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Highlights 

 The oxidation behaviours of Mg alloys from low to high temperatures are reviewed. 

 Characteristics of MgO during oxidation is discussed. 

 Mechanisms of Mg oxidation is presented. 

 Effect of various alloying elements is analysed. 

 

 

Abstract 

This paper reviews (i) the oxidation of Mg alloys at elevated temperatures in air; (ii) the 

influence of alloying elements on the oxidation of Mg alloys; and (iii) the progress in the 

development of oxidation-resistant Mg alloys. Low oxidation rates have been shown by Mg 

alloys containing the alloying elements, Ca, Be and rare earth elements. However, these 

alloying elements may also decrease mechanical properties, such as ductility.  

 

Keywords: A. Magnesium; A. Alloy; C. Oxidation 

 

 

1. Introduction 

Mg alloys have been used since Sir Humphry Davy firstly produced pure Mg in 1808 [1]. Mg 

is the eighth most common element in the earth, and the third most abundant element 

dissolved in seawater, after sodium and chlorine [2]. Applications and production of Mg 

alloys are increasing. In 2013, the global production of Mg reached 1.82 million tonnes [3]. 

The major advantage of Mg alloys is their low density. Mg is the lightest structural 

engineering metal [4]. Mg alloys have good castability, good weldability, high damping 

capacity, relatively high thermal and electrical conductivity, and are recyclable [5-8]. 

However, the wider use of Mg alloys is restricted because Mg alloys have poor cold 

workability, low creep resistance, low wear resistance and low corrosion resistance [8-17]. 

The low corrosion resistance is caused in part by the fact that Mg is a chemically active 

element, and the surface films are not particularly protective. Mg also has a high affinity to 
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oxygen [18] so that Mg alloys have typically a low oxidation resistance in air at high 

temperatures. Furthermore, Mg alloys can cause fires during manufacturing processes, such 

as machining, casting and heat treatment, and their surface can easily become degraded. This 

poor oxidation resistance significantly restricts their wider engineering applications [19-22]. 

For example, to date, Mg alloys are restricted in aircraft interiors because Mg alloys can 

ignite at high temperatures [23-25]. Hence, the development of Mg alloys with increased 

oxidation resistance would widen the applications of Mg alloys, particularly at elevated 

temperatures.  

The present paper reviews the research on the oxidation of Mg alloys, and on the 

development of oxidation resistant Mg alloys. 

 

2. Characteristics 

2.1 Magnesium oxide 

Mg alloys exposed in an oxygen-containing gas form magnesia (MgO) on the surface through 

the following chemical reaction [26]: 

2Mg + O2

= 2MgO                                                                                                                                               (1) 

MgO has a face centred cubic (fcc) lattice structure with a lattice parameter of 4.21 Å. Mg 

ions occupy all octahedral sites [27]. MgO has a high melting point of 2942 ± 50 C [28] and 

calcined or fused magnesia is widely used as a (high-temperature) insulator [26].  

However, MgO is not chemically stable in aqueous solutions. MgO reacts with water to form 

Mg(OH)2, which provides limited corrosion protection in aqueous solutions having pH values 

less than pH = 12 [8, 11, 29, 30]. MgO also provides little protection to Mg alloys against 

oxidation in air at high temperatures [27]. 

 

2.2 Solid and semi-solid alloys 

Fig. 1 presents typical oxidation behaviour, as exemplified by the weight gain of the AZ91 in 

air versus time, from the thermogravimetric analysis (TGA) study of Czerwinski [31, 32]. For 

clarity, the figure has been replotted with a logarithmic scale for the Y-axis scale. There were 
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typically two oxidation stages: (i) an initial parabolic stage, and (ii) an acceleration stage. The 

initial parabolic stage has been considered to be an incubation period [26]. At 197 C, there 

was only the initial parabolic stage during which there was essentially zero weight gain at 

times greater than 10 min. The overall weight gain was low, indicating slow oxidation. The 

low weight gain can be attributed to the formation of a protective layer of MgO. In contrast, 

the oxidation rates accelerated after a parabolic stage at temperatures above 400 C. This 

indicated that a protective oxide layer formed on the surface and provided protection for 

some time. Subsequently, the oxide layer could no longer protect the substrate from oxidation. 

With increasing temperature from 437C to 487C, the incubation period decreased from 25 

to 13 minutes. The same behaviour occurred for the solid Mg alloy after partial melting, as at 

472 C and 487 C. 

Fig. 2 exhibits the corresponding macroscopic surface morphologies of the AZ91 after 

oxidation in air [32]. Fig. 2a shows that at 387 C (i.e. below 400 C) the surface was flat 

after 10 hour oxidation. Fig. 2b shows that at 497 C, the substrate was fully covered by dark 

oxide nodules after 1 hour. Fig. 2c shows that at the higher temperature of 547 C, there 

resulted the typical cauliflower morphology as the product of the burning of the Mg alloy. 

2.2.1 Temperatures less than 400 C  

Czerwinski [26] considered that amorphous MgO forms on Mg alloys at room or at low 

temperatures. However, it seems more likely that the MgO formed at these low temperatures 

is crystalline. This is based on the possible similarity to the passive film formed on stainless 

steel, where more recent research has shown that the film is crystalline [33, 34] even though 

the earlier researchers assumed that the surface film was amorphous [35]. Fournier et al. [29] 

measured the oxide thickness formed on pure Mg in an O2 atmosphere at different 

temperatures using XPS. The oxide thickness was 1.5 nm after 15 min at room temperature, 

2.6 nm after 15 min at 300 ℃, and 4.3 nm after 60 h at 300 ℃, which was similar to the 

thickness as the Al2O3 oxide layer formed on pure Al [36, 37]. However, once the oxidation 

temperature exceeded 400 ℃, the oxide grew rapidly to 4.3 nm in 15 min. Low oxidization 

rates below 400 ℃ were also reported by Medved et al. [38] on Mg alloys including AM50, 

AM60 and AE42. The oxidation weight gains at 200 ℃ and 400 ℃ were negligible up to 10 

hour.  
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These results indicated that 400 C is a critical temperature for the oxidation of Mg alloys. 

Below 400 C, the MgO layer formed on Mg alloys is compact and provides protection of the 

substrate from further oxidation [32]. Above 400 C, the oxidation becomes faster after a 

parabolic growth period and the protective capacity of the MgO disappears.  

Jeurgens et al. [39] used real-time in-situ spectroscopic ellipsometry (RISE) to study the 

oxidation kinetics of a Mg-2.63 at.% Al alloy at 31 C and various low oxygen pressures. Fig. 

3 shows that the variation of oxide film thickness followed parabolic kinetics. The present 

authors considered that this indicates (i) the separation of the two reactants by the MgO oxide 

layer formed, and (ii) the control of the oxidation by transport of species within the MgO 

oxide layer.  

Hence, at low temperatures, the MgO layer is considered a compact film that provides 

protection to the substrate from oxidation 

 

2.2.2 Temperatures above 400 C 

At temperatures above 400 C, non-protective oxidation occurred in both pure Mg and Mg 

alloys [29, 38]. Fig. 1 indicates initial parabolic growth kinetics followed by significant 

weight gain at temperatures above 400 C. Czerwinski and co-workers [26] considered the 

parabolic growth stage as an incubation period, in which a compact protective thin oxide 

films formed and separated the two reactants. However, after the incubation period, the oxide 

layer was broken and nodular oxide growth began [26, 31, 32]. Once the oxide layer was 

broken, non-protective oxidation occurred and the oxidation kinetics were rapid, indicating 

that the oxidation rate was significantly accelerated. Growth of oxide nodules replaced the 

uniform layer formed at the initial stage. With increasing oxidation time, the nodules 

coalesced into a continuous layer that covered the entire alloy surface as illustrated in Fig. 2b. 

Fig. 1 allows estimation of the time to the onset of accelerated oxidation for AZ91. The 

incubation period was ~25 minutes at 437 C, and was decreased to ~13 minutes at 487 C, 

indicating a decrease in oxidation resistance.  

Similar results were reported for AM, AE, ZC, ZE series of Mg alloys in the temperature 

range from 400 to 500 C [38, 40, 41]. At temperatures below 400 C, the weight gains of 

AM60 and AE42 for 12 hour followed a parabolic law. At 450 C, linear growth started after 
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~2 hour, and this period was shortened to 1.5 hour at 500 C [38]. Lee and co-workers [40] 

found that, for a SiC reinforced ZC63 Mg alloy based composite, there was a negligible 

weight gain after 5 hour in air at 410 C; but, the incubation period only lasted for 1 hour at 

450 C, and 0.4 hour at 470 C, followed by linear oxidation kinetics. Lopez and co-workers 

[41] reported a similar phenomenon in ZE41, which is a high-temperature Mg alloy. The 

critical temperature was 450 C. TGA test showed that the oxidation followed parabolic 

kinetics for about 5 hour below 450 C. In contrast, at 500 C linear kinetics started after a 

1.5 hour incubation period. Leontis and Rhines [42] reported similar results for the oxidation 

of pure Mg over a temperature range from 500 C to 575 C. 

In summary, there is a critical temperature, which ranges from 400 to 450 C depending on 

the composition of the Mg alloy. Below this critical temperature, the growth of the MgO film 

is slow, and the oxide protects the substrate from oxidation. Above this critical temperature, 

oxidation consists of two stages. In the initial stage, which is also the incubation period, the 

oxidation follows parabolic kinetics. Then, there is linear growth kinetics, which represents 

the accelerated oxidation stage. Higher temperatures are associated with a shorter incubation 

period.  

 

2.3 Ignition and burning  

Oxidation at high temperatures may cause ignition and burning of a Mg alloy. A feature of 

Mg burning is the emissions of significant heat and bright visible light [43]. There is a 

significant Mg vapour pressure [26, 31, 43, 44] when the alloy becomes semi-solid or molten 

at high temperatures. The Mg vapour saturates the porous oxide and provides a large surface 

area between vaporised Mg and oxygen, and creates conditions that favour ignition and 

burning [43]. Fig. 2c shows the intensive surface oxide sponges and cauliflower morphology, 

which is regarded the result burning of the Mg alloy [26, 31].  

The ignition temperature was conceived as a means to characterise the susceptibility of 

initiating burning of Mg alloys. Because of the exothermic nature of Mg burning, the ignition 

temperature has been measured as the temperature associated with a sharp increase of the 

alloy temperature [26, 27, 43] when the Mg alloy was subjected to a temperature ramp in air 

in a furnace. The ignition temperature of pure Mg ranged from 620 C to 650 C [45-47], 

which is close to or equal to the melting temperature of pure Mg of 650 C. For Mg alloys, 
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ignition may occur at lower temperatures, either below or slightly above the solidus, because 

localized melting of the alloy significantly accelerates the Mg evaporation rate. For example, 

the ignition temperature of AZ91 was measured to be 600 C in one test [48] and 520 C in 

air in another test in which the holding time was 20 min [49]. This indicates that there can be 

a wide variation in the measured ignition temperature, which clearly depends on the method 

of measurement. 

The oxidation products of burning Mg alloys are more complicated than the products of 

oxidation without burning. Temperature between 3000 C to 5000 C have been reported in a 

Mg flame due to the large amounts of heat generated in the burning of Mg [50, 51]. At these 

high temperatures, nitrogen, which does not appreciably react with Mg at lower temperatures, 

becomes a reactant by the following reaction [43, 52]: 

3Mg + N2

= Mg3N2                                                                                                                                             (2) 

Thus, the products of burning of pure Mg include MgO and the greenish yellow magnesium 

nitride, Mg3N2. In Mg-Al alloys, aluminium nitride AlN and Mg-Al spinel MgAl2O4 have 

also been detected after burning [43, 53]. 

 

2.4 Molten alloys 

Mg is typically melted in mild steel crucibles at temperatures above 650 C, which is the 

melting temperature of pure Mg [54]. The oxidation of molten Mg is more rapid than 

oxidation at lower temperatures, and there is typically the tendency for ignition and burning 

of molten Mg [55]. Balart et al. [56] found that the oxidation of molten AZ91 in air involved 

(i) the formation of an oxidation layer, (ii) nodular growth, and (iii) ignition and burning. The 

surface had two distinct characteristic regions: (i) the layer growth region and (ii) the nodular 

growth region. There were also yellow nitrides on the surface, as a result of burning. These 

characteristics are schematically shown in Fig. 4. The macroscopic uniform oxide layer is 

considered a product formed during the initial oxidation stage. After the initial oxidation 

period, there is oxidation associated with an oxidation product in the form of oxide nodules, 

and subsequently the alloy ignites and burns. Some of the burning products remain on the Mg 

alloy surface. The high vapour pressure of Mg at these temperatures means that oxidation 
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associated with the uniform layer growth has been quickly replaced by oxidation with 

nodular growth, and burning with the associated cauliflower morphology. 

Liu and co-workers [57] using TGA measurements found that pure Mg and AZ91 exposed at 

760 C in air containing 0.001 vol.% HFC-134a exhibited linear oxidation kinetics without an 

incubation period. This implied that the rapid oxidation occurred directly on the surface of 

the melt. The oxidation products on the surface of the pure Mg were MgO and Mg3N2, 

whereas the surface of the AZ91 melt contained MgO with small amounts of Mg3N2, AlN, 

MgAl2O4 [57]. AlN and Mg3N2 were considered as burning products as a result of the 

chemical reaction of nitrogen with Al and Mg vapour during burning [56]. When the 

temperature was above 850 C, a freshly exposed surface spontaneously burst into flame [54].  

 

2.5 Flammability 

Mg alloys are prone to burn when in contact with an open flame or other heat source, and Mg 

flames are difficult to extinguish [23, 24, 43]. The term flammability was used by Czerwinski 

[23] to describe the tendency to continued burning of the Mg alloy despite flame removal. 

Liu et al. [24] found that the burning of AZ31, WE43 and ZE10, studied using a cone 

calorimeter at a radiation power of 65 kW/m2, showed the following common characteristics. 

The side and upper faces of the specimens developed protuberances. The number of 

protuberances increased, these protuberances began to ignite and became more prominent. 

The initial small saffron flames changed to a strong dazzling white flame, and the specimens 

burned steadily. However, the burning characteristic after heat source removal was not 

analysed in this study.  

Prasad et al. [58, 59] found that there was no burning before melting in their study of the 

flammability of a range of Mg-X binary alloys (X = Al, Ca, Si, Sn, Sr, La, Mn, Zn, Zr, Ce, 

Gd, and Nd), AZ61 and AZ91, using a flame test as illustrated in Fig. 5 as a top view. One 

end of the horizontal Mg alloy sample (typically 20 mm in diameter and 200 mm in length) 

was subjected to a liquefied petroleum gas (LPG) flame with a temperature of ~1100 C. 

Thermo-couples allowed estimation of the flame temperature, and the temperature at the ends 

of the Mg alloy sample. 



 Page 9 of 64  
 

In all tests there was no burning until the specimen tip melted. Melting occurred at the 

melting temperature for pure Mg. For Mg alloys, burning typically commenced at lower 

temperatures because Mg alloys start to melt at temperatures lower than that of pure Mg. 

Fig. 6 shows a typical test for AZ61. The tip of the AZ61 specimen was subjected to the LPG 

flame. Localized ignition occurred after the specimen tip melted (Fig 6a) followed by burning 

of the specimen tip (Fig. 6b). The fact that burning required alloy melting indicates that Mg 

vapour is the burning species [58]. This indicates that the mechanism of burning for Mg 

alloys involves the alloy melting, vaporization of Mg, and the burning of Mg vapour. After 

the specimen end had been subjected to the LPG flame for some time, the specimen tip 

melted and often a blob of molten Mg alloy separated from the specimen tip and fell to the 

foundry floor.  

Fig. 6c illustrates what typically happened when the LPG flame was removed from the end of 

the Mg specimen. The burning blob of molten Mg alloy continued to burn until all the Mg 

was consumed. The burning end of the Mg specimen extinguished. This was attributed to the 

heat conduction away from the hot end of the horizontal specimen by conduction along the 

specimen. When the LPG flame was applied to the end of the horizontal specimen, there was 

sufficient heat input to maintain molten Mg at the end of the specimen, and the molten Mg 

provided sufficient Mg vapour to maintain burning. When the LPG flame was removed, the 

heat generated by the burning Mg was less than the heat conducted away from the hot end of 

the horizontal specimen by conduction along the specimen. As a result, the end of the 

horizontal Mg specimen cooled, the molten Mg solidified. At this stage, the Mg vapour was 

insufficient to maintain the flame, and the flame extinguished. In contrast, the molten blob of 

Mg on the sand of the foundry floor continued to be molten because, in that case, there was 

little conduction of heat away from the molten blob, and the flame of the burning Mg alloy 

provided sufficient heat and Mg vapour to maintain the Mg flame [58]. 

Marker [60], from the Federal Aviation Administration (FAA), studied the flammability of 

AZ31, WE43 and EV31A through both the laboratory and a full-scale aircraft fire tests. Mg 

alloys ignited and burned with an intense flame after melting. This again indicates that Mg 

vapour is the burning species because the burning required alloy melting. AZ31 burned 

steadily despite the removal of the heat source in these experiments. In contrast, burning 

ceased on heat removal for the Mg alloys containing the rare earth (RE) elements (WE43 and 

EV31A). Unfortunately, the mechanism of the RE elements in the flammability resistance 
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was not analysed. The present authors consider that the RE elements promoted formation of 

dense oxide layer on the surface of molten Mg alloys, which prevented the further 

vaporisation of Mg, and therefore suppressed the burning. Subsequently, Marker [61] showed, 

using full scale flammability tests, that the use of WE43 in the construction of seat frames did 

not cause a significant change to the survivability to a survivable aircraft accident compared 

with the use of standard aluminium alloys. 

Burning of Mg is accompanied by the vaporisation of Mg. The Mg vapour significantly 

expands the contact area with oxygen, and leads to the burning with a flame. In addition, the 

burning of Mg is a vigorous exothermic process that releases a large amount of heat [23, 58]. 

The heat generated contributes the steady flame, and makes the flame difficult to extinguish. 

Thus, Mg alloys were historically prohibited from use in the aircraft cabin. To widen the 

applications of Mg alloys in the aerospace industry, development of ignition-resistant and 

non-flammable Mg alloys is desirable.  

 

3. Mechanisms 

3.1 P-B ratio 

MgO-magnesia is the major oxidation product of Mg alloys. However, MgO provides 

marginal oxidation protection, unlike Al2O3 and Cr2O3, which effectively protect Al alloys 

and stainless steels from oxidation [27]. As previously mentioned, there is a critical 

temperature above which the oxidation rate of Mg alloys becomes significant.  

