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Abstract 

This paper studies the dynamic instability of functionally graded multilayer nanocomposite 

beams reinforced with a low content of graphene nanoplatelets (GPLs) and subjected to a 

combined action of a periodic axial force and a temperature change. The weight fraction of 

GPL nanofillers is assumed to be constant in each individual GPL-reinforced composite 

(GPLRC) layer but follows a layerwise variation across the beam thickness. The Halpin-Tsai 

micromechanics model is used to estimate the effective Young’s modulus of GPLRC layers. 

The differential quadrature method is employed to convert the partial differential governing 

equations into a linear system of Mathieu-Hill equations, from which the principle unstable 

region of functionally graded multilayer GPLRC beams is determined by Bolotin’s method. 

Special attention is given to the effects of GPL distribution pattern, weight fraction, geometry 

and dimension on the dynamic instability behaviour. The thermal buckling and free vibration 

are also discussed as subset problems. Numerical results show that distributing more GPLs 

near the top and bottom surfaces can effectively increase the natural frequency and reduce the 

size of the unstable region. The influences of GPL geometry and dimension tend to be insig-

nificant when the GPL width-to-thickness ratio is larger than 10
3
. 

Keywords: graphene nanoplatelets; functionally graded nanocomposites; dynamic instability; 

thermal buckling; free vibration. 

1. Introduction 

Polymer nanocomposites in which nanofillers such as carbon nanotubes (CNTs), graphene 

and its derivatives are dispersed in a polymer matrix have been attracting considerable atten-

tion from both research and engineering communities [1]. Compared with the conventional 

polymer composites, polymer nanocomposites exhibit significantly higher stiffness and 

strength due to the superiorly high moduli of nanofillers, together with the nanoscale effects 

and interface chemistry [2-4].  
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Since the first observations in the early 1990s [5, 6], CNTs are considered promising rein-

forcement materials for high performance structural composites due to their exceptionally 

mechanical, thermal and electrical properties [7-9]. In order to make better use of a low con-

tent of CNTs, Shen [10] applied the functionally graded concept to polymer nanocomposites 

and found that the mechanical properties can be further improved through a nonuniform dis-

tribution of CNTs in the polymer matrix. Subsequently, the mechanical responses of func-

tionally graded CNT-reinforced composite (FG-CNTRC) structures have been extensively 

investigated [11-14]. Among those, Ke et al. [15] examined the dynamic stability behaviour 

of FG-CNTRC beams under a periodic axial force. Yang et al. [16] studied the dynamic 

buckling of thermo-electro-mechanically loaded FG-CNTRC beams integrated with piezo-

electric layers. Lei et al. [17] presented a dynamic stability analysis of FG-CNTRC cylindri-

cal panels. These studies [15-17] revealed that the distribution pattern and volume fraction of 

CNTs have important influences on the dynamic stability behaviour of polymer nanocompo-

site structures. Although significant advances have been made in CNTs filled nanocomposites, 

agglomeration and relatively high production cost have hindered the further applications of 

CNTs as reinforcement materials in polymer nanocomposites [18]. 

Graphene [19] is a two-dimensional monolayer of carbon atoms with  remarkable physical 

properties and chemical functionalisation capabilities [20-22]. Compared to CNTs, graphene 

has comparable tensile strength (130 GPa) and Young’s modulus (~1 TPa) [20] but a much 

larger surface area of up to 2630 m
2
 g

-1
 [23]. More importantly, graphene and its derivatives 

are abundant in nature and less expensive when synthesized in large scale [24]. These merits 

make graphene and its derivatives excellent alternatives to CNTs while improving the me-

chanical properties of polymeric materials. The superiority of graphene as a promising rein-

forcement material was further verified by recent studies [25] that demonstrated that the gra-

phene nanocomposites exhibit significantly higher Young’s modulus and tensile strength than 

the nanocomposites reinforced with the same amount of CNTs.  

Rafiee et al. [25] measured and compared the mechanical properties of epoxy nanocompo-

sites reinforced with 0.1wt% of graphene nanoplatelets (GPLs) and CNTs, respectively. They 

found that the Young’s modulus, tensile strength and fracture toughness of graphene nano-

composites are significantly higher than those of pristine epoxy and that GPLs dramatically 

outperform CNTs in terms of mechanical properties enhancement. Wang et al. [26] experi-

mentally investigated the thermal properties of graphene nanocomposites. Their test results 

indicated that incorporation of graphene oxide sheets reduces the thermal expansion coeffi-

cients and considerably increases the thermal conductivity of the polymer matrix. By using 

Mori-Tanaka micromechanics method, Ji et al. [4] examined the stiffening effect of graphene 

sheets dispersed in polymer nanocomposites. Their results showed that the addition of a very 

low content of graphene sheets can remarkably increase the effective stiffness of the nano-

composite. Zhao et al. [27] reported that a loading of 1.8vol% graphene results in a 150% 

improvement in tensile strength and a nearly 10 times increase in Young’s modulus of poly 

(vinyl alcohol) nanocomposites. Liu et al. [28] successfully fabricated GPL-reinforced alu-

mina ceramic composites using Spark Plasma Sintering and observed that the resulting flex-

ural strength and fracture toughness are significantly higher than those of monolithic ceramic 
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samples. Rahman and Haque [29] studied the effects of GPL concentration, aspect ratio and 

dispersion on elastic constants and stress-strain responses of graphene/epoxy nanocomposites 

using molecular mechanics and molecular dynamics simulations. Liu et al. [30] used a stack-

ing and folding method to generate aligned graphene/polycarbonate composites that consid-

erably enhances effective elastic modulus and strength of the primitive polycarbonate even at 

an exceptionally low loading of graphene. 

