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ABSTRACT

Background: Dedicator of cytokinesis 8 (DOCKS8) deficiency is a&ombined
immunodeficiency caused by autosomal recessivedbfisction mutations irDOCK8. This
disorder is characterised by recurrent cutaneofections, elevated serum IgE, and severe
atopic disease including anaphylaxis to foods. Hmrethe contribution of defects in CDZ
cells to disease pathogenesis in these patientsdbdeen thoroughly investigated.

Objective: To investigate the phenotype and function of DO@iSicient CD4 T cells to
determine (1) intrinsic and extrinsic CD# cell defects (2) how defects account for theiciil
features of DOCKS8 deficiency.

Methods: We performed indepthnalysis of the CD4T cell compartment of DOCK8-deficient
patients. We enumerated subets of CD4helper cells and assessed cytokine productioh an
transcription factor expression. Finally, we deteed the levels of IgE specific for staple
foods and house dust mite allergens in DOCKS8-dafiicpatients and normal controls.

Results; DOCK8-deficient memory CDA4T cells were biased towards a Th2 type, and tlis w
at the expense of Thl and Th17 cdlisvitro polarisation of DOCK8-deficient naive CDZ&
cells revealed the Th2 bias and Th17 defect to {eelTintrinsic. Examination of allergen
specific IgE revealed plasma IgE from DOCKS8-defitipatients is directed against staple food
antigens, but not house dust mites.

Conclusion: Investigations into the DOCK8-deficient CD# cells provided an explanation for
some of the clinical signs of this disorder - th&bias is likely to contribute to atopic disease,
while defects in Thl and Thl7 cells compromise -amél and anti-fungal immunity,

respectively explaining the infectious susceptipitif DOCK8-deficient patients.
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KEY MESSAGES
+ DOCKS-deficient CD4 T cells present with a Th2 cytokine bias, but alefects in
Thl and Th17 cells
» The Th2 cytokine bias by DOCKS8-deficient cells ctnites to atopic disease such as
eczema and food allergies in DOCKS8 deficiency
* Th17 cell defect is T cell intrinsic and contribsite compromised anti-fungal immunity
in DOCK8-deficient patients.

CAPSULE SUMMARY

DOCKS8-deficient CD4 T cells exhibit dysregulated cytokine responsesh wxaggerated
production of Th2 cytokines, and impaired productid Thl and Th17 cytokines. Collectively
these findings provide explanations for some of ¢heical features of DOCKS8 deficiency,
such as eczema and food allergies, and recurnattarid microbial infections.

KEYWORDS: Dedicator of cytokinesis 8, CDA cell differentiation, Th2 skewing, allergy,
atopic disease, chronic mucocutaneous candidiasa$ immunity

ABBREVIATIONS USED:

AR-HIES: autosomal recessive hyper IgE syndrome
BCG: Bacille Calmette-Guerin

CMC: chronic mucocutaneous candidiasis

CMV: cytomegalovirus

DOCKS: Dedicator of cytokinesis 8

EBV: Epstein-Barr virus

HHV6: human herpes virus 6

HPV: human papilloma virus

HSCT: Hematopoietic stem cell transplant

HSV: herpes simplex virus

STAT: signal transducer and activator of transaipt
TAE: T cell activation and expansion

Tcwm: central memory T cell

TCR: T cell receptor

Tewm: effector memory T cell
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Tth: T follicular helper

Tregs: regulatory T cells

VZV: Varicella-zoster virus

XLP: X-liked lymphoproliferative disease
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INTRODUCTION

Bi-allelic loss-of-function mutations in dedicatof cytokinesis 8 POCKS8) cause a combined
immunodeficiency also known as an autosomal reeedsirm of hyper IgE syndrome (AR-
HIES)" 2 Affected patients typically present with recutreBtaphylococcus aureus skin
infections, recurrent and severe cutaneous vifattions (HSV, HPVMolluscum contagiosum
virus), elevated serum IgE levels, lymphopenia,iregshilia and an increased risk of
malignancy®. DOCKS8-deficient patients also exhibit impairednfaral immune responses
against protein and polysaccharide antigens follgwhnatural infection or vaccination.
Strikingly, DOCKS8 deficiency predisposes most atiéel patients to developing asthma and
severe allergies against food and environmentalgemd™. However, the mechanisms

underlying severe allergy are currently unknown.

DOCKS8 functions as a guanine nucleotide exchang®rfao activate Rho-family GTPases
such as CDC42, which mediate events including aadtivation, division, survival,
differentiation, adhesion, and migratfdh Despite this, it is not inmediately clear hO@CK8
mutations result in the devastating immune abnatieslcharacteristic of patients with AR-
HIES. However, as DOCKS8 is predominantly expredsgdiematopoietic cells, it is likely to
play critical lymphocyte-intrinsic roles in cellulaand humoral immune responses against
infectious diseases. Consistent with this, allogehematopoietic stem cell transplant (HSCT)
overcomes recurrent cutaneous viral infectionsemetous rash, and reduces IgE levels and
eosinophilid®® In regards to food allergies in DOCK8 deficiencsome reports have
documented improvement post-HSE&T" * while others reported amelioration to symptbins
or no change™

Ex vivo andin vitro analyses of lymphocytes from DOCKS8-deficient patsehave shed some
light on disease pathogenesis. For instance, DO@¥igient patients have normal to increased
numbers of total B cells but decreased circulatimgnory (CD27) B cells' ** Functionally,
compared with normal B cells, DOCKS8-deficient Blsetxhibit poor responses to the TLR9
ligand CpG, while CD40-mediated responses werelgigtact. In B cells, DOCKS acts as an
adaptor protein connecting the TLR9-MYD88 pathwaysT AT3 signalling, which is required
for B cell proliferation and differentiation, asidgnced by defective function of STAT3-
deficient human B cell vivo andin vitro*”*. These defects underlie poor humoral immunity

in DOCKS8-deficiency. Paradoxically, an increaseautoantibodies directed against nuclear,
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cytoplasmic and extracellular matrix antigens hesrnbdetected in DOCKS8-deficient patients,

possibly due to decreased regulatory T cells (Jriegthese patients

Our previous study of T cells in DOCK8-deficientlividuals revealed a severe reduction in
naive, central memory (CD45RBCR7) and effector memory (CD45RBCR7) CDS T
cells but a marked accumulation of CD45®R&R7 terminally differentiated (i.e. “exhausted”)
effector memory celf. Strikingly, central and effector memory CD8 cells from DOCKS-
deficient individuals displayed phenotypic featuoé®xhaustion, with increased expression of
CD57, 2B4 and CD95, and accelerated loss of CD2B@R127 (IL-7Rx)?%. Furthermore,
DOCKS8-deficient naive and memory CDB cells failed to proliferaten vitro in response to T
cell receptor (TCR) stimulatiGh More recently, DOCK8-deficient CD& cells were reported
to undergo “cytothripsis”, a form of cell death essted with defects in morphology and
trafficking that prevented the generation of longetl resident memory CDS cells in the skin
and subsequently impaired immune responses to $iefipgs infection at this sité Taken
together, these defects in CD8cells provide a plausible explanation for virabeeptibility in
DOCKS8-deficient patients. DOCKB8-deficient patieralso have defects in the development of
NKT cells and function of NK celf§ > which may contribute to increased susceptibility t

viral infections and malignancies.

