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Abstract 

This paper investigates the buckling and postbuckling behaviours of functionally graded mul-

tilayer nanocomposite beams reinforced with a low content of graphene platelets (GPLs) rest-

ing on an elastic foundation. It is assumed that GPLs are randomly oriented and uniformly 

dispersed in each individual GPL-reinforced composite (GPLRC) layer with its weight frac-

tion varying layerwise along the thickness direction. The effective material properties of each 

layer are estimated by the Halpin-Tsai micromechanics model. The nonlinear governing 

equations of the beam on an elastic foundation are derived within the framework of the first-

order shear deformation beam theory then are converted into a nonlinear algebraic system by 

using the differential quadrature method. A detailed parametric study is carried out to exam-

ine the effects of the distribution pattern, weight fraction, geometry and size of GPL 

nanofillers, foundation stiffness parameters, slenderness ratio and boundary conditions on the 

buckling and postbuckling behaviours. The results show that GPLs have a remarkable rein-

forcing effect on the buckling and postbuckling of nanocomposite beams. 

Keywords: buckling; postbuckling; functionally graded nanocomposite beam; graphene plate-

let; differential quadrature method 
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1. Introduction 

The material properties of polymer composites are largely dependent, in addition to the filler 

properties, on the interface area and intensity of intermolecular interaction between the filler 

and matrix. Graphene [1], a two-dimensional single layer of carbon atoms, has attracted con-

siderable attention due to its exceptional mechanical, thermal and electrical properties [2-4]. 

It has an intrinsic tensile strength of 130 GPa and Young’s modulus of about 1 TPa [2] that 

are comparable to carbon nanotubes (CNTs), and a specific surface area of up to 2630 m2 g-1 

which is much larger than that of CNTs [5]. These merits, together with nanoscale effects and 

interface chemistry, make graphene a novel and promising alternative to conventional fillers, 

such as carbon and glass fibres, in polymer composites [6]. As a consequence, 

nanocomposites reinforced with graphene and its derivatives have recently become an emerg-

ing area of extensive research efforts in advanced composite materials [7, 8].  
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Numerous studies have demonstrated the significant reinforcing effects of graphene and its 

derivatives on the mechanical properties of polymer composites. Among those, Rafiee et al. 

[9] measured and compared the mechanical properties of epoxy nanocomposites reinforced 

with 0.1± 0.002 wt% graphene platelets (GPLs), single-walled carbon nanotubes (SWCNTs), 

and multi-walled carbon nanotubes (MWCNTs), respectively. Their results indicated that the 

Young’s modulus, ultimate tensile strength and fracture toughness of the nanocomposites are 

significantly greater than those of the pristine epoxy and GPL nanofillers significantly out-

perform carbon nanotubes. Ji et al. [6] investigated the stiffening effect of graphene sheets on 

polymer nanocomposites using the Mori-Tanaka micromechanics method. They found that a 

low loading of graphene sheets can considerably increase the effective stiffness of the origi-

nal matrix. Zhao et al. [10] reported that a 150% improvement of tensile strength and a nearly 

10 times increase of Young’s modulus are achieved for the graphene/PVA composite at a 

graphene content of 1.8 vol%. Bortz et al. [11] experimentally examined the fatigue life and 

fracture toughness of graphene oxide/epoxy composites. They observed an enhancement of 

28~111% in model I fracture toughness and of up to 1580% in uniaxial tensile fatigue life by 

adding small amounts (≤ 1 wt%) of graphene oxide in an epoxy system. Yang et al. [12] 

demonstrated that MWCNT/multi-graphene platelet (MGP) hybrid nanofillers exhibit higher 

solubility and better compatibility than individual MWCNTs and MGPs and consequently 

further improve the mechanical properties and thermal conductivity of epoxy composites. 

King et al. [13] measured the modulus of graphene nanoplatelet (GNP)/epoxy composites by 

using nanoindentation. They results showed that the tensile modulus increased from 2.72 GPa 

for the neat epoxy to 3.36 GPa by the addition of 6 wt% GNP, which agrees well with the 

prediction by the Halpin-Tsai model. Liu et al. [14] studied the mechanical properties of alu-

mina ceramic composites reinforced with GPLs and suggested that the flexural strength of 

composites are considerably higher than that of monolithic ceramic samples. Wu and Drzal 

[15] discovered that the coefficient of thermal expansion of the polyetherimide composite can 

be reduced by the addition of GNPs. From the material manufacturing perspective, only a low 

percentage of nanofillers can be added to the polymer composites as an addition of high con-

tent of nanofillers are prone to agglomerate, which causes a poor dispersion of nanofillers in 

the matrix and consequently deteriorates the mechanical properties of nanocomposites [6, 16-

18].  

