Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection

Clara Lawler, Cindy S. E. Tan, J. Pedro Simas, Philip G. Stevenson

School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia; Instituto de Medicina Molecular e Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal

ABSTRACT
Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control.

IMPORTANCE
Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.

Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) persist in B cells and cause cancers (1). Reducing their B cell infections is therefore an important therapeutic goal. Limited viral gene expression (2) makes established infections difficult to clear. The early events of host colonization may provide better targets. However, control mechanisms must be defined in vivo: inferring mechanisms from in vitro studies has proven problematic because immune function and its evasion are context dependent. Thus, EBV gp350-specific antibodies block B cell infection, and CD8+ T cells kill infected B cells in vitro, but vaccinations to induce these effectors have not reduced infection rates (3).

The early events of human infections are difficult to analyze because they predate clinical presentation (4). However, gammaherpesviruses generally predate human speciation (5), and peak viral diversity in genes that interact with host diverse functions suggests that viral coevolution has since acted to counter host divergence. Therefore, human and other mammalian gammaherpesviruses should colonize their hosts in similar ways. Murid herpesvirus 4 (MuHV-4) realistically infects laboratory mice (6) and so can experimentally reveal events of likely relevance to EBV and KSHV. Eighty percent to 90% of its genes have clear homologs in EBV and KSHV (7), and even where there is genetic diversity, for example, in CD8+ T cell evasion, function appears to be conserved.

EBV is hypothesized to enter new hosts by infecting B cells. However, naive B cells rarely meet environmental antigens directly, with their default response to antigen alone being apoptosis (8); rather, they meet antigens presented on myeloid cells in lymph nodes (LN) (9). MuHV-4 host colonization conforms to this paradigm, with infection first reaching B cells in LN via dendritic cells (DC) (10); submucosal lymphoid tissue is colonized later (11). MuHV-4 exploits myeloid/lymphoid cell contact for spread (12), making B cell infection difficult to block directly. However, blocking myeloid infection could potentially restrict B cell infection indirectly. Viral exploitation of endocytic scavenging pathways (13, 14) makes myeloid cell entry difficult to block, but virus production by myeloid cells might be susceptible. Of note, not all myeloid infection is productive: subcapsular sinus macrophages (SSM) communicate with B cells (15) and are infected by MuHV-4 yet restrict its spread (16). To reveal mechanisms capable of in vivo infection control, we sought to understand how SSM restrict MuHV-4 replication.

SSM are specialized sessile macrophages that filter the lymph; splenic marginal zone (MZ) macrophages (MZM) analogously filter the blood (17). Slow perfusion of the lymph and blood past...
their filtering macrophages promotes pathogen adsorption. A potential hazard is that adsorbed pathogens then replicate in the filtering macrophages. Host defense against this has been studied by inoculating murine footpads (intrafootpad [i.f.] inoculation) with vesicular stomatitis virus (VSV): SSM infection is productive, but the resulting type 1 interferon (IFN-I) response protects peripheral nerves and prevents disease (18). SSM susceptibility yet neuronal protection suggests that SSM respond weakly to IFN-I, and weak MZM IFN-I responses are associated with enhanced immune priming (19). IFN-I responses to vaccinia virus Ankara also recruit NK cells, although the antiviral efficacy of this response was not shown (20).

Extrapolating such results to natural infections is not necessarily straightforward, as most viruses engage in host-specific IFN-I evasion (21). VSV normally infects cows rather than mice, vaccinia virus is not mouse adapted, and the Ankara strain has lost many immune evasion genes. In contrast, MuHV-4 evasion appears to be fully functional in laboratory mice (6). Natural MuHV-4 entry is probably via the upper respiratory tract (22), but if infection is also productive (16) and allows comparison with data from other SSM studies. Both intranasal (i.n.) and i.f. inoculations lead to SSM infection that inhibits acute viral spread (16).

