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Highlights 

 Lamellar Si/S-in situ doped graphene/Fe3O4 nanocomposite were prepared 

from the soda papermaking black liquor.  

 Fe3O4 nanoparticles are homogeneously embedded in the interlayer of the 

lamellar nanocomposite. 

 A discharge capacity (3829 mAh g−1) is more than 4 times the theoretical 

capacity of Fe3O4. 

 A synergy effect at the nanoscale between different electrochemical 

reactions. 
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ABSTRACT 

Alkali lignins and its degradation products in the soda papermaking black liquor 

(SPBL) are renewable resource with the highest natural carbon content. In this work 

we convert SPBL into the high-performance carbon-based nanocomposite anodes. 

The unique functional groups of lignin biomass induce spontaneous formation of 

graphene-like carbon sheet (GCS) in-situ doped SiC/S. The lamellar GCS/Fe3O4 

nanocomposite (GCS/FO-NC) is facilely prepared via one-step in-situ 

thermo-chemical method at 700 °C, in which donut shaped Fe3O4 nanoparticles with 

superlattices and inner surface are homogeneously embedded in the interlayer of GCS 

and are also anchored on its surface. The GCS/FO-NC anode exhibits a ultrahigh first 

discharge specific capacity of 3829 mAh g−1 at 50 mA g-1 in a coin-type Li ion battery, 

which is more than 4 times the theoretical capacity (924 mAh g-1) of Fe3O4 and 5 

times that of the graphene anode (744 mAh. g−1). Even at a high current density (1000 

mA g-1), it still exhibits a high reversible capacity (750 mAh g-1) after 1400 

discharge/charge cycles. More importantly, the removal efficiency of chemical 

oxygen demand of SPBL is up to 83.4% during the synthesis process, which reduce 

its load to environment and synthetic cost of carbon-based nanocomposite anodes. 

 

Keywords: Soda papermaking black liquor; Graphene-like carbon sheet; Fe3O4; 

Nanocomposite; Anode  
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1. Introduction 

As the world’s population continues to grow and does our consumption of natural 

non-renewable resources, so developing reliable renewable energy sources become 

increasingly important [1-4]. In abundant renewable lignocellulose, lignin is a highly 

polymerized material with two-dimensional structure, and is the best carrier of 

solar energy. Lignin has a higher energy content than cellulose or hemicelluloses. One 

gram of lignin has on average 2.27 KJ, 30% more than the energy of cellulosic 

carbohydrate. The energy content of lignin is 15-20 times higher than the yearly 

output of oil, and the production volume of lignin was about 70 million metric tons 

per year [5]. However, the lignin is not needed in papermaking process, where it is 

dissolved from wood chips and become the main component (about 48%) of soda 

papermarking waste liquor (SPBL) (Fig.1ab). Due to fine particle size of alkali lignin 

(<500 nm) and suspending particles (<50 nm), high alkalinity (pH=13), high chemical 

oxygen demand  (CODcr) and biological oxygen demand, the recovery of SPBL is 

expensive and difficult to be biologically treated. So far, the mainstream method to 

treat SPBL is the industrial combustion. However, this method is not cost-effective 

because it may cause secondary air pollution [6]. Alkali lignins and its degradation 

products in SPBL are a renewable resource with the highest natural carbon content, 

high dispersion and surface activity, which is an ideal precursor for biomass carbon 

materials. Lignin structure contains different functional groups such as phenolic 

hydroxyl groups, carboxylic acid groups, sulfonate groups, ether-bridges and 

methoxyl groups, and trace elements such as Si and S (Fig.1c) [7,8]. These highly 
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hydrophilic groups can provide lone pair electrons and nucleation sites, adsorb metal 

ions and lead to the cross-linking reaction of lignins to form stable cross-linked 

structures (Fig.1d,e). 

Recently, the renewable biomass-derived porous carbon materials have attracted 

intensive attention for their possible applications in Li-ion batteries (LIBs) and Na-ion 

batteries (NIBs) [9-15]. These biomass carbon materials have unique nanostructure, in 

particular, carbon quantum dots (CQDs,＜10 nm) and nanowires, which differ from 

those of the nanoparticles derived by other techniques [16,17]. These materials exhibit 

superior electrochemical performances owing to their high surface area, abundant 

reactive sites, optimized electronic structure, and fascinating physical and chemical 

properties. In particular, graphene derived from biomass is a unique and attractive 

energy material and has provided great opportunity in improving the performances of 

LIBs and NIBs owing to its excellent electrical conductivity, high mechanical 

flexibility, large specific surface area, and pronounced thermal and chemical stability 

[37,38]. Both theoretical calculations and detailed experiments have proven that the 

intrinsic properties of graphene can be modified by the introduction of heteroatoms, 

such as sulfur, nitrogen, phosphorus or boron into the carbon frameworks [21-23]. 