Functionally graded materials (FGMs) are characterized by continuous and smooth varia-

tions in both composition and material properties in one or more direction(s). The material 
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properties of FGMs can be tailored in accordance with the mechanical needs at different re-

gions in various working conditions. In order to effectively make use of a low percentage of 

CNTs, Shen [19] applied the concept of FGM to polymer nanocomposites and found that the 

resulting mechanical properties can be further improved through a nonuniform distribution of 

CNTs in the polymer. Subsequently, the mechanical responses of functionally graded CNT-

reinforced composite (FG-CNTRC) structures have been extensively studied [20-22]. Com-

pared to CNTs, graphene and its derivatives have a wide range of attractive advantages, such 

as a larger surface area, abundance in nature, and less expensive when synthesized in large 

scale [23]. In addition, graphene nanocomposites exhibit significantly higher modulus and 

strength than nanocomposites reinforced with the same amount of CNTs [9]. Owing to the 

mechanical advantages of high stiffness, high strength but low mass density, graphene 

nanocomposites show great potentials as lightweight and buckling-resistant structural ele-

ments in aeronautical and space industries [24]. Great effort has been directed towards the 

mechanical properties and fabrication of graphene nanocomposites. Nonetheless, research 

work on the mechanical responses of structures made of such nanocomposites is scarce. 

A functionally graded GPL-reinforced composite (GPLRC) structure is ideal in combining 

the advantages of both FGMs and GPLs. The fabrication of such functionally graded struc-

tures with a continuous and smooth variation of GPLs across the thickness, however, is ex-

tremely difficult due to the constraint of manufacture technology. A functionally graded GPL 

reinforced multilayer nanocomposite structure in which each individual layer is made from a 

mixture of uniformly distributed GPL reinforcements and polymer matrix with GPL concen-

tration incrementally varying layer by layer is much easier to fabricate. It is evident that such 

a multilayer structure is an excellent approximation to the ideal functionally graded structure 

with a continuous and smooth variation of GPLs across the thickness direction when the total 

number of layers is sufficiently large.  

The buckling and postbuckling of functionally graded multilayer GPLRC beams resting on 

an elastic foundation are investigated in this paper. The Halpin-Tsai model is used to estimate 

the effective material properties of each individual GPLRC layer. The governing equations 

are derived based on the first-order shear deformation beam theory and von Kármán type 

nonlinearity. Numerical results are presented for multilayer GPLRC beams with different 

GPL distribution patterns to explore which distribution provides the best reinforcing effect on 

the buckling and postbuckling performance of nanocomposite beams. The effects of weight 
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fraction, geometry and size of GPLs, foundation stiffness, slenderness ratio and boundary 

conditions are also discussed in detail. 

2. Functionally graded multilayer GPLRC beam model 

The beam under current consideration is composed of perfectly bonded GPLRC layers of the 

same thickness that are made from a mixture of an isotropic polymer matrix and GPLs. It is 

assumed that the GPLs are uniformly dispersed and randomly oriented in each layer but its 

weight fraction varies from layer to layer. Hence, each individual GPLRC layer is isotropic 

homogeneous.  

 

Fig. 1. Different GPL distribution patterns in a multilayer GPLRC beam. 

Shown in Fig.1 are the four distribution patterns of GPL nanofillers across the beam thick-

ness. The darker colour represents more GPL contents in the layer. In the case of X-GPLRC, 

the surface layers are GPL rich while this is inversed in O-GPLRC where the middle layers 

are GPL rich. For the A-GPLRC, the GPL content gradually increases from the top layer to 

the bottom layer. As a special case, the GPL content is the same in each layer in a U-GPLRC 

beam. It is obvious that A-GPLRC is asymmetric while the other three distributions are 

symmetrical about the mid-plane (z = 0). 

Functionally graded multilayer GPLRC beams with an even number of layers are consid-

ered in this paper. The volume fractions GPLV  of the kth layer for the four distribution patterns 

shown in Fig. 1 are governed by 

U-GPLRC: *

GPL GPL( )V k V= , (1) 

X-GPLRC: 
*

GPL GPL L L( ) 2 2 1V k V k N N= − − , (2) 

O-GPLRC: ( )*

GPL GPL L L( ) 2 1 2 1V k V k N N= − − − , (3) 
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A-GPLRC: ( )*

GPL GPL L( ) 2 1V k V k N= − , (4) 

where k = 1, 2, …, NL and NL is the total number of layers of the beam. The total volume 

fraction of GPLs, *

GPLV , is determined by 

( )( )
* GPL

GPL

GPL GPL m GPL1

W
V

W Wρ ρ
=

+ −
, (5) 

in which GPL
W  is GPL weight fraction; GPL

ρ  and m
ρ  are the mass densities of GPLs and the 

polymer matrix, respectively. 