MuHV-4 evades IFN-I by targeting interferon regulatory factor 3 (IRF3) (23), TBK-1 (24), the IFN-I receptor (IFNAR) (25), STAT-1/2 (26), as well as other pathways (27) and associated defenses such as apoptosis/autophagy (28), NF-κB (29), and PML (30, 31). Nonetheless, disease in IFNAR-deficient mice (32, 33) indicates IFN-I-dependent restraint. IFN-I reduces MuHV-4 reactivation from latency in B cells (34), but heightened reactivation normally attenuates infection (35), and the acute phenotypes of IFNAR deficiency are more suggestive of increased lytic replication before B cell colonization. In the spleen, IFN-I restricts mainly macrophage infection (36). Here we show that IFN-I and NK cells are key components of the SSM barrier to MuHV-4 spread.

MATERIALS AND METHODS

Mice and immune deletions. C57BL/6J, LysM-cre (37), and CD11c-cre (38) mice were infected at 6 to 12 weeks of age. Experiments were approved by the University of Queensland Animal Ethics Committee in accordance with Australian National Health and Medical Research Council guidelines. Virus was given i.f. in 50 μl (107 PFU) under isoflurane anesthesia. Phagocytic cells were depleted by i.f. administration of 50 μg monoclonal antibody (Mab) against CD68 (Bio-Rad) (39), and the remainder depleted by i.p. administration of 200 μg monoclonal antibody (Mab) against CD11c (Bio-Rad) (40). NK cells were depleted by intraperitoneal (i.p.) administration of 200 μg monoclonal antibody (Mab) against NK1.1 (Bio-Rad) (200 μg in 200 μl per 20 g of body weight) 3 days before infection and every 2 days thereafter, so that cytokine levels are additive (40) and so that the effect of depletion is not due to changes in the number of macrophages. To identify NK cells, dissociated spleen cells were incubated (18 h at 4°C) with primary antibodies to GFP (rabbit polyclonal antibody [PAb] or goat PAb; Abcam), B220 (rat Mab RA3-6B2; Santa Cruz Biotechnology), NKP44 (rat Mab 29A14; BioLegend), CD21 (hamster Mab N418), CD68 (rat Mab FA-11; Abcam), F4/80 (rat Mab CI:A-1; Santa Cruz Biotechnology), mCherry (rabbit PAb; BIODRILL), and CD16 (rat Mab 3D6.112; Serotec) and polyclonal rabbit sera to MuHV-4, raised by subcutaneous virus inoculation. This serum recognizes multiple lytic antigens, including the ORF65 capsid protein, the gp70 complement control protein, and gp150 (41). Sections were washed three times in phosphate-buffered saline (PBS); incubated (1 h at 23°C) with Alexa 488- or Alexa 568-conjugated anti-CD16/32 (BD Biosciences) and rabbit or goat anti-rat or anti-rabbit IgG PAb, Alexa 647-conjugated anti-IFNAR PAb, Alexa 647-conjugated anti-NKp46 MAb (BioLegend); washed three times in PBS; stained with 4′,6-diamidino-2-phenylindole (DAPI); and mounted in Prolong Gold (Life Technologies). Fluorescence was visualized with a Zeiss LSM 510/710 confocal microscope.

Flow cytometry. To identify NK cells, dissociated spleen cells were blocked with anti-CD16/32 (BD Biosciences) and incubated with biotinylated anti-NKp44 MAb (BioLegend) and then with Alexa 488-conjugated streptavidin (Invitrogen). To identify PDC, spleen cells were blocked with 5% donkey serum and then incubated with antibodies to CD11c and BST-2 (rabbit PAb; Pierce Biotechnology) or Siglec-H (rat Mab 440c; Abcam), followed by Alexa 647-conjugated anti-hamster IgG PAb plus Alexa 488-conjugated anti-rat PAb or Alexa 488-conjugated anti-rabbit PAb (Life Technologies). Cells were then washed twice in PBS and analyzed on an Accuri flow cytometer (BD Biosciences).
RESULTS

