular DOCK8 expression, PBMCs were fixed with formaldehyde and 224 

stained with an unconjugated DOCK8 or an isotype control IgG1 mAb. PE-rat anti-mouse IgG1 225 

was then used with saponin as the permeablising agent29.  226 
 227 
Analysis of CD4+ T cell proliferation  228 

Naïve and memory CD4
+ T cells were isolated by sorting and then labeled with CFSE. Their 229 

proliferation status was determined by assessing dilution of CFSE after 5 days of in vitro 230 

culture27, 28.  231 
 232 
In vitro Th1, Th2, Th17 cell differentiation 233 

Naive and memory CD4
+ T cells were isolated by sorting and cultured under Th0 (TAE beads 234 

alone), or Th1 (50 ng/ml IL-12), Th2 (100 U/ml, IL-4) or Th17 (2.5 ng/mL TGFβ, 50 ng/mL 235 

IL-1β, 50 ng/mL IL-6, 50 ng/mL IL-21, 50 ng/mL IL-23, 50 ng/mL PGE2) polarising 236 

conditions. After 5 days cytokine secretion was analysed (CBA, intracellular staining)26, 28, 30. 237 
 238 
ImmunoCAP assay 239 

Plasma from normal donors and DOCK8-deficient patients was analysed for allergen specific 240 
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IgE Abs by the Sydney South West Pathology Service (Royal Prince Alfred Hospital, Sydney 241 

Australia) using the Phadia 250 ImmunoCAP platform (Thermo Scientific). IgE specific for a 242 

staple food mix (FX5; egg white, milk, codfish, wheat, peanut and soyabean) or house dust mite 243 

mix was determined. 244 
 245 
Statistical analysis 246 

Significant differences were determined using either a Students t-test, multiple t-tests, one-way 247 

or two-way ANOVA (Prism; GraphPad Software). 248 

 249 

RESULTS 250 

Effects of DOCK8 deficiency on the generation of effector CD4+ T cell subsets in vivo.  251 

As an initial step in investigating CD4+ T cell function in the absence of DOCK8, we assessed 252 

the CD4+ T cell compartment to determine whether the generation and differentiation of CD4+ 253 

T cells was affected by DOCK8 deficiency and whether this could contribute to the combined 254 

immunodeficiency typical of these individuals. We previously investigated the peripheral T cell 255 

compartment in a small cohort (n = 6) of DOCK8-deficient patients22. We have now increased 256 

our cohort to comprise 18 individuals from 15 unrelated families and have extended our 257 

analysis to include additional surface markers to further distinguish different subsets within the 258 

CD4+ T cell population (Fig 1). Lack of DOCK8 expression in lymphocytes and monocytes 259 

from a representative healthy control, one unaffected sibling and 4 DOCK8-deficient patients is 260 

depicted in Supplementary Fig 1. Analysis of this larger cohort of DOCK8-deficient patients 261 

confirmed a statistically significant reduction in CD4+ T cells compared to normal donors (Fig 262 

1A). Naïve, central memory (TCM) and effector memory (TEM) CD4+ T cells can be resolved 263 

according to the differential expression of CD45RA and CCR731 (Fig 1B). This analysis 264 

revealed that the naïve and TCM compartments in DOCK8-deficient patients are comparable to 265 

normal individuals, but TEM CD4+ T cells were significantly increased in DOCK8-deficient 266 

patients (Fig 1C). Hence, despite the reduction in total CD4+ T cells, DOCK8-deficient CD4+ T 267 

cells differentiate normally into naïve and TCM cells; this is accompanied by a mild increase in 268 

TEM cells.  269 

 270 

Using a recently described gating strategy20, 32, we next examined the CD4+ T cell compartment 271 

for additional effector subsets: CD25hiCD127lo Tregs (Fig 1D, G)33, CXCR5+CD45RA- T 272 

follicular helper (Tfh) cells (Fig 1E, G), CD45RA-CXCR5- CXCR3+CCR6- Th1 (Fig 1F, G), 273 

CD45RA-CXCR5- CXCR3-CCR6- Th2 (Fig 1F, G), and CD45RA-CXCR5- CXCR3-CCR6+ 274 
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Th17 (Fig 1F, G) cells. DOCK8-deficient patients had an increased frequency of Tregs (Fig 275 

1D, G) but decreased frequency of Th17 cells (Fig 1F, G), while frequencies of Tfh, Th1 and 276 

Th2 cells according to this phenotypic delineation in patients were similar to normal donors 277 

(Fig 1D - G). Thus, there is a selective paucity of Th17 cells due to DOCK8 mutations. 278 

 279 

Assessment of expression of additional surface markers associated with CD4+ T cell 280 

differentiation indicated that the naïve, TCM and TEM CD4+ T cell populations from DOCK8-281 

deficient patients had undergone greater activation and terminal differentiation than 282 

corresponding CD4+ T cell subsets isolated from normal donors (Fig 1H-M). Specifically, the 283 

loss of expression of CD27 (Fig 1H), CD28 (Fig 1I) and CD127 (Fig 1J) and acquisition of 284 

CD57 (Fig 1K), CD95 (Fig 1L) and PD-1 (Fig 1M) by CD4+ TCM and TEM cells was 285 

exaggerated for DOCK8-deficient patients compared to controls. Collectively, DOCK8 286 

deficiency compromises the generation of Th17 cells, and results in the premature terminal 287 

differentiation of memory cells such that they acquire a senescent/exhausted phenotype. 288 

 289 

DOCK8 deficient memory CD4+ T cells are biased towards Th2 cytokines. 290 

Given the decrease in CCR6+CXCR3- cells – which are enriched for Th17-cytokine producing 291 

cells in healthy donors20, 34-36 – in DOCK8-deficient patients, we investigated cytokine 292 

expression by naïve and memory CD4+ T cells (Fig 2). Naïve and total memory (CD45RA-293 

CCR7+/-) CD4+ T cells were sort-purified from normal donors and DOCK8-deficient patients 294 

and then cultured with TAE beads conjugated to anti-CD2/CD3/CD28 mAbs for 5 days. After 295 

this time cells were restimulated with PMA/ionomycin and intracellular expression of IFNγ, IL-296 

