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ABSTRACT 
 
Compared to traditional Reliability Index Approach (RIA), Performance Measure Approach (PMA) is 
considered to be more efficient and stable for evaluation of probabilistic constraints in reliability-based design 
optimization of structures. In PMA, the probabilistic performance measure is obtained through locating the 
minimum performance target point (MPTP) with the specified target reliability index in standard normal space. 
The advanced mean-value (AMV) method is well suitable for locating MPTP due to its simplicity and 
efficiency. However, the iterative sequence may converge very slowly, or oscillate and fail to converge if the 
performance function is highly nonlinear. Several modified algorithms were suggested to enhance the 
convergence of AMV, but their implementation is complicated and the prior knowledge of convexity or 
concavity of the performance function is needed. In this paper an easy iterative algorithm, which introduces a 
“new” step size to control the convergence of the sequence, is proposed. This step size is new because it may be 
constant during the iteration or decreases successively using a self-adjust strategy. It is proved that the AMV 
method is a special case of this proposed algorithm when the step size tends to infinity. Numerical results of 
several nonlinear performance functions indicate that the proposed algorithm is effective and as simple as the 
AMV but more robust. 
 
KEYWORDS 
 
Performance Measure Approach, Probabilistic performance measure, Advanced mean-value method, Iterative 
algorithm. 
 
INTRODUCTION 
 
Uncertainties are observed in material and geometric properties and external loads during structures’ lifetime. 
Consequently, the reliability-based design optimization (RBDO) is indispensable and rational (Tu et al 1999; 
Yang and Gu 2004; Chiralaksanakul and Mahadevan 2005; Cheng et al, 2006; Zou and Mahadevan 2006). The 
RBDO formulation is usually expressed as the minimization of objective function under probabilistic constraints 
and the effectiveness, robustness and efficiency of the assessment of probabilistic constraints are the key of 
smooth implementation for RBDO. There are two approaches to evaluate probabilistic constraints: reliability 
index approach (RIA) and performance measure approach (PMA) (Tu et al 1999). The latter is also referred to 
as inverse reliability analysis (Kiureghian et al 1994; Li and Foschi 1998).  
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In RIA, the sub-problem of constraint evaluation is transformed to check if the reliability index β is greater than 
the specified target reliability index and β is the distance between the origin and the most probable failure point 
(MPFP) on the limit state surface in the standard normal random variable space. Whereas, in PMA the constraint 
evaluation is to check if the probabilistic performance measure (PPM) Gp is greater than zero and Gp is the 
performance function value at the minimum performance target point (MPTP) with the specified target 
reliability index in the standard normal space. Compared with RIA, it is thought that PMA has higher efficiency 
and superior numerical stability (Tu et al 1999; Lee et al 2002; Youn et al 2003; Du et al 2004; Lee and Lee 
2005; Yi et al 2008). The iterative scheme of advanced mean value (AMV) is well suitable for PMA due to the 
simplicity and efficiency. However, for some nonlinear performance functions the iterative sequences of AMV 
formulation could yield non-convergence solutions such as the periodic oscillation observed in the references 
(Lee et al 2002; Youn et al 2003; Youn and Choi 2004; Du et al 2004). Hence, several improved algorithms 
aiming to enhance the convergence of AMV were suggested. Youn and his research team proposed conjugate 
mean value method (CMV) (Youn et al 2003), hybrid mean value method (HMV) (Youn and Choi 2004), and 
enhanced hybrid mean value method (EHMV) (Youn et al 2005a). However, these algorithms need the prior 
knowledge including normal vectors of several iterative points and convexity or concavity of the performance 
function, and require complicated implementation (Youn et al 2005a; Youn et al 2005b). Furthermore, they 
could still fail to converge for some problems. Yang & Yi (2009) employed the stability transformation method 
of chaos control (CC) to achieve the oscillation, bifurcation and chaos control for the solution of the AMV 
iterative procedure. Although the CC method performs well for nonlinear performance functions, it is 
computationally inefficient. Accordingly Meng et al (2015) proposed a modified chaos control (MCC) method, 
which improved the convergence by extending the iterative point of the CC method to the constraint boundary. 
But for both CC and MCC method, it is not easy to select the appropriate factor and involutory matrix, 
especially for high-dimensional random space. 
 