IFNAR blockade increases MuHV-4 dissemination via LN. We hypothesized that SSM are an important site of anti-MuHV-4 action for IFN-I. To test this hypothesis, we gave mice IFNAR-blocking antibody or not i.p., inoculated them with MuHV-4 by the i.f. route, and measured virus titers (Fig. 1). IFNAR blockade significantly increased day 6 titers in popliteal LN (PLN) and spleens (Fig. 1a). Assays of freeze-thawed samples established that the increased infection was predominantly latent. IFNAR-blocking antibody increased titers at both time points. (c) Mice treated as described for panel a were IC assayed for reactivatable virus in PLN and spleen 3 and 6 days later. Bars show means; other symbols show data for individuals. IFNAR-blocking antibody increased infection at both time points in both sites. (d) Mice treated as described for panel a were tested 1 day later for infectious footpad virus by plaque assay and for reactivatable PLN virus by IC assay. Crosses show means; other symbols show data for individual mice. IFNAR-blocking antibody increased PLN but not footpad infection. (e) DNA from PLN in panel d was assayed for viral genome load by quantitative PCR. Viral load (K3) was normalized by cellular load (β-actin) for each sample. Crosses show means; other symbols show data for individuals. IFNAR-blocking antibody increased viral genome loads. (f) Mice were given IFNAR-blocking antibody not and then latency-deficient MHV-M50 (10^5 PFU i.f.). One day later, footpad virus was plaque assayed and PLN virus was IC assayed. Crosses show means; other symbols show data for individuals. IFNAR-blocking antibody increased PLN but not footpad infection. (g) Mice were depleted of pDC (αpDC) or not (cont) by 2 i.p. injections of anti-CD317/BST-2 MAb (400 μg/mouse) 48 h apart and then given MHV-GFP i.f. (10^3 PFU). Three days later, footpad virus was plaque assayed, and PLN virus and spleen virus were IC assayed. Bars show means; other symbols show data for individual mice. pDC depletion increased footpad but not PLN or spleen infections. Two further experiments gave equivalent results. (h) pDC depletion efficacy was checked by flow cytometry of gated CD11c^hi spleen cells for the pDC markers Siglec-H and BST-2. n is the number of cells in the boxed region.

FIG 1 IFNAR blockade increases PLN and spleen infections by i.f. MuHV-4. (a) C57BL/6 mice given IFNAR-blocking antibody (αIFN) or not (cont) were infected i.f. with MuHV-4 (10^5 PFU). Six days later, PLN and spleen viruses were IC assayed for total virus and plaque assayed for infectious virus. Crosses show means, and other symbols show data for individual mice. IFNAR-blocking antibody increased total but not lytic titers. (b) Mice treated as described for panel a were plaque assayed 3 and 6 days later for infectious virus in footpads. Bars show means, and diamonds show data for individuals. IFNAR-blocking antibody increased titers at both time points. (c) Mice treated as described for panel a were IC assayed for reactivatable virus in PLN and spleen 3 and 6 days later. Bars show means; other symbols show data for individuals. IFNAR-blocking antibody increased infection at both time points in both sites. (d) Mice treated as described for panel a were tested 1 day later for infectious footpad virus by plaque assay and for reactivatable PLN virus by IC assay. Crosses show means; other symbols show data for individual mice. IFNAR-blocking antibody increased PLN but not footpad infection. (e) DNA from PLN in panel d was assayed for viral genome load by quantitative PCR. Viral load (K3) was normalized by cellular load (β-actin) for each sample. Crosses show means; other symbols show data for individuals. IFNAR-blocking antibody increased viral genome loads. (f) Mice were given IFNAR-blocking antibody not and then latency-deficient MHV-M50 (10^5 PFU i.f.). One day later, footpad virus was plaque assayed and PLN virus was IC assayed. Crosses show means; other symbols show data for individuals. IFNAR-blocking antibody increased PLN but not footpad infection. (g) Mice were depleted of pDC (αpDC) or not (cont) by 2 i.p. injections of anti-CD317/BST-2 MAb (400 μg/mouse) 48 h apart and then given MHV-GFP i.f. (10^3 PFU). Three days later, footpad virus was plaque assayed, and PLN virus and spleen virus were IC assayed. Bars show means; other symbols show data for individual mice. pDC depletion increased footpad but not PLN or spleen infections. Two further experiments gave equivalent results. (h) pDC depletion efficacy was checked by flow cytometry of gated CD11c^hi spleen cells for the pDC markers Siglec-H and BST-2. n is the number of cells in the boxed region.

and spleen titers could potentially have been secondary effects. However, PLN and spleen titers increased from day 3 to day 6, whereas footpad titers decreased (Fig. 1c). Therefore, IFN-I independently restricted lymphoid infection.