Owing to the mechanical advantages of high strength and stiffness but low density, gra-

phene nanocomposites show tremendous potentials for development of advanced lightweight 

engineering structures in the forms of beam, plate, as well as shell structural elements that are 

vital in aeronautical and space industries. However, all the aforementioned studies on gra-

phene nanocomposites were focused on the synthesis and material property characterization 

only. Investigations on the mechanical behaviour of engineering structures made of such ad-

vanced nanocomposites are very limited. Most recently, Rafiee et al. [31] experimentally 

studied the buckling of graphene/epoxy nanocomposite beam structures. Significant increase 

(up to 52%) in critical buckling load was observed by adding only 0.1 wt% of GPLs into the 

epoxy matrix. Song et al. [32] carried out the free and forced vibration analysis of function-

ally graded multilayer GPL/polymer nanocomposite plates and suggested that the incorpora-

tion of a small amount of GPLs can significantly increase the natural frequencies and reduce 

the dynamic deflection of plates under pulse loading. As far as the authors are aware, no pre-

vious work has been done on the dynamic instability of graphene nanocomposite structures. 

Hence, this paper is devoted to the investigation of the dynamic instability of functionally 

graded multilayer graphene nanoplatelet-reinforced composite (GPLRC) beams under a peri-

odic axial force and a temperature change. A multilayer beam model with a layer-wise varia-

tion in GPL concentration is used since an ideal functionally graded nanocomposite structure 

with a continuous and smooth change in GPL content across the beam thickness is extremely 

difficult to fabricate due to the limitation of current manufacture technology. Obviously, such 

a multilayer structure with an adequate number of layers is an excellent approximation of the 

ideal functionally graded structure. It is assumed that each individual layer is made from a 

mixture of uniformly dispersed GPL nanofillers and polymer matrix and its effective Young’s 

modulus is predicted by Halpin-Tsai micromechanics model. Governing equations are de-

rived based on the first-order shear deformation beam theory (FSDT) and converted into a 

linear system of Mathieu-Hill equations by using differential quadrature method, after which 

the principle unstable region is obtained by using Bolotin’s method. Parametric studies are 

conducted to examine the effects of GPL distribution pattern, weight fraction, geometry and 

dimension, the static axial force, as well as the temperature change on the dynamic instability 

behaviour of functionally graded multilayer GPLRC beams. Thermal buckling and free vibra-

tion are also discussed as subset problems. 

2. Effective material properties of GPLRCs 

Fig. 1(a) shows a multilayer beam composed of perfectly bonded GPLRC layers of same 

thickness
Lh . It is assumed that the GPLRC layer is made from a mixture of an isotropic 
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polymer matrix and rectangular shaped GPLs that are randomly oriented and uniformly dis-

persed. Hence, each individual GPLRC layer is isotropic homogeneous and its effective 

Young’s modulus can be estimated by Halpin-Tsai micromechanics model [33-35] 

L L GPL T T GPL
m m

L GPL T GPL

1 13 5

8 1 8 1

V V
E E E

V V

ξ η ξ η

η η

+ +
= × + ×

− −
, (1) 

where parameters 
Lη  and 

Tη  take the following forms: 

( )
( )

( )
( )

GPL m GPL m

L T

GPL m L GPL m T

1 1
,

E E E E

E E E E
η η

ξ ξ

− −
= =

+ +
. (2) 

where GPLE  and mE  are Young’s moduli of the GPL and matrix, respectively. GPLV  is the 

volume fraction of GPL nanofillers. Note that Eq. (1) does take into account GPL’s geometry 

and dimension through geometry factors Lξ  and Tξ  which are defined by [33] 

( ) ( )L GPL GPL T GPL GPL
2 , 2a t b tξ ξ= = , (3) 

where 
GPL

a , 
GPL

b  and 
GPL

t  are the length, width and thickness of GPLs, respectively. Here, 

L
ξ  can be rewritten as 

, (4) 

in which 
GPL GPL

a b  and 
GPL GPL

b t  are GPL aspect ratio and width-to-thickness ratio, respec-

tively. 

According to the rule of mixture, the effective linear thermal expansion coefficient α, mass 

density ρ, and Poisson’s ratio ν of the GPLRC are expressed as 

m m GPL GPL
V Vα α α= + , (5) 

m m GPL GPLV Vρ ρ ρ= + , (6) 

m m GPL GPL
V Vν ν ν= + , (7) 

where 
GPL

α  and 
m

α  are thermal expansion coefficients, with the subscript “GPL” and “m” 

referring to the GPLs and matrix, respectively. 
GPL

ρ  and 
m

ρ  are mass densities; 
GPL

ν  and 
m

ν  

are Poisson’s ratios; the volume fractions 
GPL

V  and 
m

V  are related by 
m

V +
GPL

V = 1. 

( ) ( )L GPL GPL GPL GPL
2 a b b tξ = ×
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Fig. 1 Configuration and coordinate system of a multilayer GPLRC beam. 

Shown in Fig. 1(b) are the uniform (U) and functionally graded (X, O and A) distributions 

of GPL nanofillers in the thickness direction of the beam in which the darker colour repre-

sents a higher content of GPLs within the layer. Since the GPL content remains constant 

across all layers in the uniform distribution, U-GPLRC corresponds to an isotropic homoge-

neous beam. In the functionally graded distributions, however, GPL weight fraction varies 

from layer to layer in such a way that both the top and bottom layers are GPL rich in an X-

GPLRC beam while this is inversed in an O-GPLRC beam where the middle layers are GPL 

rich. The GPL content gradually increases from the top layer to the bottom layer in an A-

GPLRC beam. 

Without the loss of generality, it is assumed that the multilayer GPLRC beam consists of 

an even number of layers. The GPL volume fraction of the k
th

 layer for the four GPL distribu-

tion patterns depicted in Fig. 1(b) are given as 

U-GPLRC: ( ) *

GPL GPL

k
V V= , (8) 

X-GPLRC: ( ) *

GPL GPL L L
2 2 1k

V V k N N= − − , (9) 

O-GPLRC: ( )( ) *

GPL GPL L L2 1 2 1k
V V k N N= − − − , (10) 

A-GPLRC: ( )( ) *

GPL GPL L2 1kV V k N= − , (11) 

in which NL is the total number of layers of the beam and k = 1, 2, …, NL. *

GPLV  is the total 

GPL volume fraction that is determined by 

( ) ( )
* GPL

GPL

GPL GPL m GPL1

W
V

W Wρ ρ
=

+ −
, (12) 

where 
GPL

W  is the total GPL weight fraction in the whole beam. As is evident from Eqs. (8)-

(11), the total volume fractions of GPLs in the U-, X-, O- and A-GPLRC beams are the same. 

