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Highlights 

 Targeted liposomes can be prepared in the one-step microfluidic device 

 Size and surface properties can be controlled easily 

 This microfluidic method directed targeted liposomes possess selective cell uptake 

enhancement in both 2D and 3D model. 

 At the same time, these liposomes can reduce phagocytosis. 
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Abstract  

Nanotechnology has started a new era in engineering multifunctional nanoparticles for 

diagnosis and therapeutics by incorporating therapeutic drugs, targeting ligands, stimuli-

responsive release and imaging molecules. However, more functionality requires more 

complex synthesis processes, resulting in poor reproducibility, low yield and high production 

cost, hence difficulties in clinical translation. Herein we report a one-step microfluidic method 

for making multifunctional liposomes. Three formulations were prepared using this simple 

method, including plain liposomes, PEGylated liposomes and folic acid functionalised 

liposomes, all with a fluorescence dye encapsulated for imaging. The size and surface 

properties of these liposomes can be precisely controlled by simply tuning the flow rate ratio 

and the ratio of the lipids to PEGylated lipid (DSPE-PEG2000) and to the DSPE-PEG2000-Folate, 

respectively. The synthesised liposomes remained stable under mimic serum conditions. 

Compared to the plain liposomes and PEGylated liposomes, the targeted folic acid 

functionalised liposomes exhibited enhanced cellular uptake by the FA receptor positive 

SKOV3 cells, but not the negative MCF7 cells, and this enhanced uptake could be inhibited by 

adding excess free folic acid, indicating high specificity of FA ligand-receptor endocytosis. 

Further evaluation using the 3D tumour spheroid model also showed higher internalisation of 

the targeted liposome formulation in comparison with the PEGylated one. To the best of our 

knowledge, this work demonstrates for the first time the versatility of this microfluidic method 

for making different liposome formulations in a single step, their superior physicochemical 

properties as well as the enhanced cellular uptake and tumour spheroid uptake of the targeted 

liposomes. 
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1. Introduction 

Liposomes are artificially constructed nanostructures inspired by the composition and structure 

of cell membranes. Liposomes have been studied extensively in the past decades because of 

their superior properties over other nanosystems, such as non-toxicity, non-immunogenicity, 

and good biocompatibility and biodegradability. By 2014, fifteen lipid-based therapeutics have 

gained clinical approval, such as Doxil [1], DaunoXome, etc., for the treatment of cancer, fungi, 

microbes, analgesia, etc., and more are undergoing clinical trials [2].  

Different methods have been developed for producing liposomes,  such as thin-film hydration, 

freeze-drying, detergent depletion and alcohol injection [3]. These conventional methods are 

all based on bulk synthesis, and require post-processing steps (extrusion or sonication) to 

homogenise the size. Multifunctional liposomes need more post-processing steps, such as post-

conjugation steps to add a targeting ligand and/or to conjugate imaging molecules, resulting in 

big batch-to-batch variations and poor control over their size and surface properties, which play 

key roles in determining their behaviour in vivo [4]. The difficulties in manufacturing 

multifunctional liposomes for targeted delivery limits their large-scale production, which is 

one of the reasons that no active targeted liposome has gained clinical approval, even though 

significant amount of work has been directed to make multifunctional liposomes. Therefore, it 

is of great significance to develop a robust platform technology for preparing multifunctional 

liposomes with reproducible and precisely controlled properties.  

Microfluidic technology has emerged as an alternative to bulk methods for synthesising various 

materials in recent years [5-7]. The microfluidic hydrodynamic flow focusing (HFF) method 

has demonstrated its versatility in making various kinds of nanomaterials through self-

assembly, including polymeric nanoparticles [8], liposomes [9] and lipid-polymer hybrid 

nanoparticles [10]. This HFF method allows the formation of liposomes through a single-step 

self-assembly. Basically, a lipid-containing alcohol solution that is introduced from the central 

microchannel mixes with an aqueous buffer solution from the vertical channels. As the alcohol 

diffuses to the aqueous buffer, the lipid materials solubilised in the alcohol becomes less 

soluble and self-assembles into planar lipid bilayer discs. Subsequently, these lipid discs bend 

to reduce the exposure of the hydrophobic lipid chain to the hydrophilic buffer and finally close 

into spherical liposomes [11]. This single-step method offers better control over the properties 

of liposomes, such as particle size, size distribution and surface properties (PEGylation and 

targeting ligand) [11-14]. More importantly, this method can be easily scaled up. Hood et al. 