However, the methods used to prepare doped graphene often involve tedious chemical 

vapor deposition (CVD), plasma treatment, or high temperature annealing methods 

with high energy consumption and harsh experimental conditions [24]. The composite 

anode materials of graphene and Fe3O4 have been recently explored and show 

enhanced high capacity and excellent cycling performance of LIBs [25-31]. However, 
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the Fe3O4 nanoparticles one-side lying on the graphene surface would still suffer from 

the drastic volume expansion and disintegration during the electrochemical processes. 

Biorefinery is a new technique, by which biomass, such as the agriculture waste, 

lignin, starch of plant, lignocellulose can be transformed into various chemicals, 

bioenergy, biomass graphene, fuel and biomaterials. By this technique we can convert 

SPBL into the raw materials for fabricating high-performance and low cost electrodes. 

Herein, we have successfully synthesized the graphene-like carbon sheet (GCS) 

in-situ doped SiC/S and GCS/Fe3O4 nanocomposite (GCS/FO-NC) via a 

one-step in-situ thermo-chemical method at 700 °C. In the nanocomposite structure, 

the donut shaped Fe3O4 nanoparticles (50-100 nm) with superlattices 

and inner surface are homogeneously embedded in the interlayer of lamellar GCS. 

Compared to the reported carbon-based Fe3O4 composite [25-31], this  

nanocomposite has several notable advantages for LIBs and NIBs. First, the flexible 

GCS (about 33 wt.%) not only offer a stable scaffold for more ion storage sites, 

ensuring the fast ion transportation and high conductivity, but also provides strain 

space to buffer the volume expansion/contraction of Fe3O4 nanoparticles, sequentially 

leading to a good cycling stability. Second, the uniform nanogaps (about 3 nm) in 

GCS make the ions and electrolyte easily penetrate and react with Fe3O4, and they 

could be used as a confining structure with substantial buffering capability to reduce 

electrode pulverization. Third, due to quantum confinement and size effects, Fe3O4 

nanoparticles uniformly embedded in the interlayer of GCS guarantee abundant active 

sites and high interface areas for the insertion/extraction of Li and Na ions and full 
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utilization of the active materials. This is the most significant factor for ultrahigh 

specific capacity. Owing to these merits, the nanocomposite exhibits completely new 

electrochemical performances and behavior, which is particularly desirable for 

high-performance and low cost power batteries in the future. As an additional 

advantage, this synthesis technology is simple and cost effective. The raw material of 

GCS is based on abundant renewable resources. More importantly, it can minimize 

the wast deposition, reduces pollution and greatly enhances battery performances. The 

removal efficiency of chemical oxygen demand (CODcr) of SPBL is up to 83.4% 

during the synthesis process (Figs. S1a-c in Supplementary Informationsection). This 

greatly contributes to reducing the SPBL load to our environment and the synthetic 

cost of graphene power batteries.  

2. Experimental section 

2.1. Materials 

SPBL from a soda papermaking process (steaming section, ragments of poplar tree as 

raw material) was obtained from the Shandong Sun Paper Industry Joint Stock Co., 

Ltd., Yanzhou, China. Ferric chloride hexahydrate (FeCl3·6H2O) and Iron nitrate 

nonahydrate (Fe(NO3)3·9H2O, 98%) used in the synthesis process were obtained from 

commercial sources. Silver sulfate (Ag2SO4, 99.5%), standard solution of potassium 

bichromate (1/6 K2Cr2O7, 0.25 mol L-1), Ferroinindicator solution, standard solution 

of ammonium ferrous sulfate (Fe(NH4)2(SO4)2·6H2O, 0.1mol L-1), Sulfuric acid 
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(H2SO4, 98%), Mercuric sulfate (HgSO4), these chemicals were used for CODcr 

measurement. All chemicals and materials were used without any further treatment. 

2.2. Synthesis of GCS/FO-NC 

The nanocomposites were prepared via a carbon thermal reduction technique assisted 

by hydrothermal method. In the typical process, 30 mL of 1 mol L-1 Fe3+ solution was 

slowly dispersed in 50 mL of SPBL drop by drop with magnetic stirring, then stirred 

at room temperature for 6 h. The pH value of the mixed solution was reduced from 13 

to about 7, and then a thick liquid with Fe(OH)3 sediment was obtained. 

Subsequently, the precursor solution was transferred into a Teflon lined stainless 

autoclave, and kept at 180 °C for 48 h. After reaction ends, the kettle is naturally 

cooled to room temperature, and final the product is collected by drying under air at 

60 °C. Finally, the resulting samples were calcined at 700 °C in a tube furnace with a 

heating rate of 5 °C min-1 in an nitrogen atmosphere and kept at that temperature for 8 

h. Eventually, the nanocomposites were synthesized after being cooled down to room 

temperature. For comparison, the pure Fe3O4 sample (without papermarking waste 

liquid) and the SPBL ash sample (without Fe3+ solution) were applied. More details of 

material characterization, electrochemical measurements and wastewater 

characterization can be found in the experimental section of Supporting Information 

2. The mass loading of active material in different batteries is show in Table S5. 
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3. Results and discussion 