In an early study in 1923, Pilling and Bedworth [62] suggested that the protective ability of 

an oxide formed on a metal can be indicated by the Pilling–Bedworth ratio (P-B ratio). The 

P-B ratio, RPB, is given by:  

𝑅PB

=
𝑀oxide𝜌metal

𝑛𝑀metal𝜌oxide
                                                                                                                                           (3) 

where the numerator relates to the volume of the elementary cell of the metal oxide; the 

denominator relates to the volume of the elementary cell of the corresponding metal, from 

which the oxide is created; M is the atomic or molecular mass, n is the number of metal 

atoms in one molecule of the oxide, ρ denotes density, and the subscripts are self-explanatory.   
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The oxide layer is expected to be not protective if the RPB value is less than 1.0. A protective 

layer may be associated with RPB values between 1.0 and 2.0. If RPB the value is greater than 

2.0, the oxide layer is expected to be thick, tend to chip off, and provide little protection.   

The RPB value of MgO on Mg is 0.81. Thus, the oxide layer is not compact, and may not be 

able to provide protection to the substrate from oxidation, particularly at elevated 

temperatures [44, 62], even though MgO is easily formed due to the high affinity of Mg to 

oxygen. 

 

3.2 Diffusion of Mg2+ ions  

The understanding of the oxidation of Mg can be helped by a consideration of the transport of 

species through the oxide that forms on the Mg surface during oxidation. The following 

paragraphs briefly reviews the mechanism of diffusion-controlled growth of the MgO layer 

based on Czerwinski [27]. 

In MgO, the typical point defects are Schottky defects. These point defects form in a lattice 

containing oppositely charged ions when ions leave lattice sites and create vacancies that 

allow the diffusion of Mg2+ [63]. The formation of a cation vacancies can be described by the 

following reaction [64]:  

1

2
O2

= Oo + 2h·

+ V′′Mg                                                                                                                                     (4) 

where Oo , h· , V′′Mg  represent an O ion, an electron hole in the valence band, and a 

magnesium vacancy site with double ionisation, respectively [65].  

Wagner’s oxidation theory [66] indicates that Mg oxidation involves the outward diffusion of 

Mg-cations through the MgO surface layer, from the metal-oxide interface to the oxide-air 

interface. Thus, the growth of the MgO layer is primarily governed by the outward diffusion 

of Mg-ions.  

The MgO film is thin and assumed crack-free at the beginning of the oxidation. Thickening 

of the oxide layer is accompanied by the outward diffusion of Mg-ions, which leads to the 

inward vacancy flux, which may create voids at the metal-oxide interface [26]. Accumulation 
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and segregation of such defects eventually introduces internal stress in the oxide film. At the 

critical thickness, the internal stress is sufficiently high to cause cracking [67]. Such cracks 

can act as transport channels for Mg vapour [31], and therefore promote oxidation.  

Assuming a crack-free continuous surface oxide layer, the thickness of the oxide layer is 

related to the diffusion of Mg2+ cations. The thickening rate, 
d𝑋

d𝑡
 , can be expressed by Fick’s 

first law [27]: 

d𝑋

d𝑡

= Ω∆𝑐
𝐷

𝑋
                                                                                                                                                           (5) 

where, X is the oxide thickness, t is time, Ω is the volume of the oxide per reactant ion, ∆c 

represents the concentration difference across the oxide film, and D is the diffusion 

coefficient of the Mg2+ ions inside the oxide.  

Early studies showed that both lattice and grain boundary diffusion contributed to the 

oxidization [68]. Hence, the diffusion coefficient D can be expressed as [69]: 

𝐷

= 𝐷L(1 − 𝑓)

+ 𝐷B𝑓                                                                                                                                          (6) 

where DL and DB are the lattice and grain boundary diffusion coefficients, respectively, and f 

denotes the fraction of the diffusion along grain boundaries. Assuming a cubic shaped grain, 

the fraction f can be calculated from [68]: 

𝑓

=
2δ

𝐸t
                                                                                                                                                                     (7) 

where δ is the grain boundary width and Et is the oxide grain size at oxidation time t, which 

can be experimentally measured. Perrow and co-workers [70] found a parabolic growth in the 

grain size of NiO oxide with oxidation time t. Because MgO growth has the same mechanism 

as NiO, which involves outward migration of cations [64], it is reasonable to assume 

parabolic growth in MgO in the early stage of oxidation. This can be expressed using the 

following equation (8): 
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𝐸t
2 − 𝐸0

2

= 𝐺𝑡                                                                                                                                                         (8) 

where E0 represents the initial grain size and G is the grain growth parameter. Substituting the 

equations (6)-(8) into (5), the growth rate of the MgO oxide layer is formulated as follows 

[71]: 

d𝑋

d𝑡

=
Ω∆𝑐

𝑋
[𝐷L

+
2δ(𝐷B − 𝐷L)

(𝐸0
2 + 𝐺𝑡)0.5

]                                                                                                                        (9) 

This analysis of Mg diffusion and oxide growth has been used to provide a qualitative 

interpretation of the low oxidation rates of Mg at low temperatures below 400 C. The 

growth rate of the MgO surface layer is expected to increase with temperature because both 

the lattice and grain boundary diffusion increase with increasing temperature [72]. It has been 

considered that, at low temperatures, lattice diffusion by a vacancy mechanism is the only 

channel for Mg ions diffusion [27], because MgO has been considered to be amorphous or 

monocrystalline with no grain boundaries at room temperature or at slightly higher 

temperatures [26, 27]. The diffusion coefficient DL can be expressed by the Arrhenius 

equation [72]: 

𝐷L

= 1.0

× 10−6 exp (−
150000

R𝑇
)  m2 s⁄                                                                                                    (10) 

where R is the gas constant and T is the temperature (in K). Even at 400C (673 K), the 

lattice Mg ion diffusion coefficient is 2.24 × 10-18 m2/s, which is small. Hence, as there is no 

grain boundary diffusion, lattice diffusion is too slow to allow a substantial oxidation rate. 

However, there has not been an attempt to relate the actual oxide thickness and actual 

oxidation rate to the actual Mg ion diffusion coefficient. Thus, this model is qualitative.  

Furthermore, as discussed above, there is no reason to assume that MgO formed at low 

temperature oxidation is amorphous. Early studies by Finch and Quarrell [73, 74] found an 

abnormal crystal structure of a thin MgO film, while such a structure was not observed in a 
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thicker MgO layer. It seemed that the abnormal crystal structure of the thin MgO film was 

pseudomorphic. Because the P-B ratio of MgO is 0.81, the internal stress could lead to strain 

in a thin MgO film and caused such a pseudomorphism. Therefore, the thin MgO film formed 

at low temperatures should be crystalline. At room or slightly higher temperatures, MgO 

could be monocrystalline without grain boundaries. Thickening the film at higher 

temperatures can be accompanied with transforming the monocrystalline MgO layer to a 

polycrystalline MgO layer. In addition, previous studies showed that the defect density in a 

thin MgO film was lower than that in a thick film [32]. 

At temperatures higher than 400 C, diffusion is accelerated. The higher temperature 

accelerates the lattice diffusion of Mg2+ cations, and grain boundary fast diffusion (DB) 

becomes possible because the MgO is polycrystalline at higher temperatures [73]. Czerwinski 

and Lea [27, 72] indicated that grain boundary diffusion is two orders of magnitude faster 

than lattice diffusion. Thus, at high temperature, the outward diffusion of Mg2+ cations in the 

polycrystalline oxide layer is significantly faster. In addition to the film thickening, the faster 

outward diffusion of Mg2+ cations is associated with faster inward vacancy flux, creating 

voids at the interface between the oxide layer and the metal substrate [26]. These voids cause 

local stress, contributing to film cracking. As a result, the interface experiences a 

morphological change, and cracks form within the oxide layer. The cracks can accelerate the 

oxidation rate by providing a path for the diffusion of Mg vapour as discussed in the next 

section.  

 

3.3 Evaporation  

Fig. 7 illustrates the typical morphologies that form on the Mg surface during oxidation at 

high temperatures. The non-protective nature of the thick oxide layers at high temperatures 

has been recognized for a few decades [75]. Fig. 7a illustrates the ridge morphology on AZ91 

after air-oxidation at 487 C for 1 min, from Czerwinski [32]. An oxide ridge was generated 

by the reaction of oxygen with Mg at oxide cracks. Fig. 7b illustrates the nodular morphology 

produced by an increase in the oxidation temperature or oxidation time, which is dominated 

by Mg evaporation [26, 32].  
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Mg vaporization is a typical feature of Mg oxidation at high temperatures. The vapour 

pressure of Mg and Al in equilibrium with solid Mg and solid Al is given, for the temperature 

range 298 K to 923 K, by [76]: 

log𝑃Mg = 13.495 −
7813

𝑇

− 0.8253log𝑇                                                                                                     (11) 

log𝑃Al = 14.465 −
17342

𝑇

− 0.7927log𝑇                                                                                                    (12) 

where P is the vapour pressure (in Pa) and T is the temperature (in K). At 400 C (673 K), the 

vapour pressures of Mg and Al are 0.36 Pa and 2.9 × 10-14 Pa, respectively. The vapour 

pressure of Mg at 400 C is thirteen orders of magnitude greater than that of Al. The high 

vapour pressure of Mg at elevated temperatures contributes to the high temperature oxidation 

of Mg alloys. Gulbransen [44] found that the contribution of evaporation to the oxidation 

increased with increasing temperature for pure Mg. The vaporisation of Mg was thought to be 

responsible for the porous oxide film above 450 C as the evaporation rate was 2.2 × 10-6 g 

cm-2 min-1, which is two orders of magnitude higher than that at 400 C [44]. Smeltzer [69] 

also found that rapid oxidation occurred in an Al-3 wt.% Mg alloy due to Mg evaporation at 

temperatures above 400 C. 

The high evaporation rate of Mg can lead to micro-cracks inside the MgO layer and a ridge 

morphology on the surface in the early stage of oxidation as shown in Fig. 7a. The Mg 

vapour can rapidly reach the oxide-air interface through the micro-cracks and the voids 

formed in the surface oxide. Reaction of the Mg vapour and oxygen forms oxide nodules [32]. 

Fig. 7b presents a typical oxide nodule. The surface oxide is non-protective and oxidation 

follows linear kinetics [27]. The linear kinetics implies that the oxidation rate does not 

depend on the thickness of the surface oxide layer, because oxygen and Mg vapour can easily 

penetrate through the open cracks and voids to the metal-oxide and oxide-air interfaces. As 

oxidation continues, the oxide nodules grow, coalesce and form a loose structure.  

Fig. 8 provides a schematic of the Mg oxidation mechanism at high temperatures [26]. Fig. 8a 

proposes that, in the initial stage, a protective compact continuous oxide layer forms, through 

which Mg ions diffuse outwards. At this stage, the oxide growth follows parabolic kinetics. 

Fig. 8b shows that voids and cracks form. Voids at the Mg metal surface allow Mg 
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vaporization. The cracks allow penetration of oxygen and outward vapour phase diffusion of 

Mg vapour. The reaction of oxygen with the metal at the crack walls leads to an outward 

growth of ridges [26, 31]. At high temperatures, these two stages are short. Fig. 8c illustrates 

that further oxidation is accompanied by the growth of nodules through Mg evaporation. Mg 

vapour diffuses by vapour phase diffusion through the cracks, reaction with oxygen, and the 

deposition of the Mg oxide leads to the formation of Mg oxide nodules. Czerwinski [31, 32] 

claimed that an onset of accelerated oxidation is associated with the growth of oxide nodules. 

At this stage, there is a non-protective oxide layer, and the oxidation has linear kinetics. Fig. 

8d illustrates that further oxidation leads to the coalescence of the nodules leading to the 

formation of a loose surface layer with high porosity. Such a morphology is also called a 

sponge [38]. Continuing oxidation and/or increasing temperatures can cause a violent 

reaction and burning, producing a cauliflower morphology [31, 32, 77].    

 

3.4 Intermetallic phases 

High temperature oxidation of a Mg alloy in air is typically associated with a change of the 

microstructure and melting of second phases. The eutectic temperature of the Mg-Al system 

is 437 C. Above this temperature in Al-rich Mg alloys, the eutectic micro-constituent 

spheroidizes and melts [38, 78]. Similarly, CuMgZn intermetallic in ZC63 decomposed into 

α-Mg during oxidation at temperatures above 450 C [40]. Because of the localized melting 

at high temperatures, liquid islands form in the alloy, which accelerate the evaporation Mg 

[31]. Consequently, growth of the oxide nodules is accelerated.  

Fig. 9 provides a schematic of the late stage oxidation of a Mg alloy. Melting of the 

intermetallic compounds produces high local pressures of Mg vapour. If such a region is 

associated with cracks in the oxide, Mg vapour diffuses through the cracks and is oxidized at 

the oxide surface, contributing to the growth of the oxide nodule. The oxidation resistance in 

this temperature range can be improved, as shown by Pan et al. [79] by a two-step annealing 

method to eliminate the eutectic micro structures in Mg alloys. Pan and co-workers’ work 

may provide an innovative approach to increase the oxidation resistance of Mg alloys. 

Arrabal et al. [80] analysed the oxide morphology and elemental distribution for AZ91 after 

oxidation in air at 410 C for 4 hour. After oxidation, the pore size on the surface was similar 

to that of the β-phase particles. EDS showed the Zn content in the β-phase reduced sharply 
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after oxidation while the α-Mg at the surface did not have significant changes in Zn content. 

Thus, Arrabal et al. [80] suggested that, in addition to the Mg vapour, the vaporisation of Zn 

during dissolution of the β-phase (Mg17Al12) also contributed to the film cracking and led to 

the superficial pores.  

Intermetallic phases, particularly those in a eutectic microstructure along the grain boundaries, 

are also responsible for selective oxidation owing to their low melting temperature [26]. 

Selective oxidation causes a serrated interface between the oxide layer and the metal, which 

increases the surface area available for Mg evaporation and oxygen penetration.  

Fig. 10 presents the model proposed by Arrabal et al. [80] describing the oxidation of AZ91. 

During long time exposure at high temperatures, the dissolution of the β-phase is 

accompanied by the formation of pores at the surface by Zn sublimation, leading to the partial 

break-up of the initial oxide film at the pores, and where grain boundaries intersect the 

surface. Thus, at the pit regions, Mg cations and Mg vapour can directly react with oxygen, 

resulting in the formation of loose oxide nodules. Further oxidation leads to expansion of the 

oxidized pit region. An Al-rich region is formed below the loose oxide because of the 

consumption of Mg during oxidation, leading to the local increase in Al concentration at the 

oxide/metal interface. Finally, the surface is replaced by a loose MgO sponge under which is 

an Al-rich layer [80]. This model could explain the oxidation mechanism around the eutectic 

temperature but it did not involve local melting or the formation of liquid islands that could 

accelerate the oxidation rate [26, 27, 38]. Hence, although the selective oxidation takes the 

intermetallic compounds into account in the oxidation of Mg alloys, the model needs further 

refinement. 

 

4. Evaluation of the Mg oxidation mechanism 

Due to the high affinity to oxygen, Mg alloys are easily oxidized and form MgO on the 

surface even at low temperatures. Because the P-B ratio of MgO is low, MgO is expected to 

have an incompact structure. Nevertheless, at room or relatively low temperatures, a thin 

MgO film covers the surface of the Mg alloy. Because the diffusion rate of Mg2+ in the MgO 

film is slow, and the defect density in a thin MgO film is low at low temperatures, the thin 

MgO is considered to be compact and can provide protection of the substrate from oxidation. 

Thus, at low temperature, the oxidation rate of Mg alloys is slow. 
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Above the critical temperature, which ranges from 400 to 450 C depending on the 

composition of the Mg alloy, oxidation consists of two stages. In the initial stage, which is 

also the incubation period, the oxidation follows parabolic kinetics. Then, there is linear 

growth kinetics, which represents the accelerated oxidation stage. Higher temperatures are 

associated with a shorter incubation period.  

There are a number of factors that promote oxidation. High temperature leads to faster 

diffusion of Mg2+ cations, which thickens the compact film formed at the initial stage. 

Thickening of the film results in a loss of protection because of the voids formed as a result 

of segregation of vacancies at the metal oxide interface. At higher temperatures there is, in 

addition, melting of the eutectic microstructure, and Mg vaporisation. All these contribute to 

the film cracking. The cracks within the oxide allow easy outward vapour phase diffusion of 

Mg vapour to the surface, and inward penetration of oxygen. As a result, the morphology of 

the surface oxide changes from a compact structure to a ridges morphology. Further oxidation 

leads to nodular growth by significant diffusion of Mg vapour through the cracks, and 

reaction with oxygen at the oxide-air interface. Finally, a loose structure (sponge) forms after 

coalescence of the nodules. 

For molten Mg alloys, the oxidation is governed by the vigorous evaporation of Mg. The 

incompact MgO layer rapidly changes to a highly porous morphology because of the Mg 

vaporisation. Direct reaction of the Mg vapour with oxygen causes ignition. The large 

amount of heat generated by this exothermic process enables a steady flame. In addition, the 

molten Mg provides sufficient Mg vapour to maintain burning. 

Burning of one end of a horizontal solid Mg rod occurs when there is sufficient heat to cause 

melting. Burning of a Mg rod continues as long as there is a heat source applied to one end. 

The burning stops when the heat source is removed because the heat conduction away from 

the hot end decreases the temperature of the Mg rod below the melting temperature, resulting 

in insufficient Mg vapour to maintain flame. In contrast, an isolated molten blob of Mg 

continues to burn until consumed. 

Although the characteristics and mechanisms of the oxidation of Mg alloys at elevated 

temperatures have been extensively studied, there are still gaps in knowledge. In an early 

study, the ignition temperature of a thin magnesium ribbon was found to be 507 C [81]. In 

another study, however, fine Mg powder with a particle size of 6 μm already ignited at 437 

C [82]. By comparison, the bulk forms of Mg alloys ignite only after melting as discussed in 
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Section 2.5. Thus, shape is a significant factor in the oxidation of Mg alloys, but, there is not 

a quantitative model to describe such features. However, it is clear that the ignition 

temperature depends on the experimental condition. Lower ignition temperature are measured 

for the test with slower heating rate and for samples with greater specific surface area. The 

important factor is the accumulation of a critical concentration of Mg vapour. 

 

5. Common alloying elements 

Chemical composition, which determines the microstructure of the Mg alloy, is another 

important factor influencing oxidation. Al, Zn, Cu and Mn are the four most common 

alloying elements in Mg alloys. The influence of these four alloying elements on oxidation of 

Mg alloys is reviewed in the following sections.   