recently reported the high throughput production of liposomes using a high aspect ratio HFF 

device. The production rate was as high as 95 mg h-1, which was approximately 1000 times 

higher than using the original HFF device [15]. Furthermore, the production throughput can be 

increased through parallelization [16]. Therefore, microfluidic technology holds great potential 

in producing liposomes for practical applications. However, current work has been focusing on 

designing various microfluidic devices for making liposomes, while little effort has been made 

to synthesise multifunctional liposomes (PEGylated and targeted liposomes). To the best of 

our knowledge, none have investigated their biological functions, which are critical to assess 

whether the liposomes prepared in microfluidic devices have the correct conformation and thus 

biological function. 

In this study, three liposome formulations, that is, plain liposomes, PEGylated liposomes, and 

an active targeting ligand – folic acid modified liposomes, were prepared using the single-step 

microfluidic hydrodynamic flow focusing method. Size, polydispersity and surface properties 

of the three liposome formulations as a function of flow rate ratios were investigated. Their 

biological functions were systemically studied in vitro using both the two-dimensional cell 

monolayer model and the three-dimensional tumour spheroid model. Other properties such as 

serum stability and phagocytosis were also investigated. 

2. Materials and methods 

2.1 Materials 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (DSPE-

PEG2000) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Cholesterol, 

dihexadecyl phosphate (DCP), histology mounting medium, paraformaldehyde, Accumax 

solution were obtained from Sigma-Aldrich (St. Louis, MO, USA). Mouse anti-human folate 

binding protein antibody was purchased from Abcam (Cambridge, UK). Alexa Fluor® 488 

conjugate goat anti-mouse IgG secondary antibody, Hoechst 33342 and Alexa Fluor® 647 

Phalloidin were purchased from Invitrogen (Carlsbad, CA, USA). 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[folate(polyethylene glycol)-2000] (DSPE-PEG2000-Folate) was 

obtained from Nanocs (NYC, NY, USA). Other chemicals and reagents were of analytical 

grade. 

2.2 Microfluidic device fabrication 



The microfluidic device was fabricated using photolithography and soft lithography. The 

microchannel pattern was designed using the AutoCAD software and was printed to a chrome 

mask. For SU-8 master fabrication (photolithography), SU-8 was spin-coated to a clean 4-inch 

silicon wafer, followed by ultraviolet exposure using the patterned chrome mask as the 

template. After baking, developing and washing, the SU-8 master was ready to use. Soft 

lithography was conducted by pouring Polydimethylsiloxane (PDMS) over the SU-8 master 

mold, followed by incubation at 80 °C for 30 min. The cross-linked PDMS was peeled off from 

the SU-8 master mold, and then holes were punched at inlets and outlets. Finally, the PDMS 

layer was bonded to a glass slide coated with a thin layer of PDMS to form a microfluidic 

device.  

2.3 Preparation and characterisation of liposomes 

 For making Plain-Lip (liposomes without surface modification), DMPC, cholesterol and DCP 

were dissolved in chloroform at a molar ratio of 55:40:5. For PEG-Lip, DMPC, cholesterol, 

DCP and DSPE-PEG2000 were dissolved in chloroform at a molar ratio of 47:40:5:8; while for 

FA-Lip, the molar ratio of DMPC, cholesterol, DCP, DSPE-PEG2000 and DSPE-PEG2000-Folate 

was 47:40:5:4:4. After mixing, chloroform was removed using a rotary evaporator and the dried 

lipid film was then dissolved in anhydrous isopropanol using a total lipid concentration of 10 

mM. For DiI labelled liposome, the dried lipid film was dissolved in anhydrous isopropanol 

containing 10 µg/mL DiI. The lipid containing isopropanol solution was then passed through a 

0.22 µm filter and degassed before introduced to the microfluidic device. 