4, IL-17A, IL-22, IL-21, IL-10, TNFα and IL-2 determined (Fig 2). Apart from IL-2 (Fig 2A) 297 

and TNFα (Fig 2B), which are expressed by 40-80% of normal naïve cells, only a small 298 

proportion of naïve cells (ie <5%) expressed any of the other cytokines examined. DOCK8-299 

deficient naïve CD4+ T cells expressed a comparable level of IL-2 (Fig 2A) and TNFα (Fig 2B) 300 

to that of normal naïve CD4+ T cells. However, analysis of the memory CD4+ T cell 301 

compartment in DOCK8-deficient patients revealed marked perturbations in differentiation in 302 

vivo. A significantly greater proportion of DOCK8-deficient memory CD4+ T cells expressed 303 

IL-4 compared to normal memory CD4+ T cells (Fig 2C), suggesting a skewing to the Th2 304 

effector lineage. Examination of mean fluorescence intensity of IL-4+ cells in DOCK8-deficient 305 

and normal memory CD4+ T cells revealed no significant differences (data not shown), 306 

suggesting there is an increase in the frequency of IL-4 expressing cells in the DOCK8 memory 307 
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CD4+ T cell compartment, but a comparable amount of IL-4 is produced per cell. The increase 308 

in IL-4+ cells in DOCK8-deficient memory CD4+ T cells was accompanied by significant 309 

reductions in expression of Th1 cytokines IFNγ (Fig 2D) and TNFα (Fig 2B), Th17 cytokines 310 

IL-17A (Fig 2E) and IL-22 (Fig 2F), and the Tfh cytokine IL-21 (Fig 2G). Expression of IL-10 311 

(Fig 2H) and IL-2 (Fig 2A) by memory CD4+ T cells was unaffected by DOCK8 deficiency.  312 

 313 

The Th2 skewing by DOCK8-deficient memory CD4+ T cells was also assessed by measuring 314 

cytokine secretion during the 5-day culture (Fig 3). This indicated concordance between 315 

expression and secretion of cytokines when assessed by intracellular staining and flow 316 

cytometry or cytometric bead array, respectively. Analysis of an extended panel of cytokines 317 

showed that DOCK8-deficient memory T cells secreted not only more IL-4 than normal 318 

memory CD4+ T cells, but also more of the Th2 cytokines IL-5 and IL-13 (Fig 3A-C) and less 319 

Th1 (IFNγ and TNFα; Fig 3D, E) and Th17 (IL-17A and IL-17F; Fig 3F, G) cytokines. 320 

Production of IL-6 (Fig 3H) was also significantly reduced. There were trends for less 321 

production of IL-10 and IL-2 by DOCK8-deficient memory CD4+ T cells, however these 322 

reduced values were not significant (Fig 3I, J). Production of TNFα and IL-2 by DOCK8-323 

deficient naïve CD4+ T cells was normal (Fig 3E, J). Taken together, memory CD4+ T cells 324 

from DOCK8-deficient patients display a Th2 bias, primarily expressing IL-4, IL-5 and IL-13 325 

and notably lower levels of cytokines characteristic of other T helper subsets. 326 

 327 

Th2 cytokine bias by DOCK8-deficient memory CD4+ T cells is independent of defects in cell 328 

proliferation. 329 

Previous work showed that lymphocyte differentiation eg Ig class switching and antibody 330 

secretion by naïve B cells, and cytokine production and cell surface phenotype expression by 331 

naïve T cells, is regulated by cell division27, 37-39. DOCK8-deficient naïve (Fig 3K) and memory 332 

(Fig 3L) CD4+ T cells were found to have impaired cell division in vitro, consistent with 333 

previous findings22. Thus, it was possible that the perturbed cytokine profile reflected reduced 334 

proliferation by DOCK8-deficient memory CD4+ T cells. However, the Th2 bias of DOCK8-335 

deficient memory CD4+ T cells was not due to a proliferative defect as evidenced by two 336 

important and related findings. First, when memory cells were isolated and restimulated 337 

immediately for analysis of cytokine expression, the preferential production of IL-4 by 338 

DOCK8-deficient over normal memory CD4+ T cells was still observed in the absence of cell 339 

proliferation (Fig 3M). Similarly, the poor production of Th1 and Th17 cytokines by DOCK8-340 
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deficient memory CD4+ T cells did not result from impaired proliferation because reductions in 341 

expression of IFNγ (normal: 17.7%, DOCK8: 6.9%) and IL-22 (normal: 3.7%, DOCK8: 1.8%) 342 

respectively were also observed when assessed under these ex vivo stimulatory conditions. 343 

Second, analysis of cells that had undergone different rounds of divisions in vitro revealed that 344 

the decrease in IFNγ (Fig 3N) and increase in IL-4 (Fig 3O) displayed by DOCK8-deficient 345 

versus normal memory CD4+ T cells was evident for all division intervals examined. Thus, the 346 

preference of DOCK8-deficient memory CD4+ T cells to produce Th2, but not Th1, cytokines 347 

is independent of any proliferative defects in these cells.  348 

 349 

Naive DOCK8-deficient CD4+ T cells can differentiate into effector cells producing Th1 and 350 

Th2, but not Th17, cytokines in vitro. 351 

To determine if the defects in cytokine production by DOCK8-deficient memory CD4+ T cells 352 

are cell-intrinsic or due to extrinsic factors, we isolated naïve CD4+ T cells from normal donors 353 

and DOCK8-deficient patients and subjected them to in vitro culture under Th0, Th1, Th2 or 354 

Th17 polarising conditions. Interestingly, DOCK8-deficient naïve CD4+ T cells differentiated 355 

into Th1 cells (IFNγ and TNFα) to the same extent as normal naïve CD4+ T cells (Fig 4A, left 356 

panel). Consistent with the data for memory CD4+ T cells ex vivo, DOCK8-deficient naïve 357 

CD4+ T cells produced significantly greater amounts of the Th2 cytokine IL-13 than control 358 

naïve CD4+ T cells under Th2-polarising conditions (3-fold increase; Fig 4A, middle panels). 359 

We also analysed Th2 differentiation by assessing cytokine expression in naïve CD4+ T cells by 360 

intracellular staining and flow cytometry following in vitro Th2 polarization. This confirmed a 361 

preferential differentiation of DOCK8-deficient towards a Th2 fate, with increased proportions 362 

of DOCK8-deficient naïve CD4+ T cells expressing IL-4 (9.9% DOCK8-deficient vs 5.5% 363 

control CD4+ T cells) and IL-13 (5.9% DOCK8-deficient vs 1.7% control CD4+ T cells). 364 

