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Highlights 

 

 Developmental Vitamin D deficiency during early periods of brain development is linked to 

Autism 

 Developmental Vitamin D deficiency alters response to inflammation 

 Vitamin D deficiency alters steroidogenesis 

 Developmental Vitamin D deficiency alters foetal brain anatomy 

 Developmental Vitamin D deficiency produces behavioural phenotypes relevant to autism 

 

Abstract 

Autism is a neurodevelopmental disease that presents in early life. Despite a considerable 

amount of studies, the neurobiological mechanisms underlying autism remain obscure. Both 

genetic and environmental factors are involved in the development of autism. Vitamin D 

deficiency is emerging as a consistently reported risk factor in children. One reason for the 

prominence now being given to this risk factor is that it would appear to interact with several 

other epidemiological risk factors for autism. Vitamin D is an active neurosteroid and plays 

crucial neuroprotective roles in the developing brain. It has important roles in cell 

proliferation and differentiation, immunomodulation, regulation of neurotransmission and 

steroidogenesis. Animal studies have suggested that transient prenatal vitamin D deficiency is 

associated with altered brain development. Here we review the potential neurobiological 

mechanisms linking prenatal vitamin D deficiency and autism and also discuss what future 

research targets must now be addressed.  
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1. Introduction  

Autism comprises a heterogeneous group of disorders together referred to as Autism 

Spectrum Disorders (ASD). ASD includes autistic disorder, Asperger’s syndrome, Rett’s 

syndrome, childhood disintegrative disorder and pervasive developmental disorders not 

otherwise specified. ASD was introduced to Diagnostic and Statistical Manual-III in 1980 

(Mayes and Horwitz 2005). It was first described by the American mental health clinician 

Leo Kanner as a condition of extreme aloneness (Kanner 1968). ASD is characterized by 

impairments in social interaction, lack of verbal and non-verbal communications, stereotyped 

repetitive behaviours and hyperactivities to sensory inputs [1]. The lifetime prevalence of 

ASD is about 1 in a 100. Signs of ASD usually seen before two years of age and persist into 

adulthood [2]. Some studies claimed diagnosis of autistic features in children younger than 1 

year [3, 4]. It has become a substantial socio-economic burden on modern societies [5]. The 

Global Burden of Disease has ranked ASD within the scope of mental disorder burden in the 

1993 World Development Report [6]. It is the leading cause of disability in children under 

five years of age, and ASD alone is among the 20 leading causes of disabilities from all 

diseases and injuries in Western Australia [7]. Pronounced increase in its prevalence has been 

observed during the last 20 years [8]. Some researchers have claimed that this apparent rise in 

the prevalence is due to a greater level of awareness in parents or due to the diagnostic 

criteria having been changed [9, 10] while some researchers believe that this increase is a true 

reflection of the situation, citing an alteration in external environmental risk factors as 

responsible for this sharp increase [11, 12]. In this review we will concentrate on the 

emerging evidence that shows how developmental vitamin D (DVD) deficiency may 

exacerbate numerous events believed to be operating in this disease and suggest future 

research targets aimed at clarifying this relationship. 

2. Maternal vitamin D deficiency as a risk factor for ASD  

The association between vitamin D and ASD was first proposed by Dr. John Cannell [13]. 

Epidemiological studies have suggested a potential role for vitamin D deficiency in the 

development of ASD [14-18]. A California based study found that children conceived in 

winter have a 16% elevated risk of ASD diagnosis compared with the children conceived in 

summer [19]. The effect of season on ASD occurrence has been replicated in other studies 

based in Boston, Denmark and Sweden [20-22]. These authors concluded that deficiency of 

vitamin D in pregnant women due to less ultraviolet B radiation may be a plausible 

etiological factor for the high prevalence of ASD in children conceived in winter. More 



importantly, there is direct analytical epidemiological support for this proposal. In a recent 

systemic review, 9 out of 12 studies clearly show significantly lower levels of vitamin D in 

ASD children compared to controls [14]. Another meta-analysis of over 800 autistic 

individuals found that individuals with ASD had lower vitamin D than the healthy controls 

[23]. Increased prevalence of ASD has also been found in the children of vitamin D deficient 

Somali mothers [15]. Maternal vitamin D deficiency is more profound in the children of 

dark-skinned mothers unable to synthesise sufficient vitamin D [24].    

There is also indirect support for maternal or DVD-deficiency increasing ASD risk. In a 

study in Swedish born autistic and healthy siblings who shared the same environment and 

genetic background, siblings born in spring were more likely to develop ASD than the sibling 

born during other seasons. Interestingly, in a later study autistic siblings had significantly 

lower blood level of vitamin D at birth compared with non-affected siblings [25].     