 

5.1 Al 

Mg-Al based alloys are the most commonly used cast Mg alloys because of their good 

castability, acceptable strength and low price [54, 83]. Alloying with sufficient Al leads to (i) 

the formation of the β-phase (Mg17Al12) as isolated beta phase particles, or in the form of the 

eutectic micro-constituent, or precipitates, and (ii) refinement of the as-cast grains [84]. Thus, 

Mg-Al alloys have mechanical properties better than pure Mg. For example, AZ91 has a 

tensile strength of 130 MPa as-cast and 200 MPa in the T6 heat-treated condition [54]. In 

addition, a continuous Mg17Al12–phase at the surface may also provide some corrosion 

protection [8, 11, 85, 86].   

However, at high temperatures, the oxidation resistance of Mg-Al alloys is not as good as that 

of pure Mg [32, 38] despite the hope that Al would lead to the formation of a protective γ-

Al2O3 [87] film, and therefore a low oxidation rate. Leontis and Rhines [42] found that over 

1.1 wt.% Al accelerated Mg oxidation. Similarly, Barrena et al. [88] reported that the weight 

gain of Mg-9 wt.% Al was always higher than that of Mg-6 wt.% Al within the temperature 

range from 500 C to 700 C in cyclic oxidation tests. Fast oxidation occurred when the Al 

content was over 10 wt.% at 400 C [42]. This indicated that Al additions accelerated the 

oxidation of Mg alloys.  
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MgAl2O4 spinel was reported to from at room temperature for alloys containing 3.1 wt.% to 

6.2 wt.% Al [89]. Shih et al. [90] considered that the MgAl2O4 spinels at the Mg-MgO 

interface could act as a diffusion barrier for Mg2+ cation. However the contribution to 

oxidation resistance was not significant.  

The negative effect of Al on oxidation resistance of Mg alloys was attributed to the low 

melting temperature of the β-phase, and the eutectic microstructure, which causes selective 

oxidation and evaporation of Mg. Because Mg-Al based alloys are the most widely used, 

increasing their oxidation resistance would have technological significance.  

 

5.2 Zn 

Alloying with Zn improves the fluidity, creep resistance and strength of Mg alloys [91, 92]. 

Zn-containing Mg alloys show a high age-hardening response due to the formation of a rod-

like β1’ phase that has a coherent or a semi-coherent interface with the matrix [93]. In 

addition, Zinc improves the corrosion resistance of Mg alloys by reducing the effect of 

impurities [8]. 

However, Zn decreases the oxidation resistance at elevated temperatures [42]. The low 

melting temperature of Mg-Zn intermetallic phases (341 C) can cause significant 

evaporation of Mg and selective oxidation at high temperatures [94]. In addition, Zn tends to 

sublime [80], which leads to the formation of pores within both the matrix and the oxide scale, 

accelerating cracking of the oxide scale [42]. Hence, Zn is normally used as a ternary element, 

such as in the AZ series of Mg alloys, to improve the strength because the low Zn content has 

less influence on oxidation [32].  

Although binary Mg-Zn alloys are rarely used due to their instability at elevated temperatures, 

Mg-Zn based alloys have gained attentions because of their good mechanical properties. For 

example, as-cast ZC63 has a tensile strength of 145 MPa, and 245 MPa can be achieved in 

the T6 heat-treated condition [54]. Improving the oxidation resistance of Mg-Zn alloys would 

be a good strategy to widen their range of applications.  

 

5.3 Cu 
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In the Mg-Al system, Cu was reported to suppress discontinuous precipitation and increase 

the density of continuous precipitates [95]. Pan and co-workers [96] reported an optimal 

ageing response that enhanced both mechanical properties and electrical conductivity by 

alloying a Mg-6Zn alloy with 1 wt.% Cu. However, Cu reduces the corrosion resistance via 

galvanic corrosion, in which Cu-rich precipitates act as cathodes to accelerate the corrosion 

of the Mg matrix [8, 11, 18].  

Leontis and Rhines [42] reported a sharp increase in the oxidation rate at 475 C for pure Mg 

containing less than 1 wt.% Cu. Similarly, Fassel et al. [47] found a significant decrease in 

the ignition temperature for pure Mg containing 20 wt.% Cu. However, there have been no 

studies correlating this effect to Mg alloys. As Cu can increase the eutectic temperature of 

Mg-Zn [97], it is reasonable to expect that alloying with Cu may improve the oxidation 

resistance of this type of alloy through inhibiting the evaporation of Mg. Hence, the effect of 

Cu on oxidation resistance in Mg alloys needs further study.  

 

5.4 Mn 

Manganese is added as a ternary element to many commercial magnesium alloys, the AZ 

series alloys in particular, to improve the corrosion resistance [8, 30, 98]. Previous studies 

[99-102] showed that small addition of manganese (0.2 wt.%) can increase the tolerance limit 

for the impurities, Fe, Cu and Ni. Nearly 70 years ago, Leontis and Rhines [42] found that 

Mn has no influence on the oxidation rate of pure Mg as the solid solubility of Mn in Mg is 

low (2.2 wt.%) [43]. Fassel et al. [47] reported an increase of the ignition temperature of Mg 

alloys alloyed with Mn. However, this was contradicted by Bobryshev et al. [45] found a 

slight reduction in the ignition temperature of pure Mg alloyed with 2 wt.% Mn. To clarify 

these contradictory results, further investigations would be useful. 

 

6. Other alloying elements  

Surface engineering, such as surface coating, including PVD and CVD, has been used 

for decades to improve oxidation resistance [38, 101]. For example, Pérez et al. [103] 

found that a PVD-processed Mg-10.6Zr alloy could be protected from oxidation below 375 

C. However, the difference in thermal expansion coefficient between the coating and the 
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substrate may lead to the coating peeling off at elevated temperatures. Hence, developing 

oxidation-resistant alloys has been regarded as a better approach.  

The selection of a possible element can be based on the P-B ratio of the oxide, and the 

Gibbs free energy of formation of the oxide by the following equation (13) [104, 105]: 

𝑎MgO + 𝑏X → X𝑏O𝑎 +

𝑎Mg                                                                                                                             (13)                                                                      

where a, b present the stoichiometric numbers and X is the alloying element. For an 

alloying element X, if the change of Gibbs free energy associated with equation (13) is 

negative, the XbOa oxide can form prior to MgO on the surface and protect the matrix 

from oxidation. For the common alloying elements, Al and Zn, the changes of their 

Gibbs free energy are highly positive at 700 C (118 722 J and 24 5397 J, respectively) 

[105], indicating that the formation of Al2O3 (P-B ratio = 1.29) and ZnO (P-B ratio = 1.59) is 

not favoured. Thus, adding those elements cannot provide protection to Mg against oxidation.  

Most alloying elements lower the solidus temperature, and therefore decrease the 

oxidation resistance and the ignition temperature [47] because of the tendency of 

localized melting. However, some alloying elements, such as Ca, Be and some RE 

elements have been reported to increase the oxidation resistance and the ignition 

temperature [47, 55] as discussed below.    

 

6.1 Ca  

Some Ca-containing Mg alloys have been characterized by adequate mechanical properties 

[106], which are achieved through refinement of precipitates and grain size [83, 107-109], 

whereas some Mg-Ca alloys are brittle [83, 108]. Li et al. [108] reported that the yield 

strength of AZ91D was improved 20% by alloying with 1 wt.% Ca due to the grain 

refinement and thinning of the β-phase. This effect was also achieved in a Ca-containing 

AS41, in which the coarse Mg2Si phase was modified by alloying with 0.11 wt.% Ca [83]. 

However, over 1 wt.% Ca can cause brittleness in Mg-Al alloys [108].  

Ca containing Mg alloys have been found to have a lower oxidation rate at high temperatures 

in both the solid and semi-solid state [110, 111]. You et al. [110] studied the oxidation of Ca-

containing Mg alloys at temperature ranging from 440 C to 500 C using TGA. At 440 C, a 
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1.5 wt.% and 3.0 wt.% Ca addition led to an oxidation rate somewhat lower than that of pure 

Mg. At 480 C and 500 C, the oxidations rates of the Mg-0.5 wt.% Ca, Mg-1.5 wt.% Ca and 

Mg-3.0 wt.% Ca binary alloys were also lower than that of pure Mg. But the oxidation rates 

of the Mg-3.0 wt.% Ca alloy were higher than that of the Mg-0.5 wt.% Ca alloy at all 

temperatures. This was attributed to the formation of the low melting temperature Mg-Mg2Ca 

eutectic when the Ca content was over 0.5 wt.%. This eutectic structure melted and formed 

liquid islands at the higher temperatures. These liquid islands promoted Mg evaporation. The 

weight gain data of You et al. [110] were not normalized by the surface area, nevertheless, as 

a qualitative analysis, some indication is provided of how Ca affects the oxidation of Mg 

alloys. 

You et al. [110] also investigated the surface concentration profiles of the Mg-3Ca alloy 

using Auger Electron Spectroscopy (AES). Fig. 11 presents their results. A Mg oxide layer 

with uniform Mg and O contents formed on pure Mg after oxidation at both 440 and 500 C. 

In contrast, there was Ca in the surface oxide on Mg-3Ca alloy after heating at both 440 and 

500 C. At 440 C, the surface layer was composed of an outmost layer of Mg oxide and a 

subsurface oxide layer containing Ca. At 500 C, the outmost surface oxide was calcium 

oxide, followed by mixed oxide layers containing Mg and calcium oxides [110]. 

Improved oxidation resistance in Mg alloys by alloying with Ca was also reported by other 

researchers. Cheng et al. [111] reported AZ91 containing 1.5 wt.% Ca had negligible 

oxidation after exposure for 7 hour at 400 C. XRD analysis detected both MgO and CaO on 

the surface of the alloy. It was considered that the CaO film was preferentially formed 

because Ca has a higher affinity with oxygen [112]. Lee [113] reported a low oxidation rate 

at 500 C in air for AZ31 containing 0.3 wt.% Ca. In addition to the formation of CaO, the 

high oxidation resistance was also attributed to the formation of Al2Ca on the grain 

boundaries of the α-Mg. In addition, Min et al. [114] found a 20 C increase of the melting 

point of the β-phase (Mg17Al12) in AZ91 containing 0.3 wt.% Ca. According to the empirical 

electron theory (EET), this is attributed to the enhanced bond strengths of the β-phase by the 

Ca that dissolved in it. Hence, the thermal stability of β-phase was increased. The stable β-

phase may contribute to oxidation resistance along the grain boundaries. Fan et al. [115] 

proposed a third element model for the Mg-3.5Y-0.8Ca alloy. The Ca was considered to 

increase the surface activity of Y in Mg-Y alloys, and to promote the formation of Y2O3. 

However, this hypothesis has not yet been experimentally confirmed.   
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Sakamoto et al. [116] reported a 250 C increase in the ignition temperature of pure Mg by 

alloying 5 wt.% Ca. A thin dense oxide film formed on the surface of the Mg alloy melt, and 

was considered as a protective layer. This oxide film was considered as a Mg and Ca 

combined oxide because it could not be detected in both the pure Mg and pure calcium melt 

[112]. Similarly, this type of thin oxide film was also found on a molten AZ91 containing 2 

wt.% Ca, which did not ignite up to 900 C [117]. Unfortunately, it is not clear why such a 

combined oxide could provide effective protection of the molten alloy. More recently, Li et al. 

[118] developed a non-flammable AZ91 alloyed with Ca via liquid forging and extrusion. 

The ignition temperature was increased from 545 C to 870 C by alloying with 6 wt.% Ca, 

being attributed to the formation of CaO and the thermally stable Al2Ca phase along the grain 

boundaries. Unfortunately, the alloy was associated with a significant reduction in elongation. 

The mechanism by which Ca improves the oxidation resistance of Mg alloys is still not fully 

understood. The P-B ratio of CaO is 0.65, which is even lower than that of MgO (0.81) [62, 

119]. Hence, the CaO film should not be sufficiently compact to provide protection. The 

improved oxidation resistance may be attributed to three possibilities: (i) a composite oxide 

layer consisting of CaO and MgO, which has a high density, forms during oxidation; (ii) Ca 

partially replaces Mg in the MgO, resulting in the increase in density of the MgO; and (iii) 

the formation of thermally stable intermetallic compounds. Alloying pure Mg with Ca leads 

to the formation of Mg2Ca along the grain boundaries in the form of a eutectic micro-

structure [83, 112]. As long as the oxidation temperature is below the melting temperature of 

the Mg-Mg2Ca eutectic structure, they effectively block the diffusion of Mg2+ ions along the 

grain boundaries that act as fast diffusion channels, and therefore the oxidation is inhibited. In 

Mg-Al based alloys, the Ca addition enables the formation of Al2Ca [108, 109], which acts as 

fast diffusion barriers on the grain boundaries. Furthermore, Ca could also supress the 

formation of the low melting temperature Mg17Al12-Mg eutectic structure and enhance the 

thermal stability of the β-phase, preventing selective oxidation along grain boundaries.  

Although Ca can increase the oxidation resistance of Mg alloys, Ca causes brittleness which 

restricts the application of Ca in Mg-Al alloys [108].  

 

6.2 RE elements  
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In last decade, Mg has been alloyed with various RE elements to develop new Mg alloys with 

better mechanical properties, formability and creep resistance at high temperatures [6, 120-

125]. The oxidation resistance of Mg alloys may also be enhanced by alloying with RE 

elements [126-128]. This section reviews the effects of RE elements on the oxidation of Mg 

alloys.  

 

6.2.1 Y  

Fan et al. [129, 130] observed an improvement of oxidation resistance of Mg after alloying 

with more than 8 wt.% yttrium (Y). The Mg-10Y binary alloy did not burn even at 

temperatures up to 900 C, when they were molten [130]. Unfortunately, over 8 wt.% Y led 

to significant embrittlement [83]. Thus, Mg-Y binary alloys cannot be directly used. Wang et 

al. [126] surface alloyed pure Mg with Y through ion implantation (Y ions of 90 keV with a 

dose of 5×1017cm-2 for 1h). There was a lower oxidation weight gain at both 400 C and 500 

C compared with non-implanted pure Mg. Surface morphological examination revealed a 

dense, crack-free surface on the samples with Y-implantation compared with the loose oxide 

scale containing lots of cavities on the surface of pure Mg. Fig. 12 shows the surface 

morphology of both the implanted and non-implanted pure Mg surfaces. Fig. 12a shows 

cracks and cavities on the loose oxide scale of the non-implanted sample while the oxide 

scale of the implanted (Y ions of 90 keV with a dose of 5×1017cm-2 for 1 h) sample appeared 

dense with neither cracks nor cavities, particularly in the regions marked by number 1 in Fig. 

12b. Wang and co-workers [126] considered that a combined MgO and Y2O3 oxide layer 

with a high density was responsible for the improvement of oxidation resistance because of 

the high P-B ratio of Y2O3 (1.39) [119]. In addition, nodules on the surface of the implanted 

sample (such as point “2” in Fig. 12b) were attributed to an outward diffusion of Y along the 

grain boundaries of the oxide. This is termed the segregation effect of the reactive element 

reported previously [131]. The outward diffusion of the reactive elements (REs) along the 

oxide grain boundaries inhibited the outward transport of the Mg cations and therefore 

inhibited oxidation [131].  

Y has also been alloyed into ternary and quaternary Mg alloys at lower concentrations. A 

Mg-Zn-Zr alloy with 5.1 wt.% Y had constant oxidation weight gain after the parabolic 

growth of oxide for over 270 hour at 400 C [132]. There was a compact and dense Y2O3 

layer on the sample surface after oxidation [132]. Bak et al. [133] added 1 wt.% Y and 3 wt.% 
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Y2O3 into AZ91, and found that the effectiveness of Y2O3 was lower than that of Y in terms 

of reduction in oxidation rate at temperatures ranging from 400 to 500 C. A possible 

explanation is the existence of some short-diffusion paths such as phase boundaries in the 

alloy with scattered Y2O3. These paths could favour the dissolution and transport of oxygen 

beyond the oxide scale [133]. Recently, Yu et al. [134] studied the effect of the state of Y on 

the oxidation resistance of Mg alloys by alloying pure Mg with both Y and Al. The weight 

gain of Mg-2.5Y was lower than that of Mg-2.5Y-2.5Al, indicating a better oxidation 

resistance. The dissolved Y in the matrix was responsible for the improvement because of the 

formation of protective Y2O3 layer on the surface. However, the added Al reacted with Y in 

the matrix, forming Al2Y intermetallic compound, suppressing the formation of Y2O3. Thus, 

the oxidation resistance was deteriorated.  

For molten Mg alloys, WE43 (containing 4 wt.% Y) had ignition-resistance up to 750 C [55]. 

At 650 C, when the oxide film of the molten WE43 alloy cracked, a new oxide film was re-

generated rapidly and the cracks were repaired. This repair was attributed to the formation of 

Y2O3 [55].   

Recently, You et al. [135] added both Ca and Y into AZ31, AZ61 and AZ91. The 

combination of Ca and Y led to higher ignition temperatures than the alloys containing only 

Ca. A similar result was found by Cheng and co-workers [111] that 0.5 wt.% Y resulted in a 

25 C increase of the ignition temperature of an AZ91-Ca alloy. In addition, Jiang et al. [136] 

alloyed pure Mg with both 1-3 wt.% Y and 1.5 wt.% Sn. The combination effect of Y and Sn 

resulted in a higher oxidation resistance than that of single addition of Y. These results 

indicated synergistic effects of Ca and Y, and Sn and Y so that an alloy containing both 

alloying elements has a higher oxidation resistance than the alloys with only Ca, Sn or Y. 

This could be attributed to either a dense oxide layer with a mixture of CaO or SnO2 and 

Y2O3 or the third element effect, in which the Ca or Sn increased the surface activity of Y in 

Mg-Y alloys and promoted the formation of Y2O3.  

Prasad et al. [59] studied the flammability of a series of Mg-Y binary alloys through flame 

test as illustrated in Fig. 5. Fig. 13 illustrates the ignition behaviour of a Mg-5Y specimen. 

After initial melting, only minor ignition occurred at the specimen end even after ~90 s 

exposure to the LPG flame (Fig. 13a), which was extinguished readily even in the presence of 

the LPG flame (Fig. 13b). Furthermore, the blob of the liquid alloy dropped on the foundry 

floor and remained unignited. There was a thin oxide on the subsequently solidified blob as 
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indicated by the interference colours. The resistance to oxidation and burning of the Mg-5Y 

alloy was attributed to the formation of a Y-containing oxide on the alloy surface, which 

protected the surface from further oxidation and evaporation [58]. 

However, large amount of Y addition could result in a decrease in mechanical properties of 

Mg-Al alloys [137, 138] due to the formation of massive Al2Y phase. Normally, the Y 

addition in the Mg-Al system is limited to 0.25 wt.% [111]. Hence, it seems not practical to 

improve the oxidation resistance of Mg-Al alloys by alloying with Y. 