In contrast to these established defects in B,CEisgs, CD8 T cells, NK cells and NKT cells,
much less is known about the consequenceB@EK8 mutations in other human CDA
helper cells. While it has been reported that thguiencies of naive and memory CO4cells

in DOCK8-deficient patients are normal, DOCK8-digit naive and memory CDZ cells do
have a defect in TCR-induced proliferation, albegs severe than DOCK8-deficient CDB
cell. Consequently, this deficit is unlikely to caudmical features such as atopic disease
(dermatitis, severe food allergies) and increagédih DOCKS8 deficiency. For this reason, we
have undertaken a detailed analysis of the TD4cell compartment in DOCK8-deficient
patients. We found that DOCKS8-deficient memory CDH® cells have a bias towards Th2
cytokine expression (ie IL-4, IL-5, IL-13) and ca@mgitant defective production of Thl (IgN
and Th17 (IL-17A, IL-17F, I1L-22) cytokines. Furtmeore, the Th2 cytokine bias and impaired
Th17 immunity, in the absence of DOCKS8 were T gaifinsic and independent of defects in
proliferation. This intrinsic Th2 bias of DOCK8-deient CD4 T cells may underlie atopic
disease and hyper-IgE displayed by DOCKB8-deficpaitents. Additionally, impaired Thl and
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Th17 responses likely account for impaired viralmomity and fungal infections such as

chronic mucocutaneous candidiasis, respectiveBOCK8-deficient patients.

METHODS

Human samples

PBMCs and/or plasma were isolated from normal deridustralian Red Cross) and patients
with DOCKS deficiency (Table 1). The genotype ofreoof these patients has been previously
reported 2 > 22 24 Al studies were approved by Institutional HumBesearch Ethics

Committees and written informed consent was obthifram patients.

Antibodies and Reagents

Alexa488-anti-GATA3, Alexa647-anti-CXCR5, APC-CyAtaCD4, BUV395-anti-IFN,
BV711-anti-CD69, BV711-anti-IL-2, PE-anti-CCR6, RiAt-CD95, Pe-Cy7-anti-CD25, and
anti-mouse IgG1, and PerCpCy5.5-anti-CD127 and-Hwdt were from Becton Dickinson.
Alexa488-anti-IL-10, APC-anti-ICOS, eFluor660-aliti21, FITC-anti-CD45RA, PE-IL-22,
Pe-Cy7-anti-IL-4 and mouse IgG1 were from eBioscésn APC-Cy7-anti-IL-17A, BV421-
anti-CXCR3, and BV605-anti-TNFwere from Biolegend. FITC-anti-CCR7 and recombinan
human IL-12 was from R&D Systems. Anti-DOCK8 mAb svarom Santa Cruz
Biotechnology. Recombinant human TE&HRL-1[3, IL-6, IL-21 and IL-23 were from Peprotech.
Prostaglandin E2, PMA, calcium ionophore (ionomjciBrefeldin A, and saponin were
purchased from Sigma-Aldrich. Recombinant huma las provided by Dr Rene de Waal
Malefyt (DNAX Research Institute, Palo Alto, CA). @ell activation and expansion (TAE)
beads (anti-CD2/CD3/CD28) were purchased from MiylieBiotec and CFSE was purchased

from Invitrogen.

CD4" T cell phenotyping

To identify naive, central memory %) and effector memory €f;) CD4" T cell populations,
PBMCs were incubated with mAbs to CD4, CCR7 and &8R4 and the frequency of
CD4'CCR7CD45RA’ (naive), CDACCR7 CD45RA (Tcw), and CDACCR7CD45RA (Tewm)
populations determined by flow cytometry. To idBn€D4" T cell populations, PBMCs were
incubated with mAbs to CD4, CD25, CD127, CXCR5, GBA, CCR6 and CXCR3, and the
frequency of Tregs (COE€D25"CD127°), Tfh (CD4'CD25°CD127" CD45RACXCRS5'), Thl
(CD4'CD25°CD127"CD45RACXCR5CXCR3 CCR6), Th2 (CD4 CD25°CD127"CD45RA

Page 7 of 28



205

206
207
208

209
210
211
212
213
214
215
216

217
218
219

220

221
222
223

224
225

226
227
228

229
230

231
232
233

234
235
236

237
238
239

240

CXCR5CXCR3CCR6) and Th1l7 (CDACD25°CD127"CD45RACXCR5CXCR3CCRE)

subsets determiné&t

Analysis of cytokine expression/secretion by CD4" and CD8" T cells

Naive and memory CD4T cells or naive, memory andyira CD8" T cell$? were isolated by
sorting on a FACS ARIA (Becton Dickinson; > 98% ipy)rand cultured with TAE beads (anti-
CD2/CD3/CD28) in 96 well round bottomed well platester 5 days, supernatants were
harvested and production of IL-2, IL-4, IL-5, IL-@,-10, IL-13, IL-17A, IL-17F, IFNy and
TNFa determined by cytometric bead arrays (CBA; BecDitkinson). For cytokine
expression, activated T cells were re-stimulateth WiMA (100 ng/ml) and ionomycin (750
ng/ml) for 6 hours, with Brefeldin A (10 pg/ml) aetdl after 2 hours. Cells were then fixed with
formaldehyde and expression of N5NL-4, IL-17A, IL-22, IL-21, IL-10, TNFx and IL-2

detected by intracellular stainfig?® 22

Analysis of transcription factor expression by CD4" T cells
Expression of Thet and GATAS3 protein was assesgeadtiacellular staining using a Fix/Perm
kit from eBioscience. Expression RORC was determined by QPGR

Analysis of DOCK 8 expression

To determine intracellular DOCK8 expression, PBM@asre fixed with formaldehyde and
stained with an unconjugated DOCKS or an isotyp#rob IgG1 mAb. PE-rat anti-mouse 1gG1
was then used with saponin as the permeablisingfdge

Analysisof CD4" T cell proliferation
Naive and memory CD4T cells were isolated by sorting and then labeléth WFSE. Their

proliferation status was determined by assessihgiati of CFSE after 5 days ah vitro

culture’” 28

Invitro Thl, Th2, Th1l7 cell differentiation

Naive and memory CD4T cells were isolated by sorting and cultured unded (TAE beads
alone), or Thl (50 ng/ml IL-12), Th2 (100 U/ml, #)-or Th17 (2.5 ng/mL TGF, 50 ng/mL
IL-13, 50 ng/mL IL-6, 50 ng/mL IL-21, 50 ng/mL IL-23, 56g/mL PGEZ2) polarising

conditions. After 5 days cytokine secretion waslys®t (CBA, intracellular stainingf) % *°

ImmunoCAP assay

Plasma from normal donors and DOCKS8-deficient pdsiavas analysed for allergen specific

Page 8 of 28
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IgE Abs by the Sydney South West Pathology Ser{imyal Prince Alfred Hospital, Sydney
Australia) using the Phadia 250 ImmunoCAP platf@irhermo Scientific). IgE specific for a
staple food mix (FX5; egg white, milk, codfish, vatepeanut and soyabean) or house dust mite

mix was determined.

Statistical analysis
Significant differences were determined using eitn&tudents-test, multiple t-tests, one-way
or two-way ANOVA (Prism; GraphPad Software).

RESULTS

Effects of DOCKS deficiency on the generation of effector CD4" T cell subsetsin vivo.