3. Other risk factors for ASD 

Like all complex psychiatric conditions, ASD involves both genetic and environmental 

factors which interact to presumably adversely affect brain development. Abnormalities have 

been found in multiple genes functionally linked with ASD each with small individual effects 

[26]. ASD is a familial and highly (50-80%) heritable disorder [27, 28]. Monozygotic twins 

have high concordance rate (50%) in comparison with dizygotic twins (15-20%) [29, 30]. 

Incomplete concordance rates for monozygotic twins and phenotypical variabilities indicate 

the likely influence of environmental risk factors in the development of ASD. A growing 

body of evidence has revealed the association of several prenatal environmental risk factors 

for ASD such as advanced paternal age, being male, obstetric complications, maternal 

infections and stress during pregnancy [31] [32] [33]. 

 Evidence indicates that the offspring of aged parents and grandparents are at increased risk 

of ASD [34-36]. De novo mutations in the male germ cell line due to advanced age is a 

possible explanation of high occurrence of ASD in such children [37-39]. ASD is four to five 

times higher in males than in females [40]. The reasons behind gender biased ASD 

prevalence are still not clear. Sex steroids particularly testosterone and estradiol may have a 

role here as they have been shown to differentially regulate novel ASD related genes, for 

example retinoic acid-related orphan receptor-alpha [41].  

Obstetric complications may increase the risk of ASD. Obstetric complications linked with 

ASD include maternal bleeding, gestational diabetes, preeclampsia and maternal hormonal 



imbalances [42-46]. Infection during pregnancy is also a well-recognized environmental risk 

factor for ASD [47]. Maternal viral infection in the first trimester and bacterial infections in 

the second trimester are highly associated with ASD [48, 49]. Maternal stress during mid to 

late gestation is associated with increased risk of ASD. Studies showed that fetuses exposed 

to stress during last two trimesters had 3.8 times higher risk of developing ASD [33, 50].  

An under-recognised feature of this diverse risk-factor epidemiology is that many of these 

risk-relationships may be regulated by DVD-deficiency (Fig.1). Vitamin D deficiency is 

directly linked with several maternal factors such as gestational diabetes, preeclampsia, 

dysregulated steroidogenesis, maternal depression and infection [51, 52]. Additionally, 

vitamin D supplementation during pregnancy has been shown to reduce the risk of 

complicated pregnancies and obstetric complications [53]. Vitamin D also plays an important 

role in modulation of immune responses against infection and gestational hypovitaminosis D 

is associated with bacterial vaginosis [54]. Collectively, these observations suggest that 

DVD-deficiency may modulate or even amplify the effects of other developmental ASD risk-

factors.  

4. Vitamin D and brain  

Vitamin D is potent neurosteroid, which mediates numerous actions in several body tissues 

including brain. Immunohistochemical presence of vitamin D synthesizing enzyme CYP27B1 

and catabolic enzyme, CYP24A1, in neural cells of cerebral cortex and cerebral Purkinje 

cells suggest vitamin D can be formed locally in the brain [55-57]. Localization of CYP27B1 

in human fetal brain suggests this steroid may also exert influence in the developing brain 

[58]. Like other steroid hormones, vitamin D exerts its actions via both genomic and non-

genomic pathways [59]. Genomic actions are mediated by binding of vitamin D to the 

vitamin D receptor (VDR) which is a member of nuclear receptor super family. Vitamin D-

VDR complex heterodimerizes with retinoid X receptor and binds to vitamin D response 

elements (VDREs) within the target gene to regulate its expression. The presence of VDR has 

been confirmed in adult and embryonic (E) rodent brain [56, 60-62]. 

Vitamin D mediates its rapid non-genomic actions through several pathways. One of these 

non-genomic pathways involves membrane bound VDR. Non-genomic actions involve 

several signalling pathways mediated by kinases and phosphatases [59]. A novel vitamin D 

binding receptor protein 1,25D3-MARRS has been identified involved in the rapid non-



genomic actions of vitamin D [63]. The activities of 1,25D3-MARRS have been detected in 

newborn and adult rat brains [64].      

5. Animal models of vitamin D deficiency and the developing brain 

The impacts of maternal vitamin D deficiency on fetal brain development have been widely 

studied using a Sprague-Dawley rat model of DVD deficiency in our laboratory. This model 

was developed by feeding vitamin D depleted diet (Specialty Feeds, WA) to the females for 

the period of six weeks before mating. Dams remain on this diet until birth. The diet has 

normal levels of calcium and phosphorus. The developing fetus is totally dependent on the 

availability of vitamin D from the dam. Lack of vitamin D in maternal circulation induces 

vitamin D deficiency in developing the fetus. Several clinical studies have shown a positive 

correlation among the levels of 25-hydroxyvitamin D (25OHD) in maternal and fetal blood 

[65-67].  