3. Theoretical formulations 

3.1 Governing equations 
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Consider a multilayer GPLRC beam of length L, total thickness h, and subjected to a com-

bined action of an axial dynamic force Nx0 and a uniform temperature change ∆T =T−T0 from 

the initial stress-free state at the reference temperature T0. Based on the FSDT, the displace-

ments of an arbitrary point parallel to the -x and -z axes are given as 

( ), , ( , ) ( , )U x z t U x t z x tψ= + , ( ),  , ( , )W x z t W x t= , (13) 

where U and W are the longitudinal and transverse displacement components in the mid-

plane (z = 0); ψ is the rotation angle of the normal to the mid-plane and t is time. The linear 

strain-displacement relations give 

xx

U
z

x x

ψ
ε

∂ ∂
= +

∂ ∂
, xz

W

x
γ ψ

∂
= +

∂
. (14) 

The linear stress-strain relations take the form 

11xx

U
Q z T

x x

ψ
σ α

∂ ∂ 
= + − ∆ 

∂ ∂ 
, 55xz

W
Q

x
σ ψ

∂ 
= + 

∂ 
, (15) 

in which the plane stress-reduced stiffness 11Q  and 55Q are  

11 2
1

E
Q

ν
=

−
, 

( )55
2 1

E
Q

ν
=

+
. (16) 

The governing equations of the beam can be derived using the principle of virtual dis-

placements: 

( )2

1
p0 d

t

t
K V tδϒ δ δ= + −∫ , (17) 

where the virtual work 
pδϒ  done by external loads, virtual kinetic energy Kδ , and the vir-

tual strain energy Vδ are given by 

( )p 0
0

d
L

T

x x

W W
N N x

x x

δ
δϒ

∂ ∂
= +

∂ ∂∫ , (18) 

/ 2

0 /2
d d

L h

h

U U W W
K z z z x

t t t t t t

ψ δ δψ δ
δ ρ

−

 ∂ ∂ ∂ ∂ ∂ ∂  
= + + +   ∂ ∂ ∂ ∂ ∂ ∂   
∫ ∫ , (19) 

/2

0 /2
d d

L h

xx xy
h

U W
V z z x

x x x

δ δψ δ
δ σ σ δψ

−

 ∂ ∂ ∂   
= + + +    ∂ ∂ ∂    
∫ ∫ . (20) 
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in which T

x
N  is the thermally induced axial force due to a uniform temperature rise. Substi-

tuting for 
pδϒ , Kδ , and Vδ  from Eqs. (18)-(20) into virtual work statement in Eq. (17) and 

integrating through the beam thickness, we obtain 

( ) ( )

2

1

2

1

2 2 2 2 2

0 1 0 02 2 2 2 20

2 2

1 22 2

00 0
0

0

d d

d

t L
Tx x

x x
t

x
x

L
t L L T

x x x x x
t

N QU W W W
I I U N N I W

x t t x x x t

M U
Q I I x t

x t t

W W
N U M Q N N W t

x x

ψ
δ δ

ψ
δψ

δ δψ δ

   ∂ ∂∂ ∂ ∂ ∂ ∂
= − − + − − −   

∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
+ − − −  

∂ ∂ ∂  

 ∂ ∂ 
− + − − −  

∂ ∂   

∫ ∫

∫

, (21) 

where the in-plane force and moment resultants are calculated from 

11 11

T

x x

U
N A B N

x x

ψ∂ ∂
= + −

∂ ∂
, (22) 

11 11

T

x x

U
M B D M

x x

ψ∂ ∂
= + −

∂ ∂
, (23) 

55x

W
Q A

x
κ ψ

∂ 
= + 

∂ 
, (24) 

in which κ = 5/6 is the shear correction factor. The k
th

 GPLRC layer is located between the 

points z = 
k

z  and z = 
1k

z +  in the thickness direction. The stiffness components and inertia re-

lated terms are defined as 

{ }
1/2

2 ( ) 2

11 11 11 11 11
/2

1

, , {1, , }d {1, , }d
L

k

k

N
h z

k

h z
k

A B D Q z z z Q z z z
+

−
=

= =∑∫ ∫ , (25) 

1/2
( )

55 55 55
/2

1

d d
L

k

k

N
h z

k

h z
k

A Q z Q z
+

−
=

= =∑∫ ∫ . (26) 

{ }
1/2

2 ( ) 2

0 1 2
/2

1

, , {1, , }d {1, , }d
L

k

k

N
h z

k

h z
k

I I I z z z z z zρ ρ
+

−
=

= =∑∫ ∫ . (27) 

The thermally induced force and moment are given by 

{ } { } { }
1/ 2

T T ( ) ( )

11 11
/2

1

, 1, d 1, d
L

k

k

N
h z

k k

x x
h z

k

N M Q T z z Q T z zα α
+

−
=

= ∆ = ∆∑∫ ∫ . (28) 

In the above equations, ( )

11

k
Q , ( )

55

k
Q , ( )kρ , and ( )kα  are the values of 

11
Q , 

55
Q , ρ , and α  of 

the k
th

 GPLRC layer, respectively. 
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Keeping Eqs. (22)-(24) in mind and setting the coefficients of Uδ , Wδ , and δψ in Eq. 

(21) to zero separately, the governing equations can be obtained in terms of displacements as 

2 2 2 2

11 11 0 12 2 2 2

U U
A B I I

x x t t

ψ ψ∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
, (29) 

( )
2 2 2

T

55 0 02 2 2x x

W W W
A N N I

x x x t

ψ
κ

 ∂ ∂ ∂ ∂
+ − + = 

∂ ∂ ∂ ∂ 
, (30) 

2 2 2 2

11 11 55 1 22 2 2 2

U W U
B D A I I

x x x t t

ψ ψ
κ ψ

∂ ∂ ∂ ∂ ∂ 
+ − + = + 

∂ ∂ ∂ ∂ ∂ 
. (31) 

Note that for a uniform temperature variation the derivatives of thermal force T

x
N  and mo-

ment T

x
M  with respect to x are zero and consequently are omitted in the governing equations. 