In liquid phase, heterogeneous nucleation occurs much easier at structural 

inhomogeneities, since active centers with high affinity are already present, the barrier 

to overcome for nucleation to occur is globally decreased and the nuclei are formed 

on the first surface of a foreign body [32]. On inhomogeneity substrates, the degree of 

surface hydrophilicity controlled the rate of nucleation and growth, because increased 

hydrophilicity can decrease the interfacial energy between the nanoparticles and 

substrate and improve the nucleation and growth rate of nanoparticles [33]. Lignins 

with highly hydrophilic groups can provide remarkably reactive sites for 

heterogeneous nucleation and growth of iron nanoparticles. The recent studies on the 

heterogeneous nucleation and growth mechanism of iron nanoparticles were carried 

out, where the orientated attachment of iron at structural inhomogeneities has been 

viewed with a high resolution transmission electron microscope (HRTEM), and it has 

been suggested that this attraction is Coulombic attraction in nature and van der Waals 

interactions [34-36]. Detail TEM investigation in Figs 2ef has also proved that 

primary iron nanoparticles can adsorb and deposite on GCS to form donut shaped 

Fe3O4 nanoparticles through the heterogeneous nucleation and growth mechanism. 

To improve the formation of GCS/FO-NC and reduce the production of volatile, 

the thermal carbonization was first performed via hydrothermal method. Thermal 

degradation of various lignins is reported, during which the pyrolysis causes their 

carbonization, and this is a multistep reaction [37-39]. During hydrothermal reaction, 

the most of the oxygen functional groups in lignin loss, producing cross-linking 
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between lignin molecules. The reorganization of the structure produces high-ordered 

carbon materials by condensation of the aromatic rings. Furthermore, the inorganic 

impurities (mainly Fe) in lignin precursors act as graphitization catalysts and can 

enhance the onset of structural ordering and induce structural cross-linking, owing to 

its highly cross-linked nature and the oxidation resistance. These trace elements (Si 

and S) in lignin structure in situ doped in the cross-linking structure (Fig.1d,e). During 

carbon thermal reduction reaction, carbonyl, carboxyl and methoxy groups loss and 

the ordering of the structure is further increased to produce the GCS (Fig. 1f) [39]. 

The alkali lignin particles in SPBL possess the high dispersibility, cohesiveness, 

chelating property and hydrophilic behaviour because of a large number of negatively 

charged functional groups on its surface and electrostatic interactions (Fig.1g). When 

the Fe3+ solution was added to SPBL, the shared pairs of electrons on oxygen atoms of 

these functional groupseasily combine with Fe3+ cations and form the stable lignin 

chelates by charge neutralization and adsorption bridging action (Fig.1h). Eventually 

the stratoid precipitation of flocculation body was obtained by chelation effect (Fig.1i). 

The zeta potential changes of the particle surface determined by using JS94H micro 

electrophoresis have verified the above conclusion (Fig. S2). The GCS/FO-NC 

sample was synthesized by hydrothermal and carbon thermal reduction reactions 

(Fig.1j,k). During pyrolyticdegradation, the stratoid precipitation of lignin chelates is 

decomposed to form the GCS/FO-NC with robust and effective networks for electron 

and ion transport. The Fe3O4 nanoparticles are homogeneously embedded in the 

interlayer of GCS and anchored on its surface. The morphology of GCS/FO-NC-D 
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sample was characterized using the high-resolution scanning electron microscopy 

(SEM). Fig.1l clearly shows that the nanocomposite particles after the calcination 

have good layer structure, which is favourable to the improvement of electrochemical 

performance. The large SEM image shows some multi-layer with different thickness 

and single-layer structures in this product (Fig. S3). It can be observed that the 

single-layer structure is very abundanted, which is about 10 nm as thick as one layer. 

The thickness of multi-layer structure is changeable within the scope of 10–150 nm. 

 

Microstructure of the different samples was characterized by SEM and 

high-resolution TEM (HRTEM). SEM images in Fig.2a and 2b show that the alkali 

lignin particles in the dry mixture of SPBL form the layer structure by the 

cross-linking reaction. HRTEM images were obtained at the Scherzer defocus (Δf 

=-41.25 nm) to optimize the transfer function of the optical system balancing the 

effect of spherical aberration. According to the image contrast mechanism in the 

Weak Phase Object (WPO) approximation, HRTEM image formation at a negative 

Scherzer defocus relies on phase contrast. The phase contrast imaging technique is 

very sensitive to atomic number. The bigger the atomic number, the darker the WPO 

image is [54]. Fig. 2c and 2d show some carbon sheets with different sizes in the 

SPBL ash sample synthesized by carbon thermal reduction reactions at 700 °C. These 

particles are composed of SiC QDs (＜10 nm), CQDs (＜10 nm) and C nanowire 

network (Fig.2d). The SiC QDs and CQDs shown in Fig. 2d can be identified as the 

WPO. SiC atomic columns with bigger atomic number are imaged as darker spots and 
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C atomic columns with smaller atomic number as brighter spots. Fig. 2d shows that 

the C nanowires with an average size of about 0.5 nm (see the brighter spots followed 

the white line) interwoven into a network. Fig.2e and 2f show that the donut shaped 

Fe3O4 nanoparticles (dark areas) with a diameter of 50-100 nm and width of about 20 

nm are homogeneously embedded in a GCS (grey area) and anchored on its surface, 

in good a greement with the XRD results (Fig.3aB). The Fe3O4 nanoparticles are 

sandwiched between the GCSs, resulting in a larger interlayer space of nanocomposite. 