Together, these data provide evidence of a predominant intrinsic bias of DOCK8-deficient 365 

naïve CD4+ T cells differentiating towards a Th2 effector fate. DOCK8-deficient naïve CD4+ T 366 

cells failed to differentiate into IL-17A- and IL-17F-secreting cells when subjected to Th17 367 

polarising conditions in vitro (Fig 4A, right panels). Notably, DOCK8-deficient naïve CD4+ T 368 

cells responded to the Th17 culture as shown by reductions in basal levels of IL-5 and IL-13 369 

secretion compared to the Th0 culture (data not shown).  370 

 371 

When we examined memory CD4+ T cells from healthy donors, production of IFNγ and IL-372 

17A/F could be increased ~2-4 fold by Th1 and Th17 culture conditions, respectively, 373 
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compared to Th0 conditions (Fig 4B). The net increase in production of these cytokines by 374 

DOCK8-deficient memory CD4+ T cells under Th1 and Th17 conditions compared to Th0 375 

conditions was also ~2-6 fold. Despite this, the levels of IFNγ and IL-17A/F secreted by Th1- 376 

and Th17-stimulated DOCK8-deficient memory CD4+ T cells were substantially less than not 377 

only Th1- and Th17-stimulated normal memory CD4+ T cells, but also Th0-stimulated normal 378 

memory CD4+ T cells (Fig 4B). This likely reflects expansion of the few Th1 and Th17 cells 379 

present in the DOCK8 memory CD4+ T cell compartment rather than de novo differentiation 380 

into these effector subsets in vitro.  381 

 382 

Consistent with the data for cytokine secretion, DOCK8-deficient naïve CD4+ T cells that were 383 

polarised towards Th1 and Th2 fates upregulated TBET (Fig 4C) and GATA3 (Fig 4D), 384 

respectively, to the same extent as normal naïve CD4+ T cells. In our hands, detection of RORγt 385 

expression by flow cytometry was not particularly sensitive, as we found that only a small 386 

proportion of naïve CD4+ T cells (~5%) expressed RORγt in Th17 compared to Th0 activated 387 

cultures40. To overcome this, RORC expression was determined by QPCR. RORC was not 388 

expressed by naive CD4+ T cells activated under Th0 conditions, but was up-regulated in 389 

normal and DOCK8-deficient naïve CD4+ T cells cultured under Th17 polarising conditions 390 

(Fig 4E). Taken together, these data indicate the Th17 cytokine defect in DOCK8 deficiency is 391 

T cell intrinsic, and cannot be restored by Th17 polarising conditions for either naïve or 392 

memory cells. Furthermore, the ability of Th17 culture conditions to induce RORC in the 393 

absence of DOCK8 indicates the defect in Th17 differentiation is downstream of RORC. In 394 

contrast, DOCK8-deficient naïve CD4+ T cells differentiate normally into Th1 cells, and exhibit 395 

exaggerated Th2 differentiation, when provided with the appropriate stimuli in vitro. 396 

 397 

Preferential production of Th2 cytokines by DOCK8-deficient CD4+ T cells correlates with 398 

reduced TCR-mediated activation 399 

The strength of signal provided to CD4+ T cells through the TCR greatly influences their 400 

differentiation to cytokine-producing effector cells. For instance, reduced signal strength 401 

favours Th2 cells41-44, while differentiation to Th17 cells requires stronger or sustained TCR 402 

signalling45, 46. Our findings of heightened production of Th2 cytokines by DOCK8-deficient 403 

naïve and memory CD4+ T cells led us to hypothesise that mutations in DOCK8 compromised 404 

TCR signal strength. To assess this, we cultured DOCK8-deficient CD4+ T cells with differing 405 

doses of anti-CD2/CD3/CD28 beads for 3 days and then measured levels of expression of the 406 
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activation molecules ICOS, CD25, CD69, and CD95. The rationale here is that lowering the 407 

dose of the beads results in a qualitatively weaker signal. While CD4+ T cells from healthy 408 

controls exhibited heightened expression of ICOS, CD69, CD25 at the 2 different doses of anti-409 

CD2/CD3/CD28 beads tested, induction of these same molecules on DOCK8-deficient CD4+ T 410 

cells was severely blunted (Fig 4F). Thus, mutations in DOCK8 compromise T cell activation 411 

by reducing the strength of signal delivered through the TCR and co-stimulatory receptor 412 

signaling pathways. In the case of T cell differentiation, this results in a skewing of the cells 413 

towards a Th2 phenotype.  414 

 415 

Specific sensitisation of DOCK8-deficient patients to food allergens 416 

Exaggerated Th2 immune responses have traditionally been associated with allergy and atopic 417 

disease47. It was thus intriguing to note that CD4+ T cells from DOCK8-deficient patients were 418 

biased towards production of Th2 cytokines, and that these patients have severe allergies. To 419 

determine if the Th2 bias in DOCK8-deficient human CD4+ T cells is related to their increased 420 

susceptibility to food allergies we examined the specificity of IgE in serum samples from 421 

DOCK8-deficient patients and normal healthy donors to staple foods (i.e. egg white, milk, 422 

codfish, wheat, peanut, soyabean), as well as to non-food allergens such as house dust mites. 423 

We found that a comparable frequency of normal individuals and DOCK8-deficient patients 424 

had IgE specific to house dust mites (Fig 5A). Strikingly, the majority of plasma samples from 425 

DOCK8-deficient patients (80%; 12/15), but none of the normal controls tested, had IgE that 426 

was specific for the staple food mix (Fig 5B). Thus, DOCK8-deficient patients have a Th2 bias 427 

that manifest clinically as specific sensitisation to oral allergens and this may explain the 428 

marked propensity of these immunodeficient patients to develop food allergies. 429 

 430 

DISCUSSION 431 

Identifying defects in lymphocyte development or function in PIDs provides the opportunity to 432 

elucidate the cellular and molecular basis for the clinical features of the disease. Studies of 433 

DOCK8-deficient humans and mice have indeed revealed critical cell-intrinsic roles for 434 

DOCK8 in generating B-cell memory and long-lived humoral immunity5, 48, CD8+ T cell 435 

differentiation and anti-viral responses22, 23, 49, 50, NK cell cytotoxicity24 and NKT cell 436 

development25. Collectively, these defects underlie poor Ab responses to specific Ags, and 437 

impaired cell-mediated immunity to pathogens including HSV, HPV and Molluscum 438 

contagiosum virus. We have now investigated CD4+ T cell differentiation in DOCK8-deficient 439 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 15 of 28 

patients to understand other aspects of AR-HIES, such as susceptibility to bacterial and fungal 440 

infections, atopic disease, food allergies and hyper-IgE.  441 

 442 

Our data revealed that DOCK8-deficient CD4+ T cells have dysregulated expression of surface 443 

molecules including CD27, CD57, CD95 and PD-1. This likely results from chronic infection 444 

with pathogens, such as herpes viruses (HSV, CMV, VZV), HPV and Molluscum contagiosum 445 

virus, akin to what has been described for CD8+ T cells in not only DOCK8 deficiency22, but 446 

other PIDs such as XLP51, 52, STAT3 deficiency53 and PIK3CD gain of function mutations54, 447 

which are characterised by chronic exposure to infectious pathogens. In the absence of DOCK8, 448 

memory CD4+ T cells are polarised to a Th2 cytokine phenotype at the expense of Th1 and 449 