In the present analysis, multilayer GPLRC beams either clamped or hinged at the ends (i.e. x 

= 0, L) are considered. The associated boundary conditions are: 

Clamped (C): U = 0, W = 0, ψ = 0, (32) 

Hinged (H): U = 0, W = 0, 11 11 0
T

x

U
B D M

x x

ψ∂ ∂
+ − =

∂ ∂
. (33) 

By introducing the following dimensionless quantities: 

{ } { } { } { }
{ } { } { } { }

( ) ( )

T T T T

0 110

2 2

11 55 11 11 11 55 11 11 110 a b c 0 1 2 00

110 00 00 110

, , , , , , , , , , ,

, , , , , , , , , , , ,

, , , ,

x x xx L L h u w U W h P P M N N M h A

a a b d A A B h D h A I I I I I h I h I

t A I L L I A

ζ λ ϕ ψ

κ

τ ω θ Ω Θ

= = = = =

= =

= =

 (34) 

where 
110

A  and 
00

I  are the values of 
11

A  and 
0

I  of a homogeneous beam made from the pure 

matrix material, ω and θ are the dimensionless forms of the natural frequency Ω and excita-

tion frequency Θ, the governing equations (29)-(31) and associated boundary conditions (32) 

and (33) can be rewritten in dimensionless form as 

2 2 2 2

11 11 a b2 2 2 2

u u
a b I I

ϕ ϕ

ζ ζ τ τ

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
, (35) 

( )
2 2 2

T

55 a2 2 2

w w w
a P P I

ϕ
λ

ζ ζ ζ τ

 ∂ ∂ ∂ ∂
+ − + = 

∂ ∂ ∂ ∂ 
, (36) 

2 2 2 2

11 11 55 b c2 2 2 2

u w u
b d a I I

ϕ ϕ
λ λϕ

ζ ζ ζ τ τ

 ∂ ∂ ∂ ∂ ∂
+ − + = + 

∂ ∂ ∂ ∂ ∂ 
; (37) 
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Clamped (C): u = 0, w = 0, φ = 0, (38) 

Hinged (H): u = 0, w = 0, 
T

11 11 0
u

b d M
ϕ

ζ ζ

∂ ∂
+ − =

∂ ∂
. (39) 

3.2 Solution method 

The differential quadrature approach combined with Bolotin’s method is employed to 

study the dynamic instability characteristics of functionally graded multilayer GPLRC beams. 

The basic idea is to convert the partial differential governing equations into a set of linear al-

gebraic equations through the differential quadrature approximation in the ζ-axis, from which 

the principle unstable region is then determined by using Bolotin’s method. 

According to the differential quadrature rule [36-38], the unknown displacement compo-

nents u, w, φ and their j
th

 partial derivatives with respect to ζ are approximated by 

{ } { }
1

, , ( ) , ,
N

m m m m

m

u w l u wϕ ζ ϕ
=

=∑ , and { } ( ) { }
1

, , , ,
im

i

j N
j

m m mj
m

u w C u w

ζ ζ

ϕ ϕ
ζ ==

∂
=

∂
∑ , (40) 

where 
{ }, ,

m m m
u w ϕ

 are the values of { }, ,u w ϕ  at ζ = mζ ; ( )ml ζ  is the Lagrange interpolation 

polynomials; ( )
im

j
C is the weighting coefficient for the jth partial derivative of unknown dis-

placement components with respect to ζ and its recursive formula can be found in [39, 40]. N 

is the total number of grid points that are located along the ζ-axis according to a cosine pat-

tern as 

1 ( 1)
1 cos

2 1
i

i

N

π
ζ

− 
= − − 

, i = 1, 2, …, N. (41) 

Applying the relationship (40) to the dimensionless partial differential governing equa-

tions (35)-(37) yields 

( ) ( )2 2

11 11 a b

1 1
im im

N N

m m i i

m m

a C u b C I u Iϕ ϕ
= =

+ = +∑ ∑ ���� , (42) 

( ) ( ) ( ) ( )2 1 2T

55 a

1 1 1
im im im

N N N

m m m i

m m m

a C w C P P C w I wλ ϕ
= = =

 
+ − + × = 

 
∑ ∑ ∑ �� , (43) 

( ) ( ) ( )2 2 1

11 11 55 b c

1 1 1
im im im

N N N

m m m i i i

m m m

b C u d C a C w I u Iϕ λ λϕ ϕ
= = =

 
+ − + = + 

 
∑ ∑ ∑ ���� . (44) 
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The dimensionless boundary conditions in Eqs. (38) and (39) can be handled in the same way 

as 

1 0u = , 
1 0w = , 

1 0ϕ = , (45) 

0
N

u = , 0
N

w = , 0
N

ϕ = , (46) 

for the beam with clamped ends at ζ = 0 and 1, respectively, and  

1 0u = , 1 0w = , 
( ) ( )
1 1

1

1 1 T

11 11

1 1

0
m m

N N

m m

m m

b C u d C M
ζ ζ

ϕ λ
=

= =

+ − =∑ ∑ , (47) 

0Nu = , 0Nw = , ( ) ( )1 1 T

11 11

1 1

0
Nm Nm

N

N N

m m

m m

b C u d C M
ζ ζ

ϕ λ
=

= =

+ − =∑ ∑ , (48) 

for the beam with hinged ends at ζ = 0, 1. 