It is found that there are many CQDs (yellow circles) with high conductivity and 

nanogaps (white areas) with good permeability of the ions and electrolyte in Fe3O4 

nanoparticle (Fig.2g). More direct evidence for Fe3O4 crystal structure is seen in 

Fig.2g, showing the well-identified Fe3O4 (311) lattice fringes with a smaller 

d-spacing of 0.252 nm [28]. Also the HRTEM image (Fig. 2h) of an individual Fe3O4 

nanoparticle displays its superlattice structure with a larger lattice spacing of 0.98 nm 

[41]. Fig. 2i is a schematic illustration of the formation of Fe3O4 super lattices by 

using lignins as structral templates and proposed lithium storage by intercalation into 

the quantum wells of superlattice structure. In the synthesis, lignin template can  

 

influence the nucleation and growth of Fe3O4 nanoparticle, and control their 

microstructure. It has recently been demonstrated that the superlattice structure has 

abundant reactive sites of Li+, optimized electronic structure, and fascinating physical 

and chemical properties, which can enhance the efficient charge transfer and the 

kinetics of electron and ion transport due to quantum confinement and size effects 
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[41]. Fig. 2j-m show the elemental mapping images of Fe, C, Si and S in the 

GCS/FO-NC-D sample. And all the elements originating from papermarking black 

liquor except Fe. The results show the uniformly dispersed of Fe, C, Si and S in 

GCS/FO-NC-D sample. It is evident that the Fe3O4 nanoparticles were uniformly 

dispersed in the GCS without agglomeration, which is beneficial to buffer volume 

change of Fe3O4 nanoparticles during the lithium-ion insertion/extraction process, 

making a contribution to improve the electrochemical performance of the composite. 

Fig. 3aA is the XRD pattern of the SPBL ash sample synthesized without adding 

ferric salt, showing two broad diffraction peaks of carbon nanosheets centered at 22.5 

and 43.1° [22-31] and the diffraction peaks of β-SiC (PDF#49-1623) with a cubic 

crystal system [42]. The broad peak indicates that its structure has a high degree of 

disorder. The content of carbon nanosheets and β-SiC is about 61 and 39% by 

calculating their intensity ratio of characteristic diffraction peaks, respectively. This 

result indicates that the structure and components of lignin particles in SPBL facilitate 

the in-situ synthesizing of carbon nanosheets and β-SiC at lower temperature (700 °C). 

In addition, the carbon nanosheet structure of the SPBL ash sample has also been 

confirmed by Raman spectrum (Fig.3bA) and HRTEM images (Fig.2c,d). Fig.3aB 

and Fig. S4a show the diffraction peaks of the GCS/FO-NC-D sample, which can be 

well indexed to the cubic phase of magnetite (Fe3O4) with Fd3m space group 

(PDF#88-0315), carbon nanosheet and trace amounts of Fe (PDF#99-0064). To 

determine the elemental content and distributions of the GCS/FO-NC-D sample, 

quantitative analysis has been performed using the energy-dispersive spectrometry 
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(EDS) (Fig.3g). The computed results indicate that the molar ratio of Fe3O4:Fe: 

C:S:SiC:Na is about 2.0:0.1:27.0:0.41:0.53:0.91 in the GCS/FO-NC-D sample. As 

seen in Fig.3g, the content of Si and S is very limited. The content of SiC is 4.34 wt.%, 

measured with Gravimetric method. The weak peaks in Fig.3aC indicate that the 

hydrothermal process is beneficial to the nucleation and growth of Fe3O4. Fig.3aD 

showsthe XRD pattern of the blank sample synthesized without adding SPBL by 

hydrothermal reaction, exhibiting the diffraction peaks of Fe3O4, FeO (PDF#89-2468) 

and Fe. A comparison with Fig.3aD shows that the weaker peak at 45° in Fig.3aB can 

be attributed to the (110) plane of Fe phase [43], indicating that a trace amount of 

ferrous iron was reduced into metallic iron, which is conducive to the one-step in-situ 

synthesis of carbon nanosheets [44]. The weaker broad bump in the 2 θ range of 5 to 

11.5° in Fig.S4a further confirms the Fe3O4 super lattice structure in Fig.2h. The 

strong broad bump in the 2 θ ranges of 11.5 to 22.5° can be ascribed to the large 

amounts of carbon nanosheets (about 33 wt.%) and the lamellar structure of GCS in 

the GCS/FO-NC-D sample (further validated the SEM in Fig.1i). 