Th17 cytokines. The reduction in Th17 cells was apparent not only from the lack of cells 450 

producing IL-17A, IL-17F and IL-22, but also the reduction in CCR6+ memory CD4+ T cells. 451 

This is consistent with our previous studies which revealed parallel reductions in CD4+ T cells 452 

secreting IL-17A/IL-17F and expressing CCR6+ in patients with STAT3 loss-of function or 453 

STAT1gain-of function mutations17, 20, 28, indicating that flow cytometric analysis of CCR6+ 454 

memory CD4+ T cells can be a reliable and rapid means of quantifying Th17 cells. 455 

Interestingly, DOCK8-deficient naïve CD4+ T cells differentiated into TBET-expressing and 456 

Th1-cytokine secreting cells when provided with exogenous signals in vitro. This suggests that 457 

defects in IFNγ production by DOCK8-deficient memory CD4+ T cells ex vivo are extrinsic, 458 

possibly resulting from suboptimal priming by Ag-presenting cells and provision of IL-12 in 459 

vivo. Consistent with this, DOCK8-deficient murine DCs failed to accumulate in the lymph 460 

node parenchyma where they are required for T cell priming during immune responses55. This 461 

defect was attributed to compromised Cdc42 function in the absence of DOCK855. Another 462 

possibility is that excessive production of IL-4, which restrains differentiation of human CD4+ 463 

T cells into Th1 cells56, impairs IFNγ production by DOCK8-deficient memory CD4+ T cells. 464 

This is consistent with our recent observations of heightened production of Th2 cytokines and 465 

corresponding reductions in IFNγ production ex vivo by memory CD4+ T cells from individuals 466 

with loss-of function mutations in STAT3, IL21R, IL12RB1, TYK2 or RORC20, 57. While 467 

DOCK8-deficient naïve CD4+ T cells could express RORC in vitro following activation under 468 

Th17-polarisng conditions, IL-17A/F cytokine secretion remained greatly impaired. Thus, an 469 

intrinsic defect distal to inducing RORC expression underlies the inability of DOCK8-deficient 470 

CD4+ T cells to become Th17 cells. Although Th1- and Th17-polarising conditions did increase 471 

IFNγ and IL-17A/F production by DOCK8-deficient memory CD4+ T cells, these cells 472 
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produced lower levels of these cytokines than normal cells under similar culture conditions. 473 

Interestingly, CD4+ T cells from DOCK8-deficient mice expressed normal levels of TBET and 474 

GATA3 when activated under Th1 and Th2 polarising conditions, respectively, in vitro49. 475 

Interestingly, while IFNγ expression by in vitro-derived murine DOCK8-deficient Th1 cells 476 

was normal, Th2 polarised DOCK8-deficient CD4+ T cells showed increases in IL-4-expressing 477 

cells49, suggesting that murine DOCK8 deficient CD4+ T cells also display a Th2 bias.  478 

 479 

These findings provide potential explanations for some of the clinical features of DOCK8 480 

deficiency. First, lack of Th17 cells would predispose DOCK8-deficient individuals to 481 

infections with Candida albicans. This is akin to other monogenic PIDs characterised by 482 

impaired Th17/IL-17-mediated immunity and the high incidence of chronic mucocutaneous 483 

candidiasis (CMC) in affected individuals ie loss-of-function mutations in STAT3, IL17RA, 484 

IL17RC, IL17F, ACT1 and RORC, and gain-of-function mutations in STAT120, 28, 57-62. 485 

Compared to other PIDs with defects in Th17 cytokines, IL-17A/IL-17F production by 486 

DOCK8-deficient memory CD4+ T was less than that observed for RORC- or STAT3-deficient 487 

memory CD4+ T cells20, 57. Remarkably, the quantitative impact of specific gene mutations on 488 

generating Th17 cells correlates with, or predicts, the incidence of fungal infections in these 489 

individuals. Thus, ~85% of patients with mutations in STAT3 or RORC develop CMC 57, 63, but 490 

fungal infections is observed in only ~40-60% of DOCK8-deficient patients, as shown for the 491 

cohort studied here (Table 1), and in a larger study of 57 patients64. Thus, there is likely a direct 492 

association between IL-17A/IL-17F production in different PID patients and incidence of 493 

CMC. Second, the predominance of memory CD4+ T cells producing high levels of IL-4, IL-5 494 

and IL-13 could contribute to the characteristic pathophysiological Th2 features of AR-HIES: 495 

severe allergy, eosinophilia and hyper-IgE65. This exaggerated Th2 response may also reduce 496 

Th17 differentiation66, further compromising Th17-mediated anti-fungal immune responses. 497 

Although memory CD4+ T cells displayed reduced IFNγ production ex vivo, DOCK8-deficient 498 

naïve CD4+ T cells could differentiate into Th1 cells in vitro. Thus, Th1-mediated immunity, 499 

while reduced, may be sufficient in these individuals to elicit protective immunity. Indeed, this 500 

is consistent with a lack of disease caused by poorly virulent mycobacteria, such as BCG 501 

vaccines and environmental species - which require IFNγ-mediated immunity for protection67 - 502 

in DOCK8 deficiency. In the scenario of anti-viral immunity, the increased Th2-cytokine 503 

environment within the memory CD4+ T cell compartment may inhibit IFNγ production by 504 

CD8+ T cells. Indeed, analysis of DOCK8-deficient memory CD8+ T cells ex vivo revealed 505 
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defective IFNγ expression and secretion compared to healthy donors (Supplementary Fig 2A, 506 