The elastic modulus of composites with randomly oriented fillers can be approximated by 

[25, 26] 

L T

3 5
,

8 8
E E E= +  (6) 

where 
L

E  and 
T

E  are the longitudinal and transverse moduli for a unidirectional lamina and 

can be calculated by the Halpin-Tsai model [27]: 

L L f T T f
L m T m

L f T f

1 1
,

1 1

V V
E E E E

V V

ξ η ξ η

η η

+ +
= × = ×

− −
, (7) 

in which f
V  is filler volume fraction. Combining Eqs. (6) and (7), the effective elastic modu-

lus of the GPLRC can be obtained as follows 

L L GPL T T GPL
m m

L GPL T GPL

1 13 5

8 1 8 1

V V
E E E

V V

ξ η ξ η

η η

+ +
= × + ×

− −
, (8) 

where parameters Lη  and Tη  take the following forms: 

( )
( )

( )
( )

GPL m GPL m

L T

GPL m L GPL m T

1 1
,

E E E E

E E E E
η η

ξ ξ

− −
= =

+ +
. (9) 

In the above equations, GPL
E  and m

E  are Young’s moduli of the GPL and the matrix, respec-

tively. The filler geometry factors 
L

ξ  and 
T

ξ  for GPLs are given by [27] 

( ) ( )L GPL GPL T GPL GPL2 , 2a t b tξ ξ= = , (10) 
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in which GPL
a , GPL

b  and GPL
t  are the length, width, and thickness of GPLs, respectively. Note 

that Lξ can be rewritten as 

( ) ( )L GPL GPL GPL GPL2 a b b tξ = × , (11) 

where GPL GPLa b and GPL GPLb t  denote GPL aspect ratio and width-to-thickness ratio, respec-

tively. According to the rule of mixture, Poisson’s ratio is expressed as [28] 

m m GPL GPLV Vν ν ν= + , (12) 

in which GPLν  and mν  are Poisson’s ratios of the GPL and matrix, respectively. 

3. Nonlinear governing equations 

Consider a multilayer GPLRC beam of length L and total thickness h that consists of NL lay-

ers of equal thickness t resting on a two-parameter elastic foundation, as shown in Fig.2. Kw 

and Ks are the Winkler stiffness and shearing layer stiffness of the foundation, respectively.  

 

Fig. 2. A functionally graded GPLRC beam resting on an elastic foundation. 

Let U  and W  be the displacements of the beam along the x and z-axes, ψ be the mid-

plane rotation of transverse normal about the y-axis. According to the first-order shear defor-

mation beam theory, the displacement field of the beam takes the form of 

( ),  ( ) ( )U x z U x z xψ= + , ( ),  ( )W x z W x= , (13) 

where U and W are the displacement components in the mid-plane (z = 0) of the beam. The 

von Kármán type nonlinear strain-displacement relations give 

2
1

2
xx

U W
z

x x x

ψ
ε

∂ ∂ ∂ 
= + +  

∂ ∂ ∂ 
, xz

W

x
γ ψ

∂
= +

∂
, (14) 
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The governing equations can be derived using the principle of virtual displacements: 

( )p 0V ϒδ − = , (15) 

where the total virtual energy V that is comprised of the strain energy of the beam and the 

elastic potential energy of the foundation, and the virtual work 
p

ϒ  done by an applied com-

pressive force P are given by 

( )
2

/2
2 2 2

11 55 w s
0 /2 0

1 1
 d d d

2 2

L h L

xx xz
h

W
V Q Q z x K W K x

x
ε γ

−

 ∂ 
= + + +  

∂   
∫ ∫ ∫ , (16) 

2

p
0

1
 d

2

L W
P x

x
ϒ

 ∂ 
=   

∂   
∫ , (17) 

in which the reduced stiffnesses are given by 

( )11 552
,

1 2 1

E E
Q Q

ν ν
= =

− +
. (18) 

In view of Eq. (14), substituting for V and 
p

ϒ  from Eqs. (16) and (17) into the virtual work 

statement in Eq. (15) and integrating through the thickness of the beam, we obtain 

( ) ( )