Raman spectra of the SPBL ash sample in Fig3bA show three strong 

characteristic peaks of carbon nanosheets, centered at 1346.7, 1593.3 and 2900 cm-1 

and corresponding to the D, G, and 2D band, respectively [21,45]. The intensity ratio 

(ID/IG) of D-band to G-band is 0.92, indicating the high quality and ordering degree of 

the GCS structure. By comparing with Fig.3bA, it is found that although the peak 

positions of three characteristic peaks of carbon nanosheets in Fig.3bB have not 

shifted, their intensities significantly decreases and ID/IG was increased to 0.95. These 
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changes indicate that the local structure of carbon nanosheets in the GCS/FO-NC-D 

sample has not changed, but the degree of the long range disorder increases due to the 

intervention of Fe3O4 nanoparticles and the introduction of more defects [21].  

 

Similarly, Fourier Transform Infrared Spectroscopy (FTIR) analysis also confirm the 

composite structure of Fe3O4 with GCS (Fig. S4b). The results were further confirmed 

by HRTEM images (Fig.2e-h). Fig.3cd show a surreyspectrum of X-ray 

photoelectronspectroscopy (XPS) for the GCS/FO-NC-D sample. There are four main 

peaks in Fig.3c, indicating the presence of C, Na, O elements and Cl impurity. 

However, the signal strength of Fe element is very weak because the Fe3O4 particles 

in GCS/FO-NC-D were completely embedded in the interlayer of GCS [21]. The 

spectrum of Fe 2p3/2 and 2p1/2, is shown in Fig.3d and the spectra of O 1s and C 1s are 

shown Fig.S4c and S4d, respectively. The XPS results further validate the XRD 

results in Fig.3aB. The porous structure of the different samples were characterized by 

N2 adsorption/desorption isotherms, as shown in Fig.3ef. Only the GCS/FO-NC-D 

sample exhibits a H4-type hysteresis loop of type V isotherm with uniform 

mesoporous structure (Fig.3eB). The size of slit pores and BET specific surface area 

are about 3 nm and 258.7 m2g-1, respectively. The summary of the structural features 

and performances of the synthesized samples are shown in supplementary Table S2. 

The higher BET surface and uniform mesoporous structure can promote the 

permeability of electrolyte, resulting in an excellent electrochemical performance. 

Biomass graphene or carbon sheets from biomass resources are an appealing 
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two-dimensional material with superior electrochemistry properties because of its 

ultrathin nanosheet frameworks (2–10 atomic layers) and the mesoporous structure 

[45,46]. In this study, we have also synthesized GCS with graphene-like structure via 

a simple thermo-chemical method. The galvanostatic charge/discharge and cyclic 

voltammetry (CV) profilesof the different electrodes were shown in Fig.4. When used 

as an anode material for LIBs, the GCS delivers a high reversible capacity of 1058 

mAh g-1 at 50 mAh g-1 (Fig.4a), which is higher than the maximum theoretical specific 

capacity of the graphene anode (744 mAh. g−1). Fig.4a only shows an unconspicuous 

discharge plateau around 0.1 V. The CV curves in the first three cycles almost 

overlapped, indicating its good reversibility (Fig.4b). Compared with the blank 

electrode (Fig.4c), it is found that the GCS/FO-NC-D anode exhibits a ultrahigh first 

discharge specifi ccapacity of 3829 mAh g−1 and a charge specific capacity of 2250 

mAh g−1 at 50 mA g-1 (Fig.4e), which is far higher than the theoretical capacity of 

Fe3O4 anode (924 mAh g-1). But it rapidly decay to 2373 mAh g-1 after 3 cycles, 

which refers to the presence of some irreversible reactions and the formation of solid 

electrolyte interface (SEI) film [47]. The CV profiles of the blank electrode in Fig.4d 

show two sharper peaks at about 0.7–0.9 and 1.7–1.8V, corresponding to the 

electrochemical reduction/oxidation reactions (Fe3+ ↔ Fe0) and accompanying with 

the insertion/extraction of lithium-ion [48]. However, the new peaks at about 0.59, 1.6 

and 2.2 V appear in the GCS/FO-NC-D anode (Fig.4f), which can be accounted by the 

electrochemical reduction/oxidation reactions of SiC/S doped phases [22,24,42]. Note 

that both the cathodic and the anodic peaks of Fe3O4 in GCS/FO-NC-D have a 
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pronounced shift compared to the blank electrode (Fig.4d), meaning that the GCS can 

facilitate the electrochemical reduction/oxidation reactions of Fe3O4. It is noteworthy 

that the intensity of both cathodic and anodic peaks in Fig.4f has significantly 

increased, implying that the GCS can also improve energy density. This result has 

been proven by Fig.4g, exhibiting a ultrahigh charge energy density of 2625 Wh kg−1 

and a discharge energy density of 1250 Wh kg−1 at 50 mA g-1 after three cycles.  The 

optimum compositions of the GCS/FO-NC-D for LIB/NIB applications show in 

Figure S1d and Table S1, respectively. The results show that the Li/Na-storage 

properties of the GCS /FO-NC-D can be improved by incorporating suitable carbon 

networks/heteroatoms doping. But the theoretical capacity of composite will be 

reduced in the too high carbon content. The SC/S-GNCs/FO-NC-D sample has the 

optimum molar ratio of Fe3O4:Fe:C:S:SiC:Na, which is about 

2.0:0.1:27.0:0.41:0.53:0.91. 