In view of Eq. (28) and keeping Eq. (34) in mind, substitution of the associated boundary 

conditions into the governing equations (42)-(44) leads to a set of dimensionless linear alge-

braic equations that can be expressed in matrix form as 

( )L T pT P+ − ∆ − =Md K K K d 0�� , (49) 

in which the over dot denotes the partial derivative with respect to dimensionless time τ; M 

and 
L

K  are the mass matrix and stiffness matrix, respectively; 
T

K  and 
P

K are the geometric 

stiffness matrices. It is obvious that these matrices are directly dependent on material prop-

erty gradient and beam geometry. The unknown displacement vector d is composed of 
i

u , 
i

w , 

i
ϕ  as follows: 

{ } { } { }{ }
T

T T T
, ,

i i i
u w ϕ=d , i = 1, 2, …, N. (50) 

For the beam under a time-varying axial excitation, the dimensionless axial force P is ex-

pressed as 

s d
cosP P P θτ= + , (51) 

where 
s

P  and 
d

P  are the static and dynamic force components, respectively. By substituting 

for P from Eq. (51), Eq. (49) can be rewritten as 

( )L T s d pcosT P P θτ + − ∆ − + = Md K K K d 0�� . (52) 

Eq. (52) is a Mathieu-Hill type equation describing the dynamic instability behaviour of func-

tionally graded multilayer GPLRC beams subjected to a periodic axial force and a tempera-
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ture change. The Bolotin’s method [41] is used to determine the boundary of the unstable re-

gion. In this paper, we seek the solutions with a period 2Tθ  ( 2T π θθ = ) only due to the fact 

that the region of instability situated near θ = 2ω, namely principal unstable region, is of the 

greatest practical importance. The periodic solution of Eq. (52) with a period 2Tθ  takes the 

form of a trigonometric series as 

1,3,...

sin cos
2 2

n n

n

n nθτ θτ∞

=

= +∑d a b , (53) 

where na  and nb  are arbitrary constant vectors. Bolotin [41] demonstrated that the first ap-

proximation with n = 1 can be used to calculate the boundary of the region of instability with 

a desired accuracy. In this case, substituting Eq. (53) into Eq. (52) and equating the coeffi-

cients of identical ( )sin 2θτ  and ( )cos 2θτ  leads to the following system of linear homoge-

neous algebraic equations in terms of 
1a  and 

1b : 

2

d
L T s p 1

2 4

P
T P

θ  
− ∆ − − − =  

  
K K K M a 0 , (54) 

2

d
L T s p 1

2 4

P
T P

θ  
− ∆ − + − =  

  
K K K M b 0 , (55) 

from which two critical excitation frequencies θ at each given dynamic force 
d

P  can be found 

as eigenvalues. The plot of θ against 
d

P  gives two curves that show the principle unstable re-

gions of functionally graded multilayer GPLRC beams. The intersection point at dP  = 0 is the 

origin of principle unstable region and corresponds to the doubled fundamental frequency of 

the beam. 

It is should be mentioned that Eq. (52) can also be used to analyse several subset problems, 

such as thermal buckling and free vibration of functionally graded multilayer GPLRC beams 

under thermo-mechanical loading. By neglecting the inertia terms and setting 
s

P  and 
d

P  to 

zero, the critical buckling temperature rise can be obtained by solving the following eigen-

value equation: 

( )L T
T− ∆ =K K d 0 . (56) 

For the free vibration problem, the dynamic load component 
d

P  = 0 and ie ωτ∗=d d  is used to 

separate the spatial variable ζ and time τ. Then Eq. (52) is rewritten as 

2

L T s pT P ω ∗ − ∆ − − = K K K M d 0 , (57) 
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from which the natural frequencies of the beam under a static axial force and a temperature 

change can be found through a standard eigenvalue algorithm. 

4. Numerical examples and discussion 

In this section, numerical results are presented to investigate the dynamic instability char-

acteristics of functionally graded multilayer GPLRC beams that are subjected to a combined 

periodic axial force and a uniform temperature change. Thermal buckling and free vibration 

are also discussed as subset problems. 

In what follows, the functionally graded multilayer GPLRC beams with a total thickness h 

= 0.01 m are considered. Each GPLRC layer is made from a mixture of the epoxy and GPLs 

with a length of 
GPLa = 2.5 µm, width of 

GPLb = 1.5 µm and thickness of 
GPLt = 1.5 nm [25]. 

The material properties of both the epoxy and GPLs are assumed to be temperature-

independent and are listed in Table 1. 

Table 1 Material properties of the epoxy and GPLs. 

Material properties Epoxy [42] GPL [25] 

Young’s modulus (GPa) 3.0 1010 

Density (kg m
-3

) 1200 1062.5 

Poisson’s ratio 0.34 0.186 [43] 

Thermal expansion coefficient (×10-6 /K) 60 5.0 [44] 

 

4.1 Convergence and validation 

Convergence study is first undertaken by comparing numerical solutions with varying 

numbers of grid points and layers in Table 2 where Pcr and ω1 denote the dimensionless criti-

cal buckling load and fundamental frequency, respectively, and ∆Tcr is the critical buckling 

temperature rise. As observed, the present solutions converge very well when the total num-

bers of grid points and individual layers are increased to N = 11 and NL = 40, respectively. 

Nonetheless, the tiny difference between the results with NL = 10 and NL = +∞ suggests that a 

multilayer GPLRC beam with 10 layers is sufficiently accurate to model an idea functionally 

graded beam with continuous variation in both material composition and properties. Taking 

into account the ease of fabrication and the manufacturing cost, NL = 10, as well as N = 11, 

are used in all of the following numerical calculations. 

Table 2 Buckling and free vibration results with varying total numbers of grid points and layers for a 

C-C functionally graded multilayer X-GPLRC beam (L/h = 30, WGPL = 0.3%). 