2 2

w s 2 20

s0 0

0

0 d
L

x x x
x x

L

L L

x x x x

N M QW W W
U Q N K W K P W x

x x x x x x x

W W W
N U M N Q K P W

x x x

δ δψ δ

δ δψ δ

  ∂ ∂ ∂∂ ∂ ∂ ∂    
= + − + + + − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂ 
− + − + + −  ∂ ∂ ∂  

∫
, (19) 

where the in-plane force xN , bending moment xM and transverse shear force xQ  are calcu-

lated from 

2

11 11 11

1

2
x

U W
N A B A

x x x

ψ∂ ∂ ∂ 
= + +  

∂ ∂ ∂ 
, (20) 

2

11 11 11

1

2
x

U W
M B D B

x x x

ψ∂ ∂ ∂ 
= + +  

∂ ∂ ∂ 
, (21) 

55x

W
Q A

x
κ ψ

∂ 
= + 

∂ 
, (22) 
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in which κ = 5/6 is the shear correction factor. The k
th

 GPLRC layer is located between the 

points z = k
z  and z = 1k

z +  in the thickness direction. The stiffness components are defined as 

{ }
1/ 2

2 ( ) 2

11 11 11 11 11
/2

1

, , {1, , }d {1, , }d
L

k

k

N
h z

k

h z
k

A B D Q z z z Q z z z
+

−
=

= =∑∫ ∫ , (23) 

1/ 2
( )

55 55 55
/2

1

d d
L

k

k

N
h z

k

h z
k

A Q z Q z
+

−
=

= =∑∫ ∫ . (24) 

The governing equations are obtained by setting the coefficients of Uδ , Wδ , and δψ  in Eq. 

(19) to zero separately: 

0xN

x

∂
=

∂
, (25) 

( )
2 2

w s 2 2
0x

x

Q W W
K W K N P

x x x

∂ ∂ ∂
− + + − =

∂ ∂ ∂
, (26) 

0x
x

M
Q

x

∂
− =

∂
. (27) 

In the present analysis, the beam is either clamped or hinged at each end. The associated out-

of-plane boundary conditions are  

Clamped (C): U = 0, W = 0, ψ = 0. (28) 

Hinged (H): U = 0, W = 0, xM = 0. (29) 

Substituting Eqs. (20)-(22) into Eqs. (25)-(29), the governing equations and associated 

boundary conditions can be rewritten in terms of displacements: 

2 2 2

11 11 112 2 2
0

U W W
A B A

x x x x

ψ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
, (30) 

22 2 2

55 w s 11 11 112 2 2

1
0

2

W W U W W
A K W K A B A P

x x x x x x x

ψ ψ
κ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
+ − + + + + − =    

∂ ∂ ∂ ∂ ∂ ∂ ∂     
, (31) 

2 2 2

11 11 11 552 2 2
0

U W W W
B D B A

x x x x x

ψ
κ ψ

∂ ∂ ∂ ∂ ∂ 
+ + − + = 

∂ ∂ ∂ ∂ ∂ 
; (32) 

Clamped (C): U = 0, W = 0, ψ = 0, (33) 
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Hinged (H): U = 0, W = 0, 

2

11 11 11

1
0

2

U W
B D B

x x x

ψ∂ ∂ ∂ 
+ + = 

∂ ∂ ∂ 
. (34) 

4. Solution procedure 

By introducing the following dimensionless quantities: 

2

110 w w 110

2

s s 110 11 55 11 11 11 55 11 11 110

, , ( , ) ( , ) , , , ,

, ( , , , ) ( , , , ) ,

x L h L u w U W h P P A k K L A

k K A a a b d A A B h D h A

ζ η ϕ ψ

κ

= = = = = =

= =
 (35) 

where 
110

A  is the value of 
11

A  of a homogeneous beam made from the pure matrix material, 

the governing equations (30)-(32) can be transformed into the dimensionless form as 

2 2 2

11 11 112 2 2
0

u w w
a b a

ϕ
η

ζ ζ ζ ζ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
, (36) 

22 2 2
2

55 11 11 11 w w2 2 2

1 1
0

2

w u w w w
a a b a P k w k

ϕ ϕ
η η η

ζ η ζ ζ ζ ζ ζ ζ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + − − + =    

∂ ∂ ∂ ∂ ∂ ∂ ∂     
, (37) 

2 2 2

55
11 11 112 2 2

1
0

au w w w
b d b

ϕ
η ϕ

ζ ζ ζ ζ η ζ η

 ∂ ∂ ∂ ∂ ∂
+ + − + = 

∂ ∂ ∂ ∂ ∂ 
. (38) 