B)1. Thus, by diminishing Th1 responses, a Th2 bias could contribute to persistent viral 507 

infections in DOCK8-deficient patients. Third, beyond Th1, Th2 and Th17 cytokines, we also 508 

noted reduced production of IL-6 by DOCK8-deficient memory CD4+ T cells. While there have 509 

been no genetic studies linking impaired IL-6 production with infection with specific 510 

pathogens, autoantibodies against IL-6 were reported in an individual with recurrent 511 

staphylococcal infection 68. Thus it is possible that poor IL-6-mediated immunity in DOCK8 512 

deficiency underlies staphylococcal infection in affected patients. Fourth, while previous work 513 

demonstrated that DOCK8 functions intrinsically in B cells to regulate differentiation, reduced 514 

production of IL-21 (and potentially IL-10) by DOCK8-deficient memory CD4+ T cells may 515 

also contribute to impaired humoral immune responses in AR-HIES, as these cytokines are the 516 

main drivers of human B cell activation, proliferation and differentiation69. This is supported by 517 

our observation that DOCK8-deficient memory CD4+ T cells present with defects in IL-21 518 

expression ex vivo (Figure 2) and naïve DOCK8-deficient CD4+ T cells failed to differentiate 519 

into IL-21+ cells as efficiently as normal naïve CD4+ T cells when cultured under Tfh cell 520 

polarising conditions (Supplementary Fig 2C). 521 

 522 

A characteristic and perhaps unique feature of DOCK8 deficiency compared to other PIDs 523 

(including those in which there are high levels of IgE such as mutations in STAT3) is the very 524 

high incidence of food allergies1-5. The allergen-specific IgE from DOCK8-deficient patients 525 

was directed mostly towards staple foods rather than non-food allergens such as house dust 526 

mites. This is consistent with a recent report which showed that this pattern of allergen-specific 527 

IgE is unique to DOCK8 deficiency70, inasmuch that DOCK8 deficient patients had IgE 528 

directed towards food Ags, while patients with atopic dermatitis have IgE specific for 529 

aeroallergens, yet the reactivity of IgE in STAT3-deficient individuals against specific allergens 530 

was comparable to normal donors70. Since food allergies are more common in children who 531 

often outgrow them once they reach adolescence, IgE sensitisation to food Ags and not house 532 

dust mites in DOCK8 deficiency could be attributable to the younger age of our DOCK8 cohort 533 

compared to our normal controls. However, this is unlikely as 9 of the 12 DOCK8 deficient 534 

patients that still had IgE specific to food Ags were adolescents or adults. In the scenario of 535 

STAT3 deficiency, the reduced level of IgE specific for food allergens when compared to 536 

patients with atopic dermatitis has been attributed to a defect in basophil activation and mast 537 

cell degranulation, with the latter process found to be STAT3-dependent71. This is interesting 538 
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because although patients with mutations in DOCK8 or STAT3, or individuals with atopic 539 

dermatitis, all display increased serum IgE, eczema and atopic disease, DOCK8 deficiency 540 

specifically predisposes to food allergies. The mechanism whereby this occurs is unclear, but it 541 

is tempting to speculate that it is related to the Th2 bias of DOCK8-deficient memory CD4+ T 542 

cells. While Th2 skewing has been reported in DOCK8-deficient mice in vitro49, to our 543 

knowledge, IgE responses following exposure to food allergens have not been investigated in 544 

mice, but may provide invaluable insights into whether exposure to food allergens is the driver 545 

of IgE production in DOCK8 deficiency. Nevertheless, our findings reinforce the value of 546 

direct interrogation of patient cells and highlight the need to be cognisant of species-specific 547 

differences that impact translation of murine studies to humans. 548 

 549 

The underlying cause for the biased Th2 nature of memory CD4+ T cells in DOCK8-deficient 550 

patients remains to be determined. Examination of the TCR Vβ repertoire in the CD4+ T cell 551 

compartment of DOCK8 deficient patients and healthy normal donors did not reveal any 552 

substantial differences (data not shown). However, there is evidence showing that the strength 553 

of the signal received through the TCR greatly influences differentiation of CD4+ T cells. 554 

Specifically, low doses of Ag/low level TCR signalling favour humoral or IL-4-mediated Th2 555 

immune responses while high doses of Ag/strong TCR signalling favour cellular or IFNγ-556 

mediated Th1 immune responses41-43. This is also supported genetically, as murine CD4+ T 557 

cells with a hypomorphic Card11 mutation reduces TCR-mediated signal strength resulting in 558 

exaggerated Th2 differentiation, allergic disease, dermatitis and hyper-IgE44. Based on this, we 559 

hypothesise that DOCK8-deficient CD4+ T cells receive a qualitatively weaker TCR signal, 560 

potential due to defective immunological synapse formation48, which favors their preferential 561 

differentiation into Th2 cells at the expense of other Th cell subsets. Our data demonstrating 562 

reduced induction of expression of activation markers on DOCK8-deficient CD4+ T cells in 563 

response to increasing doses of anti-CD2/CD3/CD28 bead stimulation supports this hypothesis. 564 

The original studies on strength of TCR signals influencing murine Th cell differentiation 565 

predated the discovery of Th17 cells. However, studies in mice and humans have since 566 

demonstrated a requirement for sustained TCR signalling in naïve T cells for commitment to a 567 

Th17 phenotype in vitro and in vivo45, 46. Thus, we would predict that reduced TCR signal 568 

strength in DOCK8-deficient CD4+ T cells impairs their differentiation into Th17 cells. 569 

 570 
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In conclusion we reveal that the CD4+ T cell compartment is greatly altered in the absence of 571 

DOCK8. Specifically, DOCK8-deficient patients have increased Th2 cells and defects in Th1 572 

and Th17 cell differentiation. This skewing of CD4+ T cell subsets likely accounts for some of 573 

the clinical manifestations in DOCK8-deficient individuals. Strikingly, within our DOCK8 574 

cohort, all the patients investigated had IgE that was specific for at least one of the following 575 

foods - egg white, milk, codfish, wheat, peanut and soyabean-, but not non-food allergens. 576 

These results indicate that the detection of high titers of IgE specific for food but not to other 577 

allergens is predictive of DOCK8 deficiency. Thus, future studies to identify signalling 578 

pathways and cellular processes affected by DOCK8 deficiency in CD4+ T cells will not only 579 

improve our understanding of disease pathogenesis in affected DOCK8-deficient individuals, 580 

but also patients with atopic disease. 581 

  582 
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FIGURES LEGENDS 596 

Figure 1: Phenotype of the peripheral CD4+ T cell compartment in DOCK8-deficient 597 

patients. (A) The frequency of CD4+ T cells in normal donors and DOCK8-deficient patients. 598 

(B, C) Naïve (CD45RA+CCR7+), central memory (TCM; CD45RA-CCR7+) and effector 599 

memory (TEM; CD45RA-CCR7-) populations in normal donors (closed symbol; n = 25) and 600 