As an initial step in investigating CD4 cell function in the absence of DOCKS8, we asséss
the CD4 T cell compartment to determine whether the geiterand differentiation of CD4

T cells was affected by DOCKS8 deficiency and whethés could contribute to the combined
immunodeficiency typical of these individuals. Weyiously investigated the peripheral T cell
compartment in a small cohort (n = 6) of DOCK8-diefit patients. We have now increased
our cohort to comprise 18 individuals from 15 uatetd families and have extended our
analysis to include additional surface markerautther distinguish different subsets within the
CD4" T cell population Fig 1). Lack of DOCKS8 expression in lymphocytes and nuytes
from a representative healthy control, one unaéi@sibling and 4 DOCKS8-deficient patients is
depicted in Supplementary Fig 1. Analysis of tlasger cohort of DOCKB8-deficient patients
confirmed a statistically significant reduction@D4" T cells compared to normal donofSd
1A). Naive, central memory €fy) and effector memory €;) CD4" T cells can be resolved
according to the differential expression of CD45RAd CCR?' (Fig 1B). This analysis
revealed that the naive andyicompartments in DOCKB8-deficient patients are coralbplar to
normal individuals, but gy CD4" T cells were significantly increased in DOCK8-adefint
patients Fig 1C). Hence, despite the reduction in total CO4cells, DOCK8-deficient CD4T
cells differentiate normally into naive andylcells; this is accompanied by a mild increase in
Temcells.

Using a recently described gating straf@g¥, we next examined the CDZ cell compartment
for additional effector subsets: CO®5D127° Tregs Fig 1D, G)*}, CXCR5CD45RA T
follicular helper (Tfh) cellsKFig 1E, G), CD45RACXCR5 CXCR3'CCR6 Thl (Fig 1F, G),
CD45RACXCR5 CXCR3CCR6 Th2 (Fig 1F, G), and CD45RACXCR5 CXCR3CCR6
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Th1l7 Fig 1F, G) cells. DOCK8-deficient patients had an increaeduency of TregsHig
1D, G) but decreased frequency of Th17 ceigy(1F, G), while frequencies of Tfh, Thl and
Th2 cells according to this phenotypic delineatiorpatients were similar to normal donors
(Fig 1D - G). Thus, there is a selective paucity of Th17 cglie to DOCK8 mutations.

Assessment of expression of additional surface emarkassociated with CDA4T cell
differentiation indicated that the naivegyfand Tem CD4™ T cell populations from DOCKS-
deficient patients had undergone greater activataord terminal differentiation than
corresponding CD4T cell subsets isolated from normal dondfgy(1H-M). Specifically, the
loss of expression of CD2FiQ 1H), CD28 Fig 11) and CD127 Fig 1J) and acquisition of
CD57 Fig 1K), CD95 fig 1L) and PD-1 Fig 1M) by CD4 Tcyw and Ty cells was
exaggerated for DOCKS8-deficient patients compared controls. Collectively, DOCKS
deficiency compromises the generation of Thl7 celi results in the premature terminal

differentiation of memory cells such that they aogja senescent/exhausted phenotype.

DOCKS deficient memory CD4" T cells are biased towards Th2 cytokines.
Given the decrease in CCRBXCR3 cells — which are enriched for Th17-cytokine praidg

cells in healthy donof% 343%¢

— in DOCKS8-deficient patients, we investigated okythe
expression by naive and memory CDR cells Fig 2). Naive and total memory (CD45RA
CCRT") CD4" T cells were sort-purified from normal donors dd@CK8-deficient patients
and then cultured with TAE beads conjugated to-@ot2/CD3/CD28 mAbs for 5 days. After
this time cells were restimulated with PMA/ionomyeind intracellular expression of IFNL-

4, IL-17A, IL-22, IL-21, IL-10, TNFr and IL-2 determinedHig 2). Apart from IL-2 Fig 2A)
and TNFx (Fig 2B), which are expressed by 40-80% of normal naivés,cenly a small
proportion of naive cells (ie <5%) expressed anyhef other cytokines examined. DOCKS8-
deficient naive CD4T cells expressed a comparable level of IIFR)(2A) and TNFx (Fig 2B)

to that of normal naive CDAT cells. However, analysis of the memory CD# cell
compartment in DOCKB8-deficient patients revealedk®a perturbations in differentiatiam
vivo. A significantly greater proportion of DOCK8-defat memory CD4 T cells expressed
IL-4 compared to normal memory CDZ cells Fig 2C), suggesting a skewing to the Th2
effector lineage. Examination of mean fluorescentensity of IL-4" cells in DOCK8-deficient
and normal memory CDA4T cells revealed no significant differences (data shown),

suggesting there is an increase in the frequendy-d4fexpressing cells in the DOCK8 memory

Page 10 of 28



308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

CD4" T cell compartment, but a comparable amount o is-produced per cell. The increase
in IL-4" cells in DOCKS8-deficient memory CD4T cells was accompanied by significant
reductions in expression of Thl cytokines VHRig 2D) and TNFx (Fig 2B), Th17 cytokines
IL-17A (Fig 2E) and IL-22 Fig 2F), and the Tfh cytokine IL-21Hg 2G). Expression of I1L-10
(Fig 2H) and IL-2 Fig 2A) by memory CDAT cells was unaffected by DOCKS deficiency.

The Th2 skewing by DOCK8-deficient memory CDR cells was also assessed by measuring
cytokine secretion during the 5-day cultuféig( 3). This indicated concordance between
expression and secretion of cytokines when assebgethtracellular staining and flow
cytometry or cytometric bead array, respectivelpalsis of an extended panel of cytokines
showed that DOCKS8-deficient memory T cells secreted only more IL-4 than normal
memory CD4 T cells, but also more of the Th2 cytokines ILf8ldL-13 Fig 3A-C) and less
Thl (IFNy and TNFx; Fig 3D, E) and Th1l7 (IL-17A and IL-17FFig 3F, G) cytokines.
Production of IL-6 Fig 3H) was also significantly reduced. There were trefas less
production of IL-10 and IL-2 by DOCKS8-deficient meny CD4 T cells, however these
reduced values were not significatid 3, J). Production of TNE and IL-2 by DOCKS8-
deficient naive CD4T cells was normalFig 3E, J). Taken together, memory CDZ cells
from DOCKS8-deficient patients display a Th2 biagmarily expressing IL-4, IL-5 and IL-13
and notably lower levels of cytokines characterisfiother T helper subsets.

Th2 cytokine bias by DOCK8-deficient memory CD4" T cellsis independent of defectsin cell
proliferation.

Previous work showed that lymphocyte differentiatieg Ig class switching and antibody
secretion by naive B cells, and cytokine productod cell surface phenotype expression by
naive T cells, is regulated by cell divisféri’>° DOCK8-deficient naive (Fig 3K) and memory
(Fig 3L) CD4 T cells were found to have impaired cell divisionvitro, consistent with
previous finding&. Thus, it was possible that the perturbed cytokirafile reflected reduced
proliferation by DOCKS8-deficient memory CDA cells. However, the Th2 bias of DOCKS-
deficient memory CD4 T cells was not due to a proliferative defect a&l@nced by two
important and related findings. First, when memaoglls were isolated and restimulated
immediately for analysis of cytokine expressione tpreferential production of IL-4 by
DOCKS8-deficient over normal memory CDZ cells was still observed in the absence of cell
proliferation Fig 3M). Similarly, the poor production of Thl and Thlytakines by DOCKS8-
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deficient memory CD4T cells did not result from impaired proliferatibecause reductions in
expression of IFM (normal: 17.7%, DOCKS8: 6.9%) and IL-22 (normal7%, DOCKS: 1.8%)
respectively were also observed when assessed timefsgex vivo stimulatory conditions.
Second, analysis of cells that had undergone difterounds of divisions vitro revealed that
the decrease in IFN(Fig 3N) and increase in IL-4Kg 30) displayed by DOCK8-deficient
versus normal memory CDZ cells was evident for all division intervals exiaed. Thus, the
preference of DOCKS8-deficient memory CD% cells to produce Th2, but not Thi, cytokines

is independent of any proliferative defects in éeslls.