Most of the studies mentioned below have been conducted using the same DVD-deficient 

model unless otherwise described. DVD-deficient animals exhibit a number of 

neurodevelopmental alterations of potential relevance to ASD. For example, brain structural 

abnormalities include an enlarged brain at birth, increased lateral ventricle volumes, 

increased overall cell proliferation and altered neurotransmission [61, 68]. In behavioural 

domains the most replicated finding is hyperlocomotion, increased sensitivity to N-methyl-D-

aspartate (NMDA) antagonists and reduced cognitive functions [61, 69, 70]. 

6. Pathophysiology of ASD and role of vitamin D 

The exact pathophysiology and mechanisms underlying ASD are still poorly understood. 

However DVD-deficiency in animal models has been shown to reproduce phenotypes of 

relevance to ASD in the domains of neuroanatomy, expression of certain molecular factors 

and steroidogenesis.  

6.1. Neuroanatomical changes in ASD and DVD-deficiency  

Autistic children exhibit initial brain overgrowth followed by abnormally slowed growth later 

in life [71, 72]. Total brain volume is reported to stay higher even after correcting for body 

height and length [73-75]. Cross sectional and longitudinal magnetic resonance imaging 

(MRI) studies have shown that ASD children from birth to 12 months of age had abnormally 

large brain volumes compared with age matched control children [76-78]. Early brain 

enlargement is associated with the increased cerebral gray matter, enlarged lateral ventricles 

and striatum [79, 80]. At the cellular level, enlargement of ASD brains involves an excess 



number of neurons in the prefrontal and dorsolateral prefrontal cortex [81, 82]. These 

findings suggest altered cell proliferation and differentiation in autism. Consistent with this 

proposal cell cycle length in ASD derived induced pluripotent stem cell is reduced. This may 

contribute an overall increase in cell proliferation in ASD [83].      

The effects of DVD-deficiency on neuroanatomy and neural cell proliferation have been 

studied in newborn rat pups. These pups had larger and longer brains along with enlarged 

lateral ventricles and thinner neocortex in comparison with control pups. These changes in 

the brain structure were associated with generalized increased cellular proliferation [61]. This 

finding was accompanied by reduced expression of apoptotic genes in vitamin D depleted 

brains compared with controls [84]. Moreover neurospheres cultured from the subventricular 

zone of DVD-deficient brains showed increased numbers of neurospheres [85]. Neurospheres 

are floating clusters of neural stem cells that can be obtained by exposing progenitor cells to 

different growth factors [86]. Adult CYP27B1 null mice lacking ability to produce the active 

vitamin D hormone also showed increased cellular proliferation in dentate gyrus [87]. Taken 

together, these finding suggest that low gestational vitamin D leads to increased cell 

proliferation, reduced apoptosis and de-differentiated fetal brain.  

Vitamin D has pleiotropic effects in several tissues including brain. Vitamin D 

supplementation promotes anti-mitotic activities and reduced cell division in hippocampal 

cells along with increased neurite growth [88]. Vitamin D has been shown to prevent cell 

proliferation by inducing cyclin-dependent kinase inhibitors p21 and p27 in different cells 

[89, 90]. Vitamin D prevents expression of other proteins required for cell cycle such as 

proliferating cell nuclear antigen and cyclin D1 [91]. Anti-apoptotic protein encoded by Bcl2 

gene is also enhanced by vitamin D, which further increase cell proliferation in hippocampal 

neurons.  

6.2. DVD-deficiency induces calcium signalling abnormalities in the brain with 

relevance to ASD 

Calcium signalling is critical for normal dendritic growth and synaptic transmission [92]. 

Calcium homeostasis is vital for neuronal survival and elevated calcium level is a well-

established cause of brain excitoxicity [93]. Not surprisingly cells in the brain are equipped 

with complex mechanisms for regulation of calcium involving voltage gated and ligand gated 

calcium channels. Dysregulation of these channels leads to abnormal intracellular calcium 

homeostasis.  



ASD associated mutations have been seen in genes encoding calcium channels and calcium 

regulated ion channels [94-96]. Both the L-type voltage-sensitive calcium channel (L-VSCC) 

and T- type calcium channels are abnormally regulated in ASD [97].   