DOCK8-deficient patients (open symbol; n = 18) were enumerated based on expression of 601 

CD45RA and CCR7. (D-G) PBMCs were labelled with mAbs against CD4, CD45RA, CD25, 602 

CD127, CXCR5, CXCR3 and CCR6. (D) Treg cells were identified as CD25hiCD127lo. (E) 603 

Amongst the non-Treg population naïve and Tfh cells were identified as CXCR5-CD45RA+ and 604 

CXCR5+CD45RA-, respectively. (F) Th1, Th2 and Th17 populations were identified within the 605 

population of CXCR5-CD45RA- memory CD4+ T cells as CXCR3+ CCR6-, CCR6-CXCR3- and 606 

CCR6+CXCR3- cells, respectively. (G) Using this gating the frequency of Tregs, Tfh, Th1, Th2 607 

and Th17 cells within the CD4+ T cell compartment was determined in normal individuals 608 

(closed symbol; n = 15 or 16) and in DOCK8-deficient patients (open symbol; n = 10 or 11). 609 

Each point represents an individual donor or patient. Statistics performed with Prism using 610 

Student t-test. (H-M) Naïve (CD45RA+CCR7+), central memory (TCM; CD45RA-CCR7+) and 611 

effector memory (TEM; CD45RA-CCR7-) populations in normal donors (closed symbol) and 612 

DOCK8-deficient patients (open symbol) were identified and assessed for expression of (H) 613 

CD27, (I) CD28, (J) CD127, (K) CD57, (L) CD95 and (M) PD1. Each point corresponds to the 614 

mean ± SEM % of cells expressing the indicated surface receptor, or MFI (mean fluorescence 615 

intensity) of expression (n = 4 - 12 normal donors or DOCK8-deficient individuals). Statistics 616 

performed with Prism using t-test. 617 

 618 

Figure 2: DOCK8-deficient memory CD4+ T cells display a Th2 cytokine expression bias. 619 

Naïve (CD45RA+CCR7+) and memory (CD45RA-CCR7+/-) CD4+ T cells were isolated from 620 

normal donors and DOCK8-deficient patients and cultured with TAE beads for 5 days. Cells 621 

were then re-stimulated with PMA/ionomycin for 6 hours in the presence of Brefeldin A for the 622 

last 4 hours. Intracellular expression of (A) ����, (B) TNFα, (C) IL-4, (D) IFNγ, (E) IL-623 

17A, (F) IL-22, (G) IL-21 and (H) IL-10 was determined using saponin as the permeabilising 624 

agent followed by flow cytometric analysis. Data represent the mean ± SEM of 8 normal 625 

donors or 8 DOCK8-deficient patients. Statistics performed with Prism using One-way 626 

ANOVA.  627 

 628 
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Figure 3: DOCK8-deficient memory CD4+ T cells secrete elevated quantities of the Th2 629 

cytokines IL-4, IL-5 and IL-13 independently of differences in cell proliferation. Naïve and 630 

memory CD4+ T cells were sorted from normal donors and DOCK8-deficient patients and 631 

cultured with TAE beads for 5 days. After this time, culture supernatants were examined for 632 

secretion of (A) IL-4  (B) IL-5, (C) IL-13, (D) IFNγ, (E) TNF, (F) IL-17A, (G) IL-17F, (H) IL-633 

6, (I) IL-10, (J) IL-2, using a custom designed cytometric bead array (CBA; BD biosciences). 634 

Data represent the mean ± SEM of experiments using cells from 9 normal donors or DOCK8-635 

deficient patients. Statistics performed with Prism using One-way ANOVA. (K-L) Naive (K) 636 

and memory (L) CD4+ T cells were isolated from normal donors (n = 4) and DOCK8-deficient 637 

patients (n = 4), labelled with CFSE and cultured with TAE beads for 5 days. After this time, 638 

the frequency of cells in each division was determined by dilution of CFSE. (M) Sorted naïve 639 

and memory CD4+ were immediately restimulated with PMA/ionomycin for 6 hours in the 640 

presence of Brefeldin A and IL-4 expression determined by intracellular staining and flow 641 

cytometry. (N, O) Naive and memory CD4+ T cells were labelled with CFSE, cultured with 642 

TAE beads for 5 days, and the proportion of cells expressing (L) IFNγ  or (M) IL-4 was 643 

determined for each division interval by dilution of CFSE. Data represent the mean ± SEM of 2 644 

- 4 normal donors and DOCK8-deficient patients.  645 

 646 

Figure 4: Intrinsic defects in CD4+ T cell cytokine secretion due to DOCK8 mutations. (A) 647 

Naïve and (B) memory CD4+ T cells were isolated from normal donors and DOCK8-deficient 648 

patients and activated under neutral conditions (Th0; TAE only), or Th1- (+ IL-12), Th2- (+ IL-649 

4), or Th17- (+ IL-1β, IL-6, IL-21, IL-23, TGFβ, PG) polarising conditions. After 5 days, 650 

secretion of Th1 (IFNγ), Th2 (IL-5, IL-13) and Th17 (IL-17A, IL-17F) cytokines was 651 

determined by CBA. The data represent the mean ± SEM of experiments using cells from 12 652 

normal donors and 8 DOCK8-deficient patients. Expression of (C) TBET and (D) GATA3 was 653 

determined by flow cytometry; the data represent the fold change (mean ± sem) in expression 654 

of the indicated transcription factor relative to Th0 culture of the normal control. (E) expression 655 

of RORC was determined by QPCR. Data represent the mean and SEM of 2 - 3 normal donors 656 

and DOCK8-deficient patients. (F) Memory CD4+ T cells from healthy donors or DOCK8-657 

deficient patients (n=2) were cultured with TAE beads at a cell:bead ratio of 2:1 and 0.5:1, and 658 

expression of ICOS, CD25, CD69 and CD95 was determined prior to culture (day 0) and 3 days 659 

after activation. The values represent the mean ± sem of the MFI of each of the indicated 660 

surface receptors. Statistics performed with Prism using two-way ANOVA. 661 
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 662 

Figure 5: IgE in DOCK8 deficient patients is specific for staple foods and not other Ags 663 

such as house dust mites. 664 

Plasma from normal donors and DOCK8-deficient patients was analysed for IgE specific for 665 

(A) a staple food mix (egg white, milk, codfish, wheat, peanut and soyabean) and (B) a house 666 

dust mite mix by ImmunoCAP. The data represent the mean ± SEM of 13 normal donors and 667 

15 DOCK8-deficient patients. The dotted line refers to the upper limit of the negative reference 668 

interval (0.35 kUA/L). 669 

 670 
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Table 1: DOCK8 deficient patients 
DOCK8-
deficient 
patients 
 

Mutation Gender Age 
at 

study 

IgE 
(IU/ml) 

Allergies/atopic disease Infections Other 

#1 
 

Homozygous 
114 kb deletion 
spanning exons 
4 - 26 

female 14 4,864 – 
10,000 

- No known allergies 
- Eczema 
- Hypereosinophilia 
without lymphopenia 

Pneumonia, cutaneous 
lesions and abscesses, 
fungal infections, 
lymphadenitis, cheilitis,  
Chrysosporium parvum. 