IFNAR blockade increases early LN infection. Increasing PLN virus titers from day 3 to day 6 implied more B cell proliferation in IFNAR-blocked mice, as this is how MuHV-4 amplifies its latent load. Higher titers at day 3, when B cell infection is first detected (16), suggested that this was due to more initial B cell infection. PLN titers were also increased at day 1 (Fig. 1d). Increased viral genome copy numbers (Fig. 1e) indicated more PLN
FIG 2 IFNAR blockade increases SSM infection. (a) Mice given IFNAR-blocking antibody (αIFN) or not (cont) were infected i.f. with MHV-GFP (10⁵ PFU). One day later, PLN sections were stained for viral GFP. Nuclei were stained with DAPI. Gray arrows show example GFP⁺ cells in the LN substance. Open arrows show increased GFP staining around the subcapsular sinus of mice treated with IFNAR-blocking antibody. Each image is representative of data for 6 samples per group. (b) GFP⁺ cells were counted for samples as described for panel a. Bars show group means. Other symbols show mean counts for 3 randomly selected fields of view per section across 3 sections of individual mice. IFNAR-blocking antibody significantly increased GFP⁺ cell numbers. (c) C57BL/6 mice were given IFNAR-blocking antibody or not and infected or not with MuHV-4 as described for panel a. Six days later, PLN sections were stained for CD169 (SSM) and CD68 (macrophages/DC). Infected mice lost CD169 expression around the subcapsular sinus (arrows), regardless of IFNAR blockade. CD68 staining around the subcapsular sinus was also reduced. (d) PLN from mice infected as described for panel a were stained 1 day later for GFP plus CD68, CD169, or B220 (B cells). Arrows show example dual-positive cells. (e) GFP⁺ and viral lytic antigen (MHV)-positive cells colocalizing with myeloid cell markers were counted for 3 fields of view per section across 3 sections for each of 5 mice per group. Bars show group means; other symbols show individual mean counts. IFNAR-blocking antibody increased GFP⁺ and MHV⁺ myeloid (CD169⁺ or CD68⁺) cell numbers around the subcapsular sinus. (f) PLN of mice infected as described for panel a were stained 1 day later for viral GFP and lytic antigens (MHV). MHV expression was minimal in control mice. Arrows show example GFP⁺ MHV⁺ cells in mice treated with IFNAR-blocking antibody. Each image is representative of data for 6 samples per group. (g) PLN of mice infected as described for panel a were stained for viral antigens and cell type markers. Arrows show examples of colocalization. Quantitation was as described for panel e.
infection and not just more ex vivo reactivation. IFNAR blockade also increased day 1 PLN infection by MHV-M50. This virus has a murine cytomegalovirus IE1 promoter inserted into the ORF50 5′ untranslated region, essentially abolishing lymphoproliferation through forced lytic reactivation (35) (Fig. 1f). Therefore, IFNAR blockade increased PLN infection before the onset of virus-driven lymphoproliferation. IFNAR blockade did not significantly increase day 1 footpad infection by either wild-type (WT) or M50 MuHV-4. Therefore, it acted directly on PLN infection.

pDC are nonessential to restrict LN infection. pDC produce copious amounts of IFN-I (44). To test whether they were required for IFN-I to restrict MuHV-4 spread, we gave mice a depleting antibody to CD317/tetherin/BST-2, which is expressed constitutively by pDC and inducibly by other cell types (45) (Fig. 1g and h). This significantly increased day 3 virus titers in footpads but not in PLN or spleens. Therefore, pDC were nonessential for IFN-I to restrict acute lymphoid infection.

IFN-I restricts SSM infection. We identified infected cells by immunostaining of PLN sections for virus-expressed GFP and lytic antigens (Fig. 2). Low-magnification images at day 1 (Fig. 2a) showed many more GFP+ cells around the subcapsular sinus of IFNAR-blocked mice (Fig. 2b). GFP+ cell numbers elsewhere in the PLN remained low.