Naive DOCKS8-deficient CD4" T cells can differentiate into effector cells producing Thl and
Th2, but not Th17, cytokinesin vitro.

To determine if the defects in cytokine productiynDOCKS8-deficient memory CD4T cells
are cell-intrinsic or due to extrinsic factors, iselated naive CD4T cells from normal donors
and DOCKS8-deficient patients and subjected thermtatro culture under ThO, Thl, Th2 or
Th17 polarising conditions. Interestingly, DOCKS8fidint naive CDA T cells differentiated
into Th1 cells (IFly and TNF) to the same extent as normal naive CD4ells Fig 4A, left
panel). Consistent with the data for memory CDR cells ex vivo, DOCK8-deficient naive
CD4" T cells produced significantly greater amountsha Th2 cytokine IL-13 than control
naive CD4 T cells under Th2-polarising conditions (3-folatieasefig 4A, middle panels).
We also analysed Th2 differentiation by assessjtokine expression in naive CDZ% cells by
intracellular staining and flow cytometry following vitro Th2 polarization. This confirmed a
preferential differentiation of DOCKB8-deficient tawds a Th2 fate, with increased proportions
of DOCKS8-deficient naive CD4T cells expressing IL-4 (9.9% DOCKS8-deficient v&%
control CD4 T cells) and IL-13 (5.9% DOCKS8-deficient vs 1.7%ntrol CD4 T cells).
Together, these data provide evidence of a predomhimtrinsic bias of DOCKB8-deficient
naive CD4 T cells differentiating towards a Th2 effectorefaDOCKS8-deficient naive CD4T
cells failed to differentiate into IL-17A- and IL7E-secreting cells when subjected to Th17
polarising conditionsn vitro (Fig 4A, right panels). Notably, DOCK8-deficient naive CDA
cells responded to the Th17 culture as shown byctexhs in basal levels of IL-5 and IL-13

secretion compared to the ThO culture (data novalho

When we examined memory CDZ cells from healthy donors, production of NFlnd IL-

17A/F could be increased ~2-4 fold by Thl and Thdifture conditions, respectively,
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compared to ThO condition$ig 4B). The net increase in production of these cytakibg
DOCKS8-deficient memory CD4T cells under Thl and Th17 conditions comparedho
conditions was also ~2-6 fold. Despite this, thesle of IFNy and IL-17A/F secreted by Thl-
and Th17-stimulated DOCK8-deficient memory CD® cells were substantially less than not
only Thi- and Th17-stimulated normal memory CO4cells, but also ThO-stimulated normal
memory CD4 T cells Fig 4B). This likely reflects expansion of the few Thildafh17 cells
present in the DOCK8 memory CDZ cell compartment rather thate novo differentiation

into these effector subsatsvitro.

Consistent with the data for cytokine secretion,@X8-deficient naive CD4T cells that were
polarised towards Thl and Th2 fates upregulated TTBEg 4C) and GATA3 Fig 4D),
respectively, to the same extent as normal naivé Qxells. In our hands, detection of R@R
expression by flow cytometry was not particulargnsitive, as we found that only a small
proportion of naive CD4T cells (~5%) expressed R@Rn Th17 compared to ThO activated
culture$®. To overcome thisRORC expression was determined by QPGRORC was not
expressed by naive CD4T cells activated under ThO conditions, but wasragulated in
normal and DOCKS8-deficient naive CDZ cells cultured under Th17 polarising conditions
(Fig 4E). Taken together, these data indicate the Thlgkey defect in DOCKS8 deficiency is
T cell intrinsic, and cannot be restored by Thl7apsing conditions for either naive or
memory cells. Furthermore, the ability of Th17 audt conditions to induc&®ORC in the
absence of DOCKS indicates the defect in Th17 dhffgation is downstream dRORC. In
contrast, DOCK8-deficient naive CDZ cells differentiate normally into Th1 cells, aexhibit
exaggerated Th2 differentiation, when provided wlith appropriate stimuin vitro.

Preferential production of Th2 cytokines by DOCKS8-deficient CD4+ T cells correlates with
reduced TCR-mediated activation

The strength of signal provided to CDZ cells through the TCR greatly influences their
differentiation to cytokine-producing effector &llFor instance, reduced signal strength
favours Th2 celf8™ while differentiation to Th17 cells requires stger or sustained TCR
signalling® *¢ Our findings of heightened production of Th2 &jtes by DOCK8-deficient
naive and memory CD4T cells led us to hypothesise that mutations in(B® compromised
TCR signal strength. To assess this, we culture€R®deficient CD4 T cells with differing
doses of anti-CD2/CD3/CD28 beads for 3 days and theasured levels of expression of the

Page 13 of 28



407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

activation molecules ICOS, CD25, CD69, and CD95¢ Tationale here is that lowering the
dose of the beads results in a qualitatively weakgnal. While CD4 T cells from healthy
controls exhibited heightened expression of ICOB6€, CD25 at the 2 different doses of anti-
CD2/CD3/CD28 beads tested, induction of these samlecules on DOCK8-deficient CDA
cells was severely blunte&if 4F). Thus, mutations iDOCK8 compromise T cell activation
by reducing the strength of signal delivered thiouge TCR and co-stimulatory receptor
signaling pathways. In the case of T cell differ@mnin, this results in a skewing of the cells
towards a Th2 phenotype.

Specific sensitisation of DOCKB8-deficient patients to food allergens

Exaggerated Th2 immune responses have traditiobaky associated with allergy and atopic
diseas?’. It was thus intriguing to note that CD# cells from DOCKS8-deficient patients were
biased towards production of Th2 cytokines, and thase patients have severe allergies. To
determine if the Th2 bias in DOCKS8-deficient hun@D4’ T cells is related to their increased
susceptibility to food allergies we examined thedHficity of IgE in serum samples from
DOCKS8-deficient patients and normal healthy dontarsstaple foods (i.e. egg white, milk,
codfish, wheat, peanut, soyabean), as well as mefomd allergens such as house dust mites.
We found that a comparable frequency of normalviddials and DOCKS8-deficient patients
had IgE specific to house dust mi{@sg 5A). Strikingly, the majority of plasma samples from
DOCKS8-deficient patients (80%; 12/15), but nonetled normal controls tested, had IgE that
was specific for the staple food miki¢ 5B). Thus, DOCK8-deficient patients have a Th2 bias
that manifest clinically as specific sensitisatitsn oral allergens and this may explain the

marked propensity of these immunodeficient patiemtdevelop food allergies.