In this paper, an easy iterative algorithm, which introduces a “new” step size to control the convergence of the 
sequence, is proposed. This step size is new because it may be constant during the iteration or decreases 
successively using a self-adjust strategy. It is proved that the AMV method is a special case of this proposed 
algorithm when the step size tends to infinity. Numerical results of several nonlinear performance functions, 
including an engineering application, indicate that the proposed algorithm is effective and as simple as the AMV 
but more robust. 
 
PROPOSED ITERATION ALGORITHM 
Basic iteration formulation 
 
To measure probabilistic performance using inverse reliability analysis, one first needs to transform the original 
random vector x  to a standard Gaussian vector u  (zero means, unit variance and independent components), 

expressed as � �T u x  or 1T ( )x u� . Then the performance function 

� �  xd,G � � � �1Td, (u) d,uG g�  , in which d  is the design variable vector, representing either 

deterministic physical quantities or parameters of the probability distribution of the random variables (e.g. the 

mean values or standard deviations of the random variables). The performance function � � 0d,xG � denotes 
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the failure domain. The probabilistic performance measure � �dpG  can be obtained from an optimization 

problem in standard normal u-space (Tu et al 1999; Lee et al 2002), 

� �
for any given find  , such that
minimize ,

s.t. t

g

E




 

d u
d u

u

                  (1) 

where 
u  is the minimum performance target point (MPTP ) on the sphere surface with the target reliability 

index tE  and PPM � � � � � �

   xdudd ,, GgGp . Hereafter d will be omitted for concision. 

 
In PMA, AMV algorithm, which can be derived from the KKT conditions of the optimization formulation (1), is 
commonly used because of its simplicity and efficiency. The iterative formula of AMV is expressed as Eq. (2) 
and Figure 1 shows the iterative procedure of AMV method. 

� � � � � �
� �

1k
t k

k

k
k g

g
E�

�
  �

�
U

U

u
u n u n u

u
                  (2) 

where 1 2( , , , )k k k k
nu u u u  is the k-th iteration point on the target reliability surface. ( )U ukg�   

1 2

( , , , )k k k
n

g g g
u u u
w w w
w w w

 is the gradient vector of performance function at point ku . � �kn u  is the negative 

gradient direction at point ku , as shown in Figure 1. 
 

           
Figure 1 Iterative procedure of AMV method    Figure 2 Iterative procedure of the proposed method 
 
It is found that if the limit surface is flat, AMV method converges fast. However, for some nonlinear 
performance functions the iterative sequence of AMV could yield non-convergence solution such as the periodic 
oscillation observed in the references (Lee et al 2002; Youn et al 2003; Youn and Choi 2004; Du et al 2004). 
Here a "new" step size parameter to control the convergence of the sequence is proposed. 
 

As shown in Figure 2, u k  and  � �n u k  have the same meanings as that in Figure 1. We can get a point 
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1k
O
�u by moving a step with size O  (>0) along the negative gradient direction from point ku .The k+1-th 

iteration point, 1k�u , is the intersection point of the target reliability sphere surface and the line, which connects 

the point 1k
O
�u  to the origin. The expressions are as follows: 

1 ( )kk k gO O�  � �Uu u u     1
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It can be seen in Figure 2 that 1 kk
O
�  u u  if 0O  , which means the iteration points are in fixed position and 

the iteration procedure will never converge to the MPTP. So we must set 0O ! . If O of , 
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This is just the iteration formulation of the AMV method shown in Eq. (2). It means the AMV method is a 
special case of this proposed algorithm when the step size tends to infinity. 
 
Determination of the Step Size 
 

When 1 0k k� � !u u , one can always find a proper value ofO , which makes 1 2 1k k k k� � �� ! �u u u u . 

Suppose 2 1 11k k k kkt� � ���  �u u u u , where 10 1kt �� � . There must be a sequence of O which makes 

2 1 1 1
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Eq. (5) means the proposed method can always converge when setting a appropriate value of O . 
 
Then how to set a appropriate value for step size O  to guarantee convergence of the iteration process? The 
appropriate value for O  depends on the order of nonlinearity of the performance function in standard normal 
space. O  should be small if the order of nonlinearity of the performance function is high. Computational 
results of the following examples show that performance functions with different nonlinear degree have relevant 

maximum values maxO  and the iterative sequence can converge only when max0 O O� � . When the 

nonlinear degree is relatively low, maxO  f  and the AMV method, the special case of the proposed algorithm, 
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can be used. However the performance function’s nonlinear degree is usually unpredictable and even if it can be 

predictable, the quantity relation between maxO  and the nonlinear degree is impossible to constitute. 