Inflammation is associated with CD169+ SSM displacement (46). Virus infection ablated CD169 staining at day 6 more dramatically (Fig. 2c). The concomitant loss of subcapsular sinus CD68 expression, which marks macrophages and DC (47), was consistent with cell displacement or loss. Nonetheless, at day 1, when CD169 loss was less marked, IFNAR blockade significantly increased the number of CD68+ and CD169+ GFP+ cells around the subcapsular sinus (Fig. 2d and e). B220+ B cells were closely associated with GFP+ cells but remained GFP−. While most myeloid cells express CD68, its restriction to endosomes and lysosomes limited detection sensitivity, as these are not always captured on sections. However, all GFP+ cells had a myeloid rather than a lymphoid morphology, and the vast majority (>90%) localized to the subcapsular sinus. Thus, they appeared to be SSM and possibly also other myeloid cells, such as dendritic cells, in the same site.

IFNAR blockade also increased MuHV-4 lytic antigen staining around the subcapsular sinus (Fig. 2e to g). Lytic antigen and GFP staining only partly overlapped. GFP was expressed from an EF1α promoter, which operates independently of the viral lytic cycle (45), so GFP+ antigen-negative cells may have harbored latent genomes. The presence of GFP− antigen-positive cells indicated that GFP expression could also be shut off during lytic infection. No B220+ cells were viral antigen positive. Rather, IFNAR blockade increased lytic infection in myeloid cells.

IFN-I protects SSM independently of lytic infection. IFN-I limits protein synthesis and thus should inhibit mainly viral lytic replication. Increased viral lytic antigen expression in SSM after IFNAR blockade was consistent with this idea. To test whether IFN-I could also act before the initiation of lytic infection, we gave mice anti-IFNAR antibody or not and then infected them by the i.f. route with MuHV-4 lacking its essential ORF50 lytic transactivator (Fig. 3). ORF50− MuHV-4 does not express new lytic genes without complementation. Thus, it is limited in vivo to lytic cycle-independent GFP expression (from an EF1α promoter). IFNAR blockade again increased GFP expression around the subcapsular sinus (Fig. 3a and b) in CD68+ and CD169+ but not B220+ cells (Fig. 3c). Therefore, IFN-I also restricted SSM infection before the initiation of lytic gene expression.

Synergistic effects of IFN-I blockade and SSM depletion. To compare the loss of IFN-I-mediated SSM defense with complete SSM loss, we gave mice either liposomal clodronate, anti-IFNAR antibody, both, or neither and then administered MHV-GFP by the i.f. route (Fig. 4). SSM depletion accelerates the spread of MuHV-4 to the spleen (16), and both SSM depletion and IFNAR blockade increased spleen infection after 6 days (Fig. 4a). SSM depletion and IFNAR blockade together increased both PLN and spleen infections significantly more than either one did alone.
Therefore, SSM were not the only source or site of action of IFN-I, and IFN-I was not the only SSM defense.

Immunostaining of PLN for viral GFP and lytic antigens (Fig. 4b) also showed that SSM depletion and IFNAR blockade additively increased infection. All mice showed more GFP+/H11001 than viral antigen-positive cells, and most GFP+/H11001 cells were B220+/H11001 B cells (Fig. 4c). Thus, by this time, increased myeloid infection had fed through to increased B cell infection. The paucity of lytic antigen-positive cells at day 6 compared to day 3 (Fig. 2e) implied that other immune defenses had substituted for IFN-I to control lytic infection.

In spleens, IFNAR blockade and SSM depletion individually had little effect on GFP+/H11001 or virus-positive cell numbers but together caused a marked increase (Fig. 4d to f). This applied across the red pulp (RP), MZ, and white pulp (WP). Single treatments had no significant effect. (f) Example images from panel e show infected B220+ cells. Dashed lines correspond to the MZ. White arrows show infected WP B cells. The gray-filled arrow shows a lytically infected cell.