N (NL = 10) Pcr ∆Tcr (K) ω1  NL (N = 11) Pcr ∆Tcr (K) ω1 

5 0.0108 90.335 0.3387  4 0.0085 71.448 0.3280 

7 0.0089 74.622 0.3349  6 0.0088 73.505 0.3327 

9 0.0089 74.561 0.3350  10 0.0089 74.557 0.3350 
11 0.0089 74.557 0.3350  20 0.0089 75.001 0.3360 

13 0.0089 74.557 0.3350  40 0.0090 75.112 0.3362 

15 0.0089 74.557 0.3350  +∞ 0.0090 75.149 0.3363 
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In order to validate the present analysis, direct comparisons between our results and those 

in the literature are made in Tables 3-5 and Fig. 2. The dimensionless critical buckling tem-

perature rises for cross-ply (0/90/0) laminated composite beams are calculated and compared 

in Table 3 with those by Khdeir [45]. The elastic constants used in this instance are 
12G = 

13G

= 0.6
22E , 

23G = 0.5
22E , 

22 11α α = 3, and 
12ν = 0.25. As can be seen, the present results are 

almost identical to the existing ones. 

The dimensionless critical buckling loads and natural frequencies of FGM beams are 

given in Tables 4 and 5, respectively, together with those of Ke et al. [46]. In addition, the 

principal unstable region of a clamped-sliding FGM beam is given and compared in Fig. 2 

with that given by Yan et al. [47]. The material properties used in these examples follow an 

exponential law variation across the beam thickness with 
1E = 70 GPa, 

1ρ = 2780 kg m-3, 
1ν = 

0.33. Again, our results agree very well with those reported in the literature. 

Table 3 Comparison of dimensionless critical buckling temperature rises ( )
2

cr 1T T L hλ α= ∆  for 

cross-ply (0/90/0) laminated composite beams (L/h = 10). 

E22/E11 
C-C  C-H  H-H 

Present Ref. [45]  Present Ref. [45]  Present Ref. [45] 

3 2.6558 2.6558  1.4691 1.4691  0.7625 0.7625 

10 2.4725 2.4725  1.5367 1.5367  0.8868 0.8868 

20 1.8858 1.8859  1.2896 1.2896  0.8281 0.8281 

 

Table 4 Comparison of dimensionless critical buckling loads for C-C FGM beams. 

E2/E1 
L/h = 6  L/h = 16 

Present Ref. [46]  Present Ref. [46] 

0.2 0.03111 0.03111  0.00542 0.00542 

1.0 0.06885 0.06884  0.01229 0.01227 

5.0 0.15554 0.15554  0.02709 0.02709 

 

Table 5 Comparison of the first three dimensionless natural frequencies for FGM beams (E2/E1 = 5.0, 

L/h = 16). 

Source 
C-C  H-H 

ω1 ω2 ω3  ω1 ω2 ω3 

Present 0.3693 0.9858 1.8573  0.1800 0.6510 1.4367 

Ref. [46] 0.3686 0.9783 1.8287  0.1797 0.6482 1.4176 
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Fig. 2. Comparison of the principal unstable region for a clamped-sliding FGM beam. 

4.2 Thermal buckling  

The thermal buckling results of functionally graded multilayer GPLRC beams with vari-

ous parameters are presented in Figs. 3 and 5 and Table 6. 

Fig. 3 investigates the effects of GPL distribution pattern and weight fraction on the criti-

cal buckling temperature rise of C-C functionally graded multilayer GPLRC beams with a 

slenderness ratio L/h = 30. The results show that the critical buckling temperature of the X-

GPLRC beam increases with an increase in GPL weight fraction, while this is not the case for 

A- and O-GPLRC beams whose critical buckling temperatures decrease as the GPL weight 

fraction grows, with the former being less noticeable than the latter. This effect becomes 

much less pronounced when GPL weight fraction exceeds a certain value. In contrast, the 

critical buckling temperature remains nearly unchanged for the U-GPLRC beam as GPL con-

tent increases. This can be explained by the relationship between the critical buckling load Pcr 

and critical buckling temperature rise ∆Tcr  

L L
1/2

( ) ( ) ( ) ( )

cr cr 11 cr 11 cr L 11 cr
/ 2

1 1

d d
k

k

N N
h z

k k k k

h z
k k

P T Q z T Q z T h Q Tα α α η
+

−
= =

 
= ∆ = ∆ = ∆ = ∆ 

 
∑ ∑∫ ∫ , (58) 

where 
L

h  is the thickness of each GPLRC layer. The parameter η is dependent on the total 

GPL weight fraction only, implying that η has the same value for different GPL distribution 

patterns at the same GPL weight fraction. For the U-GPLRC beam, Eq. (58) is simplified as  

( )U U U

cr cr 11 crP T Q h Tα η= ∆ = ∆ , (59) 

and the bending stiffness can be expressed as 

/ 2
2 3

11 11 11
/2

d 12
h

h
D Q z z Q h

−
= =∫ . (60) 
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Combining Eqs. (59) and (60), the critical buckling load U

crP  of the U-GPLRC beam can be 

re-expressed as 

( ) ( )U U U 2 U

cr cr 11 cr 11 cr12P T Q h T D h Tα α η= ∆ = ∆ = ∆ . (61) 

According to the FSDT, the critical buckling load increases almost linearly with the increase 

of bending stiffness [48], where the “almost” is used here due to the shear deformation effect. 

Reminding Eq. (61), it is clear that the critical buckling load is proportional to the bending 

stiffness, indicating that the ratio of U

crP  to η, i.e. the critical buckling temperature rise U

crT∆ , 

is a constant for the U-GPLRC beam, regardless of the change of GPL weight fraction. In ad-

dition, based on the authors’ recent work [49], the variation of critical buckling load with the 

GPL weight fraction is obtained and shown in Fig. 4. It is observed that the critical buckling 

loads of the beams with different GPL distribution patterns can be approximated as a linear 

function of GPL weight fraction as 

{ } { }X U A O 0

cr cr cr cr X U A O GPL cr, , , , , ,P P P P k k k k W P= + , ( Xk > Uk > Ak > Ok >0), (62) 

in which X U A O

cr cr cr cr, , ,P P P P  are critical buckling loads, 
X U A O

, , ,k k k k  are slopes, with the su-

perscript/subscript X, U, A, and O referring to the distribution patterns X, U, A, and O, re-

spectively. 0

crP  is the critical buckling load at WGPL = 0.0% (i.e. the pure epoxy beam). The 

ratio of X

crP  to η, i.e. the critical buckling temperature rise X

crT∆ of the X-GPLRC beam is 

given as 

( ) ( )X X X U U U 0 0

cr cr cr cr cr cr X GPL cr U GPL crT P P P P T k W P k W Pη η∆ = = × = ∆ + + , (63) 

where U

crT∆ , as explained above, is a constant. It is clear from Eq. (63) that X

crT∆  increases as 

the GPL weight fraction WGPL increases due to 
X

k >
U

k . Moreover, X

crT∆  converges to a con-

stant value of U

cr X UT k k∆  when WGPL is sufficiently large. In the same way, one can under-

stand why the critical buckling temperatures of A- and O-GPLRC beams are reduced with the 