Liposomes were formed by injecting the lipid containing isopropanol solution to the central 

stream in the microfluidic chip and squeezed by the phosphate buffer solution (PBS) stream 

from the two vertical channels. The flow rate ratio (FRR) which represents the volumetric flow 

rate of PBS to isopropanol varied from 4:1, 8:1, 12:1 to 16:1. The total flow velocity of the 

fluid stream in the liposome mixing channel was kept at 0.4 m/s, corresponding to a total 

volumetric flow rate of 28.8 µL/min. The synthesis of liposomes in this hydrodynamic flow 

focusing device procedure was monitored using an inverted optical microscope (Nikon, Tokyo, 

Japan). The size, polydispersity index (PDI) and zeta-potential of the liposomes synthesised 

were determined using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The 

morphology of Plain-Lip, PEG-Lip and FA-Lip at FRR=12:1 were observed using a 

transmission electron microscopy (Jeol, Tokyo, Japan). Samples were dropped onto a copper 



TEM grid with a carbon film and air-dried at room temperature followed by negative-staining 

using 1% uranyl acetate. 

2.4 In vitro stability of liposomes in fetal bovine serum (FBS) 

In order to investigate the stability of liposomes in the presence of a mimic serum environment, 

liposomes were incubated with an equal volume of FBS under 37 ˚C with gentle shaking at 30 

rpm. At different time points (1 h, 2 h, 4 h, 8 h, 12 h and 24 h), samples were collected and 

diluted for the size measurement by a Zetasizer Nano ZS instrument. The same incubation 

process was also conducted in 96 well plate and the absorbance at 680 nm (A) was measured 

at different time point and recorded using a microplate reader. The relative turbidity at 0 h was 

set to be 1 and at other time points was calculated as Asample/A 0 h. 

2.5 Cell lines and cell culture 

RAW264.7 cells (murine macrophage cells), SKOV3 cells (human ovarian adenocarcinoma 

cells) and MCF-7 cells (human breast adenocarcinoma cells) were purchased from American 

Type Culture Collection (ATCC), and were cultured in high glucose DMEM medium 

supplemented with 10% FBS, 100 U/mL penicillin and 100 U/mL streptomycin  at 37 ˚C in a 

humidified 5% CO2 atmosphere.  

2.6 Macrophage cell uptake 

RAW 264.7 cells were seeded into a 24 well plate at a density of 2.5 × 105 cells/well one day 

prior to the experiment. The next day, DiI labelled Plain-Lip, PEG-Lip and FA-Lip were added 

into each well at a final lipid concentration of 38 µM. Cells cultured with liposome-free 

medium was regarded as the blank group. After 4 h incubation under 37 ̊ C, cells were collected, 

washed three times with PBS, and then resuspended in 0.5 mL PBS. The fluorescent intensity 

was measured using a flow cytometer with the excitation wavelength at 549 nm and the 

emission wavelength at 565 nm. Ten thousand cells were recorded and analysed for each 

sample. 

2.7 Determination of folate receptor expression  

The folate receptor expression of SKOV3 and MCF-7 cells was determined using a primary 

antibody and a fluorescence conjugated secondary antibody. Briefly, SKOV3 cells or MCF-7 

cells were seeded into 24 well plate at a density of 2.5 × 105 cells/well. After the cells have 

reached a proper density, they were collected, washed with PBS and resuspended to 1× 106 



cells/mL in ice cold PBS containing 1% BSA and 0.5% sodium azide (buffer solution), then 

incubated the cells with the mouse anti-human folate binding protein primary antibody at a 

concentration of 10 µg/mL in an ice cold buffer solution. After 30 min, cells were washed three 

times and resuspended in a buffer solution containing 10 µg/mL Alexa Fluor® 488 conjugate 

goat anti-mouse IgG secondary antibody. After incubation for 30 min, cells were again washed 

three times and resuspended in 0.5 mL buffer solution for flow cytometry analysis. The 

excitation and emission wavelengths were set at 496 nm and 519 nm, respectively. Ten 

thousand cells were collected for each sample. Cells incubated with the secondary antibody 

were regarded as the control group while cells incubated with both primary and secondary 

antibodies were considered as the sample group. 

2.8 Tumour monolayer cellular uptake study 

2.8.1 Qualitative observation using Confocal Laser Scanning Microscopy (CLSM) 

SKOV3 or MCF-7 cells at a density of 1× 105 cells/well were seeded into a 24-well flat bottom 

tissue culture plate with a diameter of 12 mm glass slips and incubated at 37 °C with 5 % (v/v) 

CO2 supplied. After 24 h, DiI labelled liposomes were added to each well at a final lipid 

concentration of 38 µM and allowed for further incubation for 4 h. Then the cells were washed 

with PBS for three times, followed by fixation with 4% paraformaldehyde at room temperature 

for 10 min. Prior to staining the cytoskeleton, fixed cells were treated with 0.1% Triton X-100 

for 5 min and 1% BSA containing PBS solution for 30 min. After that, cells were incubated 

with Alexa Fluor® 647 Phalloidin for 30 min, followed by the nucleus staining using Hoechst 

33342. Finally, coverslips were mounted to glass slides using histology mounting medium and 

observed using a CLSM (Zeiss 710, Jena, Germany). 