The DVD-deficient adult rat exhibits dysregulated calcium regulating genes such as voltage-

dependent anion channel 1and calnexin [64]. Furthermore, CYP27B1 KO mice lacking active 

form of vitamin D displayed calcium toxicity by upregulation of L-VGCC expression in 

subgranular zone and granular cell layer within the hippocampal region [87]. An increase in 

L-VSCC density is associated with hippocampal cell death [98].Vitamin D protects brain 

from calcium induced toxicity by downregulating L-VSCC expression in hippocampal and 

cortical neurones. This occurs through reduction of alpha(1C) and alpha(1D) subunits of L-

VSCC [99, 100]. The addition of vitamin D has been shown to decrease (37%) membrane 

density of functional L-VSCC in hippocampal neurons [100]. These findings suggest that 

vitamin D is important for neural haemostasis and DVD-deficiency may disrupt calcium 

signalling. This is one possible mechanism linking vitamin D deficiency and ASD.  

6.3. Mitochondrial dysfunctions and oxidative stress  

A growing body of evidence suggests that mitochondrial dysfunction (MD) and oxidative 

stress (OS) could play some role in the onset of ASD [101, 102]. About one in twenty 

individuals with ASD have been diagnosed with MD [101]. A population based study in 

Portugal and Azores Islands screened 120 autistic children. This study concluded that 7.2% 

of autistic children met the criteria for MD [103]. Higher blood levels of pyruvate, lactate, 

pyruvate-lactate ratio and increased metabolism of pyruvate to lactate and alanine has been 

found in ASD children [103-105]. A postmortem study has found deficiencies in electron 

transport complexes and pyruvate dehydrogenase in frontal cortices of autistic brain 

compared with controls [106]. Magnetic resonance spectroscoy (MRS) studies showed 

decreased levels of N-acetylaspartate in amygdala, orbito-frontal cortex and cerebellum of 

autistic brains [107, 108]. 

Mitochondria localized in brain are involved in calcium homeostasis and energy production. 

These processes produce a high amount of reactive oxygen species [109]. The depletion of 

glutathione exposes the brain to OS [110]. ASD children have significant high concentrations 

of plasma nitric oxide and hydrogen peroxide [111, 112]. A recent meta-analysis from 29 

studies found 27% reduction in reduced glutathione, 18% reduction in glutathione peroxidase 



and 45% elevation in the level of oxidized glutathione in the blood of autistic children than 

control [113]. 

Vitamin D deficiency induces MD and OS by dysregulating expression of several 

mitochondrial enzymes localized in the frontal cortex and hippocampus of DVD-deficient 

rats when measured as adults. These enzymes include ATP synthase β-chain, cytochrome c 

oxidase, cytochrome b5, ATPase H+ transporting V1 B2 and electron transfer flavoprotein 

complex [64, 114]. Oxidative phosphorylation and redox balance are two processes disrupted 

in the DVD-deficient brains. DVD-deficiency also downregulates several mitochondrial 

proteins in the nucleus accumbens such as NADH dehydrogenase 1 α subunit 10, pyruvate 

dehydrogenase E1 component subunit β and isocitrate dehydrogenase 3 α [115]. DVD-

deficiency may increase OS in rat brains by decreasing expression of anti-oxidative enzymes 

such as catalase and Mn-containing superoxide dismutase [64]. 

Vitamin D has been shown to inhibit production of nitric oxide synthase in neural cells [116]. 

Glutathione, an important antioxidant and mostly involved in the removal of nitric oxide is 

reported to be enhanced by vitamin D in newborn rat astrocytes [117]. Vitamin D promotes 

other molecules involve in glutathione biosynthesis including glutamate cysteine ligase and 

glutathione reductase [118]. Collectively, these studies show that vitamin D may confer a 

protective role at mitochondrial level and DVD-deficiency may contribute to MD and OS in 

the brains of ASD individuals.  

6.4. Neurotransmission     

6.4.1. Glutamatergic and gamma-aminobutyric acid abnormalities 

Glutamate and gamma-aminobutyric acid (GABA) are two important neurotransmitters that 

are connected to extensive synaptic communication in brain. Glutamate is metabolized by 

glutamic acid decarboxylase 65 (GAD65) and glutamic acid decarboxylase 67 (GAD67) to 

GABA. Many studies have reported dysregulation in glutamatergic and GABAergic 

neurotransmission in autistic brains. Abnormal levels of glutamate and reduced expression of 

glutamate metabolizing enzymes have been reported in the brain of ASD individuals. One 

study showed significantly higher levels of glutamate and glutamine in amygdala and 

hippocampal regions of adult ASD brain compared with controls [119]. In contrast to this, 

another study has shown reduced subcortical glutamate and glutamine in adult ASD brains 

[120]. The cerebellum is one brain region repeatedly shown to be implicated in ASD. The 

cerebellum mediates motor coordination, cognitive and sensory functions. A comprehensive 



post-mortem study have shown reduced (48–60%) protein levels of GAD65 and GAD67 in 

cerebellar and parietal cortices of autistic brains compared with age matched control brains 

[121]. A significantly reduced level of GAD65 and GAD67 mRNA in cerebellar Purkinje 

cells and cerebellar dentate nuclei of ASD brains has also been reported [122, 123]. It has 

even been suggested that the stereotyped repetitive behaviours found in ASD is in part due to 

reduced inhibitory control in autistic brains. 