Chronic diarrhea, rectal 
prolapse, bronchiectasis, 
tolerated BCG vaccine. 
Deceased. 

#2 Homoz A->T; 
position 70 exon 
7; K271X 

female 12 10,000 - No known allergies 
-  Eczema 

Severe M. contagiosum, 
pneumonia, meningitis. 

 

#3 Homozygous 
400 kb deletion 
(totality of 
DOCK8 + 5’ of 
KANK1) 

female 12 >5,000 - Multiple food, 
environmental, and drug 
allergies 
- Severe eczema 
(lichenification) 
- Hypereosinophilia 
(>3000/mm3) 

Stomatitis, M. 
contagiosum, 
respiratory syncytial 
virus, HSV1, Candida 
sp, H. influenza, 
P. jirovecii. 

Abdominal vasculitis, 
lymphadenopathy, 
splenomegaly, CD3+ 
lymphopenia. Successful 
HSCT. 

#4 Homozygous 
114 kb deletion 
spanning exons 
4 - 26 

male 10 1,552 - No known allergies 
- Eczema 
- Hypereosinophilia 
(7800/mm3). 

Recurrent otitis media, 
herpes labialis, HPV, 
disseminated plain warts, 
onychomycosis, 
Salmonella sp. 
 

Arthritis, uveitis, 
interstitial lung disease, 
inflammatory bowel 
disease, mesenteric 
vasculitis. Tolerated BCG 
vaccine. Deceased. 

#5 Homozygous 
114 kb deletion 
spanning exons 
4 - 26 

female 12 19,302 - No known allergies 
- Eosinophilia 
(5,000/mm3). 

Recurrent upper 
respiratory tract 
infection, HPV, flat 
warts, herpetic stomatitis, 
Giardia lamblia, 
Salmonella enterica, E. 
coli. 

Uncomplicated 
chickenpox. Inflammatory 
bowel disease, abdominal 
vasculitis, thrombocytosis. 
Tolerated BCG vaccine. 
Deceased. 

#6 c.3733_3734del
AG; 

male 12 1,500 - Multiple food allergies 
(egg, cow’s milk) 

Methicillin-resistant S. 
aureus infection, M. 
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p.R1245EfsX5 - Peanut sensitised 
(tolerant) 
- Environmental allergies 
(house dust mite, rye 
grass, bermuda grass). 
Previous allergic rhinitis 
- Infrequent episodic 
asthma (viral induced) in 
childhood 
-  Eczema 

contagiosum, recurrent 
otitis media. 

#7  Homozygous 
deletion 9p24.3 
323,819-
324,708 

female 8 9,196 - Food allergies 
- Diffuse colonic and 
esophageal eosinophilia 
- Eczema 
- Asthma 

CMV, BK virus, chronic 
Salmonella, recurrent 
sinopulmonary 
infections, skin 
abscesses. 

Sclerosing cholangitis. 

#8  heterozygous 
deletions 
involving exons 
22-25 and 3-32 

female 14 6,270 - Food allergies 
- Environmental allergies  
- Rhinitis  
- Asthma 
- Allergic conjunctivitis 
- Eczema  

HPV, M. contagiosum, 
meningitis, bacteremia, 
fungal skin infections.  

Vasculopathy. Allergic 
symptoms improved after 
transplant. 
 

#9 • Large 
heterozygous . 
deletion 
(~200kb)  
• 2bp 
heterozygous 
deletion in exon 
41 (c.5307-5308 
del AC, 
pL1770fsX1783 

female 7 >6,000 - No known allergies 
- Severe eczema 
(lichenification) 
-  Eosinophilia 
(>3,000/�m3) 

Skin abscesses, M. 
contagiosum, recurrent 
respiratory tract 
infection, chronic otitis, 
maxillary sinusitis, 
bronchiectasis, HPV 
warts, HSV, H. influenza, 
Salmonella spp. 

� IgG, � IgM, �IgA,  
CD4+ lymphopenia. 

#10 • Large 
heterozygous . 
deletion 
(~200kb)  

male 10 >4,400 - No known allergies 
- Moderate eczema 
- Eosinophilia 

Skin abscess, M. 
contagiosum, recurrent 
upper respiratory tract 
infection, HPV 

� IgG, � IgM, � IgA, 
CD4+ lymphopenia. 
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• 2bp 
heterozygous 
deletion in exon 
41 (c.5307-5308 
del AC, 
pL1770fsX1783 

disseminated warts, HSV 
stomatitis, S. aureus, S. 
pyrogenes. 

#11 heterozygous 
large deletions 
one deletion 
involving the 
two gene copies 
of 80kb in 5’ 
part of the gene 
and a deletion of 
one copy of 
320kb 
encompassing 
the 2/3rd of the 
3’ region of 
DOCK8 gene 
and the 5’ part  
of the KANK1 
gene 

male 13 >1,100 - No known allergies 
- Severe eczema 
(lichenification) 
- Eosinophilia 
(>700/mm3) 

Chronic otitis, clavicle 
osteomyelitis, bronchitis, 
pneumonia, 
bronchiectasis, 
Morganella spp., P. 
aeruginosa, Proteus 
mirabillis, H. influenza, 
Giardia intestinalis. 

Sclerosing cholangitis,  
� IgA,  � IgM, 
lymphopenia.  
Died of post-HSCT 
complications. 

#12 splice site 
mutation (exon 
11) > frame 
shift, 
homozygous  

male 17 17,045 - Food allergies (pork, 
peanut, chocolate, dairy, 
egg)  
- Severe eczema 

Chronic cutaneous and 
ocular HSV, M. 
contagiosum, warts, S. 
aureus skin infections,  
cutaneous dermatophyte 
infection. 

Chronic liver disease with 
vanishing bile ducts on 
biopsy of unclear etiology. 
Calficied dilated aorta. 