 

6.2.2 Ce  

Cerium has attracted increasing interest in the development of oxidation resistant Mg alloys 

over the past 60 years [42, 139-141]. AZ31 was surface alloyed with Ce by Wang et al. [142] 

through ion implantation. There was a lower oxidation weight gain of the implanted AZ31 

(Ce ions of 45 keV with a dose of 1×1017cm-2) at 500 C compared with the non-implanted 

AZ31. However, the oxidation kinetics followed a linear law in both implanted and non-

implanted alloys, indicating the oxidation resistance improved by Ce implantation was not 

significant. It was considered that the pre-formed Ce2O3 and CeO2 layers during implantation 

were responsible for the improvement of the oxidation resistance.  

Recently, Lin et al. [143] found a 50 C increase in the ignition temperatures of both AZ91 

and AM50 alloyed with 0.25 wt.% Ce due to the formation of a compact Ce2O3 layer that has 

the P-B ratio of 1.16. When mixed with MgO, the combined oxide film was regarded as 

dense with few defects [143]. However, unlike Mg-Y alloys, there was an increased oxidation 

rate when the Ce content exceeded 0.25 wt.% because of the limits of the solid solubility of 

Ce in both alloys [143]. Fig. 14 shows the surface morphologies of the oxide films formed on 

AM50 at 500 C for 60 min. Without the Ce alloying, the oxide film was loose and porous. 

After alloying with 0.25 wt.% Ce, as shown in Fig. 14b, the film was almost free of holes or 

defects and was adherent. Holes and defects emerged on the surface after alloying with 0.45 

wt.% Ce due to a decrease in oxide adherence, as shown in Fig. 14c. Similar results were 

achieved in Lin’s study for AZ91D.  

The decreased oxidation resistance for Ce contents exceeding 0.25 wt.% was attributed to the 

formation of a thermally stable Al11Ce3 intermetallic compound, which consumed Ce. The 

formation of Al11Ce3 resulted in the depletion of Ce around the Al11Ce3 intermetallic 
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compound [143]. These Ce depleted localized regions became weak points for oxidation as 

the combined oxide layers on the surface of these regions could no longer provide oxidation 

protection. A similar result was reported by Li et al. [144] for AZ91. They found that the 

decreased oxidation resistance could be suppressed by rapid solidification even when the Ce 

content was as high as 0.98 wt.% in AZ91. Rapid solidification prevented the formation of 

the Al11Ce3 intermetallic phase. 

In addition to the formation of a Ce oxide that could act as a protective film on the surface of 

the Mg alloy, segregation of cerium as CeO2 along the MgO oxide grain boundaries could 

also inhibit the outward diffusion of Mg cations in the solid alloy [131], and therefore retard 

oxidation. This reactive element effect (REE) of Ce is schematically shown in Fig. 15. When 

a Mg2+ cation meets a Ce oxide particle on a grain boundary, Ce4+ cations saturate MgO 

through the following reaction [26]: 

CeO2 + 2MgL
2+

= CeL
4+ + 2MgO

+ VMg
′′                                                                                                         (14) 

where MgL
2+, CeL

4+ are Mg and Ce cations in the lattice, respectively, and VMg
′′  is the Mg 

vacancy site with double ionisation [65]. The CeL
4+ ions along the MgO grain boundaries 

effectively impede the grain boundary diffusion of Mg2+ cations, delaying oxidation. As the 

diffusion of Mg2+ cations becomes slow, the oxidation is mainly controlled by the mobility of 

O2- anions, which is s slow process. Hence, the growth of MgO decreases, typically by orders 

of magnitude [27]. 

Prasad et al. [59] found no beneficial influence of Ce on the burning of Mg-Ce alloys in a 

liquefied petroleum gas (LPG) flame test as illustrated in Fig. 5. The specimen tips of both 

Mg-0.5 wt.% Ce and Mg-3 wt.% Ce alloys started to burn after melting. 

Small alloying additions of Ce have provided some improvement to the oxidation resistance 

of Mg alloys. The formation of a compact Ce oxide layer on the surface could protect the 

substrate from further oxidation. In addition, the reactive element effect of Ce in Mg alloys, 

which is based on the analogy with Ni-Ce system, may also contribute to the oxidation 

resistance. However, it is not clear which mechanism dominates. Further investigation is 

required. Furthermore, contrary to Y, the presence of Ce in Mg alloys has no detrimental 
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effect on the mechanical properties, particularly in Mg-Al based alloys. Thus, from 

technological point view, Ce-containing Mg alloys are worth studying further. 

 

6.2.3 Nd  

Alloying with neodymium (Nd) to improve the oxidation resistance of Mg alloys has been an 

active research topic in the last decade. Wang et al. [145] found that Mg-2.87 wt.% Nd and 

Mg-4.5wt.% Nd were oxidation-resistant up to 500 C for 90 min. However, there was rapid 

oxidation weight gains with linear kinetics for Mg-Nd with 11.2 wt.% and 25 wt.% Nd. 

Aydin and co-workers [46, 146] measured somewhat similar behaviour in their studies of the 

ignition temperature. There was a sharp 100 C increase in the ignition temperature for Mg-

0.5wt.% Nd, whereafter the ignition temperature remained constant at 770 C for Nd content 

up to 6 wt.% [46].  

Thermodynamic calculations indicated that the MgO should form prior to Nd2O3 during the 

initial stage of oxidation. As schematically illustrated in Fig. 16, the initially formed MgO 

decreased the Mg composition on the surface of α-Mg. As a result, the activity of Nd was 

increased, and Nd2O3 formed. The high oxidation resistance was attributed to the formation 

of a Nd2O3/MgO duplex layer. Nd2O3 has a P-B ratio of 1.13 [62] and may be a compact 

layer that can protect the substrate. This model would be valid for a molten alloy only if there 

was no convection. 

However, when the Nd content is over 2.5 wt.%, Mg12Nd intermetallic particles form along 

the grain boundaries. Oxidation preferentially occurs on the Mg12Nd phases because of the 

larger change of Gibbs free energy from the reaction of the intermetallic phases with oxygen 

[146]. In addition, the lower melting temperature of the eutectic microstructure also 

contributes to the oxidation. Furthermore, in the molten state, as the Nd content increases, the 

formation of Nd2O3 causes local depletion of Nd in the liquid subsurface, leading to Mg 

vaporisation and ignition [147]. Thus, constant or even reversed oxidation resistance was 

observed at higher Nd content (above 2.5 wt.%) in both the solid and the molten state.  

The effect of Nd on the oxidation of ternary Mg alloys is complex. Arrabal et al. [80] studied 

the solid-state oxidation resistance and microstructure of AZ91D containing 1.4 wt.% Nd. 

The oxidation rate at 410 C of Nd-containing AD91D was 72% of that of the AZ91D alloy 

[80]. This was attributed to the reduction in selective oxidation of the Mg17Al12 β-phase 
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because Al was consumed through the formation of the stable Al-Nd intermetallic. Hence, the 

oxidation was delayed due to the smaller volume fraction of the β-phase. In a semi-solid 

condition, Zhao et al. [148] reported a 20 C decrease in the ignition temperature of AZ91D 

containing 0.5 wt.% Nd. This decrease was attributed to the decrease in the liquidus 

temperature and the low eutectic temperature [148]. However, the ignition temperature was 

increased by 40 C in AZ91D containing 5 wt.% Nd. The Nd2O3 oxide film was able to re-

generate and self-heal cracks or pores on the surface of the molten alloy [148].  

Compared with other RE elements, small addition of Nd is able to protect Mg alloys from 

oxidation. The improvement is attributed to the formation of Nd2O3 and the modified 

intermetallic phases. 

 

6.2.4 Gd  

Gadolinium (Gd) can also increase the oxidation resistance of Mg alloys [42]. Arrabal et al. 

[80] found that alloying AZ91 with 0.7 wt.% Gd suppressed the formation of the unstable 

Mg17Al12 phase, leading to the increase in oxidation resistance in the solid state. Because Mg-

Y-Gd based alloys showed a high specific strength at both room and elevated temperatures 

[149], the study of Gd on oxidation was focused on Y-containing alloys. Liu et al. [150] 

studied the solid-state oxidation behaviour of an Mg-Gd-Y-Zr alloy within the temperature 

range from 230 to 300 C in both O2 and O2 + H2O atmospheres. Gd and Y-containing Mg 

alloys showed low oxidation rates and negligible oxidation weight gains after 10 hour 

exposure in both atmospheres. The low oxidation rates were attributed to a multi-oxide layer 

consisting of MgO, Y2O3 and Gd2O3 on the surface, which protected the alloy from further 

oxidation. Wang et al. [151] studied the oxidation kinetics of a Mg-10Gd-3Y alloy in both the 

solid and semi-solid states. The oxide growth kinetics obeyed the parabolic law within the 

temperature range from 450C to 600 C, as shown in Fig. 17. Because of the protective 

effect by both Y and Gd, neither linear growth nor catastrophically exponential kinetics 

occurred even at 600 C for up to 90 min. This indicates that the protection also applied to the 

semi-molten alloys.  

Kim et al. [105] studied the ignition of binary Mg-0.48 at.% Gd (Mg-3Gd). The ignition 

temperature was 707 C. This temperature is significantly above the melting temperature of 

the alloy, and higher than that of Mg-3Ce and Mg-3La, for which the ignition temperatures 
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were 630 C and 524 C, respectively. Because of the P-B ratio of 1.29, Gd2O3 is a compact 

oxide that could protect the substrate from further oxidation, even when the alloy was molten. 

Kim and co-workers [105] claimed the higher solubility of Gd in Mg (23.5 wt.%) was 

responsible for the better protection. The solute concentration in the matrix increased due to 

the dissolution of the intermetallic phases with increased temperature. A higher solubility 

enabled the solute to fully homogenize in matrix during oxidation, promoting the formation 

of the dense layer during oxidation. Recently, Wu et al. [152] reported a high-strength, 

ignition-proof Mg-15.3Gd-1.9Ag-0.3Zr (GQ152K) Mg alloy that had a high ignition 

temperature of 935 C. Furthermore, this alloy was able to withstand a flame at 930 C for 

over 6 min. The good resistance to oxidation and good resistance to burning was attributed to 

the dense Gd2O3 and Ag2O films on the surface.  

These experimental results indicate that addition of Gd in Mg alloys appears to be an 

effective approach to develop new Mg alloys with improved oxidation and ignition resistance 

for applications at elevated temperatures. 

 

6.2.5 La  

Alloying with La and La oxide has been used to improve the mechanical properties of 

aluminium alloys [153, 154] but there have been limited studies on alloying with La or La 

oxide in Mg alloys. In 1946, Leontis and Rhines indicated that alloying with La or La oxide 

delayed oxidation of Mg alloys [42]. Recently, Zhao et al. [155] added La and La2O3 into 

AZ31 and found that the oxidation weight gain at 450 C was slightly decreased compared 

with AZ31 without such alloying additions, as shown in Fig. 18. In Fig. 18, as La2O3 

decomposed into La and O2 in the Mg melts, the La2O3 additions were converted into La. For 

AZ31 alloyed with La, the lowest oxidation rates was at 0.75 wt.% La, as shown in Fig. 18a. 

For AZ31 with addition of La2O3, AZ31-0.74 wt.% La exhibited the lowest oxidation rate, as 

shown in Fig. 18b. The oxidation weight gains of both alloys were similar, and higher La 

content led to higher oxidation rates in both conditions [155].  

The small protective effect of alloying with La was attributed to the formation of a duplex 

oxide film consisting of La2O3 and Al2O3 on the surface of the Mg-Al base alloys [156]. The 

P-B ratio of La2O3 is 1.11 [105], indicating the possibility of a compact layer. Fan et al. [157] 

also considered La2O3 as an effective inhibiter to oxygen diffusion even at high temperatures. 
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The increase in oxidation rate at the higher La content was attributed as a result of a reduced 

amount of β-Mg17Al12 in the AZ31 [155]. The “necklace” β-Mg17Al12was assumed to be an 

oxidation barrier [155]. A higher content La reacted with Al, forming Al11La3, which 

consumed Al in the matrix. Thus, the “necklace” β-phase was broken into discrete particles 

that could not delay the diffusion of ions. However, this hypothesis was not convincing 

because it neglected the fact that the α-Mg and β-phase eutectic structure with low melting 

temperature could accelerate the oxidation as discussed before [80]. The current authors 

consider that it is more likely that the higher La contents caused a decrease in the incipient 

melting of the alloy.  

The weight gain kinetics in Fig. 18 indicates that the oxidation incubation period (the period 

of parabolic kinetics) of the AZ31-La alloys was short for all La contents. Then there was 

linear oxidation kinetics for all samples regardless of the content of La, which indicated that 

the onset of accelerated oxidation was not delayed by La. This was attributed to the low solid 

solubility of La in Mg, which restricted the formation of a La2O3 film [105]. 

Recently, Zhang and co-workers [158] conducted first-principle calculation and predicted a 

preferential segregation of La atoms on a Mg (0001) surface, and exothermic O adsorption. 

The released heat on the La-alloyed Mg (0001) surface was less than that on the pure Mg 

(0001) surface, which was assumed to be beneficial for increasing the ignition temperature of 

the Mg-La alloy. In addition, Zhang [158] also found that ionic bonding predominates in 

MgO, but that the bonds of La2O3 were more covalent, inferring that La2O3 is more compact. 

However, the low solid solubility of La in Mg limits the formation of the oxide. Hence, La is 

not a practical solute in improving the oxidation resistance of Mg alloys in the solid or semi-

solid state. This could also be the main reason for the lack of interest in studying the 

oxidation behaviour of Mg alloys containing La.  

 

6.3 Be 

Beryllium (Be) has long been known to be beneficial to Al and Mg alloys. Small amounts of 

Be reduce tarnishing and the corrosion of Al at room and elevated temperatures [159]. In 

addition, Be can help purify Mg melts through reducing the level of inclusions, such as iron 

and other impurities [160]. Furthermore, small amounts of Be alloying into both Al or Mg 

alloys can decrease the oxidation rate [159, 161, 162] . Be is one of a few elements that has a 

higher affinity to oxygen than that of magnesium [160]. Thus, the assumption has been that 
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the decrease in oxidation rate is attributable to the formation of BeO [26, 163]. Most studies 

of Be containing Mg alloys and Be containing Al alloys were based on the molten state. For 

example, Houska [161] reported an increase in the ignition temperature of pure Mg by 200 

C through alloying with 10 ppm (wt) Be. Wikle claimed a dense BeO oxide film formed 

during casting Be containing Al alloys [164]. Because of the high P-B ratio of BeO (1.70) 

[62], the BeO film was considered a barrier to prevent oxygen penetration. Huang et al. [165] 

reported an increase of 200 C in the ignition temperature of a Mg-2Ca alloy after alloying 

with 300 ppm (wt) Be. Zeng et al. [166, 167] reported that 0.3 wt.% Be-containing AZB910 

could be melted without burning, even without a shielding gas. Fig. 19 shows macrographs of 

the melts of both the AZ91 and the AZB910 at 650 C. The AZ91 melt was covered by lots 

of oxides (Fig. 19a) while the surface on the AZB910 was smooth and clear, indicating a 

higher oxidation resistance (Fig. 19b). 

Through XRD and AES analysis, Zeng [166] detected an enriched Be and O layer near the 

surface of the AZB910. Fig. 20 presents the AES results that show the concentration profiles 

of the major alloying elements as a function of depth for the AZ91 and AZB910. The outmost 

layers (sputtering time = 0) of both alloys were enriched by Mg and O. Furthermore, the 

amount of Mg was slightly higher than O, suggesting Mg was in excess of that required for 

MgO. This is attributed to the outward diffusion of Mg2+ cations, which control the oxidation 

[26]. Below the outmost layer of both alloys, there were variations of Mg content 

accompanied with continuous decreases of O concentration. The V-like variation of Mg 

content in both alloys was attributed to the overlap of the decreasing Mg2+ cation 

concentration in the oxide and the increasing metallic Mg concentration [166]. For the 

AZB910, as shown in Fig. 20b, the decreasing Mg2+ was accompanied by an increase of Be 

content, indicating a mixed inner layer of BeO and MgO. This has been regarded as 

experimental evidence supporting the hypothesis that the high oxidation resistance of Be-

containing Mg alloys is attributed to the formation of BeO [166]. 

Zeng et al. [167] also compared the oxidation resistance AZ91 containing 0.3 wt.% Be with 

AZ91 containing 5 ppm (wt) Be, and found that AZ91-5 ppm (wt) Be showed rapid oxidation 

at 650 C. This implies effective protection of the Mg alloy requires a considerable amount of 

Be. This result was inconsistent with previous conclusion that low oxidation rates could be 

achieved with 5-10 ppm (wt) Be [161].  
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It would be expected that a stable protective BeO film requires Be to be oxidized in 

preference to the oxidation of Mg. The reaction of Be with MgO is as follows [167]: 

Be(l) + MgO(s)

= BeO(s)

+ Mg(l)                                                                                                               (15) 

The change of free energy in this reaction is [167]: 

∆𝐺 = ∆𝐺0 + R𝑇ln
𝛼Beo𝛼Mg

𝛼MgO𝛼Be

= ∆𝐺0 + R𝑇ln
𝛼Mg

𝛼Be
                                                                                       (16) 

where ∆G0 is the change of Gibbs free energy in the standard state (25 C, 1 atm), T is the 

reaction temperature (in K), R is the gas constant and α represents the activity. MgO and BeO 

are regarded as pure solids, so both αBeO and αMgO are equal to 1. Applying equation (16) to 

the work of Zeng et al. [166] indicates that the equilibrium Be concentration is 0.88 wt.% at 

650 C. BeO could form in preference to MgO only if the concentration of Be was higher 

than the equilibrium concentration. Due to the segregation effect, 0.3 wt.% Be in AZ91 could 

possibly satisfy this thermodynamic requirement. However, when the Be concentration was 

as low as 5-10 ppm (wt), it would be difficult to accumulate Be up to 0.88 wt.% through 

segregation. Thus, experimental evidence is required to verify this hypothesis in Mg alloys 

containing trace of Be. 

There are few studies on the oxidation of solid-state Mg alloys that contain Be. Czerwinski 

[168] studied the early stage of semi-solid oxidation of Be-bearing AZ91. The onset of 

accelerated oxidation at 487 C was delayed by 10 ppm (wt) Be. For comparison, Czerwinski 

[168] reported that the alloy containing 5 ppm (wt) Be suffered rapid oxidation at the same 

temperature, whereas the surface of the alloy with 10 ppm (wt) Be was smooth and 

apparently free of oxide. Furthermore, Czerwinski [168] also investigated the weight 

variations of these two alloys at 487 C in an argon atmosphere. The results are shown in Fig. 

21. At the beginning, both alloys gained some weight, possibly from the reaction of Mg with 

the residual oxygen in the argon. Subsequently, there was weight loss, attributed to Mg 

evaporation. This weight loss for the 10 ppm (wt) Be-containing alloy was somewhat lower 

than that of the 5 ppm (wt) Be-containing alloy. This implies an evaporation suppression by 



 Page 35 of 64  
 

the higher amount of Be [168]. Unfortunately, the actual mechanism about how the Be 

supressed the Mg evaporation was not discussed.  