DISCUSSION

Identifying defects in lymphocyte development ondtion in PIDs provides the opportunity to
elucidate the cellular and molecular basis for ¢heical features of the disease. Studies of
DOCKS8-deficient humans and mice have indeed redealstical cell-intrinsic roles for
DOCKS8 in generating B-cell memory and long-livedntaral immunity’ *® CD8 T cell
differentiation and anti-viral respong&s® % %° NK cell cytotoxicity* and NKT cell
developmerif. Collectively, these defects underlie poor Ab meses to specific Ags, and
impaired cell-mediated immunity to pathogens inclgd HSV, HPV and Molluscum

contagiosum virus. We have now investigated CDR cell differentiation in DOCK8-deficient
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patients to understand other aspects of AR-HIE&h) s susceptibility to bacterial and fungal

infections, atopic disease, food allergies and hypie.

Our data revealed that DOCK8-deficient CD#cells have dysregulated expression of surface
molecules including CD27, CD57, CD95 and PD-1. Tikisly results from chronic infection
with pathogens, such as herpes viruses (HSV, CMXN)YHPV andMolluscum contagiosum
virus, akin to what has been described for ED&sells in not only DOCK8 deficienéy but
other PIDs such as XIP % STAT3 deficiency’ and PIK3CD gain of function mutatiorn§
which are characterised by chronic exposure tatides pathogens. In the absence of DOCKS,
memory CD4 T cells are polarised to a Th2 cytokine phenotgp¢he expense of Thl and
Th17 cytokines. The reduction in Th1l7 cells wasaappt not only from the lack of cells
producing IL-17A, IL-17F and IL-22, but also thedtetion in CCR6 memory CD4 T cells.
This is consistent with our previous studies whiehealed parallel reductions in CD% cells
secreting IL-17A/IL-17F and expressing CCR@ patients withSTAT3 loss-of function or
STAT1gain-of function mutatiortd ?** 2% indicating that flow cytometric analysis of CCR6
memory CD4 T cells can be a reliable and rapid means of diyarg Thl7 cells.
Interestingly, DOCK8-deficient naive CDA cells differentiated into TBET-expressing and
Thl-cytokine secreting cells when provided with gxoous signals vitro. This suggests that
defects in IFN production by DOCKS8-deficient memory CDZ cellsex vivo are extrinsic,
possibly resulting from suboptimal priming by Agepenting cells and provision of IL-18
vivo. Consistent with this, DOCK8-deficient murine D@sled to accumulate in the lymph
node parenchyma where they are required for Tpreting during immune responsasThis
defect was attributed to compromised Cdc42 functiothe absence of DOCR3 Another
possibility is that excessive production of IL-4high restrains differentiation of human CD4
T cells into Thl celf®, impairs IFN production by DOCK8-deficient memory CDZ cells.
This is consistent with our recent observationt@fhtened production of Th2 cytokines and
corresponding reductions in Ifroductionex vivo by memory CDAT cells from individuals
with loss-of function mutations ifSTAT3, IL21R, IL12RB1, TYK2 or RORC?*® °’ While
DOCKS8-deficient naive CD4T cells could expresRORC in vitro following activation under
Thl7-polarisng conditions, IL-17A/F cytokine seaatremained greatly impaired. Thus, an
intrinsic defect distal to inducingORC expression underlies the inability of DOCKS8-dediti
CD4" T cells to become Th17 cells. Although Th1- and THpolarising conditions did increase
IFNy and IL-17A/F production by DOCKS8-deficient memoGD4" T cells, these cells
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473 produced lower levels of these cytokines than nbrels under similar culture conditions.
474  Interestingly, CDAT cells from DOCKS8-deficient mice expressed norieskls of TBET and
475 GATA3 when activated under Thl and Th2 polarisimmditions, respectivelyin vitro®.
476 Interestingly, while IFN expression byn vitro-derived murine DOCK8-deficient Thl cells
477 was normal, Th2 polarised DOCK8-deficient CDHcells showed increases in IL-4-expressing
478 cells”®, suggesting that murine DOCKS deficient CDicells also display a Th2 bias.

479

480 These findings provide potential explanations fome of the clinical features of DOCK8
481 deficiency. First, lack of Thl7 cells would predisp DOCKS8-deficient individuals to
482 infections with Candida albicans. This is akin to other monogenic PIDs characteriby
483 impaired Thl7/IL-17-mediated immunity and the higicidence of chronic mucocutaneous
484 candidiasis (CMC) in affected individuals ie lodsfanction mutations inSTAT3, IL17RA,
485 IL17RC, IL17F, ACT1 and RORC, and gain-of-function mutations iSTAT1?% 28 °7-62
486 Compared to other PIDs with defects in Thl7 cytekinlIL-17A/IL-17F production by
487 DOCKS-deficient memory CD4T was less than that observed RDRC- or STAT3-deficient
488 memory CD4 T cell€® °". Remarkably, the quantitative impact of specifemg mutations on
489 generating Th17 cells correlates with, or predittg, incidence of fungal infections in these
490 individuals. Thus, ~85% of patients with mutationsSTAT3 or RORC develop CMC"® but
491 fungal infections is observed in only ~40-60% of OKB-deficient patients, as shown for the
492  cohort studied here (Table 1), and in a largerstids7 patient¥’. Thus, there is likely a direct
493 association between IL-17A/IL-17F production infeieént PID patients and incidence of
494 CMC. Second, the predominance of memory CD4ells producing high levels of IL-4, IL-5
495 and IL-13 could contribute to the characteristithpahysiological Th2 features of AR-HIES:
496 severe allergy, eosinophilia and hyper3yEThis exaggerated Th2 response may also reduce
497 Th17 differentiatiof®, further compromising Th17-mediated anti-fungalriome responses.
498 Although memory CD4AT cells displayed reduced Ifhroductionex vivo, DOCK8-deficient
499 naive CD4 T cells could differentiate into Thl cells vitro. Thus, Thl-mediated immunity,
500 while reduced, may be sufficient in these individua elicit protective immunity. Indeed, this
501 is consistent with a lack of disease caused by lpoorulent mycobacteria, such as BCG
502 vaccines and environmental species - which redBiXg-mediated immunity for protecti6h-
503 in DOCKS8 deficiency. In the scenario of anti-virmhmunity, the increased Th2-cytokine
504 environment within the memory CDAT cell compartment may inhibit IRNproduction by

505 CDS8' T cells. Indeed, analysis of DOCK8-deficient meyn@D8" T cells ex vivo revealed
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defective IFNy expression and secretion compared to healthy doi8upplementary Fig 2A,
B)'. Thus, by diminishing Thl responses, a Th2 biasldc@ontribute to persistent viral
infections in DOCK8-deficient patients. Third, begbThl, Th2 and Th17 cytokines, we also
noted reduced production of IL-6 by DOCK8-deficiemmory CDZ T cells. While there have
been no genetic studies linking impaired IL-6 prcdhn with infection with specific
pathogens, autoantibodies against IL-6 were regoite an individual with recurrent
staphylococcal infectiofi®. Thus it is possible that poor IL-6-mediated imiityiin DOCK8
deficiency underlies staphylococcal infection ifeafed patients. Fourth, while previous work
demonstrated that DOCKS8 functions intrinsicallyBrcells to regulate differentiation, reduced
production of IL-21 (and potentially IL-10) by DO®Kdeficient memory CD4T cells may
also contribute to impaired humoral immune respemseéAR-HIES, as these cytokines are the
main drivers of human B cell activation, prolifécat and differentiatioff. This is supported by
our observation that DOCK8-deficient memory CDR cells present with defects in IL-21
expressiorex vivo (Figure 2) and naive DOCK8-deficient CD% cells failed to differentiate
into IL-21+ cells as efficiently as normal naive €DT cells when cultured under Tfh cell

polarising conditions (Supplementary Fig 2C).