The associated boundary conditions can be handled in the same way: 

Clamped (C): u = 0, w = 0, φ = 0; (39) 

Hinged (H): u = 0, w = 0, 

2

11 11 11

1
0

2

u w
b d b

ϕ
η

ζ ζ ζ

 ∂ ∂ ∂
+ + = 

∂ ∂ ∂ 
. (40) 

According to the differential quadrature (DQ) rule [29-31], the displacement components 

u, w, φ and their j
th partial derivatives with respect to ζ are approximated as the linear 

weighting sums of m
u , m

w , and m
ϕ  by 

{ } { }
1

, , ( ) , ,
N

m m m m

m

u w l u wϕ ζ ϕ
=

=∑ , and { } ( ) { }
1

, , , ,
im

i

j N
j

m m mj
m

u w C u w

ζ ζ

ϕ ϕ
ζ ==

∂
=

∂
∑  (41) 
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where { }, ,
m m m

u w ϕ  are the values of { }, ,u w ϕ  at ζ = mζ ; lm(ζ) is the Lagrange interpolation 

polynomials; 
( )
im

j
C is the weighting coefficient of the j

th
 derivative and can be calculated using 

recursive formula [32, 33]. N is the total number of gird points distributed along the ζ-axis 

according to a cosine pattern: 

1 ( 1)
1 cos

2 1
i

i

N

π
ζ

− 
= − − 

, i = 1, 2, …, N. (42) 

By applying relationship (41) to the dimensionless governing equations (36)-(38), one ob-

tains the discretized governing equations: 

( ) ( ) ( ) ( )2 2 1 2

11 11 11

1 1 1 1

0
im im im im

N N N N

m m m m

m m m m

a C u b C a C w C wϕ η
= = = =

+ + =∑ ∑ ∑ ∑ , (43) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 1 1 22

11 11 11

1 1 1 1

2 1 2

55 w s

1 1 1

1

2

1
0

im im im im

im im im

N N N N

m m m m

m m m m

N N N

m m i m

m m m

a C u b C a C w P C w

a C w C k w k C w

η η ϕ η

ϕ
η

= = = =

= = =

  
+ + − ×  

   

 
+ + − + = 

 

∑ ∑ ∑ ∑

∑ ∑ ∑

, (44) 

( ) ( ) ( ) ( ) ( )2 2 1 2 155
11 11 11

1 1 1 1 1

1
0

im im im im im

N N N N N

m m m m m i

m m m m m

a
b C u d C b C w C w C wϕ η ϕ

η η= = = = =

 
+ + − + = 

 
∑ ∑ ∑ ∑ ∑ . (45) 

The associated boundary conditions (39) and (40) can also be discretized in the same way: 

1u  = 0, 1w  = 0, 1ϕ  = 0, (46) 

N
u  = 0, 

N
w  = 0, 

N
ϕ  = 0, (47) 

for clamped ends at ζ = 0 and 1, respectively, and 

1 0u = , 1 0w = , ( ) ( ) ( )
1 1 1

2

1 1 1

11 11 11

1 1 1

1
0

2m m m

N N N

m m m

m m m

b C u d C b C wϕ η
= = =

 
+ + = 

 
∑ ∑ ∑ , (48) 

0
N

u = , 0
N

w = , ( ) ( ) ( )
2

1 1 1

11 11 11

1 1 1

1
0

2Nm Nm Nm

N N N

m m m

m m m

b C u d C b C wϕ η
= = =

 
+ + = 

 
∑ ∑ ∑ , (49) 

for hinged ends at ζ = 0, 1. 
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Substitution of the associated boundary conditions (46)-(49) into the discretized governing 

equations (43)-(45) leads to a nonlinear algebraic system that governs the buckling and 

postbuckling behaviours of the beam resting on an elastic foundation as 

[ ]L1 L2 NL1 NL2P− + + =K K K K d 0 , (50) 

where d denotes the unknown displacement vector that is composed of mu , mw , mϕ  (m = 1, 

2, …, N); 
L1

K  and 
L2

K  are constant coefficient matrices, while 
NL1

K  and 
NL2

K  are nonline-

ar matrices, the elements of which are linear and quadratic functions of d, respectively.  

By dropping the nonlinear matrices, Eq. (50) reduces to a standard eigenvalue problem 

from which the critical buckling load of the functionally graded multilayer GPLRC beam can 

be obtained as the lowest positive eigenvalue. After buckling, the postbuckling equilibrium 

path of the beam can be determined by solving the nonlinear governing equation (50) with 

the iterative scheme detailed by Liew et al. [34]. 