DVD-deficiency decreases gene expression of GABA-Aα4 receptor in newborn [124] and 

NMDA receptor density in the adult rat brain [125]. The impacts of vitamin D deficiency 

were also examined in adult mice which were vitamin D depleted for 10 weeks before testing. 

Adult vitamin D deficient mice had significantly lower protein levels of both GAD65 and 

GAD67 [126].  

Vitamin D protects brain against glutamate induced neurotoxicity by upregulating VDR 

expression in rat cortical neurons [127]. Chronic treatment of rodents with vitamin D further 

increases GABA synthesis in several brain tissues including prefrontal cortex, anterior 

cingulate cortex and hippocampus [128, 129]. Interestingly, the same study has found 

upregulation of GAD65 and GAD67 in limbic regions and hippocampus respectively [129]. 

Therefore diminished regulation of inhibitory control induced by vitamin D deficiency may 

in part explain the repetitive behaviours found in ASD.  

6.4.2. Dopamine 

Dopamine (DA) is a neurotransmitter in the brain that plays important role in several 

behavioural domains such as motor control, reward-motivation, regulation of emotions and 

social interaction [130, 131]. There is a small amount of evidence that DA signalling may be 

altered in patients with ASD [132, 133]. De novo mutations have been found in DA 

transporter (DAT) gene (SLC6A3) in ASD individuals [133]. DAT is a membrane protein 

localized on nerve terminal and regulates transmission of synaptically released DA across the 

membrane and plays important role in maintaining DA homeostasis in the brain [134]. 

Polymorphism of a major DA catabolic enzyme (catechol-O-methyltransferase (COMT) have 

also been found in several ASD populations [135-137]. 

Altered DA signalling is a persistent finding in DVD-deficient rat model. DVD-deficiency 

may alter DA turnover by decreasing the expression of COMT in neonatal rat brains [68].  

Interestingly, vitamin D treatment increases COMT gene expression in SH-SY5Y cells [138]. 

DVD-deficient embryonic brains exhibit decreased expression of genes required for DA 



specification such as Nurr1 and p57(Kip2) [139]. Both Nurr1 and p57(Kip2) are critical for 

DA neuron development and maturation [140]. DVD-deficient adults have elevated levels of 

DAT and increased binding affinity for DAT ligands in caudate putamen and nucleus 

accumbens [141]. Increased uptake of DA due to elevated levels of DAT results in OS and 

neuronal damage [142]. Vitamin D has also been shown to increase production of tyrosine 

hydroxylase (DA synthesising enzyme) and DA metabolites such as homovanillic acid and 3 

methoxytyramine in VDR expressing neuroblastoma SH-SY5Y cells [138, 143]. 

6.4.3. Serotonin  

Serotonin is an important neurotransmitter and plays significant role in neurogenesis and 

neuronal differentiation during brain development [144]. Few studies have shown abnormal 

serotonin system in ASD brain. A positron emission tomography study of autistic and non-

autistic adults found low serotonin transporter binding throughout the autistic brain 

particularly in anterior and posterior cingulate cortices [145]. ASD post-mortem brains show 

low densities of serotonin receptors including 5-HT1A and 5-HT2A in fusiform gyrus 

compared with controls [146]. Serotonin synthesis capacity is also compromised in frontal 

cortex, thalamus and cerebellum of ASD individuals [147]. In contrast to a relative decrease 

in serotonin signalling in the ASD brain, autistic patients have a significantly high level of 

serotonin in blood compared to healthy individuals. Hyperserotonemia is found in 30% ASD 

patients and their first degree relatives [148, 149]. 

Vitamin D treatment upregulates the serotonin synthesizing gene tryptophan hydroxylase 2 

(THP2) in human and rat glioblastoma cell lines [150]. Moreover, sub-chronic treatment of 

rats with high dose of vitamin D induced expression of TPH2 and monoamine oxidase A, 

which increased concentration of 5-hydroxyindoleacetic acid (major serotonin metabolite) 

without changing serotonin status in prefrontal cortex [129]. It has been suggested that 

Vitamin D may induce the THP2 in brain and repress TPH1 in gut as central mechanisms in 

ASD [151]. This has yet to be demonstrated in patients or any ASD model. 