2.8.2 Quantitative flow cytometry measurement 

SKOV3 and MCF-7 cells were seeded into a 24 well plate at a density of 2.5 × 105 cells/well 

and allowed for attachment for 24 h. The next day, DiI labelled Plain-Lip, PEG-Lip and FA-

Lip were added to the corresponding wells to a final lipid concentration of 38 µM and incubated 

under 37 ˚C. For competitive inhibition experiments, prior to adding the liposomes, free folic 

acid was added to the medium at a final concentration of 1.5 mM (about 1000 times of the 

folate concentration in the FA-Lip). Cells cultured with liposome-free medium were regarded 

as the blank group. After incubation for 4 h, cells were trypsinised, collected, washed with PBS 

for three times and then resuspended in 0.5 mL PBS. Fluorescent intensity was measured with 



the excitation and emission wavelengths at 549 nm and 565 nm, respectively, using a flow 

cytometer.  

2.9 3D tumour spheroid uptake 

To establish the tumour spheroid model, SKOV3 or MCF-7 cells at a density of 5×103 

cells/well were seeded into a 96 well plate which was pre-coated with 50 µL 2% low melting 

point agarose, then applied with centrifugation (1000g, 10 min) to initiate the formation of 

spheroids. They were monitored with an optical microscope and were ready to use after 7 days. 

Then DiI labelled liposomes were incubated with spheroids for 24 h and followed by washing 

with PBS and fixation with 4% paraformaldehyde. At last, spheroids were subjected to a 

confocal microscope. For the quantitative analysis, after incubation with DiI labelled liposomes 

for 4 h, 10 spheroids for each group were gathered and treated with 200 µL Accumax solution 

for 30 min at 37 °C with pipetting every 10 min. After dissociation, cells were washed three 

times with PBS and then analysed using a flow cytometry. 

2.10 Statistical analysis 

Statistical analysis were performed by the one-way ANOVA for multiple groups, and p value 

<0.05, <0.01 and <0.001 was marked as *, ** and ***, respectively.  

3. Results and discussion 

3.1 Microfluidic synthesis of three liposome formulations 

Figs. 1A and 1B show the numerical simulation result and the photograph of liposome synthesis 

in the microfluidic hydrodynamic flow focusing (HFF) device under a microscope. The widths 

of the central channel and the two vertical channels are 20 µm, the height of the device is 60 

µm and the total length of the central channel is 1 cm. To synthesise liposomes, the IPA stream 

containing the lipids was injected to the central channel and was intersected by the PBS buffer 

from the two side channels. During this process, the lipids solubilised in the IPA gradually self-

assembled into liposomes due to their decreased solubility. By dissolving different lipids into 

the IPA phase, liposomes with different formulations could be formed in the same microfluidic 

device (Fig. 1C). The addition of an anionic surfactant DCP to the lipid solution was to prevent 

the aggregation of the non-PEGylated liposomes in the microfluidic device [14]. Three 

liposome formulations including plain liposome (Plain-Lip), PEGylated liposome (PEG-Lip) 

and folate targeted liposome (FA-Lip) were synthesised using this simple HFF device (Fig. 

1C). The size and zeta potential of these liposomes can be easily controlled by adjusting the 



flow rate ratio (FRR) of the volumetric flow rate of the PBS to that of the IPA phase. The 

density of PEG and the targeting ligand folate acid can be tuned by adjusting the components 

of the lipids solubilised in the IPA solution. For PEG-Lip, the PEG density was 8% while for 

FA-Lip, the FA density was 4% and the total PEG density was still kept at 8%. 

 

3.2 Liposome size and surface properties 

The size and surface properties of liposomes play important roles in determining their 

behaviour in vivo, including blood circulation time, accumulation in tumour site, vascular to 

tumour transfer and retention in tumour site. Normally, liposomes with a diameter of 90-200 

nm show the longest blood half-lives [17], best tumour accumulation [17, 18] and tumour 

retention [19].  The size homogeneity can also affect the biodistribution of liposomes. 