These superior electrochemical performances of the GCS/FO-NC-D anode can 

be attributed to the collective and synergetic effects at the nanoscale between different 

electrochemical reactions in the GCS/FO-NC-D anode, as shown in Fig.5. The 

traditional Fe3O4/CN composite (Fig5a) and the GCS (Fig5b) have a low Li storage 

because of lack of inner surface, but the GCS/FO-NC-D anode can provide a high Li 

storage and much larger atomic interface contact because of inner surface in the 

donut shaped Fe3O4 nanoparticle with super-lattice structure and interaction between 

donut shaped Fe3O4 nanoparticles and GCS (Fig5 c). Fig5 de show schematic of the 

phase reactions of Fe3O4 spheroidal particle (Fig5 d) and donut shaped Fe3O4 
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nanoparticle with the inner surface (Fig5 e) during lithiation, exhibiting the different 

pathway of electron transport at the particle surface. The donut shaped Fe3O4 

embedded in the interlayer of GCS not only have abundant reactive sites for Li 

storage and optimized electronic structure for charge transfer, but also could provide a 

large electrode/electrolyte interface area and the fast diffusion path of lithium ions and 

electrons. Besides highly stable GCS in GCS/FO-NC structure also play an 

important role in  enhancing the capacity performance of the nanocomposite electrode. 

First, its high conductivity, the GCS can also serve as a stable scaffold for more ion 

storage sites, the high conductive medium for ensuring the fast ion transportation and 

elastic buffer of volume change for the Fe3O4 nanoparticles. Second, the uniform 

nanogap structure in GCS can make the ions and electrolyte easily penetrate and react 

with Fe3O4 to reduce electrode pulverization. Third, due to quantum confinement and 

size effects SiCQDs, CQDs, carbon nanowires and heteroatoms doping in in GCS, the 

electrodes exhibit superior electrochemical performances owing to their high surface 

area, abundant reactive sites, optimized electronic structure, and fascinating physical 

and chemical properties. Silicon carbide (SiC) and sulfur-doped carbon have recently 

been found to be potential high-performance anode materials upon activation by 

surface graphitization due to its superior high-rate performance and cycling stability 

[42,48]. But most of all, the electrochemical reactions of the different phases in 

GCS/FO-NC structure have the collective and synergetic effect, leading to a ultrahigh 

reversible specific capacity and the excellent rate capability and cycling stability of 

the nanocomposite electrode. The possible Li+ ion insertion/extraction mechanism of 
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GCS/FO-NC as anode for LIBs can be described as follows:  

Fe3O4 + 8e− + 8Li+ ↔ 3Fe + 4Li2O                                                                      (1) 

6C + Li+ + e− ↔ LiC6                                                                                                (2) 

[SiC]4− + 4Li+ ↔ Li4[SiC]                                                                                       (3) 

S + 2Li+ + 2e− ↔ Li2S                                         (4) 

The rate capability and cycling stability of different electrodes are also evaluated 

by charge/discharge test at various current densities. Fig6 shows the rate capability 

and corresponding Coulombic efficiency of the GCS/FO-NC-D anode and the 

GCS/FO-NC-D sample synthesized by repeated tests at various current densities. 

After 70 cycles at varied current rates from 100 to 1000 mA g-1 for the two cycles, 

both the GCS/FO-NC-D anode (Fig6a) and the GCS/FO-NC-D sample synthesized 

by repeated tests (Fig6b) delivered a high discharge capacity of about 570 mAh g-1 

and an ultra-high Coulombic efficiency close to 98%. Compared with the SPBL ash  

 

and Fe3O4/FeO/Fe blank sample (Fig S5), it is found that the GCS/FO-NC-D 

anode shows better high rate performance. After 50 cycles at varied current rates from 

1000 to 10000 mA g-1 for a cycle, the GCS/FO-NC-D sample synthesized by repeated 

tests still delivered a high discharge capacity of 235 mAh g-1, showing outstanding 

high rate capability (Fig6c). 

Most notably, the GCS/FO-NC-D electrode also has excellent cycle stability and 

good Coulombic efficiency even at a high current density of 1000 mA g-1 (Fig 7a). Its 

initial discharge sepcific capacity is up to 1385.2 mAh g-1, which is almost 4 times the 
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capacity of a commercial graphite anode (372 mAh/g), and is the highest rate 

capability compared with those reported in the literature [27-31, 50-53]. And it still 

exhibits a high reversible capacity (750 mAh g-1) after 1400 discharge/charge cycles. 