The impacts of vitamin D deficiency on serotonin system have been observed in adult 

vitamin D deficient mice. The level of 5-hydroxyindoleacetic acid was significantly increased 

in the brains of these mice compared to the controls. The ratio of serotonin to 5-

hydroxyindoleacetic acid was also altered which may reflect an increase in serotonin turnover 

in vitamin D deficient brains [126].  



6.5. DVD-deficiency alters immune function; relevance to ASD 

There is a well-established association between maternal infection and increased incidence of 

ASD in children. Maternal cytokines can cross the fetal blood brain barrier through placenta 

and lead to neuro-inflammation in developing brain [152]. A number of post-mortem studies 

have suggested that ASD brains have on going neuro-inflammation regardless of age [153-

156]. In general neuro-inflammation is characterized by activation of the inflammatory cells 

in the brain astrocytes and microglia. These cells, particularly microglia which are the major 

phagocyte-like cell in the brain, when stimulated increase expression of cytokines and 

chemokines. Activated microglia and increased microglial density have been found in 

dorsolateral prefrontal cortex of autistic brain [157]. Persistent ongoing inflammation leads to 

loss of connectivity and neural cell death [158].  

A growing number of studies suggest that vitamin D induces an anti-inflammatory response 

in several tissue types including brain [159, 160].  The proof of concept that vitamin D 

modulates immune systems arises from the fact that VDR is present in almost all immune 

cells including neutrophils, macrophages, T cells, B cells and dendritic cells (DC) [161, 162]. 

Vitamin D inhibits synthesis of pro-inflammatory cytokines by targeting mitogen-activated 

protein kinase phosphatases which are essential in the regulation of immune responses [163]. 

Vitamin D via its genomic actions inhibits propagation of uncommitted T helper cells and 

promotes production and accumulation of immunosuppressive T regulatory cells at the site of 

inflammation [164]. It also suppresses proliferation of activated B lymphocytes, suggesting 

an anti-inflammatory role of vitamin D in autoimmune diseases [165]. The absence of dietary 

vitamin D may therefore have implications for normal immune function. 

DVD-deficiency in rats induced persistent changes in the morphology of immune organs such 

as enlarging spleen and thymus [166]. Cultured lymphocytes from DVD-deficient offspring 

exhibited increased levels of IL-2 and IL-10 after a ionomycin challenge [166]. The effects of 

vitamin D deficiency were also examined on microglial phagocytic rates that were stimulated 

with toll like receptor (TLR) agonists lipopolysaccharide (LPS) and 

polyinosinic:polycytidylic acid (poly I:C). After such treatment DVD-deficient microglial 

cells engulfed fewer E.coli than cells exposed to normal levels of vitamin D [167]. Vitamin D 

deficiency also decreased the immune response of microglial cells by reducing production of 

TNF-α and IL-6 [167]. Additionally, VDR and CYP27B1 knockout mice are more vulnerable 

to exogenously induced inflammatory bowel disease [168-170]. VDR null mice are sensitive 

to dextran sodium phosphate and show significant high expression several cytokines 



including of IL-1β, TNF-α, IL-10 and INF-γ compared with wild type mice [171]. Taken 

together then, DVD-deficiency may lead to increased inflammatory outcomes associated with 

ASD. 

6.6. Steroid dysregulation in ASD and vitamin D 

Studies have consistently shown that males are over-represented four-fold in ASD [40, 172]. 

Sex steroids particularly testosterone and estradiol may be crucial here. The brain develops 

differentially in both sexes because of exposure to distinct steroid hormones. It is 

hypothesized that hypermasculinization due to exposure of high levels of prenatal 

testosterone leads to extreme manifestation of cognitive and emotional behaviour observed in 

ASD individuals [173, 174]. Consistent with this, significantly higher levels of androgens and 

testosterone have been reported in the saliva and urine of ASD individuals [175, 176]. 

Another study found higher levels of testosterone in the amniotic fluid of the children who 

were later diagnosed of having autistic traits [177]. The mRNA levels of estrogen 

synthesizing enzyme aromatase and estrogen receptor β are decreased by 38% and 35% 

respectively in middle frontal gyrus of ASD brains compared with healthy brains [178]. 

Genetic studies revealed associations of steroidogenic enzymes with ASD including 

CYP17A1, CYP11B1 and aromatase [179]. These enzymes are involved in the conversion of 

cholesterol into different steroids such as progesterone, 17α hydroxy-progesterone and 

estrogen. Interestingly, a recent study using the Danish Historic Birth Cohort has found 

elevated levels of several steroids including progesterone, 17α hydroxy-progesterone, 

androstenedione, testosterone and cortisol in the amniotic fluid of ASD children [180]. 