#13 Exon 41: 
c5182C>T 
homozygous 
p.R1728X. 

male 3 24,893 - Food allergies (milk, 
egg, tree nuts, peanut) 
- Severe eczema 
- Asthma 

S. aureus skin infections, 
Herpetic keratitis, warts, 
onchycomycosis, 
bacterial, viral and 
Pneumocystis 
pneumonia. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

#14 Large deletion + 
stop codon 
(exon 11) 

male 16 51,010 - Eczema 
- Asthma 

Sinopulmonary 
infections, Neisseria 
meningitides arthritis, M. 
contagiosum and warts. 

 

#15 Unknown (lack 
DOCK8 protein; 
see 
Supplementary 
Fig 1) 

male 5 17,300 - Food allergies (milk, 
egg, cashew, pistachio, 
almond, beef, lamb) 
- Eczema 
- Asthma 
- Bronchiectasis 

HSV, S. pyrogenes, H. 
influenzae, C. albicans, 
Adenovirus, Norovirus, 
HHV6, EBV, CMV, 
VZV, Aspergillus Niger, 
Cladosporium. 

 

#16 Unknown (lack 
DOCK8 protein; 
see 
Supplementary 
Fig 1) 

female 4 8,100 - Food allergies (egg, 
milk, macadamia) 
- Environmental allergies 
(house dust mites) 
- Eczema 
- Asthma 
- Allergic rhinitis 

Ocular herpes, recurrent 
lower respiratory tract 
infection, chronic ear 
infections. 

Bell’s Palsy. 

#17 Homozygous 
deletion 
spanning exon 
15-48  
 

female 4 2,294 - Food allergies (peanut 
cashew, pistachio, 
sesame) 
- Sensitization to walnut 
and egg 
- Drug allergy (Propofol) 
- Mild Eczema 

Cryptosporidial 
cholangitis, chronic 
adenoviral carriage, mild 
M. contagiosum, 
Giardia, non-typhi 
Salmonella, low level 
CMV viraemia, otitis 
externa. 

 

#18 c.12114A>G: p. 
K405R 

female 18,  >10,00
0 

- Food allergies (beans, 
beef, chicken, cow's 
milk, egg, fish, peanut, 
pork, tree nuts, tomato) 
- Environmental allergies 
(dust, dog, grasses, mold) 
- Drug allergies 
(Cefipime, Lactinex, 
Propofol)  
- Eczema (herpeticum) 

S. aureus, H. influenzae,  
Cryptococcal meningitis, 
Acinetobacter baumannii 
sepsis, HSV keratitis, 
herpes zoster virus. 

Delayed puberty. 
Deceased. 
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#19 Homozygous  
for a deletion of 
Exons 28-35 

female 17 8,031 - Food allergies (lentils) 
-  Severe eczema 

Chronic oral HSV, 
sinopulmonary 
infections, 
onychomycosis and 
thrush, S. aureus skin 
infections. 

 

#20 Homozygous 
nonsense 
mutations 
Exon19: 
c.2044G>T, 
p.E682X 

female 11 6,690 - Food allergies eggs, 
milk, nuts, soy, wheat) 
- Severe eczema 

S. aureus skin infections, 
HSV keratitis. 

 

#21 Large deletion 
(exon 21 to end 
of gene) + small 
indel with 
frameshift 
mutation (exon 
12)  

male 25 1,162 - Food allergies (nuts) 
- Eczema 

HSV keratitis, 
sinopulmonary 
infections, extensive 
warts. 

Squamous cell carcinoma 
pre-HSCT. 

#22 Large deletion 
(exon 21 to end 
of gene) + small 
indel with 
frameshift 
mutation (exon 
12) 

female 22 39 - No known allergies Extensive warts, 
sinopulmonary 
infections. 

Severe bronchiectasis. 

#23 Nonsense 
mutation (exon 
17) + small 
indel with 
frameshift 
mutation (exon 
36) 

female 16 180 - Mild eczema M. contagiosum , warts, 
sinopulmonary 
infections. 

EBV-B cell lymphoma. 

#24 Large deletion 
(exons 13 to 26) 

male 12 1,563 - Food allergies (tree 
nuts) 

Extensive warts, 
sinopulmonary 
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The following patients were used in these experiments:  
• phenotyping (#1-18);  
• ex vivo cytokine and in vitro differentiation (#1, #2, #6, #7, #9, #10, #15, #17, #18);  
• plasma IgE (#6, #12, #14, #15, #17, #19-28) 
 

+ splicing 
mutation (intron 
5) 

- Mild eczema infections, S. aureus 
osteomyelitis. 

#25 Large deletion 
(promoter to 
exon 17) + 
nonsense 
mutation (exon 
8) 

female 19 5,604 - Food allergies (milk, 
egg, wheat, nuts) 
- Asthma 
- Moderate eczema 

Sinopulmonary 
infections, warts and M. 
contagiosum, 
Pneumocystis 
pneumonia, S. aureus 
skin infections, mucosal 
candidiasis. 

Burkitt’s lymphoma (EBV 
negative), vasculopathy of 
mid-aorta with bilateral 
renal artery stenosis, heart 
failure, improved post 
HSCT. 

#26 Homozygous 
deletion of at 
least exons 4-13 

female 9 2 - Asthma,  
- Mild eczema 

Sinopulmonary 
infections, warts. 

 

#27 Homozygous 
deletion of exon 
36 

female 20 >6,000 - Food allergies (milk, 
kiwi) 
- Asthma 
- Moderate eczema 

Sinopulmonary 
infections, warts, chronic 
cutaneous HSV. 

Cerebral vasculopathy 
with stroke and aortic 
vasculopathy. 

#28 large 
homozygous 
deletion of more 
than 174 kb 
affecting most 
of DOCK8 
(260876_43519
0) from intron 1 
to exon 39 

female 12 1,855-
8,460 

- Food allergies (egg and 
lentils) 
- Eczema 
- Eosinophilia 
(1,532/mm3) 

Diarrhea, upper 
respiratory infections, 
recurrent 
meningoencephalitis, 
chronic otitis media, 
esophageal candidiasis, 
lower urinary tract 
infection, pyelonephritis 
(twice), Pseudomonas sp 
(ear), E. coli. 

Failure to thrive (short 
stature), mild scoliosis, 
seronegative hepatitis, 
liver steatosis, mild 
hepatosplenomegaly, 
extensive abdominal 
vasculitis, elevated liver 
enzymes, �IgA � IgG, 
�IgM, CD3+ lymphopenia 
(600/ml). 
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