A characteristic and perhaps unique feature of D®CIficiency compared to other PIDs
(including those in which there are high leveldgi such as mutations BrAT3) is the very
high incidence of food allergi&a The allergen-specific IgE from DOCKS-deficienttipats
was directed mostly towards staple foods rathen than-food allergens such as house dust
mites. This is consistent with a recent report Wwhshowed that this pattern of allergen-specific
IgE is unique to DOCKS8 deficieny inasmuch that DOCKS8 deficient patients had IgE
directed towards food Ags, while patients with atopermatitis have IgE specific for
aeroallergens, yet the reactivity of IgE in STATidient individuals against specific allergens
was comparable to normal don@rsSince food allergies are more common in childnémo
often outgrow them once they reach adolescenceségiSitisation to food Ags and not house
dust mites in DOCKS8 deficiency could be attributatn the younger age of our DOCK8 cohort
compared to our normal controls. However, thisnskely as 9 of the 12 DOCKS8 deficient
patients that still had IgE specific to food Agsrev@dolescents or adults. In the scenario of
STAT3 deficiency, the reduced level of IgE specific food allergens when compared to
patients with atopic dermatitis has been attributed defect in basophil activation and mast

cell degranulation, with the latter process founé STAT3-dependefit This is interesting
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because although patients with mutationsD@CK8 or STAT3, or individuals with atopic
dermatitis, all display increased serum IgE, eczemd atopic disease, DOCKS8 deficiency
specifically predisposes to food allergies. The ma@tsm whereby this occurs is unclear, but it
is tempting to speculate that it is related to Th@ bias of DOCK8-deficient memory CDZ
cells. While Th2 skewing has been reported in DO@8cient micein vitro*®, to our
knowledge, IgE responses following exposure to fatbergens have not been investigated in
mice, but may provide invaluable insights into wiegtexposure to food allergens is the driver
of IgE production in DOCKS8 deficiency. Neverthelesair findings reinforce the value of
direct interrogation of patient cells and highlighe need to be cognisant of species-specific

differences that impact translation of murine stsdo humans.

The underlying cause for the biased Th2 nature ehory CD4 T cells in DOCK8-deficient
patients remains to be determined. ExaminatiorheffCR \B repertoire in the CD4T cell
compartment of DOCKS8 deficient patients and healttoymal donors did not reveal any
substantial differences (data not shown). Howetrare is evidence showing that the strength
of the signal received through the TCR greatlyuefices differentiation of CDA4T cells.
Specifically, low doses of Ag/low level TCR signayf favour humoral or IL-4-mediated Th2
immune responses while high doses of Ag/strong TBEfRalling favour cellular or IF
mediated Thl immune respon$&S. This is also supported genetically, as murine CD4
cells with a hypomorphi€ardl1l mutation reduces TCR-mediated signal strengthltriegun
exaggerated Th2 differentiation, allergic diseasematitis and hyper-Ig& Based on this, we
hypothesise that DOCK8-deficient CDZ cells receive a qualitatively weaker TCR signal,
potential due to defective immunological synapsenfitiori®, which favors their preferential
differentiation into Th2 cells at the expense diestTh cell subsets. Our data demonstrating
reduced induction of expression of activation mesken DOCKS8-deficient CD4T cells in
response to increasing doses of anti-CD2/CD3/CE2l Istimulation supports this hypothesis.
The original studies on strength of TCR signalduerficing murine Th cell differentiation
predated the discovery of Thl7 cells. However, istidn mice and humans have since
demonstrated a requirement for sustained TCR diggah naive T cells for commitment to a
Th17 phenotypén vitro andin vivo™ “® Thus, we would predict that reduced TCR signal
strength in DOCKS8-deficient CD4T cells impairs their differentiation into Thl7lise
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In conclusion we reveal that the CD% cell compartment is greatly altered in the abseof
DOCKS8. Specifically, DOCK8-deficient patients havereased Th2 cells and defects in Thl
and Th17 cell differentiation. This skewing of CDR cell subsets likely accounts for some of
the clinical manifestations in DOCKS8-deficient imiuals. Strikingly, within our DOCKS8
cohort, all the patients investigated had IgE thas specific for at least one of the following
foods - egg white, milk, codfish, wheat, peanut aogabean-, but not non-food allergens.
These results indicate that the detection of hiignst of IgE specific for food but not to other
allergens is predictive of DOCKS8 deficiency. Thusfure studies to identify signalling
pathways and cellular processes affected by DOG¥KRidncy in CD4 T cells will not only
improve our understanding of disease pathogenesafécted DOCKS8-deficient individuals,

but also patients with atopic disease.
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FIGURESLEGENDS

Figure 1. Phenotype of the peripheral CD4" T cell compartment in DOCK 8-deficient
patients. (A) The frequency of CD4T cells in normal donors and DOCK8-deficient pattse

(B, C) Naive (CD45RACCRT7), central memory (dv; CD45RACCR7) and effector
memory (em; CD45RACCRY) populations in normal donors (closed symbol; 25 and
DOCKS8-deficient patients (open symbol; n = 18) weraumerated based on expression of
CD45RA and CCRY7. (D-G) PBMCs were labelled with rsAdpainst CD4, CD45RA, CD25,
CD127, CXCR5, CXCR3 and CCR6. (D) Treg cells watentified as CD2BCD127°. (E)
Amongst the non-Treg population naive and Tfh celise identified as CXCRED45RA" and
CXCR5'CD45RA, respectively. (F) Thl, Th2 and Th17 populatiorsenidentified within the
population of CXCRED45RA memory CD4 T cells as CXCR3CCR6, CCR6CXCR3 and
CCR6 CXCR3 cells, respectively. (G) Using this gating thegfiency of Tregs, Tfh, Thl, Th2
and Th17 cells within the CD4T cell compartment was determined in normal irdiials
(closed symbol; n = 15 or 16) and in DOCKS8-defitipatients (open symbol; n = 10 or 11).
Each point represents an individual donor or pati&matistics performed with Prism using
Student t-test. (H-M) Naive (CD45RBCRT7), central memory (du; CD45RACCR7) and
effector memory (EFv; CD45RACCRY) populations in normal donors (closed symbol) and
DOCKS8-deficient patients (open symbol) were ideatifand assessed for expression of (H)
CD27, (I) CD28, (J) CD127, (K) CD57, (L) CD95 ard)(PD1. Each point corresponds to the
mean + SEM % of cells expressing the indicatedasearfreceptor, or MFI (mean fluorescence
intensity) of expression (n = 4 - 12 normal donardDOCKS8-deficient individuals). Statistics

performed with Prism using t-test.