Elevated corticosterone levels and abnormal activation of hypothalamic–pituitary–adrenal 

(HPA) axis has also been cited in ASD individuals [181-183]. Together, these studies suggest 

that ASD is associated with a dysregulation of steroidogenic activities mediated by 

cytochrome P450 and other enzymes involved in steroid synthesis.  

Vitamin D has been shown to regulate the expression and synthesis of many steroids. Clinical 

studies in 1959 found a negative correlation between the concentrations of vitamin D and 

urinary androstenedione and dehydroepiandrosterone (DHEA) [184].  

Vitamin D deficiency has been shown to increase circulatory glucocorticoid concentrations in 

pregnant mice [185, 186]. Glucocorticoids are lipophilic compounds that can diffuse from 

placenta to the fetal circulation. The placental expression of HSD11β2 protects the fetus from 

glucocorticoid exposure by inactivating corticosterone to 11-dehydrocorticosterone. DVD-



deficiency further exposes the developing fetus to higher levels of maternal glucocorticoids 

by reducing the expression of HSD11β2 in placenta [185]. However by adulthood it would 

appear that HPA function was normal in DVD-deficient offspring [186]. Ablating the VDR 

induces abnormalities in both male and female steroidogenesis. VDR mutant male mice 

showed transient increase in testicular weight but testosterone level was not measured. 

However female VDR null mouse from this same study had dysfunctional ovaries and these 

animals were unable to produce sufficient estrogen. Aromatase activity was also reduced in 

ovaries and testicles of VDR knockout mice along with decreased levels of estrogen in the 

blood [187]. 

In vitro, vitamin D has been shown to regulate expression of steroidogenic enzymes in 

different non-neural cell lines. It induced activation of CYP11A1 and CYP17A1 and 

decreased synthesis of androstenedione, DHEA, DHEA-sulphate and corticosterone in human 

adrenocortical carcinoma cells [188]. The testosterone catabolic enzyme HSD17β2, was 

found to be upregulated by vitamin D [189]. Vitamin D exhibits tissue specific effects on the 

expression of the major catabolic enzyme for testosterone, aromatase [190]. Vitamin D 

increases estrogen and progesterone synthesis in cultured human trophoblast cells [191], 

whereas in breast cancer cells, aromatase expression was reduced following vitamin D 

treatment [192]. The impact of vitamin D deficiency has not been studied on steroidogenic 

activities of these enzymes in DVD-deficient model. Future studies need to address if this is a 

contributing mechanism to ASD.  

7. Vitamin D and placental functions 

Placenta becomes an active site of extra-renal synthesis of vitamin D and contributes 20-50% 

of the circulating vitamin D in pregnancy [193, 194]. Locally produced vitamin D facilitates 

maternal immune tolerance by inducing expression of VDR and CYP27B1 in placental 

immune cells [195, 196]. In vitro studies showed that vitamin D prevents maturation and 

differentiation of placental DC by reducing cell surface expression of major 

histocompatibility complexes [197]. It is worth noting that during the first trimester, placental 

DC become tolerogenic becoming less capable of presenting antigens compared with 

maternal DCs [198, 199]. The role of vitamin D also been studied in placenta in the presence 

of an exogenous immune challenge. Both in vivo and in vitro LPS exposure induces 

CYP27B1 and VDR expression which again is consistent with vitamin D signalling being 

anti-inflammatory [200]. Genetic ablation of CYP27B1 or VDR leads to increased placental 

inflammatory cytokines in response to an LPS challenge [200].  



8. ASD-related behavioral phenotypes in DVD-deficient animals  

8.1. Ultrasonic vocalizations 

Impairments in verbal communications suggest language delays and poor pragmatics in ASD 

individuals. Interestingly, some studies found unusual patterns of vocalizations in ASD 

infants [201, 202]. Obviously rodents do not use language for communication but rather they 

emit ultrasonic Vocalizations (USV) in different situations. For example, neonates emit USV 

when isolated from mother and littermates, juveniles during social play and adults during 

mating and aggression [203]. Reduced USV have been reported in some genetic and 

environmental animal models of neurodevelopmental diseases including ASD [204-206]. The 

patterns of USV emitted from a pup isolated from its nest initiate exploratory and retrieval 

behaviour in mothers [203]. Evidence shows that dams spend more time with pups vocalizing 

at high amplitude than the pups with low amplitude [207]. USV by newborn pups and 

maternal retrieval behaviours have been studied in DVD-deficient animals. There was no 

significant effect of diet on USV and calling pattern by pups, however the DVD-deficient 

dams retrieved their pups earlier and spent more time with them than the control dams [208]. 