More recently, Tan et al. [169] studied the oxidation resistance in the solid state of AZ91 

micro-alloyed with Be. The oxidation weight gain at 400 C was reduced with increasing Be 

content from 10 ppm (wt) to 60 ppm (wt), indicating an increase in oxidation resistance. The 

increased oxidation resistance was achieved by effectively extending the incubation period. 

In addition, Tan [169] claimed that a continuous BeO layer did not exist based on the 

thermodynamic calculation and EDS results. Unfortunately, there was no mechanism studies. 

Based on the reactive element effect (REE) observed in NiO [170, 171], where segregation of 

Ce-ions along NiO grain boundaries effectively impedes the diffusion of Ni2+ cations, 

Czerwinski [168] attributed the decrease in the oxidation rate of Be-containing Mg alloys to 

the REE of Be. The Be2+ cations might segregate along the MgO grain boundaries to inhibit 

the outward diffusion of Mg2+ cations along the grain boundaries. As a result, the oxidation 

would be governed by the inward diffusion of oxygen ions. Since diffusion of oxygen ions is 

a sluggish process, the oxidation rate is considered to be reduced by orders of magnitude 

[172]. However, experimental evidence is required to verify this hypothesis. 

Because Be has high toxicity [111] and causes grain coarsening of Mg alloys [173], the 

maximum acceptable content of Be in Mg alloy casting was claimed to be 0.01 wt.% (100 

ppm (wt)) [166, 167, 173, 174]. Trace addition of Be can significantly increase the oxidation 

resistance of Mg alloys, particularly for Mg-Al based alloys in both the solid and molten state. 

However, the actual mechanism is not clear. Thus, further study on the oxidation resistance 

of Be containing Mg alloys is needed in developing new oxidation-resistant non-flammable 

Mg alloys. 

 

6.4 Sr  

The surface activity of an alloying element may also influence the oxidation rate. In Mg, the 

elements Sr, Ca, Ce, Nd, Sn, Se, Te and Li, have been regarded as surface active [175]. 

Previous studies found that alloying with strontium (Sr) decreased the oxidation rate of Al 

alloys [176, 177]. Aydin and co-workers [178] studied the oxidation behaviour of Mg-2.5 wt.% 

Sr and Mg-6 wt.% Sr alloys in the solid state at 500 C. Fig. 22 shows that the oxidation had 

two stages: (i) the initial parabolic-oxidation stage which is also considered the incubation 
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period; and (ii) the stage with accelerated oxidation with linear kinetics. Alloying with Sr 

addition delayed the onset of linear oxidation kinetics [178]. 

Pekguleryuz et al. [179] reported that the effect of 75 ppm (wt) Sr addition on the oxidation 

rate of molten AZ91 at 680 C for 5 hour was similar to alloying with 9 ppm (wt) Be. This 

result indicated that the usage of toxic Be could be replaced by Sr in molten Mg alloys. Aydin 

et al. [180] found that the ignition temperature of Mg-6 wt.% Sr was 200 C higher than that 

of pure Mg. Fig. 23 shows that the ignition temperatures of Mg-Sr binary alloys increased 

with Sr content. The ignition temperature of Mg-6Sr (J6) was 854 C, which was higher than 

that of the WE43 [48]. There were duplex MgO and SrO oxide layers on the Sr-containing 

alloys in both the solid and molten states after oxidation [178, 180]. Unlike Ce, Nd and La 

[46, 143, 146, 155], higher Sr contents led to higher ignition temperatures due to the high 

surface activity of Sr in liquid Mg [181]. Based on thermodynamic calculations [180], at 700 

C, SrO formed prior to MgO once the Sr content on the surface exceeds 75 wt.%. In addition 

to the formation of SrO, the oxide grain size was decreased with increasing Sr content [178]. 

Although finer grain size offers more grain boundaries for ion diffusion [27], Aydin claimed 

that the stress in the oxide could be released by the grain boundaries, resulting in a lower 

tendency to cracking.  

Alloying with Sr does not significantly increase the oxidation resistance of solid Mg alloys 

because of the sluggish accumulation of Sr on the surface through segregation in the solid 

state. In contrast, due to the surface activity in liquid Mg, small additions of Sr effectively 

increase the oxidation resistance of molten Mg alloys. In addition, the ignition temperature is 

increased with higher Sr contents. Hence, development of Sr-containing Mg alloys is a 

promising approach for ignition-proof applications.  

 

6.5 Nano-sized or micro-sized particles 

Some Mg alloys containing nano-sized or micro-sized ceramic particles, such as graphene, 

chromium oxide (Cr2O3), aluminium oxide (Al2O3) and silicon dioxide (SiO2) have shown 

improved mechanical properties, and decreased corrosion rates [182-187]. The use the 

ceramic particles to enhance the oxidation resistance in Mg alloys was first reported by 

Nguyen and co-workers [188]. AZ31B containing 1.5 vol.% Al2O3 particles exhibited a lower 

oxidation rate at 400 C than that of AZ31B, due to the uniform distribution of nano-Al2O3 
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particles in the AZ31B matrix, restricting the migration of Mg ions [188]. However, non-

protective oxidation occurred at 450 C. The alloy containing nano-Al2O3 particles did not 

have a longer transition from parabolic to linear oxidation kinetics at the higher temperature, 

indicating no improvement in forming a compact protective oxide film. 

SiC particles have been used to enhance the mechanical properties and wear resistance [189-

192]. An enhancement of oxidation resistance in AM60, AZ91D and ZC63 by adding micro-

sized SiC particles was reported [40, 193, 194]. Nguyen et al. [194] studied the oxidation 

kinetics of the AZ91D-(0, 5, 10, 20) wt.% SiC particles reinforced composite at both 430 C 

and 450 C in air. At 430 C, the alloy with 5 wt.% SiC particles had lower oxidation weight 

gain and the weight gain decreased continuously with increasing the content of SiC particles. 

However, at 450 C, rapid oxidation occurred in all alloys except for the alloy containing 20 

wt.% SiC particles. 

Nguyen and Lee [193] reported a similar result for AM60 containing 10 wt.% SiC. The 

oxidation rate of AM60 at 450 C was 0.068 mg cm-2 h-1, while the AM60-10 wt.% SiC 

composite had a nearly 10 times lower oxidation rate of 0.0066 mg cm-2 h-1. The ignition 

temperature was also increased from 523 C to 603 C. Because the SiC particles were 

homogeneously dispersed in the alloys without any decomposition or oxidation, the reduced 

specific areas for oxidation was considered as the major cause of decreased oxidation. In a 

Ti-Al alloy, Lee et al. [195] found that uniformly distributed SiC particles acted as 

heterogeneous nucleation sites for oxide grains. Thus, a continuous dense Ti oxide layer was 

quickly formed. However, this hypothesis is not valid in Mg alloys as MgO is not protective 

due to the low P-B ratio. 

Addition of nano or micro-sized ceramic particles in Mg alloys shows a beneficial effect on 

the oxidation resistance in both the solid and molten state. Compared with conventional 

alloying elements, the increased oxidation resistance is attributed to reducing the specific 

areas for oxidation instead of forming compact oxide layers. This mechanism might be used 

as a new approach to develop new oxidation resistant Mg alloys. 

 

7. Discussion on the incubation period 

Table 1 summarizes the published data on incubation periods of Mg alloys at various 

temperatures. The term “over” in Table 1 indicates that the oxidation tests were 
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terminated within the incubation period. In this case, the incubation period is designated 

by the maximum test duration with the prefix of “over”. 

The data in Table 1 can be divided into 3 groups.  

The first group has pure Mg as a reference alloy, and considers the alloying elements Al 

and Zn. At 500 C, pure Mg had an incubation period of 440 min. Alloying with Al or Zn, 

such as the alloys AM50, AM60, AE42 and ZE41, decreased the incubation period at 

500 C. The reduction in oxidation resistance is attributed to the lowering of the melting 

temperatures of the alloy and formation of a low melting temperature eutectic 

microstructure consisting of α-Mg solid solution and intermetallic compound.   

Alloying with RE elements and Sr increased the incubation period at 500 C compared with 

pure Mg. Alloying with 0.5 wt.% Nd increased the incubation period to 670 min at 500 C 

due to the formation of a dense Nd2O3 layer on the surface that suppressed further oxidation. 

Alloying with 2.5 wt.% Sr increased the incubation period to over 700 min at 500 C. Fig. 24  

compares Mg-Nd alloys and Mg-Sr alloys in terms of the oxidation resistance in the solid and 

molten states, respectively. Fig. 24a indicates that the oxidation kinetics for the Mg-Sr alloys 

in the solid state was similar to that of the Mg-Nd alloys. The weight gains of Mg-2.5Nd, 

Mg-2.5Sr and Mg-6Sr are similar within the test period. For the alloy with high content of Nd, 

the Mg12Nd intermetallic phases formed along the grain boundaries, oxidation preferentially 

occurs on the intermetallic phases [146]. Thus, the initial weight gain of Mg-6Nd increases 

significantly. The subsequent formation of Nd2O3 layer can protect the alloy from further 

oxidation, leading to an increase in the oxidation incubation period. In contrast, in molten Mg 

alloys, Fig. 24b indicates that there was an obvious difference between Nd and Sr. There was 

an increase in the ignition temperature when the Nd increased to 0.5 wt.%, but there was no 

further increase with further addition of Nd. In comparison, the effect of Sr was more 

remarkable. The ignition temperature of Mg increased continuously with increasing Sr 

content, and reached 854 C for 6 wt.% Sr. In molten Mg, Sr accumulates on the surface 

because of its surface activity in liquid Mg. Thus, the formation of SrO is promoted, and the 

surface oxide can suppress Mg vaporisation.  

Other reported incubation period data are listed in the five rows just below the Mg-6Sr in 

Table 1, showing the effect of the RE elements, such as Gd and Y, and Ca. Although no 

actual incubation period are reported, particularly at 500 C, these alloying elements should 
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increase the oxidation resistance of pure Mg through the formation of denser combined oxide 

layers. Thereby, vaporisation of Mg is suppressed. 

The third group of data compares the incubation period of AZ91-base alloys at either 400 or 

450C.  Alloying with Ca, Y, Be and SiC nanoparticles increased the oxidation incubation 

period. Be was particularly effective. Alloying with 60 ppm (wt) Be extended the incubation 

period of AZ91 from 150 min to over 300 min. Fig. 25 presents the oxidation data of Cheng 

et al. [111] and Tan et al. [169] for AZ91-1.5Ca, AZ91-1.5Ca-0.5Y, AZ91-20 ppm (wt) Be 

and AZ91-60 ppm (wt) Be at 400 C in air. AZ91 containing 20 ppm (wt) Be showed a lower 

oxidation rate than that of AZ91-1.5Ca. The incubation period of the AZ91 containing 60 

ppm (wt) Be exceeded 300 min. For AZ91-1.5Ca, linear kinetics occurred after 270 min. In 

addition, the weight gain curve of AZ91 containing 60 ppm (wt) Be was lower and became 

flat after 220 min. Compared with AZ91-1.5Ca-0.5Y, the AZ91 containing 60 ppm (wt) Be 

had a lower weight gain at the end of the test, indicating a better oxidation resistance. In the 

molten state, a 0.3 wt.% Be-containing AZB910 was reported to be melted in air [166]. Thus, 

small addition of Be can increase the oxidation and ignition resistance of Mg alloys. But, the 

mechanism is still in controversial. The formation of BeO has been detected on molten Be-

containing Mg alloys. However, in the solid state, there is a lack of evidence verifying the 

existence of a BeO layer. It appears that the oxidation in the solid or semi-solid state is 

controlled by the combined effects of Mg-ion diffusion, Mg vaporisation and the 

intermetallic phase. Thus, in the solid or semi-solid state, addition of Be may retard the 

diffusion of Mg-ions by the reactive element effect (REE). In addition, based on the analogy 

with Ca, Be may segregate along the grain boundaries and enhance the thermal stability of 

intermetallic phases.  

 

8. Discussion on ignition temperature 

The P-B ratio of the oxide of the main alloying element has been regarded as a key factor that 

controls the oxidation resistance and ignition temperature of Mg alloys. Table 2 summarizes 

the ignition temperatures (Ti) of Mg alloys with different shapes and the P-B ratio of the 

oxides of the main alloying elements. The ignition temperature varies significantly as a 

function of shape, indicating once again that the ignition temperature is critically dependant 

on how it is measured. With the same chemical composition, the ingot samples have higher 

ignition temperatures than chips and powders. For example, the ignition temperature of a 
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pure Mg ingot ranges from 620-650 C [45-47] while pure Mg chip and powder ignite at 

lower temperatures of 504 C [105] and 437 C [82], respectively. Compared with ingot 

sample, the chip and powder samples have higher specific contact area with oxygen, leading 

to a lower ignition temperature. The ignition temperature also depends on the experimental 

condition. Lower ignition temperatures are measured for the test with slower heating rate and 

for samples with greater specific surface area, indicating the critical factor in ignition is the 

accumulation of a critical concentration of Mg vapour. 

Table 2 shows that most alloying elements, except for Ca and Sr, are associated with the P-B 

ratio values for their oxides between 1 and 2, indicating the potential to protect the Mg matrix 

from oxidation. However, alloys with Al and Zn have decreased ignition resistance. For 

example, alloying with 3 wt.% Al decreased the ignition temperature of a pure Mg chip from 

504 C to 474 C [105]. This decrease is attributed to the decreased melting temperature of 

the alloy. In addition, although some elements such as Ce and La have higher values of the 

P-B ratio, they do not noticeably increase the ignition temperature. This is attributed to their 

low solute solubility in Mg (1 wt.% for La and 0.52 wt.% for Ce) [105].  

Fig. 26 presents the ignition temperatures (Ti) of some binary Mg alloys chips and the solute 

solubility of the alloying elements in Mg according to data from Kim et al. [105]. Mg alloys 

alloyed with alloying elements with high solubility have relatively high ignition temperatures. 

A high solubility enables the homogenization of solute elements in the matrix, and allows the 

formation of a dense oxide layer during oxidation [105]. Hence, despite the similar P-B ratios 

of Y2O3, La2O3, Ce2O3 and Gd2O3, Mg-3Y and Mg-3Gd have higher ignition temperatures 

due to their higher solubilities in Mg (11.4 wt.% for Y and 23.5 wt.% for Gd). In addition, 

although the solubility of Ca in Mg is only 1.34 wt.%, the dissolution of Mg-Ca eutectics 

increases the content of Ca in the Mg matrix, promoting the formation of CaO during heating. 

Hence, the presence of Ca can improve the ignition resistance of the Mg matrix. In the case 

of Sr, although its solubility in Mg is low (0.11 wt.%) and the P-B ratio of SrO is only 0.66, 

accumulation of Sr on the surface can be achieved due to its surface activity in liquid Mg. 

Thus, the formation of SrO is significantly promoted after melting. In the case of Be, even 

though the solute solubility of Be in Mg is almost zero [169], a Mg-0.15Be alloy exhibits an 

ignition temperature of 750 C [198]. Furthermore, microalloying of Mg-Ca alloy with Be 

produced a significantly higher ignition temperature of 1050 C [165] as shown in Table 2. 

Based on the analogy with Sr, the excellent ignition resistance by micro-alloying with Be 
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may also be attributed to a surface active effect. However, experimental evidence is required 

to verify this hypothesis. 

In addition, melting temperature, localized melting temperature in particular, also defines the 

ignition temperature. Due to the low melting temperature of the Mg-Al eutectic 

microstructure, the ignition temperature of AZ91 is lower than that of pure Mg. However, 

alloying with Ca can partially consume the Al solute through forming Al-Ca intermetallics, 

and therefore reduce and even eliminate the Mg-Al eutectic microstructure. Hence, Ca 

alloying can significantly increase the ignition temperature of the AZ91 alloy. 

 

9. Concluding discussion  

Published work indicated that although the MgO formed on the surface of Mg alloys can 

protect Mg from oxidation at temperatures up to approximately 400 C, rapid oxidation and 

ignition occurs at temperature above approximately 400 C. This is attributed to the 

combined effects of the incompact structure of MgO, fast diffusion of Mg ions, Mg 

vaporisation and melting of intermetallic phases in the eutectic microstructure. The oxidation 

resistance is decreased by the common alloying elements, Al, Zn and Cu. For example, Al 

promotes Mg evaporation by the formation of the -phase, which forms low melting 

temperature eutectic microstructure with α-Mg, and Zn tends to sublime leading to the 

formation of pores within both the matrix and the oxide.  

The development of oxidation resistant Mg alloys is based on the chemical and 

microstructural modification of the surface oxide film by alloying elements to increase the P-

B ratio of the oxides formed. For example, alloying with Ca and RE elements has been 

experimentally confirmed as an effective way to increase the oxidation resistance of Mg 

alloys. In addition, the “reactive element effect” (REE) and surface active effect should also 

be taken into consideration during the development of new alloys. For example, alloying with 

Be or Sr has good performance in improving the oxidation resistance of Mg alloys in both the 

solid and molten states.  

 

10. Conclusions 

i. Magnesium oxide, MgO, which has a low P-B ratio (0.81), provide little protection to 

Mg substrates from thermal oxidation at high temperatures. 
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ii. Lattice diffusion by a vacancy mechanism, which is a sluggish process, is assumed to 

dominate the Mg transport at temperatures below approximately 400 C. Hence, the 

thin MgO is considered protective and the oxidation rate of Mg alloys at temperatures 

below approximately 400 C is low, following parabolic kinetics. 

iii. Non-protective oxidation with linear kinetics occurs at temperatures above 

approximately 400 C after an incubation period. This is attributed to the combined 

effects of faster diffusion of Mg ions, Mg vaporisation and melting of intermetallic 

phases. The onset of non-protective oxidation is associated with the growth of oxide 

nodules. 

iv. Further increasing the temperature and/or continuing oxidation at high temperatures 

above approximately 400 C may cause ignition and burning of Mg alloys. Mg 

vapour is the burning species. The large amount of heat generated during burning 

makes Mg flames difficult to extinguish. The cauliflower surface morphology is 

regarded a result of burning of Mg alloys. 

v. The ignition temperature depends on the experimental conditions. Lower ignition 

temperature are measured for the test with slower heating rate and for samples with 

greater specific surface area. 

vi. Common alloying elements Al, Zn and Cu increase the oxidation rate and decrease 

the ignition temperature. The effect of Mn on the oxidation resistance of Mg alloys is 

small. 

vii. The alloying elements Ca, Y, Ce, Nd, Gd, La, Be and Sr decrease the oxidation rate 

and increase the ignition temperature in both pure Mg and Mg alloys through the 

formation of compact layers on the surface and/or the formation of thermally stable 

intermetallic phases. Alloying with nano-sized and/or micro-sized Al2O3 and SiO2 

particles decrease the oxidation rate of Mg alloys in the solid and semi-solid state. 