5. Results and Discussion 

Convergence studies are first conducted, and the results with varying numbers of grid points 

and layers are compared in Table 1 where the dimensionless critical buckling load Pcr and the 

dimensionless postbuckling load PNL at a given dimensionless midspan deflection wm = 1.0 

are provided. It is seen that convergent results are obtained when the total numbers of grid 

points and individual layers are increased to N = 13 and NL = 22, respectively, implying that a 

multilayer GPLRC beam with 22 or more layers is an excellent approximation for an ideal 

functionally graded beam structure with a continuous and smooth variation in both material 

composition and properties. Considering the ease of fabrication and the manufacturing cost, 

NL = 10, as well as N = 13, are used in all the following numerical examples. 

Table 1 Buckling and postbuckling results with varying total numbers of grid points and layers for a 

C-C functionally graded multilayer X-GPLRC beam (L/h = 10, WGPL = 0.3%). 

N (NL = 10) Pcr PNL (wm = 1.0)  NL (N = 13) Pcr PNL (wm = 1.0) 

7 0.0709 0.0762  4 0.0682 0.1175 

9 0.0709 0.1128  6 0.0700 0.1192 

11 0.0709 0.1199  10 0.0709 0.1201 

13 0.0709 0.1201  16 0.0712 0.1204 
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15 0.0709 0.1201  22 0.0713 0.1205 

17 0.0709 0.1201  28 0.0713 0.1205 

In order to validate the present formulation and solution procedure, the dimensionless crit-

ical buckling loads of carbon nanotube-reinforced composite (CNTRC) beams with and 

without an elastic foundation are calculated and compared in Table 2 with those from the lit-

erature. The material properties used in this example can be found in [35, 36]. As can be ob-

served, our results are in good agreement with the existing ones. In addition, the compressive 

postbuckling equilibrium paths of six-layer unidirectional laminated beams with a length of 

250 mm, width of 10 mm, and thickness of 1 mm are given in Fig. 3 together with those by 

Emam and Nayfeh [37] for direct comparison. The material properties used herein are: E11 = 

155 GPa, E22 = 12.1 GPa, G12 = 4.4 GPa, and ν12 = 0.248. Again, excellent agreement is 

achieved. 

Table 2 Comparison of dimensionless critical buckling loads for H-H CNTRC beams with and with-

out an elastic foundation (V
 * 

cn = 0.12, L/h = 15). 

Source 
(kw, ks) = (0, 0)  (kw, ks) = (0.1, 0.02) 

UD O X  UD O X 

Present 0.0983 0.0586 0.1284  0.1285 0.0888 0.1585 

Ref. [35] 0.0986 0.0588 0.1288  0.1287 0.0889 0.1590 

Ref. [36] 0.0984 0.0576 0.1289  0.1286 0.0878 0.1590 
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Fig. 3. Postbuckling paths for laminated beams with different boundary conditions. 
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In what follows, the functionally graded multilayer GPLRC beams with a total thickness h 

= 0.01 m and a total number of layers NL = 10 are considered. Each GPLRC layer is made 

from a mixture of epoxy and GPLs with a length of GPLa = 2.5 µm, width of GPLb = 1.5 µm, 

and thickness of 
GPL

t = 1.5 nm. The material properties of epoxy matrix are Em = 3.0 GPa, 
m

ρ

= 1200 kg m
-3

, and mν = 0.34 while those of GPLs are EGPL = 1.01 TPa, GPLν = 0.186, and 

GPLρ = 1062.5 kg m
-3

, as reported in [9, 38]. 

Table 3 compares the dimensionless critical buckling loads of nanocomposite beams rein-

forced with different nanofillers (GPLs, SWCNTs, and MWCNTs) with the same value of 

content Wfiller = 0.3%. The results of the homogeneous pure epoxy beam are also given to 

evaluate the reinforcing effects of GPLs, SWCNTs, and MWCNTs. The material properties 

and geometry parameters of the SWCNT and MWCNT can be found in [9]. Note that for 

CNTs, the filler geometry factors L CNT CNT
l dξ =  and T

ξ = 2, where CNT
l  and CNT

d  are the 

CNT length and diameter, respectively. The critical buckling load is the highest for the beam 

with GPL reinforcements. For example, incorporation of 0.3% weight fraction of GPLs uni-

formly dispersed (pattern U) increases the critical buckling load of the beam by 99.3% from 

0.0294 to 0.0586, followed by the SWCNTs with a 43.2% increase and MWCNTs with a 

10.2% increase. This clearly indicates that GPLs offer much better reinforcement than 

SWCNTs and MWCNTs. This can be attributed to GPL’s much higher specific surface area 

and two-dimensional geometry that significantly strengthen the interface between the GPLs 

and epoxy for effective stress transfer [6, 39]. Among the four distribution patterns in Fig.1, 

pattern X yields the highest buckling load, followed by patterns U, A, and O, which indicates 

that distribution pattern X is capable of making the most effective use of the reinforcing 

nanofillers. 