Consequently we must “try” in practical application and this troublesome trying work can be done by computers. 

Firstly, a relatively large value is set for O . If 2 1 1u u u uk k k k� � �� ! �  for a certain iteration in the 

iterative process, set / cO O . Here c, named adjusting coefficient for step size, is a constant greater than 1. 
Computational examples indicate good results can be obtained when c is set between 2.2~2.6. Of course there is 
no need to adjust O  if the initial value of O  is less than maxO . In addition, the smaller the step size is, the 
more iterations are needed. This proposed method can be named as step-size-adjustment iterative algorithm. 
 
Iterative Process 
 
The proposed algorithm consists of the following steps. 
Step 1: Transform the original random variable vector x into a standard normal vector u. 
Step 2: Set k=0 and determine initial iterative point u0 (we usually set u0=0), initial step size O  and adjustment 
factor for step size c. Generally, we set 0 10O� �  and 2.2<c<2.6. H is convergence precision. 

Step 3: Calculate the gradient vector of performance function ( )kg�U u  at point ku according to finite 

difference method. 
Step 4: Calculate 1k�u  from Eq. (3) 

Step 5: If 1k k H� � �u u , stop the iteration and 1k�u  is MPTP. Otherwise, go to step 6. 

Step 6: If 1 2 1k k k k� � �� ! �u u u u , return to step 3. Otherwise, decrease the step size using / cO O , and 

then return to step 3. 
 
ILLUSTRATIVE EXAMPLES 
 
In this section, several examples including an engineering application with different nonlinear degree of the 
performance functions are given to demonstrate the effectiveness, robustness and efficiency of the proposed 
method. 
 
Example 1 A performance function is given as (Youn et al (2003)) :  

1 2exp( 7) 10G x x � � � �  

This problem contains two independent random variables x=[x1 x2] with normal distribution xi~N(6.0,0.8), i=1,2. 

The target reliability index is 3.0tE  . 

 
Table 1 shows the results of PPMs and corresponding iterations using the proposed method with different O  
and using the AMV algorithm. The AMV algorithm can converge because the nonlinear degree of the 

performance function is relatively low. In other words, maxO  f  for this problem. From Table 1, we can see 

that all the resulting PPMs are the same, but the iterations are different when using the proposed method with 
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different O . The larger the value of O  is, the less iterations are needed to converge. The number of iterations 
is the same with that of the AMV algorithm when O  is greater than 10 and the proposed method retrogresses 
to the AMV method. 
 

Table 1 Results of PPM and iterations for differentO  

O  0.05 0.1 0.5 1 5 10 >10 AMV 
CMV(Youn 
et al (2003)) 

Iterations 145 80 23 15 8 8 7 7 12 
Gp -0.354 -0.356 -0.358 -0.358 -0.358 -0.358 -0.358 -0.358 -0.358 

 
Example 2 Consider the following performance function(Meng et al (2015)): 

2
1 2 2 1( ) 0.3 0.8 1G x x x x � � �x  

1 2(1.2,0.42) (1.0,0.42) 6.0tx N x N E   

The iterative results of different approaches are listed in Table 2. It is seen that the AMV algorithm fails to 
converge while all the other methods can converge. However, the proposed method converges to MPTP 
accurately after only five iterations and it is much more efficient than other algorithms. Figure 3 shows the 
iterative history of the proposed method in standard normal space. 
 

Table 2 Results of different approaches in Example 2 
 Gp

 u* Iterations Function evaluations 

AMV -----    
HMV -2.2212 （-2.911，5.246） 114 456 

CC 
0.5O   

-2.2290 （-3.116，5.127） 14 56 

MCC 
 Meng et al (2015) 

-2.2162 （-2.860，5.275） 16 64 

Proposed method 
 5 O  

-2.2293 （-3.108，5.132） 5 20 

 

 

Figure 3 Iterative history in Example 2 
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Example 3 A performance function with high nonlinear degree is given as(Yang & Yi (2009)): 

3 2 3
1 1 2 2( ) 18G x x x x � � �x  

1 2(10,5) (9.9,5) 3.0tx N x N E   

The AMV method cannot converge while good results can be obtained using the proposed method with the step 
size adjusted automatically. Using initial step size 10.0O   and adjustment factor c=2.5, the iteration history is 
listed in Table 3. It can be seen that the step size λ is adjusted 7 times during 19 iterations and is decreased from 
10 to 0.01638 finally. The iterative process converges to the MPTP accurately after 20 iterations. The probabilistic 

performance measure is 76.035pG  �  and the MPTP is * ( 1.0595, 2.8067)T � �u . Compared with chaos 

control method(CC) in Yang & Yi (2009), which needs 95 iterations to converge, the proposed method is more 
effective. 
 