This is attributed to the reduced specific areas for oxidation. 

 

Acknowledgement 

The authors are very grateful to the Australian Research Council for funding support. 

 

 



 Page 43 of 64  
 

 

References 

[1] H. Davy, Electron-chemical researches on the decomposition of the earths; with 

observations on the metals obtained from the alkaline earths, and on the amalgam 

procured from ammonia,  

Philos. Trans. R. Soc. Lond., 98 (1808) 333–370. 

[2] M.T. Weller, T. Overton, J. Rourke, F.A. Armstrong, Inorganic Chemistry, sixth ed., 

Oxford University Press, Oxford, 2006. 

[3] E. Lee Bray, Magnesium, in: Minerals Yearbook, United States Geological Survey, < 

http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/>, 2013 (accessed 

20.12.15). 

[4] J. Buha, Mechanical properties of naturally aged Mg–Zn–Cu–Mn alloy, Mater. Sci. 

Eng.: A 489 (2008) 127-137. 

[5] J. Jeon, S. Lee, B. Kim, B. Park, Y. Park, I. Park, Effect of Sb and Sr addition on 

corrosion properties of Mg-5Al-2Si alloy, J. Korean Inst. Met. Mater. 46 (2008) 304-

309. 

[6] J.H. Jun, J.M. Kim, B.K. Park, K.T. Kim, W.J. Jung, Effects of rare earth elements on 

microstructure and high temperature mechanical properties of ZC63 alloy, J. Mater. 

Sci.  40 (2005) 2659-2661. 

[7] B.S. Shin, Y. Kim, D.H. Bae, Deformation behavior of a wrought Mg-Zn-RE alloy at 

the elevated temperatures, J. Korean Inst. Met. Mater. 46 (2008) 1-5. 

[8] G.L. Song, A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Advanced 

Engineering Materials 1 (1999) 11-33. 

[9] I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Understanding 

the factors influencing yield strength on Mg alloys, Acta Mater. 75 (2014) 287-296. 

[10] W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, A high-

specific-strength and corrosion-resistant magnesium alloy, Nat. Mater. 14 (2015) 

1229-1235. 

[11] A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Review of Recent 

Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater. 17 (2015) 400-

453. 

[12] S. Abaspour and C.H. Cáceres, Thermodynamics-Based Selection and Design of 

Creep-Resistant Cast Mg Alloys, Metall. Mater. Trans. A 46 (2015) 5972-5988. 

http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/


 Page 44 of 64  
 

[13] S. Johnston, Z.Shi, A. Atrens, The influence of pH on the corrosion rate of high-purity 

Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution, Corros. Sci. 101 (2015) 

182-192. 

[14] F. Cao, Z.Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Influence of hot rolling 

on the corrosion behaviour of several Mg-X alloys, Corros. Sci. 90 (2015) 176-191. 

[15] F. Cao, Z.Shi, G.L. Song, M. Liu, A. Atrens, Corrosion behaviour in salt spray and in 

3.5 % NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated 

binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corros. Sci. 76 (2013) 60-97. 

[16] K. Schlüter, Z.Shi, C. Zamponi, F. Cao, E. Quandt, A. Atrens, Corrosion performance 

and mechanical properties of sputter-deposited MgY and MgGd alloys, Corros. Sci. 

78 (2014) 43-54. 

[17] Z. Shi, F.Cao, G.L. Song, M. Liu, A. Atrens, Corrosion behaviour in salt spray and in 

3.5 % NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated 

binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd, Corros. Sci. 76  (2013) 98-118. 

[18] M.M. Avedesian, Magnesium and magnesium alloys, ASM international, Materials 

Park, OH, 1999. 

[19] X. Yu, B. Jiang, H. Yang, Q. Yang, X. Xia, F. Pan, High temperature oxidation 

behavior of Mg-Y-Sn, Mg-Y, Mg-Sn alloys and its effect on corrosion property, Appl. 

Surf. Sci. 353 (2015) 1013-1022. 

[20] B. Kondori, R. Mahmudi, Impression creep characteristics of a cast Mg alloy, Metall. 

Mater. Trans. A 40 (2009) 2007-2015. 

[21] A.A. Luo, Recent magnesium alloy development for elevated temperature 

applications, Int. Mater. Rev. 49 (2004) 13-30. 

[22] M.O. Pekguleryuz, A.A. Kaya, Creep resistant magnesium alloys for powertrain 

applications, Adv. Eng. Mater. 5 (2003) 866-878. 

[23] F. Czerwinski, Overcoming Barriers of Magnesium Ignition and Flammability, Adv. 

Mater. Process. 172 (2014) 28-31. 

[24] C.C. Liu, S. Lu, Y.T. Fu, H.P. Zhang, Flammability and the oxidation kinetics of the 

magnesium alloys AZ31, WE43, and ZE10, Corros. Sci. 100 (2015) 177-185. 

[25] J.F. Fan, C.L. Yang, G. Han, S. Fang, W.D. Yang, B.S. Xu, Oxidation behavior of 

ignition-proof magnesium alloys with rare earth addition, J. Alloys Compd. 509 (2011) 

2137-2142. 

[26] F. Czerwinski, Oxidation Characteristics of Magnesium Alloys, JOM 64 (2012) 1477-

1483. 



 Page 45 of 64  
 

[27] F. Czerwinski, The reactive element effect on high-temperature oxidation of 

magnesium, Int. Mater. Rev. 60 (2015) 264-296. 

[28] A.P. Chermyshev, V.A. Petrov, V.E. Titov, A. Vorobyev, Thermal radiative 

properties of magnesium oxide at high temperatures, Thermochim. Acta 218 (1993) 

195-209. 

[29] V. Fournier, P. Marcus, I. Olefjord, Oxidation of magnesium, Surf. Interface Anal. 34 

(2002) 494-497. 

[30] G. Song, A. Atrens, Understanding magnesium corrosion. A framework for improved 

alloy performance, Adv. Eng. Mater. 5 (2003) 837-858. 

[31] F. Czerwinski, Factors affecting the oxidation nature of magnesium alloys, JOM 56 

(2004) 29-31. 

[32] F. Czerwinski, The oxidation behaviour of an AZ91D magnesium alloy at high 

temperatures. Acta Mater. 50 (2002) 2639-2654. 

[33] N.E. Hakiki, Comparative study of structural and semiconducting properties of 

passive films and thermally grown oxides on AISI 304 stainless steel, Corros. Sci. 53 

(2011) 2688-2699. 

[34] V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, P. Marcus, Effects of 

molybdenum on the composition and nanoscale morphology of passivated austenitic 

stainless steel surfaces, Faraday Discuss. 180 (2015) 151-170. 

[35] G. Okamoto, Passive film of 18-8 stainless steel structure and its function, Corros. Sci. 

13 (1973) 471-489. 

[36] P. Marcus, C. Hinnenn, I. Olefjord, Determination of attenuation lengths of 

photoelectrons in aluminium and aluminium oxide by angle-dependent x-ray 

photoelectron spectroscopy, Surf. Interface Anal. 20 (1993) 923-929. 

[37] K. Mizuno, A. Nylund, I. Olefjord, Influence of Mg and Si on the oxidation of 

aluminum, Oxid. Met. 50 (1998) 309-325. 

[38] J. Medved, P. Mrvar, M. Vončina, Oxidation Resistance of Cast Magnesium Alloys, 

Oxid. Met. 71 (2009) 257-270. 

[39] L.P.H. Jeurgens, M.S. Vinodh, E.J. Mittemeijer, Initial oxide-film growth on Mg-

based MgAl alloys at room temperature, Acta Mater. 56 (2008) 4621-4634. 

[40] D. Lee, T. Nguyen, Y. Kim, Oxidation of ZC63 Mg alloys reinforced with SiC 

particles between 390 °C and 500 °C in air, Met. Mater. Int. 16 (2010) 761-766. 



 Page 46 of 64  
 

[41] M.D. López, C.J. Múnez, M. Carboneras, P. Rodrigo, M.D. Escalera, E. Otero, 

Influence of temperature on oxidation behaviour of ZE41 magnesium alloy, J. Alloys 

Compd. 491 (2010) 131-136. 

[42] T. Leontis, F. Rhines, Rates of High Temperature Oxidation Of Magnesium And 

Magnesium Alloys, Trans. Am. Inst. Min. Metall. Eng. 166 (1946) 265-294. 

[43] F. Czerwinski, Controlling the ignition and flammability of magnesium for aerospace 

applications, Corros. Sci. 86 (2014) 1-16. 

[44] E.A. Gulbransen, The Oxidation and Evaporation of Magnesium at Temperatures 

from 400 °C to 500 °C, J. Electrochem. Soc. 87 (1945) 589-599. 

[45] B.L. Bobryshev, Y.P. Aleksandrova, Ignition of Magnesium and its alloys, Met. Sci. 

heat Treat. 30 (1988) 219-222. 

[46] D.S. Aydin, Z. Bayindir, M. Hoseini, M.O. Pekguleryuz, The high temperature 

oxidation and ignition behavior of Mg–Nd alloys part I: The oxidation of dilute alloys, 

J. Alloys Compd. 569 (2013) 35-44. 

[47] W.M. Fassel, L.B. Gulbransen, J.R. Lewis, J.H. Hamilton, Ignition temperatures of 

magnesium and magnesium alloys. J. Met. 3 (1951) 522-528. 

[48] M. Liu, Shih, S. Donald, C. Parish, A. Atrens, The ignition temperature of Mg alloys 

WE43, AZ31 and AZ91, Corros. Sci. 54 (2012) 139-142. 

[49] N. Mebarki, N.V.R. Kumar, J.J Blandin, M. Suery, F. Pelloux, G. Khelifati, 

Correlation between ignition and oxidation behaviours of AZ91 magnesium alloy, 

Mater. Sci. Technol. 21 (2005) 1145-1151. 

[50] P. Boris, A Study of the Flammability of Magnesium, Federal Aviation Agency, 

Washington, 1964. 

[51] E.L. Dreizin, C.H. Berman, E.P. Vicenzi, Condensed-phase modifications in 

magnesium particle combustion in air, Combust. Flame 122 (2000) 30-42. 

[52] F.J. Zong, C.Z. Meng, Z.M. Guo, F. Ji, H.D. Xiao, X.J. Zhang, J. Ma, H.L. Ma, 

Synthesis and characterization of magnesium nitride powder formed by Mg direct 

reaction with N2, J. Alloys Compd. 508 (2010) 172-176. 

[53] M.I. Barrena, J.M. Gómez de Salazar, J.M. Vázquez, I. García-Cano, J.M. Guilemany, 

Protection behaviour of surface films formed on AZ91D magnesium alloy in 

nitrogen/1,1,1,2-tetrafluoroethane atmospheres, Met. Mater. Int. 20 (2014) 613-618. 

[54] I.J. Polmear, Light alloys, third ed., Arnold, London, 1995. 

[55] N.V.R. Kumar, J.J. Blandin, M. Suéry, E. Grosjean, Effect of alloying elements on the 

ignition resistance of magnesium alloys, Scripta Mater. 49 (2003) 225-230. 



 Page 47 of 64  
 

[56] M.J. Balart, Z. Fan, Surface oxidation of molten AZ91D magnesium alloy in air, Int. J. 

Cast Met. Res. 27 (2014) 167-175. 

[57] J. Liu, H. Chen, L. Zhao, W. Huang, Oxidation behaviour of molten magnesium and 

AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres, Corros. Sci. 51 

(2009) 129-134. 

[58] A. Prasad, Z. Shi, A. Atrens, Influence of Al and Y on the ignition and flammability 

of Mg alloys, Corros. Sci. 55 (2012) 153-163. 

[59] A. Prasad, Z. Shi, A. Atrens, Flammability of Mg-X Binary Alloys, Adv. Eng. Mater. 

14 (2012) 772-784. 

[60] T. Marker, Evaluating the flammability of various magnesium alloys during 

laboratory- and full-scale aircraft fire tests, DOT/FAA/AR-11/3, US Department of 

Transportation, Federal Aviation Administration, Atlantic City, New Jersey, 2013. 

[61] T. Marker, Development of a laboratory-scale flammability test for magnesium alloys 

used in aircraft seat construction, DOT/FAA/TC-13/52, US Department of 

Transportation, Federal Aviation Administration, Atlantic City, New Jersey, 2014. 

[62] N. B. Pilling, R. E. Bedworth, The Oxidation of Metals at High Temperatures, J. Inst. 

Met. 29 (1923) 529-591. 

[63] D. Alfè, M.J. Gillan, Schottky defect formation energy in MgO calculated by 

diffusion Monte Carlo, Phys. Rev. B 71 (2005) 220101. 

[64] N. Birks, G.H. Meier, F.S. Pettit, Introduction to the high-temperature oxidation of 

metals, second ed., Cambridge University Press, Cambridge, New York 2006. 

[65] F.A. Kroger, The chemistry of imperfect crystals, North-Holland Pub. Co., 

Amsterdam, 1964. 

[66] P. Kofstad, High temperature corrosion, Elsevier Applied Science Publishers Ltd., 

New York, 1988. 

[67] F. Czerwinski, Z. Kedzierski, On the mechanism of microcrack formation in 

nanocrystalline Fe-Ni electrodeposits, J. Mater. Sci. 32 (1997) 2957-2961. 

[68] W.W. Smeltzer, The influence of short-circuit grain boundary diffusion on the growth 

of oxide layers on metals, Mater. Sci. Forum 29 (1988) 151-172. 

[69] W.W. Smeltzer, Oxidation of An Aluminum-3 Per Cent Magnesium Alloy in the 

Temperature Range 200C-550C, J. Electrochem. Soc., 105 (1958) 67-71. 

[70] J. Perrow, W.W. Smeltzer, J. Embury, The role of structural defects in the growth of 

nickel oxide films, Acta Metall. 16 (1968) 1209-1218. 



 Page 48 of 64  
 

[71] R. Rapp, The high temperature oxidation of metals forming cation-diffusing scales, 

Metall. Trans. A 15 (1984) 765-782. 

[72] C. Lea, C. Molinari, Magnesium diffusion, surface segregation and oxidation in Al-

Mg alloys, J. Mater. Sci. 19 (1984) 2336-2352. 

[73] G.I. Finch, A.G. Quarrell, The Structure of Magnesium, Zinc and Aluminium Films, P. 

Roy. Soc. Lond. A: Mat. 141 (1933) 398-414. 

[74] A.G. Quarrell, G.I. Finch, Crystal Structure and Orientation in Thin Films, Nature 131 

(1933) 877-877 

[75] O. Kubaschewske, B. Hopkins, Oxidation of metals and alloys, Butterworths, London, 

1953. 

[76] Properties of the Elements and Inorganic Compounds; Vapor Pressure of the Metallic 

Elements, in: David R. Lide (Eds), CRC Handbook of Chemistry and Physics, 84th 

ed., CRC Press, Boca Raton, Florida, 2003. 

[77] X. Wang, S. Xiong, Protection behavior of SO2-containing cover gases to molten 

magnesium alloy, Trans. Nonferrous Met. Soc. China 21 (2011) 807-813. 

[78] H. Okamoto, Phase Diagrams for Binary Alloys, ASM international, Material Park, 

OH, 2000. 

[79] F.S. Pan, J. Peng, P.D. Ding, L.Y. Wnag, A novel hot extrusion method to improve 

the plastic of magnesium alloy profiles, China Patent Application, CN101269387 A, 

24 September 2008. 

[80] R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, E. 

Matykina, Oxidation Behavior of AZ91D Magnesium Alloy Containing Nd or Gd, 

Oxid. Met. 76 (2011) 433-450. 

[81] Brown, C., The Determination of the Ignition Temperature of Solid Materials. Thesis, 

Catholic University of America, 1934. 

[82] C.M. Yuan, D.Z. Huang, C. Li, G. Li, Ignition behavior of magnesium powder layers 

on a plate heated at constant temperature, J. Hazard. Mater. 246 (2013) 283-290. 

[83] A. Luo, M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature 

applications, J. Mater. Sci. 29 (1994) 5259-5271. 

[84] D. StJohn, M. Qian, M. Easton, P. Cao, Z. Hildebrand, Grain refinement of 

magnesium alloys, Metall. Mater. Trans. A 36 (2005) 1669-1679. 

[85] A.D. Südholz, N. Birbilis, C.J. Bettles, M.A. Gibson, Corrosion behaviour of Mg-

alloy AZ91E with atypical alloying additions, J. Alloys Compd. 471 (2009) 109-115. 



 Page 49 of 64  
 

[86] M.X. Zhang, P.M. Kelly, Surface alloying of AZ91D alloy by diffusion coating, J. 

Mater. Res. 17 (2002) 2477-2479. 

[87] J. Jedlinski, G. Borchardt, On the oxidation mechanism of alumina formers, Oxid. 

Met. 36 (1991) 317-337. 

[88] M. Barrena, J. Gomez de Salazar, L. Matesanz, A. Soria, Effect of heat treatment on 

oxidation kinetics in AZ91 and AM60 magnesium alloys. Mater. Char. 62 (2011) 

982–986. 

[89] S. Feliu, C. Maffiotte, A. Samaniego, J. Galvan, V. Barranco, Effect of the chemistry 

and structure of the native oxide surface film on the corrosion properties of 

commercial AZ31 and AZ61 alloys, Appl. Surf. Sci. 257 (2011) 8558–8568. 

[90] T.S. Shih, J.B. Liu, P.S. Wei, Oxide films on magnesium and magnesium alloys, 

Mater. Chem. Phys. 104 (2007) 497-504. 

[91] J. Geng, X. Gao, X. Fang, J. Nie, Enhanced age-hardening response of Mg–Zn alloys 

via Co additions, Scripta Mater. 64 (2011) 506-509. 

[92] X. Gao, J. Nie, Characterization of strengthening precipitate phases in a Mg–Zn alloy, 

Scripta Mater. 56 (2007) 645-648. 

[93] C.L. Mendis, K. Hono, Understanding precipitation processes in magnesium alloys, in: 

Fundamentals of Magnesium Alloy Metallurgy, M.O. Pekguleryuz, K.U. Kainer, A.A. 

Kaya (Eds.), Woodhead Publishing, Cambridge, 2013, pp. 125-151. 

[94] H. Huang, G.Y. Yuan, Z.H. Chu, W.J. Ding, Microstructure and mechanical 

properties of double continuously extruded Mg-Zn-Gd-based magnesium alloys, 

Mater. Sci. Eng.: A 560 (2013) 241-248. 