Figure 2: DOCK 8-deficient memory CD4" T cells display a Th2 cytokine expression bias.
Naive (CD45RACCR7) and memory (CD45RECR7") CD4' T cells were isolated from
normal donors and DOCKS8-deficient patients anducall with TAE beads for 5 days. Cells
were then re-stimulated with PMA/ionomycin for 6un® in the presence of Brefeldin A for the
last 4 hours. Intracellular expression of (A)/[1C], (B) TNFa, (C) IL-4, (D) IFNy, (E) IL-
17A, (F) IL-22, (G) IL-21 and (H) IL-1@vas determined using saponin as the permeabilising
agent followed by flow cytometric analysis. Datgpnesent the mean + SEM of 8 normal
donors or 8 DOCKS8-deficient patients. Statisticafgened with Prism using One-way
ANOVA.
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Figure 3: DOCK 8-deficient memory CD4" T cells secrete elevated quantities of the Th2
cytokines|L-4, IL-5and IL-13 independently of differencesin cell proliferation. Naive and
memory CD4 T cells were sorted from normal donors and DOCk#8eient patients and
cultured with TAE beads for 5 days. After this tinoallture supernatants were examined for
secretion of (A) IL-4 (B) IL-5, (C) IL-13, (D) IFNy, (E) TNF, (F) IL-17A, (G) IL-17F, (H) IL-

6, (I) IL-10, (J) IL-2, using a custom designedayetric bead array (CBA; BD biosciences).
Data represent the mean £ SEM of experiments uslg from 9 normal donors or DOCK8-
deficient patients. Statistics performed with Prigsing One-way ANOVA(K-L) Naive (K)
and memory (L) CDAT cells were isolated from normal donors (n = @) ®OCKS8-deficient
patients (n = 4), labelled with CFSE and culturathWAE beads for 5 days. After this time,
the frequency of cells in each division was detegdiby dilution of CFSE. (M) Sorted naive
and memory CD%4 were immediately restimulated with PMA/ionomycior f6 hours in the
presence of Brefeldin A and IL-4 expression detagdi by intracellular staining and flow
cytometry. (N, O) Naive and memory CDZ cells were labelled with CFSE, cultured with
TAE beads for 5 days, and the proportion of celpressing (L) IFN or (M) IL-4 was
determined for each division interval by dilutioh@FSE. Data represent the mean + SEM of 2

- 4 normal donors and DOCKB8-deficient patients.

Figure 4: Intrinsic defectsin CD4" T cell cytokine secretion due to DOCK8 mutations. (A)
Naive and (B) memory CD4T cells were isolated from normal donors and DO@¥8cient
patients and activated under neutral condition®{TWE only), or Thl- (+ IL-12), Th2- (+ IL-
4), or Thl7- (+ IL-B, IL-6, IL-21, IL-23, TGH, PG) polarising conditions. After 5 days,
secretion of Thl (IFN, Th2 (IL-5, IL-13) and Th17 (IL-17A, IL-17F) cykines was
determined by CBA. The data represent the meanM 8Eexperiments using cells from 12
normal donors and 8 DOCKS8-deficient patients. Egpian of (C) TBET and (D) GATA3 was
determined by flow cytometry; the data represeatftid change (mean + sem) in expression
of the indicated transcription factor relative toOTculture of the normal control. (E) expression
of RORC was determined by QPCR. Data represent the mahSEBN of 2 - 3 normal donors
and DOCKS8-deficient patients. (F) Memory CD#% cells from healthy donors or DOCKS-
deficient patients (n=2) were cultured with TAE dgat a cell:bead ratio of 2:1 and 0.5:1, and
expression of ICOS, CD25, CD69 and CD95 was deterdhprior to culture (day 0) and 3 days
after activation. The values represent the mearent of the MFI of each of the indicated

surface receptors. Statistics performed with Prsing two-way ANOVA.
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Figure 5: IgE in DOCK8 deficient patients is specific for staple foods and not other Ags
such as house dust mites.

Plasma from normal donors and DOCKS8-deficient pasievas analysed for IgE specific for
(A) a staple food mix (egg white, milk, codfish, @dt, peanut and soyabean) and (B) a house
dust mite mix by ImmunoCAP. The data representniiean + SEM of 13 normal donors and
15 DOCKS8-deficient patients. The dotted line refiershe upper limit of the negative reference
interval (0.35 KUA/L).
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Table 1: DOCK 8 deficient patients

DOCK8- Mutation Gender | Age IgE Allergies/atopic disease I nfections Other
deficient at (1U/ml)
patients study
#1 Homozygous female | 14 4,864 + - No known allergies Pneumonia, cutaneous | Chronic diarrhea, rectal
114 kb deletion 10,000 | - Eczema lesions and abscesses, | prolapse, bronchiectasis,
spanning exons - Hypereosinophilia fungal infections, tolerated BCG vaccine.
4-26 without lymphopenia lymphadenitis, cheilitis, | Deceased.
Chrysosporium parvum.
#2 Homoz A->T; |female | 12 10,000{ - No known allergies | Severda\l. contagiosum,
position 70 exon - Eczema pneumonia, meningitis.
7; K271X
#3 Homozygous female | 12 >5,000| - Multiple food, Stomatitis, M. Abdominal vasculitis,
400 kb deletion environmental, and drug contagiosum, lymphadenopathy,
(totality of allergies respiratory syncytial splenomegaly, CD3
DOCKS8 + 5’ of - Severe eczema virus, HSV1,Candida lymphopenia. Successful
KANK1) (lichenification) sp, H. influenza, HSCT.
- Hypereosinophilia P. jirovecii.
(>3000/mm3)
#4 Homozygous male 10 1,552 - No known allergies | Recurrent otitis media, | Arthritis, uveitis,
114 kb deletion - Eczema herpes labialis, HPV, interstitial lung disease,
spanning exons - Hypereosinophilia disseminated plain warts,inflammatory bowel
4-26 (7800/mm3). onychomycosis, disease, mesenteric
Salmonella sp. vasculitis. Tolerated BCG
vaccine. Deceased.
#5 Homozygous female | 12 19,302| - No known allergies | Recurrent upper Uncomplicated
114 kb deletion - Eosinophilia respiratory tract chickenpox. Inflammatory
spanning exons (5,000/mm3). infection, HPV, flat bowel disease, abdomina
4 -26 warts, herpetic stomatitis,vasculitis, thrombocytosis.
Giardialamblia, Tolerated BCG vaccine.
Salmonella enterica, E. Deceased.
coli.
#6 €.3733_3734del| male 12 1,500 - Multiple food allergies Methicillin-resistantS,

AG;

(egg, cow’s milk)

aureus infection, M.




p.R1245EfsX5

- Peanut sensitised
(tolerant)

- Environmental allergies

(house dust mite, rye

grass, bermuda grass).
Previous allergic rhinitis
- Infrequent episodic

asthma (viral induced) in
childhood
- Eczema

contagiosum, recurrent
otitis media.

D

#7 Homozygous female | 8 9,196 - Food allergies CMV, BK virus, chronic | Sclerosing cholangitis.
deletion 9p24.3 - Diffuse colonic and Salmonella, recurrent
323,819- esophageal eosinophilia] sinopulmonary
324,708 - Eczema infections, skin

- Asthma abscesses.

#3 heterozygous | female | 14 6,270 - Food allergies HPV, M. contagiosum, Vasculopathy. Allergic
deletions - Environmental allergies meningitis, bacteremia, | symptoms improved after
involving exons - Rhinitis fungal skin infections. | transplant.