Liposomes with a narrower size distribution showed a lower liver and spleen accumulation 

[20]. Neutralised liposomes and PEGylated liposomes also exhibited longer blood circulation 

time and better tumour accumulation [21]. Therefore, it is vital to prepare liposomes with 

uniform size and controlled surface properties. 

The effects of the flow rate ratio of the IPA to the PBS phase (4:1, 8:1, 12:1 and 16:1) on 

particle size, particle size distribution index (PDI) and zeta-potential of the three formulations 

were systematically investigated. The size of the three liposomes all decreased with increasing 

the flow rate ratio. A non-equilibrium kinetic model can be used to explain the formation of 

the liposomes.  This model proposes that two parameters, i.e., the growth time of the lipid discs 

and the rate of closing the discs into spherical vesicles, determine the liposome size [11]. 

Higher FRRs result in a thinner alcohol stream thus a thinner diffusion layer, so that the growth 

time of the lipid discs becomes shorter. Also, as the alcohol concentration decreases rapidly at 

higher FRRs, the discs closes faster [22]. Therefore, higher FRRs produce smaller liposomes. 

At a FRR of 12:1, the average sizes of Plain-Lip, PEG-Lip and FA-Lip were 108 ± 4 nm, 56 ± 

1nm and 92 ± 3 nm, respectively. The PEGylated liposomes showed the smallest size compared 

to Plain-Lip and FA-lip, which is consistent with previous studies [23]. The addition of DSPE-

PEG-FA led to a slight increase of the liposome size. Fig. 2B shows the PDI of the three 

liposomes indicating that this HFF method produced liposome particles with narrow size 

distribution with all PDIs below 0.2. For the Plain-Lip, the PDI decreased with the flow rate 

ratio, but for the other two formulations, no obvious trend was observed. At a FRR of 12:1, the 

PDI of plain, PEG and FA-Lip was 0.09 ± 0.01, 0.13 ± 0.01 and 0.14 ± 0.02, respectively. 



As expected, the Plain-Lip exhibited a negative charge at approximately -10 mV due to the 

presence of negatively charged DCP, which was increased to about zero by simple PEGylation 

because of the charge screening effect of the PEG2000. The FA-lip showed similar zeta potential 

as that of the PEG-Lip, indicating that the addition of DSPE-PEG2000-Folate didn’t change the 

surface charge. At a FRR of 12:1, the zeta-potential of Plain-Lip, PEG-Lip and FA-Lip was -

9.5 ± 0.9 mV, -0.8 ± 0.4 mV and -0.9 ± 0.1 mV, respectively. The morphology of all the 

liposomes was observed using TEM, showing crumped and deformed shapes due to the 

vacuum conditions under TEM. The sizes of PEG-Lip and FA-Lip were smaller than that of 

the Plain-Lip (Fig. 2D), which is in consistence with the DLS measurement. The lipid bilayer 

structure could be observed clearly.  

In this study, liposomes synthesised at the FRR of 12:1 were selected for the following in vitro 

experiments, including serum stability, macrophage uptake, two-dimensional cell monolayer 

and three-dimensional tumour spheroids uptake. To label the liposomes, DiI (10 µg/mL) was 

dissolved in the IPA solution along with the lipids. DiI labelled Plain-Lip, PEG-Lip and FA-

Lip showed the same size, PDI and zeta potential as those unlabelled ones (data not shown). 

of independent samples). (D) TEM images of Plain-Lip, PEG-Lip and FA-Lip. Scale bar represents 100 nm. 

3.3. Serum stability  

Liposome stability against physiological condition is a vital prerequisite for its in vivo use. To 

study their serum stability, liposomes were incubated with 50 % FBS to mimic the interactions 

with the serum in vivo. Two important parameters, turbidity and particle size, were monitored 

for 24 h. The relative turbidity for the three liposome formulations remained stable at 

approximately 1.0 (Fig. 3A). Additionally, the mean diameter of these liposomes didn’t change 

much over the 24 h period of time (Fig. 3B). These results demonstrated the good stability of 

these three liposome formulations in physiological mimicking conditions. Two major factors 

contribute to the good stability of the three liposome formulations. Firstly, the surface property 

of nanoparticles plays key roles in determining their serum stability. As serum proteins are 

negatively charged, they are prone to interact with positively charged nanoparticles thus 

leading to aggregation through electrostatic interactions. So the negatively charged Plain-lip 

showed good stability because of the repulsion between the liposomes and serum proteins [24]. 