[95] B. Mordike, K.U. Kainer, Magnesium Alloys and their Application, Werkstoff-

Informationsgesellschaft, Frankfurt, 1998. 

[96] H. Pan, F. Pan, X. Wang, J. Peng, High conductivity and high strength Mg-Zn-Cu 

alloy, Mater. Sci. Technol. 30 (2014) 759-764. 

[97] W. Unsworth, J.F. King, Magnesium Technology, Institute of Metals,  London, 1987. 

[98] H.G. Paris, W.H. Hunt, Advances in Magnesium Alloys and Composites, 

International Magnesium Association and the Non-Ferrous Metals Committee, 

Arizona, 1988. 

[99] G. L. Makar, J. Kruger, Corrosion of magnesium, Int. Mater. Rev. 38 (1993) 138-153. 

[100] J.E. Hillis, The effects of heavy metal contamination on magnesium corrosion 

performance, SAE Technical Papers 830523 (1983) 1-12. 



 Page 50 of 64  
 

[101] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-A critical review, 

J. Alloys Compd. 336 (2002) 88-113. 

[102] F.S. Pan, X.H. Chen, T. Yan, T.T. Liu, J.J. Mao, W. Luo, Q. Wang, J. Peng, A. Tang, 

B. Jiang, A novel approach to melt purification of magnesium alloys, JMA 4 (2016) 

8-14. 

[103] P. Pérez, G. Garcés, P. Adeva, Oxidation Behavior of a PVD-Processed Mg–10.6Zr 

Alloy, Oxid. Met. 58 (2002) 607-621. 

[104] C. Xu, W. Gao, Pilling-bedworth ratio for oxidation of alloys, Mater. Res. Innov. 3 

(2000) 231-235. 

[105] H.S. Kim, Y.M. Kim, C.D. Yim, B.S. You, Key factor influencing the ignition 

resistance of magnesium alloys at elevated temperatures, Scripta Mater. 65 (2011) 

958-961. 

[106] L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, I.E. Tarytina, Calcium-alloyed 

magnesium alloys, Met. Sci. heat Treat. 51 (2009) 164-169. 

[107] C.L. Mendis, K. Oh-ishi, K. Hono, Enhanced age hardening in a Mg–2.4 at.% Zn 

alloy by trace additions of Ag and Ca, Scripta Mater. 57 (2007) 485-488. 

[108] P. Li, B. Tang, E.G. Kandalova, Microstructure and properties of AZ91D alloy with 

Ca additions, Mater. Lett. 59 (2005) 671-675. 

[109] B. Jiang, W. Liu, D. Qiu, M.X. Zhang, F. Pan, Grain refinement of Ca addition in a 

twin-roll-cast Mg–3Al–1Zn alloy, Mater. Chem. Phys. 133 (2012) 611-616. 

[110] B.S. You, W.W. Park, I.S. Chung, The effect of calcium additions on the oxidation 

behavior in magnesium alloys, Scripta Mater. 42 (2000) 1089-1094. 

[111] S. Cheng, G. Yang, J. Fan, Y. Li, Y. Zhou, Effect of Ca and Y additions on oxidation 

behavior of AZ91 alloy at elevated temperatures, Trans. Nonferrous Met. Soc. China 

19 (2009) 299-304. 

[112] M. Sakamoto, S. Akiyama, K. Oqi, Suppression of ignition and burning of molten Mg 

alloys by Ca bearing stable oxide film, J. Mater. Sci. Lett. 16 (1997) 1048-1050. 

[113] D.B. Lee, High temperature oxidation of AZ31+0.3wt.%Ca and AZ31+0.3wt.%CaO 

magnesium alloys, Corros. Sci. 70 (2013) 243-251. 

[114] X.G. Min, W.W. Du, F. Xue, Y.S. Sun, Analysis of EET on Ca increasing the melting 

point of Mg17Al12 phase, Chin. Sci. Bull. 47 (2002) 1082-1086. 

[115] J.F. Fan, G.C. Yang, Y.H. Zhou, Y.H. Wei, B.S. Xu, Selective oxidation and the 

third-element effect on the oxidation of Mg-Y alloys at high temperatures, Metall. 

Mater. Trans. A 40 (2009) 2184-2189. 



 Page 51 of 64  
 

[116] M. Sakamoto, S. Akiyama, T. Hagio,  K. Ogi, Control of oxidation surface film and 

suppression of ignition of molten Mg-Ca alloy by Ca addition, J. Jpn. Foundry Eng. 

Soc. 69 (1997) 227-233. 

[117] B.H. Choi, B.S. You, I.M. Park, Characterization of protective oxide layers formed on 

molten AZ91 alloy containing Ca and Be, Met. Mater. Int. 12 (2006) 63-67. 

[118] F. Li, W.Y. Peh, V. Nagarajan, M.K. Ho, A. Danno, B.W. Chua, M.J. Tan, 

Development of non-flammable high strength AZ91+Ca alloys via liquid forging and 

extrusion, Mater. Design 99 (2016) 37-43. 

[119] M. Li, High temperature corrosion of metals, Metallurgical Industry Press, Beijing, 

2001. 

[120] D. Eliezer, H. Alves, Corrosion and Oxidation of Magnesium alloys, In: M. Kutz 

(eds.), Handbook of Materials Selection, John Wiley and Sons, Inc., New York, 2007, 

pp. 267-291. 

[121] S. Golmakaniyoon, R. Mahmudi, Comparison of the effects of La- and Ce-rich rare 

earth additions on the microstructure, creep resistance, and high-temperature 

mechanical properties of Mg-6Zn-3Cu cast alloy, Mater. Sci. Eng.: A 528 (2011) 

5228-5233. 

[122] S. Golmakaniyoon, R. Mahmudi, Microstructure and creep behavior of the rare-earth 

doped Mg-6Zn-3Cu cast alloy, Mater. Sci. Eng.: A 528 (2011) 1668-1677. 

[123] V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, J. Pelcová, 

Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys, 

Mater. Sci. Eng.: A 462 (2007) 329-333. 

[124] Y.B. Hu, J. Deng, C. Zhao, F.S. Pan, J. Peng, Microstructure and mechanical 

properties of Mg-Gd-Zr alloys with low gadolinium contents, J. Mater. Sci. 46 (2011) 

5838-5846. 

[125] J.G. Wang, P.F. Song, S. Huang, F.S. Pan, High-strength and good-ductility Mg-RE-

Zn-Mn magnesium alloy with long-period stacking ordered phase, Mater. Lett. 93 

(2013) 415-418. 

[126] X.M. Wang, X.Q. Zeng, G.S. Wu, S.S. Yao, Yttrium ion implantation on the surface 

properties of magnesium, Appl. Surf. Sci. 253 (2006) 2437-2442. 

[127] X. Wang, X. Zeng, G. Wu, S. Yao, Y. Lai, Effects of tantalum ion implantation on the 

corrosion behavior of AZ31 magnesium alloys, J. Alloys Compd. 437 (2007) 87-92. 

[128] Z. Chen, X. Ren, Y. Zhang, Effect of RE on the ignition proof, microstructure and 

properties of AZ91D magnesium alloy, J. Univ. Sci. Technol. B. 12 (2005) 540–544. 



 Page 52 of 64  
 

[129] J.F. Fan, S.L. Cheng, H. Xie, W.X. Hao, M. Wang, G.C. Yang, Y.H. Zhou, Surface 

oxidation behavior of Mg-Y-Ce alloys at high temperature, Metall. Mater. Trans. A 

36 (2005) 235-239. 

[130] J.F. Fan, G.C. Yang, S.L. Chen, H. Xie, M. Wang, Y.H. Zhou, Effect of rare earths (Y, 

Ce) additions on the ignition points of magnesium alloys, J. Mater. Sci. 39 (2004) 

6375-6377. 

[131] B.A. Pint, Experimental observations in support of the dynamic-segregation theory to 

explain the reactive-element effect, Oxid. Met. 45 (1996) 1-37. 

[132] Z. Ning, W. Liang, F. Cao, J. Sun, The Effect of Y On The Oxidation of Mg-Zn-Zr 

Alloys, Int. J. Mod. Phys. B 23 (2009) 796-801. 

[133] S.H. Bak, D.B. Lee, Effect of Y and Y2O3 on oxidation of AZ91D Mg alloys between 

400 °C and 500 °C, Trans. Nonferrous Met. Soc. China 19 (2009) 871-874. 

[134] X.W. Yu, S.J. Shen, B. Jiang, Z.T. Jiang, H. Yang, F.S. Pan, The effect of the existing 

state of Y on high temperature oxidation properties of magnesium alloys, Appl. Surf. 

Sci. 370 (2016) 357-363. 

[135] B.S. You, Y.M. Kim, C.D. Yim, H.S. Kim, Oxidation and corrosion behavior of non-

flammable magnesium alloys containing Ca and Y, in: M. Alderman, M.V. Manuel, N. 

Hort, N.R. Neelameggham (Eds), Magnesium Technology 2014, John Wiley & Sons 

Inc., New York, 2014, pp.325-329. 

[136] B. Jiang, X.W. Yu, F.S. Pan, Q.S. Yang, X. Li, A high temperature anti-oxidation 

magnesium alloy, China Patent Application, CN104060140A, 24 September 2014. 

[137] S. Cheng, G. Yang, J. Fan, Y. Li, Y. Zhou, Effect of Ca and Y on microstructure and 

mechanical properties of AZ91 alloy, Rare Met. Mater. Eng. 35 (2006) 1400-1403. 

[138] T.S. Shih, J.H. Wang, K.Z. Chong, Combustion of magnesium alloys in air, Mater. 

Chem. Phys. 85 (2004) 302-309. 

[139] W. Ding, X. Wang, X. Zeng, G. Wu, S. Yao, Y. Lai, Cyclic oxidation behaviour of 

cerium implanted AZ31 magnesium alloys, Mater. Lett. 61 (2007) 1429-1432. 

[140] M. Laleh, F. Kargar, A. Sabour Rouhaghdam, Formation of a compact oxide layer on 

AZ91D magnesium alloy by microarc oxidation via addition of cerium chloride into 

the MAO electrolyte, J. Coating Technol. Res. 8 (2011) 765-771. 

[141] A.A. Luo, R.K. Mishra, A.K. Sachdev, High-ductility magnesium–zinc–cerium 

extrusion alloys. Scripta Mater. 64 (2011) 410-413. 



 Page 53 of 64  
 

[142] Wang, X.M, X.Q. Zeng, G.S. Wu, S.S. Yao, Y.J. Lai, The effects of cerium 

implantation on the oxidation behavior of AZ31 magnesium alloys, J. Alloys Compd. 

456 (2008) 384-389. 

[143] P. Lin, H. Zhou, W. Li, W.P. Li, N. Sun, R. Yang, Interactive effect of cerium and 

aluminum on the ignition point and the oxidation resistance of magnesium alloy, 

Corros. Sci. 50 (2008) 2669-2675. 

[144] W.P. Li, W. Li, H. Zhou, W. Zhou, M.X. Wang, Effect of cooling rate on ignition 

point of AZ91D-0.98 wt.% Ce magnesium alloy, Mater. Lett. 61 (2007) 2772-2774. 

[145] X.M. Wang, X.Q. Zeng, G.S. Wu, S.S. Yao, L.B. Li, Surface oxidation behavior of 

MgNd alloys, Appl. Surf. Sci. 253 (2007) 9017-9023. 

[146] D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz, The high temperature oxidation behavior 

of Mg–Nd alloys. Part II: The effect of the two-phase microstructure on the on-set of 

oxidation and on oxide morphology, J. Alloys Compd. 584 (2014) 558-565. 

[147] D.S. Aydin, M. Hoseini, M.O. Pekguleryuz, Understanding the high temperature 

oxidation and ignition behaviour of two-phase Mg-Nd alloys and a comparison to 

single phase Mg-Nd, Philos. Mag. 95 (2015) 259-274. 

[148] W.M. Zhao, Y. Zhao, Z.F. Wang, Y.Y. Li, J. Ding, H.T. Xue, Effect of Mg-Nd master 

alloys on ignition-proof performance of AZ91D magnesium alloy, Adv. Mater. Res. 

214 (2011) 118-121. 

[149] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and 

strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy, J. Alloys Compd. 

427 (2007) 316-323. 

[150] J. Liu, Y. Li, F. Wang, The High Temperature Oxidation Behavior of Mg–Gd–Y–Zr 

Alloy, Oxid. Met. 71 (2009) 319-334. 

[151] X. Wang, W. Wu, Y. Tang, X. Zeng, S. Yao, Early high temperature oxidation 

behaviors of Mg–10Gd–3Y alloys, J. Alloys Compd. 474 (2009) 499-504. 

[152] Y.J. Wu, L.M. Peng, S. Zhao, D.J. Li, F. Huang, W.J. Ding, Ignition-Proof Properties 

of a High-Strength Mg-Gd-Ag-Zr Alloy, Journal of Shanghai Jiaotong University 

(Science) 17 (2012) 643-647. 

[153] D. Yao, W. Zhao, H. Zhao, F. Qiu, Q. Jiang, High creep resistance behavior of the 

casting Al-Cu alloy modified by La, Scripta Mater. 61 (2009) 1153-1155. 

[154] D. Yao, Y. Xia, F. Qiu, Q. Jiang, Effects of La addition on the elevated temperature 

properties of the casting Al-Cu alloy, Mater. Sci. Eng.: A 528 (2011) 1463-1466. 



 Page 54 of 64  
 

[155] S. Zhao, H. Zhou, T. Zhou, Z. Zhang, P. Lin, L. Ren, The oxidation resistance and 

ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La, 

Corros. Sci. 67 (2013) 75-81. 

[156] J.A. Dean, N.A. Lange, Lange's Handbook of Chemistry, fifteenth ed., McGraw-Hill, 

New York, 1999. 

[157] H. Fan, S. Li, Z. Zhao, H. Wang, Z. Shi, Improving the formation and protective 

properties of La-conversion coatings on brass by use of La2O3 nanoparticle 

incorporation with electrodeposition, Corros. Sci. 53 (2011) 3821-3831. 

[158] G. Zhang, Z. Luo, H. Zhang, R. Chu, Ignition-proof mechanism of magnesium alloy 

added with rare earth La from first-principle study, J. Rare Earth. 30 (2012) 573-578. 

[159] W.Y. Youdelis, C.S. Yang, Beryllium-enhanced grain refinement of aluminium–

titanium alloys, Met. Sci. 16 (1982) 275-281. 

[160] J.C. Harkness, W.D. Spiegelberg, W.R. Cribb, Beryllium-Copper and other 

Beryllium-Containing Alloys, in: ASM Metals Handbook Vol. 2: Properties and 

Selection: Nonferrous Alloys and Special-Purpose Materials, ASM international, 

Materials Park, OH, 1990, pp. 403-427. 

[161] C. Houska, Beryllium in alumium and magnesium alloys, Met. Mater. 4 (1988) 100-

104. 

[162] J.R. Davis, Aluminum and aluminum alloys, ASM International, Material Park, OH, 

1993. 

[163] G. Foerster, HiLoN: A new approach to magnesium die casting, Adv. Mater. Process. 

154 (1998) 79-81. 

[164] K.G. Wikle, Improving aluminum castings with beryllium, AFS Trans. 119 (1978) 

513-518. 

[165] Y.B. Huang, I.S. Chung, B.S. You, W.W. Park, B.H. Choi, Effect of Be addition on 

the oxidation behavior of Mg−Ca alloys at elevated temperature, Met. Mater. Int. 10 

(2004) 7-11. 

[166] X. Zeng, Q. Wang, Y. Lü, W. Ding, Y. Zhu, C. Zhai, C. Lu, X. Xu, Behavior of 

surface oxidation on molten Mg–9Al–0.5Zn–0.3Be alloy, Mater. Sci. Eng.: A 301 

(2001) 154-161. 

[167] X.Q. Zeng, Q.D. Wang, Y.Z. Lü, W.J. Ding, C. Lu, Y.P. Zhu, C.Q. Zhai, X.P. Xu, 

Study on ignition proof magnesium alloy with beryllium and rare earth additions, 

Scripta Mater. 43 (2000) 403-409. 



 Page 55 of 64  
 

[168] F. Czerwinski, The early stage oxidation and evaporation of Mg-9%Al-1%Zn alloy, 

Corros. Sci. 46 (2004) 377-386. 

[169] Q.Y. Tan, N. Mo, B. Jiang, F.S. Pan, A. Atrens, M.X. Zhang, Oxidation resistance of 

Mg-9Al-1Zn alloys micro-alloyed with Be, Scripta Mater. 115 (2016) 38-41. 

[170] F. Czerwinski, J.A. Szpunar, The influence of crystallographic orientation of nickel 

surface on oxidation inhibition by ceria coatings, Acta Mater. 46 (1998) 1403-1417. 

[171] F. Czerwinski, On the use of the micromarker technique for studying the growth 

mechanism of thin oxide films, Acta Mater. 48 (2000) 721-733. 

[172] E. Clementi, D.L. Raimondi, W.P. Reinhardt, Atomic Screening Constants from SCF 

Functions. II. Atoms with 37 to 86 Electrons, J. Chem. Phys. 47 (1967) 1300-1307. 

[173] P. Cao, Q. Ma, D.H. StJohn, Grain coarsening of magnesium alloys by beryllium, 

Scripta Mater. 51 (2004) 647-651. 

[174] P. Cao, Q. Ma, D.H. StJohn, Mechanism for grain refinement of magnesium alloys by 

superheating, Scripta Mater. 56 (2007) 633-636. 

[175] M.O. Pekguleryuz, Alloying behavior of magnesium and alloy design in: M.O. 

Pekguleryuz, K.U. Kainer, A.A. Kaya (Eds.), Fundamentals of Magnesium Alloy 

Metallurgy, Woodhead Publishing, Cambridge, 2013, pp. 152-196. 

[176] K. Dennis, Effects of magnesium, silicon, and strontium on the oxidation of molten 

aluminum, Thesis, McGill University (Canada), 1999. 

[177] O. Ozdemir, Effect of strontium on the oxidation behavior of molten aluminum-

magnesium alloys, Thesis, McGill University (Canada), 2006. 

[178] D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz, High Temperature Oxidation Behavior of 

Hypoeutectic Mg-Sr Binary Alloys: The Role of the Two-Phase Microstructure and 

the Surface Activity of Sr, Adv. Eng. Mater. 17 (2015) 697-708. 

[179] M. Pekguleryuz, P. Vermette, Strontium for melt oxidation reduction of magnesium 

and a method for adding strontium to magnesium, US Patent Application, 

US20040159188 A1, 19 Augest 2004. 

[180] D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz, The effect of strontium (Sr) on the 

ignition temperature of magnesium (Mg): a look at the pre-ignition stage of Mg–6 wt% 

Sr, J. Mater. Sci. 48 (2013) 8117-8132. 