GPL weight fraction growing and the effect of GPL weight fraction becomes much less pro-

nounced at a higher value of WGPL. The results in Fig. 3 clearly indicate that among the four 

distribution patterns, pattern X is capable of reinforcing the thermal buckling performance of 

the nanocomposite beams. 
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Fig. 3. Effects of GPL distribution pattern and weight fraction on the critical buckling temperature rise 

of functionally graded multilayer GPLRC beams. 
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Fig. 4. Effects of GPL distribution pattern and weight fraction on the critical buckling load of func-

tionally graded multilayer GPLRC beams. 

Fig. 5 depicts the effects of GPL geometry and dimension, in the form of aspect ratio 

GPL GPLa b  and width-to-thickness ratio 
GPL GPLb t , on the critical buckling temperature rise of C-

C functionally graded multilayer GPLRC beams (
GPLW = 0.3%, L/h = 30) where GPL width 

GPLb  is kept constant. In such a case, a higher value of 
GPL GPLa b  represents a larger surface 

area, while a greater magnitude of 
GPL GPLb t  means that an individual GPL consists of fewer 

single graphene sheets. The critical buckling temperature of the X-GPLRC beam increases as 

both 
GPL GPLa b  and 

GPL GPLb t  increase. However, this is reversed for O- and A GPLRC beams, 

whose critical buckling temperature drops with an increase in 
GPL GPLa b  and 

GPL GPLb t . These 

effects, however, are seen to be much less pronounced when 
GPL GPL

b t is close to 103, beyond 

which the critical buckling temperature tends to be unchanged. For the same reason men-
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tioned in Fig. 3, the critical buckling temperature of the U-GPLRC beam remains constant 

regardless of the variations in 
GPL GPLa b  and 

GPL GPLb t . 
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Fig. 5. Effects of GPL geometry and dimension on the critical buckling temperature rise of function-

ally graded multilayer GPLRC beams: (a) X-GPLRC, (b) U-GPLRC, (c) A-GPLRC, and (d) O-

GPLRC. 

Table 6 tabulates the critical buckling temperature rise for functionally graded multilayer 

X-GPLRC beams with different boundary conditions and slenderness ratios. As expected, the 

beam with rigid end supports (i.e. clamped ends) and smaller slenderness ratio has a consid-

erably higher critical buckling temperature. 

Table 6 Critical buckling temperature rise ∆Tcr (K) of functionally graded multilayer X-GPLRC 

beams with different boundary conditions and slenderness ratios (WGPL = 0.3%) 

BC L/h = 25 L/h = 30 L/h = 35 L/h = 40 

C-C 106.60 74.557 55.013 42.238 

C-H 55.079 38.404 28.284 21.689 

H-H 27.122 18.869 13.878 10.633 
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4.3 Thermo-mechanical vibration 

The free vibration results of functionally graded multilayer GPLRC beams with L/h =10 

subjected to thermo-mechanical loading are given in Table 7 and Figs. 6 and 7 where Pcr is 

the critical buckling load of the corresponding beam at ∆T = 0 K. 

Table 7 presents the first three dimensionless natural frequencies of C-C functionally 

graded multilayer GPLRC beams with different GPL distribution patterns subjected to a static 

axial compressive force. Note that Ps/Pcr = 0 corresponds to the case without a static axial 

force. Similarly to the observations in thermal buckling analysis, pattern X gives the highest 

natural frequencies, followed by patterns U, A, and O. Moreover, the natural frequencies are 

reduced as the compressive force is increased. This is because a compressive force creates a 

compressive initial stress state in the beam consequently, weakens the beam stiffness. It is 

also worthy of noting that the reinforcing effect of GPL nanofillers is not affected by the 

change of the initial axial compression. In other words, the percentage frequency increase of 

the beam due to the addition of GPLs remains the same regardless of the increase in Ps/Pcr. 

Table 7 The first three dimensionless natural frequencies of C-C functionally graded multilayer 

GPLRC beams under a static axial compression (WGPL = 0.3%, L/h = 10, ∆T = 0 K). 

Multilayer 

beam 

Ps/Pcr = 0  Ps/Pcr = 0.25  Ps/Pcr = 0.50 

ω1 ω2 ω3  ω1 ω2 ω3  ω1 ω2 ω3 

Pure epoxy 0.5998 1.5248 2.7361  0.5228 1.4190 2.6144  0.4299 1.3036 2.4867 

U-GPLRC 0.8475 2.1546 3.8662  0.7386 2.0051 3.6944  0.6075 1.8421 3.5139 

X-GPLRC 0.9293 2.3325 4.1399  0.8103 2.1667 3.9464  0.6668 1.9856 3.7427 
O-GPLRC 0.7508 1.9355 3.5171  0.6540 1.8045 3.3692  0.5375 1.6621 3.2142 

A-GPLRC 0.8164 2.0835 3.7512  0.7114 1.9401 3.5876  0.5849 1.7840 3.4158 
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Fig. 6. Dimensionless fundamental frequency versus normalized static axial force for functionally 

graded multilayer X-GPLRC beams: effect of GPL weight fraction. 

Fig. 6 compares the dimensionless fundamental frequency ω1 versus normalized static ax-

ial force Ps/Pcr curves of functionally graded X-GPLRC beams with different GPL weight 
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fractions. The positive and negative values of Ps/Pcr represent the axial compressive and ten-

sile forces, respectively. The fundamental frequency increases as the GPL weight fraction 

grows. In contrast to a compressive force, a tensile force strengthens the beam stiffness hence 

increases the fundamental frequency. 