Table 3 Dimensionless critical buckling loads of functionally graded multilayer composite beams re-

inforced with different nanofillers (C-C, L/h = 10, Wfiller = 0.3%). 

Filler Pattern U Pattern X Pattern O Pattern A 

Pure epoxy 0.0294 0.0294 0.0294 0.0294 

GPL 0.0586 0.0709 0.0458 0.0543 

SWCNT 0.0421 0.0475 0.0366 0.0410 

MWCNT 0.0324 0.0337 0.0311 0.0323 
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Table 4 Dimensionless critical buckling loads of functionally graded multilayer GPLRC beams with 

different GPL weight fractions and distribution patterns (C-C , L/h = 10). 

(kw, ks) WGPL U-GPLRC X-GPLRC O-GPLRC A-GPLRC 

(0.00, 0.00) 0.1% 0.0391 0.0433 0.0349 0.0384 

 0.3% 0.0586 0.0709 0.0458 0.0543 

 0.5% 0.0781 0.0984 0.0565 0.0691 

(0.10, 0.00) 0.1% 0.0466 0.0507 0.0424 0.0459 

 0.3% 0.0661 0.0784 0.0533 0.0619 

 0.5% 0.0857 0.1059 0.0641 0.0767 

(0.10, 0.02) 0.1% 0.0666 0.0707 0.0624 0.0659 

 0.3% 0.0861 0.0984 0.0733 0.0819 

 0.5% 0.1057 0.1259 0.0841 0.0967 

 

The effect of GPL distribution pattern is further investigated in Table 4 where the dimen-

sionless critical buckling loads are presented for functionally graded multilayer GPLRC 

beams with different GPL concentrations. It is observed that the buckling load increases as 

GPL content increases. This effect, however, tends to be less pronounced as the foundation 

stiffness increases.  

Table 5 Dimensionless critical buckling loads of functionally graded multilayer X-GPLRC beams 

with different slenderness ratios and boundary conditions (WGPL = 0.3%). 

L/h 
(kw, ks) = (0.00, 0.00)  (kw, ks) = (0.10, 0.02) 

C-C C-H H-H  C-C C-H H-H 

10 0.0709 0.0384 0.0196  0.0984 0.0666 0.0497 

20 0.0196 0.0102 0.0050  0.0470 0.0381 0.0352 

30 0.0089 0.0046 0.0023  0.0361 0.0319 0.0314 

40 0.0050 0.0026 0.0013  0.0319 0.0287 0.0276 

 

Table 5 tabulates the critical buckling loads for X-GPLRC beams with different slender-

ness ratios and boundary conditions. The results show that the buckling load drops signifi-

cantly with an increase in slenderness ratio. This effect becomes less pronounced for the H-H 

beam resting on an elastic foundation. As expected, the C-C beam has a higher resistance to 

buckling than the C-H and H-H beams. 
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Fig. 4. Effects of GPL geometry and size on the critical buckling load of functionally graded multi-

layer X-GPLRC beams. 

Fig. 4 displays the important effects of GPL geometry and size, in terms of aspect ratio 

GPL GPL
a b  and width-to-thickness ratio GPL GPL

b t , on the critical buckling load. In the case of 

GPL width 
GPL

b  being constant, a higher value of 
GPL GPL

a b  implies a larger GPL surface area 

and a higher magnitude of GPL GPLb t  means that the GPL contains fewer monolayer graphene 

sheets. It is seen that the critical buckling load is increased as both GPL GPLa b  and GPL GPLb t  in-

crease, which indicates that GPLs with a larger surface area and fewer monolayer graphene 

sheets can provide the better reinforcing effect. Nonetheless, the effects of 
GPL GPL

a b  and 

GPL GPLb t  becomes much less significant and the critical buckling load tends to be unchanged 

when GPL GPL
b t > 10

3
. 