[181] M. Pekguleryuz, M. Avedesian, Magnesium Alloying-Some Metallurgical Aspects, In: 

F. Hehman, B.L. Mordike, (Eds.), Magnesium alloys and their applications, DGM, 

Germisch, 1992, pp. 213-220. 

[182] F. Mansfeld, Corrosion Mechanisms, Marcel Dekker Inc., New York, 1987. 



 Page 56 of 64  
 

[183] M. Rashad, F.S. Pan, D. Lin, M. Asif, High temperature mechanical behavior of 

AZ61 magnesium alloy reinforced with graphene nanoplatelets, Mater. Design 89 

(2016) 1242-1250. 

[184] M. Rashad, F.S. Pan, M. Asif, Exploring mechanical behavior of Mg-6Zn alloy 

reinforced with graphene nanoplatelets, Mater. Sci. Eng.: A 649 (2016) 263-269. 

[185] M. Rashad, F.S. Pan, W. Guo, H. Lin, M. Asif, M. Irfan, Effect of alumina and silicon 

carbide hybrid reinforcements on tensile, compressive and microhardness behavior of 

Mg-3Al-1Zn alloy, Mater. Char. 106 (2015) 382-389. 

[186] M. Rashad, F.S. Pan, A.T. Tang, M. Asif, M. Aamir, Synergetic effect of graphene 

nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical 

properties of pure magnesium, J. Alloys Compd. 603 (2014) 111-118. 

[187] M. Rashad, F.S. Pan, A.T. Tang, M. Asif, S. Hussain, J. Gou, J.J. Mao, Improved 

strength and ductility of magnesium with addition of aluminum and graphene 

nanoplatelets (Al plus GNPs) using semi powder metallurgy method, J. Ind. Eng. 

Chem. 23 (2015) 243-250. 

[188] Q.B. Nguyen, M. Gupta, T.S. Srivatsan, On the role of nano-alumina particulate 

reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B, 

Mater. Sci. Eng.: A 500 (2009) 233-237. 

[189] X.J. Wang, C.Y. Wang, X.S. Hu, K. Wu, K.K. Deng, W.M. Gan, M.Y. Zheng, Hot 

deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir 

casting, Mater. Sci. Eng.: A 492 (2008) 481-485. 

[190] J.Q. Li, L. Wang, H.W. Cheng, H.F. Zhang, Z.Q. Hu, H.N. Cai, Synthesis and 

compressive deformation of rapidly solidified magnesium alloy and composites 

reinforced by SiCp, Mater. Sci. Eng.: A 474 (2008) 24-29. 

[191] W. Yang, G.C. Weatherly, D.W. McComb, D.J. Lloyd, The structure of SiC-

reinforced Mg casting alloys, J. Microsc. 185 (1997) 292-302. 

[192] B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, 

metal-matrix composite reinforced with SiC particles, J. Mater. Sci. 28 (1993) 4427-

4434. 

[193] T. Nguyen, D. Lee, Oxidation of AM60B Mg Alloys Containing Dispersed SiC 

Particles in Air at Temperatures Between 400 and 550 °C, Oxid. Met. 73 (2010) 183-

192. 



Page 57 of 64 

[194] T.D. Nguyen, Y.J. Kim, J.C. Lee, S.J. Kim, D.B. Lee, Effect Of Dispersed Sic 

Particles On The Oxidation Of AZ91D Magnesium Alloys Between 420 And 500°C 

In Air, Surf. Rev. Lett. 17 (2010) 9-14. 

[195] D.B. Lee, J.H. Park, Y.H. Park, Y.J. Kim, High temperature oxidation of TiAl/SiCp 

composites manufactured by MA-SPS process, Mater. Trans. Jim 38 (1997) 306-311. 

[196] P.Y. Lin, H. Zhou, W.P. Li, S.Z. Zhao, J.G. Su, Effect of yttrium addition on the 

oxide scale of AM50 magnesium alloy, Corros. Sci. 51 (2009) 1128-1133. 

[197] B.H. Choi, B.S. You, W.W. Park, Y.B. Huang, L.M. Park, Effect of Ca addition on 

the oxidation resistance of AZ91 magnesium alloys at elevated temperatures, Met. 

Mater. Int. 9 (2003) 395-398. 

[198] W. Zhao, Y. Sun, H. Li, C. Liang, The effects of some elements on the igniting 

temperature of magnesium alloys, Mater. Sci. Eng.: B 127 (2006) 105-107. 



Figure 1: The thermogravimetric measurements of weight change versus time for as-cast Mg-9Al-1Zn in air at 197 C,

437 C, 472 C and 487 C. The small weight gain at 197 C represented a slow oxidation speed. The oxidation rate

dramatically increased at temperatures above 400 C and indicated a rapid oxidation stage, after an incubation period.

Redrawn from Czerwinski [32] and used with permission from Elsevier.
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Figure 2: Macroscopic surface morphologies of AZ91 after oxidation in air for the following conditions. (a) After 10 hour at 387 ℃, the surface was flat and a

change of colour from bright metallic to matte grey indicated the formation of a uniform surface layer. (b) After one hour at 497℃, the surface was covered with

black oxide nodules. This was typical of a catastrophic oxidation and a non-protective surface layer. (c) After 10 min at 547 ℃, the cauliflower morphology was

typical of burning Mg. Reproduced from Czerwinski [32] with permission from Elsevier.



Figure 3: Oxidation kinetics of Mg-2.63 at.% Al at 31 ℃ and indicated oxygen pressures, as-measured by real-time in

situ spectroscopic ellipsometry (RISE). Parabolic kinetics were obtained. Initially, the oxide film grew rapidly and a

higher oxygen pressure led to a higher growth rate and shorter duration. Subsequently, the growth rate was constant and

independent on the oxygen pressure, indicating a protective surface film that controlled the oxidation rate by transport of

species through the surface film. Redrawn from Jeurgens [39] and used with permission from Elsevier.
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Figure 4: Schematic oxidation behaviour of molten Mg alloys. The uniform layer formed at the initial stage is quickly

replaced by oxide nodules and subsequent ignition and burning. The uniform oxide layer, oxide nodules and nitrides are

marked.



Figure 5: The flame test to study the oxidation of Mg-X (X = Al, Ca, Si, Sn, Sr, La, Mn, Zn, Zr, Ce, Gd, and Nd) and two

typical Mg alloys-AZ61 and AZ91 is shown schematically in a top view. One end of the Mg alloy sample (typically 20

mm in diameter and 200 mm in length) was subjected to a liquefied petroleum gas (LPG) flame with a temperature of

~1100 C. Thermo-couples allowed estimation of the flame temperature and the temperature at the ends of the Mg alloy

sample. Reproduced from Prasad [58] with permission from Elsevier.



Figure 6: Flame melting test using AZ61. (a) The specimen tip exposed to the LPG flame melted and partially ignited;

(b) Subsequent burning of specimen tip. (c) The detached ignited blob continued to burn whereas the flame of the

specimen tip extinguished in the absence of the LPG flame. Reproduced from Prasad [58] with permission from Elsevier.



Figure 7: Typical morphologies on the Mg surface during oxidation at high temperatures: (a) The oxide ridge

morphology formed on Mg-9Al-1Zn after oxidation at 487 ℃ for 1 min; (b) a cross-sectional view of individual oxide

nodule formed at 527℃ after 5 min. Reproduced from Czerwinski [31] with permission of Springer.



Figure 8: Schematic of the stages for MgO growth on AZ91 at high temperature: (a) a compact layer showing protective

properties; (b) cracking of the layer and growth of oxide ridges; (c) nodular growth accompanied with linear kinetics; (d)

coalescence of nodules and the formation of loose layer with pores. Reproduced from Czerwinski [31] with permission

of Springer.



Figure 9: Schematics of the formation mechanism and internal structure of an oxide nodule. Melting of the intermetallic

phases can produce locally high vapour pressures of Mg vapour. If such a region is associated with cracks in the oxide,

Mg vapour can diffuse through the cracks, be oxidized at the oxide surface, and contribute to the growth of the oxide

nodule. Reproduced from Czerwinski [26] with permission of Springer.



Figure 10: Proposed oxidation mechanism of AZ91 at 410℃. Selective oxidation accompanied with Zn sublimation leads

to a pit. Further oxidation enlarges the pit, resulting in formation of loose oxide nodules. The consumption of Mg by

oxidation leads to a local increase in the Al content at the oxide/substrate interface. Reproduced from Arrabal [80] with

permission of Springer.
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Figure 11: AES depth profiles sputtered from the surface of (a) pure Mg at 440 C; (b) Mg-3Ca at 440 C; (c) pure Mg at

500 °C and (d) Mg-3Ca at 500 C for 1 h. In pure Mg, the Mg and O content at the surface were constant at both 440 and

500 C. In Ca-containing alloys, Ca tended to segregate near the surface with increasing the temperature. Redrawn from

You [110] and used with permission from Elsevier.



Figure 12: The surface morphology of the oxide scale on Mg at 500 °C for 90 min: (a) non-implanted surface: large

cracks and cavities were produced on the surface; (b) implanted surface (Y ions of 90 keV with a dose of 5×1017cm-2 for

1h): the surface was dense with no cracks, the nodules on the surface shows a so-called reactive element effect.

Reproduced from Wang [126] with permission from Elsevier.



Figure 13: Images showing the behaviour of a Mg-5Y specimen exposed to a flame test as illustrated in Fig. 5: (a)

specimen melted and a minor ignition occurred at the end of the specimen; (b) the incipient ignition was extinguished

readily even in the presence of the LPG flame. Reproduced from Prasad [59] with permission from Elsevier.



Figure 14: SEM micrographs on the surface of the AM50 Mg alloy after isothermal oxidation in air at 500℃ for 60 min:

(a) 0 wt.% Ce with high porosity; (b) 0.25 wt.% Ce showing dense oxide layer; (c) 0.45 wt.% Ce showing porous oxide

layer. Reproduced from Lin [143] with permission from Elsevier.



Figure 15: The proposed REE of Ce in MgO. The Ce oxide and Ce cations in MgO grain boundaries block the diffusion

of Mg cations. Reproduced from Czerwinski [26] with permission of Springer.



Figure 16: Proposed composite oxide layer formed during the oxidation of the α-Mg solid solution phase. The

consumption of Mg during oxidation increased the concentration of Nd at the surface, leading Nd2O3 to form.

Reproduced from Aydin [46] with permission from Elsevier.



Figure 17: Weight gain curves of the Mg–10Gd–3Y alloys oxidized at different temperatures for up to 90 min. The oxide

growth kinetics obeyed the parabolic law from 450 °C to 600 °C. Redrawn from Wang [151] and used with permission

from Elsevier.
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Figure 18: Oxidation kinetic curves of AZ31 at 450 ℃ alloyed with (a) La: the lowest oxidation rate was obtained by

alloying 0.75 wt.% La, higher La content increased the oxidation rate; (b) La2O3: lowest oxidation rate was obtained by

alloying 0.74 wt.% La (converted from La2O3), higher La2O3 addition increased the oxidation rate. Redrawn from Zhao

[155] and used with permission from Elsevier.
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Figure 19: Top view of molten AZ91 and AZB910 alloy held at 650 C: (a) the AZ91 melt surface was covered by lots of

oxides; and (b) the AZB910 melt was smooth and clear. Reproduced from Zeng [166] with permission from Elsevier.



Figure 20: Auger depth profiles of: (a) AZ91; (b) AZB910 after oxidation at 650℃ for 10 seconds. The high

concentration of Mg and O indicates MgO layers on the outmost surface of both alloys. For AZB910, the decreasing Mg

concentration was accompanied with an increasing of Be content, indicating the appearance of BeO in the inner layer.

Redrawn from Zeng [166] and used with permission from Elsevier.
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Figure 21: The influence of the Be content on weight change kinetics of AZ91D in argon. This weight loss for the 10

ppm (wt) Be-containing alloy was lower than that of the 5 ppm (wt) Be-containing alloy, implying an evaporation

suppression by the higher amount of beryllium. Redrawn from Czerwinski [168] and used with permission from Elsevier.
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Figure 22: The oxidation kinetics at 500℃ for 12 hour in air of the alloys (a): pure Mg; (b): Mg-2.5 wt.% Sr and (c): Mg-

6 wt.% Sr. There were two stages: (i) the initial parabolic-oxidation stage which can also be considered as the incubation

period and (ii) the accelerated oxidation stage. Sr delayed the onset of accelerated oxidation. Redrawn from Aydin [178]

and used with permission of John Wiley and Sons.
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Figure 23: Ignition temperatures of pure Mg and Mg-Sr alloys. The ignition temperature of Mg increases with increasing

Sr content. Redrawn from Aydin [180] and used with permission of Springer.
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Figure 24: (a) Oxidation kinetics of pure Mg, Mg-2.5Nd, Mg-6Nd, Mg-2.5Sr and Mg-6Sr at 500 C in air for 700

minutes; (b) ignition temperatures of Mg-Nd and Mg-Sr alloys. Nd and Sr had similar role on the oxidation resistance.

However, the effect of Sr was more remarkable on the ignition temperature. The ignition temperature of Mg increased

with increasing Sr content. Redrawn from Aydin [46, 147, 178, 180] and used with permission of Springer.
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Figure 25: Oxidation kinetics of AZ91-1.5Ca, AZ91-1.5Ca-0.5Y, AZ91-20 ppm (wt) Be and AZ91-60 ppm (wt) Be at

400 C in air for 300 min. The AZ91 containing 20 ppm (wt) Be shows a lower oxidation rate than that of AZ91-1.5Ca.

Addition of 60 ppm (wt) Be has a better effect on the oxidation resistance than that of addition of 1.5 Ca and 0.5 Y.

Redrawn from Cheng and Tan [111, 169] and used with permissions of Springer and Elsevier.



Figure 26: Ignition temperatures (Ti) of various binary Mg alloys chips and the solute solubility of the alloying elements

in Mg. Mg-3La provides the lowest ignition temperature of 524 C and La has a low solubility in Mg (1 wt.%). Mg-3Er

has the highest ignition temperature of 762 C and Er has the highest solubility in Mg (33.8 wt.%). Alloying element

with a higher solubility trends to perform better in improving the ignition resistance of Mg. Data retrieved from Kim

[105] and used with permission from Elsevier.
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Table 1: Incubation period (min) of various Mg alloys at various temperatures (C). 

(Chemical compositions are represented by mass fraction). 

 

  

Alloys 
Incubation period (min) at various temperatures (C) 

Ref. 
400 430 450 500 550 600 700 

Pure Mg    440    [46] 

AM50 
Over 700  95 85    [38] 

  41     [196] 

AM60 Over 700  80 75    [38] 

AE42 Over 700  130 95    [38] 

ZE41 Over 330  Over 330 90    [41] 

Mg-0.3Nd    480    [46] 

Mg-0.5Nd    670    [46] 

Mg-2.5Nd    Over 700    [147] 

Mg-6Nd    Over 700    [147] 

Mg-2.5Sr    Over 700    [178] 

Mg-6Sr    Over 700    [178] 

Mg-10Gd-3Y Over 90  Over 90 Over 90 Over 90 Over 90  [151] 

Y surface 

implanted Mg 
   Over 90    [126] 

Mg-1.5Ca    Over 300    [110] 

Mg-3.08Y-
0.68Ce 

Over 140   Over 140  16  [129] 

Mg-5.13Y-

0.25Zn-0.32Zr 

Over 

16200 
      [132] 

AZ91 
150       [169] 

180  20     [38] 

AZ91-1.5Ca 270       [111] 

AZ91-1.5Ca-
0.5Y 

Over 300       [111] 

AZ91-2Ca       55 [197] 

AZ91-5Ca       Over 60 [197] 

AZ91-60ppm 
(wt) Be 

Over 300       [169] 

ZC63-10SiC  90 55     [40] 

AZ91-5SiC  120 60     [194] 

AZ91-10SiC  Over 300 90     [194] 

AZ91-20SiC  Over 300 Over 300     [194] 

AM50-0.28Y   Over 60     [196] 

AM50-1Y   57     [196] 

AZ31-0.75La   36     [155] 

AZ31-0.3Ca   Over 1200 Over 1200    [113] 
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Table 2: Ignition temperature of various magnesium alloys and P-B ratios [62] of the 

corresponding oxides. (Chemical compositions are represented by mass fraction). 

Alloy 

elements 
Oxide 

P-B 

Ratio 
Alloy Shape Ti Ref. 

Mg MgO 0.81 Pure Mg 

Ingot 620-650 C [45-47] 

Chip 504 C [105] 

Powder 437 C [82] 

Al Al2O3 1.29 
Mg-3Al Chip 474 C [105] 

AM50 Powder 485 C [143] 

Al, Zn 
Al2O3 

ZnO 

1.29 

1.59 

Mg-9Al-1Zn 
Ingot 520-600 C [48, 49, 118] 

Powder 484 C [143] 

Mg-3Al-1Zn Ingot 628 C [48] 

Ca CaO 0.65 

Mg-3Ca Chip 745 C [105] 

Mg-5Ca Ingot 727 C [112] 

AZ91-1.5Ca Ingot 750 C [111] 

AZ91-2Ca Ingot 900 C [117] 

AZ91-6Ca Ingot 869.4 C [118] 

Y Y2O3 1.13 

Mg-3Y Chip 721 C [105] 

Mg-5.8Y Ingot 665 C [115] 

Mg-10Y Ingot 900 C [130] 

WE43 Ingot 
750 C 

644 C 

[55] 

[48] 

Ca, Y 
CaO 

Y2O3 

0.65 

1.13 

Mg-3.5Y-

0.5Ca 
Ingot 847 C [115] 

AZ91-1.5Ca-

0.5Y 
Ingot 775 C [111] 

Ce 
Ce2O3 

CeO2 

1.14 

1.15 

Mg-3Ce Chip 630 C [105] 

AM50-0.25Ce Powder 535 C [143] 

AZ91-0.25Ce Powder 525 C [143] 

Nd Nd2O3 1.13 
Mg-0.5Nd Ingot 770 C [46] 

AZ91-5Nd Ingot 520 C [148] 

Gd Gd2O3 1.23 

Mg-3Gd Chip 707 C [105] 

Mg-15.3Gd-

1.9Ag-0.3Zr 
Ingot 930 C [152] 

La La2O3 1.11 
Mg-3La Chip 524 C [105] 

AZ31-0.7La Ingot 570 C [155] 

Be BeO 1.70 Mg-0.15Be Ingot 750 C [198] 

Be, Ca 
BeO 

CaO 

1.70 

0.65 

Mg-2Ca-

0.03Be 
Ingot 1050 C [165] 

Sr SrO 0.66 
Mg-3Sr Chip 632 C [105] 

Mg-6Sr Ingot 854 C [180] 

SiC - - AM60-10SiC Ingot 603 C [193] 

 

 