In addition, its Coulomb efficiency is close to 100% after 3 cycles and can 

be maintained indefinitely, indicating the outstanding and effective processes of 

charging and discharging. It's worth noting that in the cycling process the reversible 

capacity reduced obviously before 100 cycles and then remained at about 320 mAh 

g-1 from 100th up to 700th cycle. The reversible capacity lossas increasing crycling 

number may be ascribed to many factors, such as the formation of inorganic solid 

electrolyte interface (SEI) film, the change of nanostructure, the degradation of the 

lithium metal foil cathode and so on [54]. Here, the experimental temperature is 

suggested to be mainly responsibly for reducing the capacity. The lower capacity at 

the average temperature of -10 °C is due to the increase in viscosity and resistance of 

the electrolyte, the decrease in penetrability of the electrolyte, and the increase of the 

activation energy for lithium-ion diffusion and intercalation, which decreased its 

active surface area and limited lithium storage sites [55-57]. The cyclic 

voltammogram (CV) and electrochemical impedance spectroscopy (EIS) 

performances of this electrode at different crycling number are measured as shown in 

(FigS6), which can help to clarify the ohmic resistance and polarization resistance 

behaviors coincident with capacity loss. But surprisingly, as the temperature is 

elevated to 10 °C, the capacity of GCS/FO-NC-D anode begins to increases 

significantly after 700 cycles and increase to the highest capacity of 750 mAh g-1 after 
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1400 cycles. This increasing phenomenon is attributed to three main possibilities as 

follows. Firstly, as crycling number and room temperature incrase, the viscosity and 

resistance of the electrolyte decreases, which make the ions and electrolyte more 

easily penetrate in the uniform nanogaps (3 nm) of GCS and react with Fe3O4 

nanoparticles. Secondly, the more ion storage sites and electron reactions in 

GCS/FO-NC may be reactivated and released by crycling electrochemical reactions. 

Third, the charge and discharge increased the active surface area of Fe3O4 

nanoparticles and lithium metal cathode, which provides more active sites for 

additional Li storage. In a word, this is attributed to the excellent nanocomposite 

structure of Fe3O4 nanoparticles embedded inside the lamellar structure of GCS. 

   To optimize synthesis conditions, the electrochemical performances of the 

different nanocomposite electrodes synthesized with different annealing temperature 

are shown in Fig 7b and Table S4. The results show that the composite electrode 

synthesized at 700°C for LIBs has not only high initial discharge capacity and 

coulombic efficiency (Table S4), but also better cycle performance than that of the 

electrodes synthesized at 600 and 800 °C. However, the Coulombic efficiency of all 

the samples are maintained at about 100%, suggesting the effectively reversible 

lithiation/delithiation process. The improved performances are originated from the 

nanocomposite structure of GCS and Fe3O4 nanoparticles and the incorporation of 

suitable carbon networks/heteroatoms doping. Especially GCS not only offer a stable 

scaffold for more ion storage sites, facilitates the Li+ delithiation/lithiation, 

accordingly increasing the discharge capacity and initial coulombic efficiency, also 
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provides strain space to buffer the volume expansion/contraction of Fe3O4 

nanoparticles, sequentially leading to a good cycling stability. This offers a new 

insight for simultaneously increasing the initial coulombic efficiency and the specific 

capacity for LIBs. 

    

To further investigate its multifunctional applications, the cycling performance and 

Coulombic efficiency of GCS/FO-NC-D anode for different batteries at 50 mA g-1 up 

to 100cycles were also shown in Fig 7c. The initial discharge specific capacities are 

2755.2 mAh g-1, 2167.2 mAh g-1 and 1040.7 mAh g-1 with 71.5%, 60.0% and 67.0% 

coulombic efficiency for LIBs, NLHBs and NIBs, respectively. By contrast, it is 

found that the lithium-ion battery assembled with the lamellar nanocomposite as an 

anode exhibits high reversible capacity and better cycling stability than that of 

NLHBs and NIBs after 100 discharge/charge cycles, and the Coulomb efficiency of 

the LIBs, NLHBs and NIBsis all close to 100% after 100 cycles. But the reversible 

capacity and cycling stability of NIBs need to be improved. 

4. Conclusions 

In summary, by the soda papermarking waste liquor (SPBL) as template and raw 

materials, we successfully fabricated graphene-like carbon sheet (GCS) in-situ doped 

SiC/S and GCS/Fe3O4 nanocomposite (GCS/FO-NC) with high capacities, long 

cycling lives, and good rate performances. The formation mechanism and the possible 

Li+ ion insertion/extraction mechanism of the GCS and GCS/FO-NC were discussed. 
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Their structure, composition and electrochemical performances were 

analyzed and characterized. The analysis results show that the functional groups and 

the properties of alkali lignin biomass in SPBL play an important role in the formation 

of the GCS and GCS/FO-NC. In the GCS/FO-NC structure, the donut shaped Fe3O4 

nanoparticles with superlattices and inner surface are homogeneously embedded in 

the interlayer of GCS with the uniform nanogaps (about 3 nm) and anchored on its 

surface. The molar ratio of Fe3O4:C in GCS/FO-NC is about 2:27. In comparison to 

the composites of graphene extracted from graphite with Fe3O4, GCS/FO-NC can 

significantly improve electrochemical properties of LIBs and NIBs because of its 

unique nanostructure and the collective and synergy effects between different 

electrochemical reactions. The GCS/FO-NC anode exhibits a ultrahigh first discharge 

specific capacity of 3829 mAh g−1 and a charge specific capacity of 2250 mAh g−1 at 