FIG 4 IFNAR blockade and SSM depletion synergistically disseminate MuHV-4. (a) Mice were given liposomal clodronate to deplete SSM (clod), IFNAR-blocking antibody (αIFN), both treatments (both), or neither treatment (cont) and then given MHV-GFP i.f. (105 PFU). Six days later, footpad virus was plaque assayed, and PLN and spleen virus were IC assayed. Bars show mean counts, and other symbols show individual titers. All treatments increased footpad and spleen titers; only dual treatment increased PLN titers. *, P < 0.05; **, P < 0.01; ***, P < 10^-3; ****, P < 10^-4. (b) GFP+ and viral antigen (MHV)-positive cells were counted on PLN sections of mice treated as described for panel a. Bars show mean counts, and other symbols show mean counts for 3 fields of view across 3 sections of each mouse. All treatments increased GFP+ and MHV+ cell numbers, although MHV+ cell numbers were low. (c) Example images from panel b show infected cells in PLN. Most GFP+ cells were B220+ (B cells, white arrows). Gray-filled arrows show lytically infected cells. (d) GFP+ and MHV+ cells were counted on spleen sections of mice treated as described for panel a. Bars show mean counts, and other symbols show mean counts for 3 fields of view across 3 sections of individual mice. Only dual treatment (both) increased spleen infection by this measure. (e) Splenic GFP+ cells were further subdivided by site. Dual treatment increased infection in the red pulp (RP), MZ, and white pulp (WP). Single treatments had no significant effect. (f) Example images from panel e show infected B220+ cells.
cell types of Cre-transgenic mice. Cre switches MHV–RG irreversibly from red (mCherry) to green (GFP) fluorescence. SSM express LysM (16), so to test whether IFN-I restricts MHV–RG propagation in SSM, we gave IFNAR-blocking antibody or not and then i.f. MHV–RG to LysM-cre mice (Fig. 5). IFN-I blockade increased day 6 virus titer, most noticeably in spleens (Fig. 5a). It also significantly increased the proportion of fluorescence-switched virus in footpads and PLN, which was otherwise negligible (Fig. 5b). Occasionally, mice had high levels of splenic virus switching. This possibly reflected replication in splenic MZM, as they also express LysM and switch ~60% of the i.p. virus reaching splenic B cells (12). The splenic virus of most IFNAR-blocked mice was unswitched. Therefore, IFNAR blockade increased both the productivity of LysM+ cell infection in footpads and PLN and the rate of infection spread to the spleen but as separate effects: most virus still reached the spleen via LysM− cells.

MuHV-4 fluorochrome switching in infected cells. Viral fluorochrome switching can also be visualized in infected cells. The M3 promoter driving fluorochrome expression is active mainly in early/late lytic infection (48–50). IFNAR blockade increased fluorochrome switching at day 6 in PLN and spleen cells of LysM-cre mice (Fig. 5c and d). In both IFNAR-blocked and control mice, cellular fluorochrome switching exceeded that of recovered virus. GFP+ PLN cells were difficult to type with certainty but appeared to be myeloid, as none were B220+ (B cells). CD11c+ cells were also unswitched, consistent with few DC expressing LysM (39). Thus, IFNAR blockade increased viral lytic gene expression in LysM+ cells, but LysM− cells remained the main source of viral propagation.

MuHV-4 fluorochrome switching in CD11c-cre mice. We next tracked MHV–RG replication in CD11c-cre mice (Fig. 6). Again IFNAR blockade increased virus titers (Fig. 6a), but now it also significantly increased the switching of virus recovered from spleens (Fig. 6b). Although the proportion of PLN virus that was switched was unchanged, PLN-infected cell switching increased (Fig. 6c and e), and unlike LysM-cre mice, IFNAR-blocked CD11c-cre mice had GFP+ PLN B cells (Fig. 6f). These results were consistent with IFNAR blockade increasing the total amount of B cell infection but not altering its predominant route, which was via DC.

IFNAR blockade increased the fluorochrome switching of both splenic virus (Fig. 6b) and splenic infected cells (Fig. 6c and d). Most GFP+ spleen cells were located around WP follicles (Fig. 6g) and were myeloid (CD11c+ CD169+), although GFP+ MZ B cells were also evident (Fig. 6h). Control mice also had GFP+ myeloid cells and B cells but fewer (Fig. 6d). Thus, again, IFNAR blockade increased virus spread but did not alter its predominant route.