We next turn our attention to the postbuckling analysis of functionally graded multilayer 

GPLRC beams. Unless otherwise stated, numerical results, in terms of the dimensionless 

postbuckling load PNL against the dimensionless midspan deflection wm, are given in Figs. 5-

9 for C-C functionally graded multilayer X-GPLRC beams with L/h = 10, WGPL = 0.3% and 

(kw, ks) = (0.00, 0.00). 
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Fig. 5. Postbuckling paths for beams reinforced with different nanofillers. 

Fig. 5 compares the postbuckling equilibrium paths for nanocomposite beams reinforced 

with GPLs, SWCNTs, and MWCNTs. As observed in buckling analysis, GPL shows the 

most significant reinforcing effect on the postbuckling behaviour of the beam, leading to the 

highest postbuckling load-carrying capacity, followed by SWCNTs and MWCNT. This is 

because, as mentioned before, GPLs are two-dimensional materials while CNTs are one-

dimensional. The lamellar-shaped GPLs can be more perfectly bonded to the epoxy and ef-

fectively transfer the stress at the GPL/epoxy interface [39]. 
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Fig. 6. Effect of GPL distribution pattern on postbuckling paths of functionally graded multilayer 

GPLRC beams. 
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Fig. 7. Effect of GPL weight fraction on postbuckling paths of functionally graded multilayer X-

GPLRC beams. 

Figs. 6 and 7 display the postbuckling responses of functionally graded multilayer GPLRC 

beams with different GPL distribution patterns and weight fractions, respectively. The results 

show that the X-GPLRC beam is capable of carrying higher loads in the postbuckling region 

than the beams with other GPL distribution patterns. This is because the X-GPLRC beam 

with more GPLs distributed closely to surface layers has the highest beam stiffness. Com-

pared with the pure epoxy beam, all GPLRC beams exhibit considerably higher postbuckling 

load-carrying capacity that increases as GPL content grows.  
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Fig. 8. Effects of GPL geometry and size on postbuckling paths of functionally graded multilayer X-

GPLRC beams: (a) aspect ratio; (b) width-to-thickness ratio. 

The effects of GPL geometry and size on the postbuckling load-deflection curves are in-

vestigated in Fig. 8 for functionally graded multilayer X-GPLRC beams. The GPL width-to-

thickness ratio is taken as GPL GPL
b t = 10

3
 in Fig. 8a and its aspect ratio is chosen to be GPL GPL

a b  

= 4 in Fig. 8b, respectively. The postbuckling resistance increases with an increase in both 

GPL GPLa b  and GPL GPLb t . This effect, as revealed in buckling analysis, is seen to be much less 

significant when GPL GPLa b > 4 and GPL GPLb t > 10
3
. It should also be noted that GPL width-to-

thickness ratio has a much more important influence on the postbuckling behaviour than the 

aspect ratio.  

Fig. 9 depicts the effect of foundation stiffness on the postbuckling behaviour of function-

ally graded multilayer X-GPLRC beams resting on an elastic foundation. As has been shown 

in Table 4, (kw, ks) = (0.10, 0.02) represents the Pasternak elastic foundation; (kw, ks) = (0.10, 

0.00) indicates the Winkler elastic foundation and (kw, ks) = (0.00, 0.00) is for the beam with-

out an elastic foundation. The postbuckling curve tends to be higher as the foundation stiff-

ness increases, with the effect of shearing layer stiffness ks being more noticeable than that of 

the Winkler foundation stiffness kw.  
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Fig. 9. Effect of foundation stiffness on postbuckling paths of functionally graded multilayer X-

GPLRC beams. 

6. Conclusions 

The buckling and postbuckling of functionally graded multilayer GPLRC beams resting on an 

elastic foundation have been investigated on the basis of the first-order shear deformation 

theory. Dimensionless critical buckling loads and postbuckling equilibrium paths are given 

for multilayer GPLRC beams with different GPL distribution patterns. Numerical results 

show that addition of a small amount of GPL nanofillers can significantly improve the buck-

ling and postbuckling resistance of polymer composite beams. GPLs with a large surface area 

and containing fewer single graphene layers can provide better reinforcing effects, but when 

GPL aspect ratio and width-to-thickness ratio are larger than 4 and 103
, respectively, both crit-

ical buckling load and postbuckling path remain almost unchanged regardless of a further in-

crease in both ratios. Moreover, the beam with more GPLs distributed closely to the surface 

layers has a higher critical buckling load and postbuckling load-carrying capacity that are in-

creased as the GPL content increases. Results also show that the foundation stiffness increas-

es the critical buckling load and postbuckling load-deflection curve of functionally graded 

multilayer GPLRC beams. The effects of slenderness ratio and boundary conditions are also 

discussed and demonstrated through illustrative numerical examples. 
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