Secondly, PEGylation can also increase serum stability by excluding the serum protein binding 

and adhesion through steric repulsion. Therefore, even though the PEG-lip and FA-lip had very 

low surface charge, they were still able to remain stable in the serum [25].  



3.4 Cellular uptake of liposomes by RAW 264.7 macrophage cells 

Macrophage is a type of white blood cells involved in the innate immunity that recognises and 

destructs cell debris and foreign substances, such as pathogens and particles. It has been widely 

accepted that high macrophage uptake correlates with short circulation time. To achieve long 

circulation, the macrophage uptake needs to be minimised. PEGylation is a widely used method 

to evade the immune system and thus prolong the circulation time. Fig. 4 shows the RAW 

264.7 cell uptake of the three liposome formulations. Compared to Plain-Lip, PEG-Lip and 

FA-Lip had significantly decreased cell uptake, which is consistent with previously reported 

results [26, 27]. This reduced phagocytosis of the PEG-Lip and FA-Lip is essential for a longer 

circulation time in vivo, which favours their accumulation in tumour sites. Furthermore, it has 

been noted that PEG-Lip and FA-Lip had different particle size (55 nm and 90 nm, 

respectively), but they possessed similar phagocytosis efficiency. It has been shown in some 

studies that particles with larger size have higher macrophage uptake [28]. However in our case 

the particle size didn’t have any effect on the uptake probably because the sizes of PEG-Lip 

and FA-lip are both smaller enough to avoid phagocytosis. 

3.5 Folate receptor expression 

Folate receptor was first discovered as a tumour marker on a human ovarian carcinoma cell 

line in 1991 [29], and then approximately 90% of ovarian carcinomas as well as other cancer 

cells, including breast, kidney, lung brain, etc. were reported to overexpress the folate receptor 

[30]. The human ovarian carcinoma SKOV3 is a widely used folate receptor positive cell line, 

however for human breast carcinoma MCF-7 cell line, different literature reports quite 

contradictory folate receptor expression levels. Jie et al. employed MCF-7 as a folate receptor 

overexpressed cell line [31] while Haimei et al. used MCF-7 as a negative control [32]. In this 

study, we tested the folate receptor expression level of the MCF-7 and SKOV3 cell lines. Fig. 

5 shows that MCF-7 cells have negligible folate receptor expression while SKOV3 cells 

possessed eighteen times higher expression. Therefore, SKOV3 cells were used as the folate 

receptor positive cells while MCF-7 cells were employed as the negative control. 

  

 

3.6 Two-dimensional cellular uptake study 



The ligand-receptor targeting efficiency of FA-Lip was explored using the two cell lines MCF-

7 and SKOV3, as the folate receptor negative and positive cells, respectively. Fig. 6 shows 

qualitative (confocal microscopy) and quantitative (flow cytometry) results of cellular uptake 

of Plain-Lip, PEG-Lip and FA-Lip. Plain-Lip exhibited significant cellular uptake by both 

MCF-7 and SKOV3 cells after 4 h incubation, which was due to non-specific endocytosis [33]. 

In contrast, PEG-Lip showed negligible uptake by both the MCF-7 and SKOV3 cells as a result 

of the PEGylation, demonstrating its excellent capabilities in decreasing the non-specific 

cellular uptake by not only macrophage cells but also the non-phagocytic cells, which is called 

the “PEG dilemma” [34]. It was reported that the addition of 5 mol % of PEG to the surface of 

liposomes could drastically inhibit the binding and uptake of liposomes [35]. To enhance the 

specific cellular uptake while at the same time decreasing the non-specific phagocytosis by 

immune cells, PEGylation in combination with active targeting could be an option [36, 37]. 

Further incorporation of 4 mol % FA to PEG-Lip created an active targeting liposome (FA-

Lip). The cellular uptake experiments confirmed that the addition of FA promoted enhanced 

uptake by the FA receptor positive SKOV3 cells, but not the receptor negative MCF-7.  