Table 3 Iterative history of the proposed method in Example 3

k 1
ku  2

ku  kG  kO  k 1
ku  2

ku  kG  kO  

0 0 0 2942.299 10.0000 10 -1.0406 -2.8137 -75.987 0.04096 

1 -2.3526 -1.8615 -21.431 10.0000 11 -1.0751 -2.8007 -75.971 0.01638 

2 -2.5989 -1.4985 -9.3151 10.0000 12 -1.0349 -2.8159 -75.945 0.01638 

3 -1.2876 -2.7096 -67.648 4.0000 13 -1.0731 -2.8015 -75.984 0.01638 

4 -0.6728 -2.9236 -38.553 1.6000 14 -1.0441 -2.8124 -76.007 0.01638 

5 -1.5929 -2.5422 -43.421 0.6400 15 -1.0659 -2.8042 -76.020 0.01638 

6 -0.1262 -2.9973 226.29 0.2560 16 -1.0494 -2.8105 -76.027 0.01638 

7 -2.1322 -2.1104 -18.851 0.2560 17 -1.0619 -2.8058 -76.031 0.01638 

8 -2.2573 -1.9760 -20.096 0.1024 18 -1.0525 -2.8093 -76.033 0.01638 

9 -2.7054 -1.2965 20.551 0.04096 19 -1.0595 -2.8067 -76.035 0.01638 

 

Example 4 A slab-column structure is shown in Figure. 4. The structure is made of the same material with 

density 7.8e3 kg/m , elasticity modulus 2e11Pa and Poisson's ratio 0.3.The thickness of the slabs is 0.2 m. 

ANSYS is used to model and analyze the structure . The slabs are modelled by Shell63 elements and the 

columns are modelled by beam4 elements. The columns are fix supported at the bottom. The foursquare 

columns are divided into three segments by the slabs and the side lengths of the three segments are ki*0.5 m 

(i=1,2,3). k1, k2 and k3 are independent random variables and their stochastic information is given in Table 4. 

The performance function is 0G Z Z � , in which 0 4.1072 HzZ  . The target reliability index is 3.0tE  . 
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Figure 4 The slab-column structure 
 

Table 4 The stochastic information for Example 4 
Variable Distribution Mean std. dev. 

k1 Normal 1.2962 0.2 

k2 Normal 0.9917 0.2 

k3 Normal 0.6627 0.2 

 
The AMV method converged after 11 iterations and 46 function evaluations. The proposed method, with initial 
step size 50.0O   and adjustment factor c=2.5, converged after 6 iterations and 32 function evaluations. The 
obtained PPM is Gp=0.0159 and the MPTP is u*=(1.1931,1.1173,1.2403). The CC method converged to almost 
the same result after 15 iterations and 62 function evaluations. The results are listed in Table 5. 
 

Table 5 Results using different methods in Example 4 
 Iterations Function 

Evaluations 

Gp *u  

AMV 11 46 0.0163 (1.1955,1.0988,1.2444) 

Proposed method 6 32 0.0159 (1.1931,1.1173,1.2403) 

CC 15 62 0.0160 (1.1927,1.1042,1.2429) 

 
CONCLUSIONS 
 
When locating MPTP in PMA, the AMV method may converge very slowly, or oscillate and fail to converge if 
the performance function is highly nonlinear. In this paper an easy iterative algorithm, which introduces a “new” 

step size to control the convergence of the sequence, is proposed. This step size is new because it may be 
constant during the iteration or decreases successively several times during the whole iteration process using an 
easy self-adjust strategy. It is proved that the AMV method is a special case of this proposed algorithm when the 
step size tends to infinity. Numerical results of several nonlinear performance functions, including an 
engineering application, indicate that the proposed algorithm is effective and as simple as the AMV but more 
robust. 
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