22-25 and 3-32 - Asthma
- Allergic conjunctivitis
- Eczema

#9 * Large female | 7 >6,000| - No known allergies | Skin abscesseb]. 119G, { IgM, TIgA,
heterozygous . - Severe eczema contagiosum, recurrent | CD4" lymphopenia.
deletion (lichenification) respiratory tract
(~200kb) - Eosinophilia infection, chronic otitis,

* 2bp (>3,000/1m3) maxillary sinusitis,
heterozygous bronchiectasis, HPV
deletion in exon warts, HSV H. influenza,
41 (c.5307-5308 Salmonella spp.

del AC,

pL1770fsX1783

#10 * Large male 10 >4,400| - No known allergies | Skin abscesdyl. T1gG,{ IgM, T IgA,
heterozygous . - Moderate eczema contagiosum, recurrent | CD4" lymphopenia.
deletion - Eosinophilia upper respiratory tract

(~200kb)

infection, HPV




* 2bp
heterozygous
deletion in exon
41 (c.5307-5308
del AC,

disseminated warts, HSV

stomatitis,S. aureus, S
pyrogenes.

pL1770fsX1783
#11 heterozygous | male 13 >1,100| - No known allergies | Chronic otitis, clavicle | Sclerosing cholangitis,
large deletions - Severe eczema osteomyelitis, bronchitis| T IgA, | IgM,
one deletion (lichenification) pneumonia, lymphopenia.
involving the - Eosinophilia bronchiectasis, Died of post-HSCT
two gene copies (>700/mm3) Morganella spp., P. complications.
of 80kb in &’ aeruginosa, Proteus
part of the gene mirabillis, H. influenza,
and a deletion of Giardiaintestinalis.
one copy of
320kb
encompassing
the 2/3° of the
3’ region of
DOCKS gene
and the 5’ part
of the KANK1
gene
#12 splice site male 17 17,045| - Food allergies (pork, | Chronic cutaneous and | Chronic liver disease with
mutation (exon peanut, chocolate, dairy, ocular HSV,M. vanishing bile ducts on
11) > frame €gog) contagiosum, warts,S. biopsy of unclear etiology
shift, - Severe eczema aureus skin infections, | Calficied dilated aorta.
homozygous cutaneous dermatophyte
infection.
#13 Exon 41: male 3 24,893 | - Food allergies (milk, | S aureus skin infections,
c5182C>T egg, tree nuts, peanut) | Herpetic keratitis, warts,
homozygous - Severe eczema onchycomycosis,
p.R1728X. - Asthma bacterial, viral and

Pneumocystis
pneumonia.




#14 Large deletion + male 16 51,010| - Eczema Sinopulmonary
stop codon - Asthma infections,Neisseria
(exon 11) meningitides arthritis, M.
contagiosum and warts.
#15 Unknown (lack | male 5 17,300| - Food allergies (milk, | HSV, S pyrogenes, H.
DOCKS protein; egg, cashew, pistachio, | influenzae, C. albicans,
see almond, beef, lamb) Adenovirus, Norovirus,
Supplementary - Eczema HHV6, EBV, CMV,
Fig 1) - Asthma VZV, Aspergillus Niger,
- Bronchiectasis Cladosporium.
#16 Unknown (lack | female | 4 8,100 - Food allergies (egg, | Ocular herpes, recurrent Bell’'s Palsy.
DOCKS protein; milk, macadamia) lower respiratory tract
see - Environmental allergies infection, chronic ear
Supplementary (house dust mites) infections.
Fig 1) - Eczema
- Asthma
- Allergic rhinitis
#17 Homozygous female | 4 2,294 - Food allergies (peanutCryptosporidial
deletion cashew, pistachio, cholangitis, chronic
spanning exon sesame) adenoviral carriage, mild
15-48 - Sensitization to walnut| M. contagiosum,
and egg Giardia, non-typhi
- Drug allergy (Propofol)| Salmonella, low level
- Mild Eczema CMV viraemia, otitis
externa.
#18 c.12114A>G: p.| female | 18, >10,00| - Food allergies (beans, | S aureus, H. influenzae, | Delayed puberty.
K405R 0 beef, chicken, cow's Cryptococcal meningitis, Deceased.

milk, egg, fish, peanut,
pork, tree nuts, tomato)
- Environmental allergies
(dust, dog, grasses, mol
- Drug allergies
(Cefipime, Lactinex,
Propofol)

Acinetobacter baumannii
sepsis, HSV keratitis,

5 herpes zoster virus.

)

- Eczema (herpeticum)




#19 Homozygous female | 17 8,031 - Food allergies (lentils) Chronic oral HSV,
for a deletion of - Severe eczema sinopulmonary
Exons 28-35 infections,
onychomycosis and
thrush,S aureus skin
infections.
#20 Homozygous female | 11 6,690 - Food allergies eggs, | S aureus skin infections,
nonsense milk, nuts, soy, wheat) | HSV keratitis.
mutations - Severe eczema
Exonl9:
€.2044G>T,
p.E682X
#21 Large deletion | male 25 1,162 - Food allergies (nuts) | HSV Kkeratitis, Squamous cell carcinoma
(exon 21 to end - Eczema sinopulmonary pre-HSCT.
of gene) + small infections, extensive
indel with warts.
frameshift
mutation (exon
12)
#22 Large deletion | female | 22 39 - No known allergies Extensive warts, Severe bronchiectasis.
(exon 21 to end sinopulmonary
of gene) + small infections.
indel with
frameshift
mutation (exon
12)
#23 Nonsense female | 16 180 - Mild eczema M. contagiosum , warts, | EBV-B cell lymphoma.
mutation (exon sinopulmonary
17) + small infections.
indel with
frameshift
mutation (exon
36)
#24 Large deletion | male 12 1,563 - Food allergies (tree | Extensive warts,

(exons 13 to 26)

nuts)

sinopulmonary




+ splicing
mutation (intron
5)

- Mild eczema

infectionsS. aureus
osteomyelitis.

#25 Large deletion | female | 19 5,604 - Food allergies (milk, | Sinopulmonary Burkitt's lymphoma (EBV
(promoter to egg, wheat, nuts) infections, warts ant¥l. | negative), vasculopathy o
exon 17) + - Asthma contagiosum, mid-aorta with bilateral
nonsense - Moderate eczema Pneumocystis renal artery stenosis, hear
mutation (exon pneumonias. aureus failure, improved post
8) skin infections, mucosal| HSCT.

candidiasis.

#26 Homozygous female | 9 2 - Asthma, Sinopulmonary
deletion of at - Mild eczema infections, warts.
least exons 4-13

#27 Homozygous female | 20 >6,000| - Food allergies (milk, | Sinopulmonary Cerebral vasculopathy
deletion of exon Kiwi) infections, warts, chronic¢ with stroke and aortic
36 - Asthma cutaneous HSV. vasculopathy.

- Moderate eczema

#28 large female | 12 1,855- | - Food allergies (egg and Diarrhea, upper Failure to thrive (short
homozygous 8,460 | lentils) respiratory infections, | stature), mild scoliosis,
deletion of more - Eczema recurrent seronegative hepatitis,
than 174 kb - Eosinophilia meningoencephalitis, liver steatosis, mild
affecting most (1,532/mm3) chronic otitis media, hepatosplenomegaly,
of DOCK8 esophageal candidiasis,| extensive abdominal

(260876_43519
0) from intron 1
to exon 39

lower urinary tract
infection, pyelonephritis
(twice), Pseudomonas sp
(ear),E. coli.

vasculitis, elevated liver
enzymesTIgA T IgG,
TgM, CD3" lymphopenia
(600/ml).

The following patients were used in these experisien
* phenotyping (#1-18);
* ex Vivo cytokine andn vitro differentiation (#1, #2, #6, #7, #9, #10, #15, #118);

e plasma IgE (#6, #12, #14, #15, #17, #19-28)

—+
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(C) naive and memory CD4* T cells
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(A) Naive CD4* T cells

Figure 4
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