Quantitative analysis by flow cytometry (Fig. 6C) illustrated a trend consistent with qualitative 

observations. Plain-Lip showed non-specific uptake by both MCF-7 and SKOV3 cells. FA-Lip 

and PEG-Lip had low and comparable uptake by MCF-7 cells, while the uptake of the FA-Lip 

by SKOV3 cells was 78% higher than that of the PEG-Lip. To demonstrate that the enhanced 

uptake by SKOV3 was receptor-mediated endocytosis, 1.5 mM of free folic acid was added 

along with the FA-Lip for the competitive uptake experiment, which was about 1000 times 

higher than the folate fraction of the FA-Lip. The addition of free folic acid considerably 

decreased the uptake of FA-Lip by SKOV3 cells, confirming ligand – receptor mediated 

endocytosis. It should be noted that the concentration of free folic acid was extremely high to 

ensure successful blocking of the cellular uptake, indicating the high specificity of the FA 

ligand-receptor endocytosis, possibly due to its multivalent interaction with the receptor [38, 

39]. It has been reported in some studies that a molar fraction of as low as 0.03% DSPE-PEG-

FA in a liposome formulation was sufficient for effective interaction with the folate receptor 

[40]. In this study, we found that when the total PEG density was 8%, FA density less than 4% 

was unable to achieve enhanced cellular uptake (data not shown). After screening, 4 mol % of 

DSPE-PEG-FA and 8 mol % of total PEG were selected to achieve an upregulated specific and 

active targeted delivery as well as downregulated unspecific phagocytosis. 

3.7 Cellular uptake and penetration of liposomes in tumour spheroids 



Tumour spheroids are three-dimensional (3D) tumour cell clusters [41], which possess similar 

characteristics of tumour xenografts, such as extracellular matrix, cell-cell interactions [42], 

spatial geometry [43] and hypoxic or necrotic regions [44]. Therefore, compare with the 2D 

cellular uptake experiments aforementioned, 3D tumour spheroid uptake might give a more 

accurate prediction of liposomes’ tumour accumulation, penetration and internalisation. Plain-

Lip, PEG-Lip and FA-Lip were incubated with MCF-7 and SKOV3 tumour spheroids for 24 

h. Fig. 7A and Fig. 7B show the accumulation of three liposome formulations in tumour 

spheroids. Plain-Lip exhibited relatively high accumulation in both MCF-7 and SKOV3 

tumour spheroids, while PEG-Lip showed negligible accumulation. The accumulation of FA-

Lip in SKOV3 tumour spheroids was much higher than that in the MCF-7 spheroid, consistent 

with 2D cellular uptake experiments. A quantitative analysis of the cellular uptake of the 

liposomes by the tumour spheroids was conducted by dissociating the spheroids into cell 

suspension at the incubation time of 4 h, which was the same as the 2D cellular uptake 

experiments. Fig. 7C shows that 4 h incubation already showed a significant difference between 

the untargeted and targeted liposomes. The cellular uptake of FA-Lip by SKOV3 tumour 

spheroids was 90% higher than that of PEG-Lip. However no significant difference was 

observed for the MCF-7 tumour spheroids. Layer-by-layer scanning also showed that FA-Lip 

had increased accumulation in each layer of the SKOV3 tumour spheroid in comparison with 

the Plain-Lip and the PEG-Lip. The cellular uptake of the targeted liposome formulation FA-

Lip by the 3D tumour spheroids and 2D monolayer cell culture showed consistent upregulated 

receptor-specific endocytosis, indicating the potential of this targeted liposome for actual 

applications.  

To further explore the tumour penetration capability of the liposomes, the distribution of Plain-

Lip, PEG-Lip and FA-Lip on SKOV3 tumour spheroids at a depth of 80 µm was extracted 

(bright field was removed). The distribution of fluorescence intensity along the line across the 

spheroid centre was recorded. Fig. 8 shows much higher fluorescence intensity peaks on the 

edges of the spheroid for the FA-Lip, but not for the PEG-Lip. This indicated that even though 

the overall cellular uptake of the targeted liposome was increased, their penetration into the 

tumour spheroids was limited.  