50 mA g-1 in a coin-type Li ion battery, which is more than 4 times the theoretical 

capacity (924 mAh g-1) of Fe3O4 anode. In addition, this approach is simple and 

cost-effective for reducing the waste water pollution and for developing 

high-performance power batteries. We foresee that our work may have an impact in 

the fields of environmental science, materials science, energy technology and 

bionanotechnology. 
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Fig. 1 Fabrication procedure. (a-f) Schematic illustration for the fabrication of GCS. (g-k) 

Schematic illustration for the fabrication of GCS/FO-NC. (l) SEM image of GCS/FO-NC-D 

sample. 
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Fig. 2 Microstructure characterizations of the different samples. (ab) SEM images of the dry 

mixture of SPBL. (c) TEM and (d) HRTEM images of the SPBL ash sample synthesized by 

carbon thermal reduction reactions at 700 °C. (e) TEM and (f-h) HRTEM images of 

GCS/FO-NC-D sample. (i) Schematic illustration of the formation of the Fe3O4 super lattice 

structure by using lignins as nanostructral templates and proposed lithium storage by intercalation 

into the super lattice structure. (j-m) The elemental mapping images of GCS/FO-NC-D sample: 

iron (j), carbon (k), silicon (l) and sulfur (m). 
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Fig. 3 (a) XRD patterns of the different samples, (A) the SPBL ash sample after the calcination, (B) 

the lamellar GCS/FO-NC-D sample after the calcination, (C) the GCS/FO-NC-D precursor after 

the hydrothermal treatment, (D) Fe3O4/FeO/Fe blank sample after the calcination. (b) Raman 

spectra of the SPBL ash (A) and the lamellar GCS/FO-NC-D (B) samples. (c) Survey XPS 

spectrum and (d) Fe2p spectrum of the lamellar GCS/FO-NC-D sample. (e) N2 

adsorption/desorption isotherms and (f) pore size distribution of the different samples. (g) The 

energy spectra of GCS/FO-NC-D sample. 
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Fig. 4  Electrochemical characterizations. Charge/discharge profiles of the SPBL ash electrode 

(a), Fe3O4/FeO/Fe blank electrode (c) and GCS/FO-NC-D electrode (e) over the first three cycles 

at 50 mA g-1 for LIBs; CV profiles of the SPBL ash (b), Fe3O4/FeO/Fe (d) and GCS/FO-NC-D (e) 

at 0.1 mV s-1 scan rate for LIBs; (g) corresponding energy density plot of GCS/FO-NC-D. 

  



37 
 

 

Fig. 5 Schematic representation of the synergy effect between different electrochemical reactions 

in the GCS/FO-NC electrode. (a) Low Li storage at the atomic interface and an outer surface of 

traditional Fe3O4/CN composite. (b) Low Li storage at the atomic interface of GCS. (c) High Li 

storage in the interlayer of GCS/FO-NC having a high inner surface area. (de) Schematic of the 

phase reactions of Fe3O4 spheroidal particle (d) and donut shaped Fe3O4 nanoparticle with their 

inner surface (e) during lithiation, exhibiting the different pathway of electron transport at 

the particle surface. 
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Fig. 6 (a) Rate capability and Coulombic efficiency of GCS/FO-NC-D electrode. (b) Rate 

capability and Coulombic efficiency of the GCS/FO-NC-D sample synthesized 

by repeated tests (b) at various current density. (c) High rate capability of the GCS/FO-NC-D 

sample synthesized by repeated testsfrom 1A g-1 to 10A g-1. 
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Fig. 7 (a) Cycling stability of the GCS/FO-NC-D electrode at a high current density of 1000 mA 

g-1 for LIBs. (b) Cycle performance comparsion of the nanocomposite electrodes synthesized at 

different annealing temperature at a current density of 50 mA g-1 for 100 cycles in the potential 

range 0.01-3.0 V for LIBs. (c) Cycling performance comparsion of the GCS/FO-NC-D electrode 

at the current density of 50 mA g-1 for different batteries. Li-ion batteries (LIBs): Li+ electrolyte (1 

M LiPF6/EC/DEC/EMC) only and Li metal as a cathode. Na-ion batteries (NIBs) : Na+ electrolyte 

(1MNaClO4/PC) only and Na metal as a cathode. Na-Li hybrid batteries (NLHBs): Li+/Na+ mixed 

electrolyte (LiPF6/EC/DEC/EMC and NaClO4/PC in a volume ratio of 1 : 1) and Li metala 

cathode. 

 