Because pup USV have been shown to alter maternal retrieval behaviour, it was speculated 

that altered maternal retrieval behaviour in DVD-deficient dams was due to alteration in the 

calling amplitude of their pups.  

8.2. Stereotyped repetitive behaviour 

Stereotyped repetitive behaviour has been considered central to ASD. Autistic children show 

stereotyped movements such as hand or finger flapping, spinning and jumping [1]. 

Spontaneous motor stereotypies can be modelled in rodents by assessing the time spent on 

self-grooming, circling, jumping or excessive digging [209].  Interestingly, significant effect 

of maternal diet has been found on the grooming frequency in juvenile rats. DVD-deficient 

juvenile rats showed significantly more grooming behaviour than the vitamin D sufficient rats 

[210].       

8.3. Anxiety-related behaviour 

Children with anxiety disorders score high for ASD traits compared to healthy children [211, 

212]. There is an overlap in behavioural characteristics between children with ASD and 

anxiety disorders with respect to Diagnostic and Statistical Manual of Mental Disorders-IV-

TR diagnostic criteria [213]. In fact anxiety related concerns are common in toddlers who 

develop ASD [214].  



Open field exploration and behaviours in the elevated plus maze are well established and 

validated tests to assess anxiety-like behaviours in rodents [215]. Usually, rodents spent more 

time in the periphery compared to the central area of an open field. Time spent in the central 

area is considered a measure of non-anxious behaviour [215]. In an open field test, adult 

DVD-deficient rats spend more time in the sides and less time in the corners compared with 

controls suggesting some form of anxious behaviour in DVD-deficient rats [216]. However, 

in an EPM which is a reliable measure of anxiety in rodents DVD-deficient rat behaviour was 

normal (Burne 2004).  

8.4. Hyperlocomotion 

Children with ASD show hyperactivity to sensory inputs [1]. Hyperlocomotion is one of the 

most consistent findings in DVD-deficient rats, which has been observed across different 

behavioural tests including open field, elevated plus maze and hole-board [69, 217]. Both 

DVD-deficient adult rats and mice show spontaneous hyperlocomotion [186, 218]. DVD-

deficiency induced hyperlocomotion is independent of HPA-axis as these animals had normal 

corticosterone release in response to restraint stress [186]. Juvenile DVD-deficient rats 

travelled further when vitamin D deficiency was extended until weaning. Similar to these 

observations, DVD-deficiency increased sensitivity to psychostimulant induced locomotion 

in adult rats during open field testing [69, 125, 141]. Systemic injections of the NMDA 

antagonist MK-801 or amphetamine increased hyperlocomotion in DVD-deficient rats 

compared with controls. These findings suggest DVD-deficiency is associated with impaired 

NMDA receptor and DA signalling. Interestingly, administration of DA and NMDA 

antagonist haloperidol eliminates both spontaneous and MK-801 induced locomotion in 

DVD-deficient animals [69].  

9. Conclusion and future directions 

In this review we have summarized fundamental pathways that may be key targets in 

understanding the pathophysiology of ASD. We have outlined the impact that vitamin D 

deficiency may have on the regulation of these pathways both in vivo and in vitro. Both 

human and animal studies suggest that an optimal level of vitamin D during development and 

early life is important to avoid ASD-like behavioural phenotypes. The DVD-deficiency 

model we have developed is an ideal experimental platform to explore molecular mechanisms 

linking DVD-deficiency and development of ASD. We think it highly likely that the 

molecular mediating mechanisms between DVD-deficiency and ASD are likely to involve 



both direct regulation of the fetal/placental immune response and alterations in 

steroidogenesis. However our model requires 2 major alterations. First, to date we have 

explored behaviours primarily in adults. We now wish to assess ASD relevant behaviour in 

DVD-deficient young and juvenile animals mimicking the period of ASD onset. Second, to 

date we have restricted the period of vitamin D deficiency to gestation in the rat. This is 

inadequate when assessing the effects of vitamin D deficiency across an equivalent period of 

primate brain development. Therefore we wish to now extend the period of DVD-deficiency 

to weaning. DVD-deficient model may prove relevant for the investigation of possible 

therapeutic strategies to reverse both these putative mechanisms and optimally ASD-like 

phenotypes. DVD-deficiency may only represent one environmental factor contributing to 

this disease. However the ability to intervene with such a simple, safe and affordable factor 

during pregnancy makes this an important public health concern. 
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Fig. 1: DVD-deficiency interacts with wide range of other environmental risk factors to 

modulate multiple pathophysiological processes relevant to ASD    

 

 

 

 