Similar to 2D cell monolayer, Plain-Lip could be internalised into both the MCF-7 and SKOV3 

tumour spheroids through non-specific binding while sterically stabilised PEG-Lips were not 

able to interact with any spheroids due to the effect of the PEG, which was in accordance with 

previously reported work using tumour spheroids [45]. FA-Lip possessed an overall enhanced 



accumulation in the SKOV3 spheroid, however this mainly occurred at a depth of less than 60 

µm. The microenvironment in tumour spheroids plays a decisive role in tumour penetration. 

With the formation of compact cell-cell interactions and high interstitial pressure in the tumour 

spheroids, it is not surprising to find limited penetration of the targeted liposome. Strategies  

such as using ultra-small nanoparticles [46], incorporating cell penetrating peptide (CPP) [47] 

or tumour penetrating peptide [48] could be used to increase tumour penetration in future 

studies.  

 

Conclusion 

Three liposome formulations, plain liposome, PEGylated liposome and folic acid modified 

liposomes (FA-Lip) were successfully synthesised using a single-step microfluidic 

hydrodynamic flow focusing technology. Liposomes can be precisely controlled with tunable 

size, narrow size distribution and varied surface modification (PEGylation and active targeting). 

The biological function experiments demonstrated the downregulated phagocytosis of the 

PEG-Lip in comparison with the Plain-Lip. And the incorporation of the targeting ligand folic 

acid to the liposome upregulated not only the cellular uptake using a 2D cell culture model but 

also the 3D tumour spheroids. The enhanced cellular uptake was demonstrated to be ligand-

receptor specific endocytosis. However, although the active targeted liposome (FA-Lip) 

exhibited higher tumour accumulation, the penetration depth was limited to 40-60 µm. 

Therefore, liposomes incorporating both the active targeting and tumour penetration 

enhancement will be desirable to achieve better drug delivery efficiency. Because of the 

simplicity and versatility of this single-step microfluidic HFF technology, it holds great 

potential in making various kinds of liposome formulations for actual applications. 
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Fig. 1 Numerical simulation (A) and optical micrograph (B) of liposome synthesis in the hydrodynamic flow 

focusing device at a flow rate ratio of 12:1. The width of the microchannels is 20 µm, the height is 60 µm and the 

total length of the central channel is 1 cm. (C) Schematic illustrations of Plain-Lip, PEG-Lip and FA-Lip. 

  



 

Fig. 2 Characterisation of Plain-Lip, PEG-Lip and FA-Lip at different FRRs. (A) size, (B) PDI and (C) zeta-

potential. (Mean ± SD, n = 3; n represents the number 

  



 

Fig. 3 Serum stability of the three liposome formulations. (A) Relative turbidity and (B) mean diameter of Plain-

Lip, PEG-Lip and FA-Lip in 50% FBS. (Mean ± SD, for relative turbidity, n = 5 and for mean diameter, n = 3; n 

represents the number of independent samples) 

  



 

Fig. 4 RAW 264.7 uptake of DiI-labelled liposomes, *** represents statistically significant difference (p < 0.001). 

(Mean ± SD, n = 3; n represents the number of independent samples) 

  



 

 

Fig .5 Folate receptor expression determined by flow cytometry. Cells incubated with a secondary antibody were 

regarded as the control group and cells incubated with both the primary and secondary antibodies were regarded 

as the sample group. (Mean ± SD, n = 3; n represents the number of independent samples) 

  



 

Fig. 6 Cellular uptake of DiI labelled liposomes determined by CLSM on MCF-7 (A) and SKOV3 (B) cells. (C)  

Flow cytometry determination.  Scale bars represent 20 µm. *** represents statistically significant difference (p 

< 0.001). (Mean ± SD, n = 3; n represents the number of independent samples) 

  



 

 

Fig. 7 CLSM observations of overall and layer-by-layer images of DiI labelled liposomes in (A) MCF-7 tumour 

spheroids and (B) SKOV3 tumour spheroids. Scale bars represent 200 µm. (C) Quantitative analysis of cellular 

internalisation of DiI labelled liposomes in 3D tumour spheroids. ** represents statistically significant difference 

(p < 0.01).  N.S. represents no statistical significant difference (Mean ± SD, n = 3; n represents the number of 

tumour spheroids).  

  



 

 

Fig. 8 DiI fluorescence intensity distribution along the line across the centre of the SKOV3 tumour spheroids at 

the depth of 80 µm of  (A) Plain-Lip, (B) PEG-Lip and (C) FA-Lip. Bright fields are excluded. Scale bars represent 

200 µm. 