Fig. 7 displays the dimensionless fundamental frequency ω1 versus normalized static axial 

force Ps/Pcr curves for functionally graded multilayer X-GPLRC beams subjected to initial 

thermo-mechanical loading. The results show that the fundamental frequency drops as the 

temperature increases and this effect becomes relatively more remarkable at a larger com-

pressive force. 
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Fig. 7. Dimensionless fundamental frequency versus normalized static axial force for functionally 

graded multilayer X-GPLRC beams: effect of temperature change. 

4.4 Dynamic instability 

We next investigate the dynamic instability of functionally graded multilayer GPLRC 

beams under a periodic axial force. Unless otherwise stated, principle unstable regions, in 

terms of the dimensionless dynamic axial force Pd plotted against the dimensionless excita-

tion frequency θ, are presented in Figs. 8-14 for C-C functionally graded multilayer X-

GPLRC beams with WGPL = 0.3%, L/h = 10, Ps/Pcr = 0.5, and ∆T = 0 K. 

Figs. 8 and 9 plot the principal unstable regions for functionally graded multilayer GPLRC 

beams with different GPL distribution patterns and weight fractions, respectively. Among the 

four distribution patterns considered, pattern X gives the highest origin and narrowest unsta-

ble region. This is because in such a pattern, more GPLs are distributed near the top and bot-

tom layers of the beam where the higher normal bending stress occurs, thus producing the 

best reinforcing effect. The results also show that the unstable region becomes wider at a 

lower GPL content. Compared with the pure epoxy beam, the origin of the unstable region of 

all GPLRC beams moves to the right as the GPL weight fraction increases. This is consistent 

with the observation in Table 7 where the fundamental frequency is found to be the lowest for 

the pure epoxy beam. 
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Fig. 8. Principal unstable regions of functionally graded multilayer GPLRC beams: effect of GPL dis-

tribution pattern. 
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Fig. 9. Principal unstable regions of functionally graded multilayer X-GPLRC beams: effect of CNT 

weight fraction. 

The effects of GPL geometry and dimension on the dynamic instability behaviour of func-

tionally graded multilayer X-GPLRC beams are examined in Fig. 10(a) and (b) where the 

GPL width-to-thickness ratio and aspect ratio are fixed as GPL GPLb t = 10
3
 and GPL GPLa b = 4, re-

spectively. It is observed that the location and size of the unstable region are not sensitive to 

the GPL aspect ratio although the unstable region does move slightly to the right at a higher 

value of GPL GPLa b . In contrast, an increase in GPL width-to-thickness ratio leads to a higher 

origin and a smaller unstable region. This effect is seen to be much less pronounced when 

GPL GPLb t  is larger than 10
3
, which is very similar to the results in thermal buckling analysis. 
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Fig. 10. Principal unstable regions of functionally graded multilayer X-GPLRC beams: effects of GPL 

(a) aspect ratio; and (b) width-to-thickness ratio. 

Figs. 11 and 12 investigate the effects of static axial compressive force and temperature 

change on the dynamic instability of functionally graded multilayer X-GPLRC beams, re-

spectively. The unstable region not only gets wider but also moves to the left as both the 

static axial compressive force and temperature increase. This is because, as mentioned before, 

both an axial compressive force and a temperature rise give rise to a compressive prestress in 

the beam and therefore weaken the beam stiffness. It is noteworthy that the effect of tempera-

ture change seems less noticeable than that of static axial compressive force due to the fact 

that the equivalent thermal force induced by the temperature rise in Fig. 12 is much smaller 

than the exerted static axial compressive force in Fig. 11.  
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Fig. 11. Unstable regions of functionally graded multilayer X-GPLRC beams: effect of static com-

pressive force. 
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Fig. 12. Unstable regions of functionally graded multilayer X-GPLRC beams: effect of temperature 

change. 

In order to illustrate the individual effect of slenderness ratio and boundary conditions, 

Figs. 13 and 14 present the principal unstable regions for functionally graded multilayer X-

GPLRC beams with different slenderness ratios (L/h = 10, 20, 30) and boundary conditions 

(C-C, C-H, H-H), respectively. The C-C beam with a smaller slenderness ratio has a signifi-

cantly higher origin and narrower unstable region because of its much greater bending rigid-

ity. 
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Fig. 13. Principal unstable regions of functionally graded multilayer X-GPLRC beams: effect of slen-

derness ratio. 
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Fig. 14. Principal unstable regions of functionally graded multilayer X-GPLRC beams: effect of 

boundary conditions. 

5. Concluding remarks 

The dynamic instability of functionally graded multilayer graphene nanocomposite beams 

in thermal environment is investigated based on the FSDT. The differential quadrature 

method in conjunction with Bolotin’s method is employed to obtain the principal unstable 

region for functionally graded multilayer GPLRC beams. The effective Young’s modulus of 

GPLRCs is estimated by Halpin-Tsai micromechanics model. Comprehensive numerical re-

sults are presented in both tabular and graphical forms to examine the effects of the distribu-

tion pattern, geometry and dimension of GPL nanofillers, initial static axial load, as well as 

uniform temperature change on the dynamic instability behaviour. It is found that the GPL 

distribution pattern and weight fraction have important influences on the thermal buckling, 
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free vibration and dynamic instability of functionally graded multilayer GPLRC beams. The 

effects of GPL geometry and dimension tend to be much less significant when the GPL 

width-to-thickness ratio is greater than 103. Adding more GPLs and distributing them in pat-

tern X can effectively increase the natural frequency and reduce the principal unstable region. 

An increase in either static axial compressive force or temperature or in both remarkably 

weakens the beam stiffness consequently leads to a lower fundamental frequency and a larger 

principal unstable region. The influences of slenderness ratio and boundary conditions are 

also discussed and demonstrated through illustrative numerical examples. 
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