NK cells are a second line of SSM defense. The finding that IFNAR blockade did not increase MuHV-4 passage through SSM implied additional, IFN-I-independent restriction, before adaptive immunity comes into play (51). The important role of NK cells in controlling murine cytomegalovirus (52) suggested that they might also control MuHV-4. Although NK cells are activated by IFN-I (20), IFNAR blockade increased NK cell recruitment to MuHV-4-infected LN (Fig. 7a and b), implying IFN-I independence in this context. To reveal NK cell function, we compared their depletion with IFNAR blockade: C57BL/6 mice were given anti-NK1.1 or anti-IFNAR antibody i.p. or left untreated and then given MHV–RG i.f. (Fig. 7c and d). After 1 day, both treatments significantly increased virus titers, with IFNAR blockade having a greater effect. PLN sections showed more viral GFP+ cells after IFNAR blockade and a smaller but still...
significant increase after NK cell depletion (Fig. 7a and e). GFP + cells of all groups clustered around the subcapsular sinus, and many were CD68 + and CD169 +. Thus, NK cell depletion increased SSM infection.

Without IFN-I and NK cells, SSM pass infection to B cells. SSM attack by NK cells potentially explained the failure of fluorochrome-switched virus to spread in IFNAR-blocked LysM-cre mice (Fig. 5). To test this hypothesis, we gave LysM-cre mice both

FIG 6 IFNAR blockade increases virus production in and transfer from CD11c− cells. (a) CD11c− mice were given IFNAR-blocking antibody or not and then MHV-RG i.f. (10⁵ PFU). Six days later, virus was plaque assayed (footpads) or IC assayed (PLN and spleens). Horizontal bars show means. Other symbols show data for individual mice. The dashed line indicates the assay sensitivity limit. IFNAR-blocking antibody significantly increased footpad and PLN but not spleen infections. (b) Viruses from panel a were assayed for fluorochrome switching. Bars show means; other symbols show data for individuals. IFNAR-blocking antibody significantly increased the switching of virus recovered from spleens. (c) Tissue sections of mice infected as described for panel a were analyzed for cellular fluorochrome expression. Bars show group means. Other points show mean counts for 3 views per section for 3 sections per mouse. IFNAR-blocking antibody increased infected-cell switching in both PLN and spleens. (d) Spleens were analyzed further for viral fluorochrome-positive cell types. IFNAR-blocking antibody increased B220 + and CD11c + cell switching, although the increase was significant only for CD11c +. (e) PLN overview images show more GFP + (switched) cells with IFNAR-blocking antibody, quantitated as described for panel c. Unswitched (mCherry +) cell numbers were similar to those of controls. Six mice per group gave equivalent results. (f) Higher-power images show both switched and unswitched B cells with IFNAR-blocking antibody and only unswitched B cells in controls. The images are representative of results for 6 mice per group. (g) Spleen overview images show IFNAR-blocking antibody increasing switched GFP + cell numbers in the MZ between WP follicles and the F4/80 red pulp (arrows). Six mice per group gave similar results, quantitated as described for panel c. (h) Higher-power spleen images show example GFP + and mCherry + cells. GFP + cells were evident in all mice, but IFNAR-blocking antibody gave significantly more CD11c + GFP + cells than controls, quantitated as described for panel d.
NK-depleting and IFNAR-blocking antibodies before infecting them with MHV-RG. After 4 days, PLN virus titers of antibody-treated mice exceeded those of controls (Fig. 8a), and 25% of the recovered virus was fluorochrome switched (Fig. 8b). Spleen virus titers also increased, with 50% switching. Virus from footpads showed negligible switching. Thus, when both IFN-I and NK cells were disabled, more virus was produced and a greater proportion passed through LysM cells, presumably SSM. Day 4 would normally be too early for virus to have passed through MZM (Fig. 5). Thus, the switching of splenic virus probably reflected seeding from the PLN, while PLN virus also included seeding from footpads. However, accelerated MZM infection may have contributed, as SSM and MZM infections are likely to have similar immune restraints.

The greater virus switching of antibody-treated mice argued that IFN-I and NK cells regulate MuHV-4 production in LysM cells. However, while PLN sections of antibody-treated mice showed more GFP+ cells than those of controls, their GFP+/mCherry+ cell ratios were similar (Fig. 8c). Therefore, IFN-I and NK cells also regulated LysM infection. Most fluorochrome-positive PLN cells were myeloid rather than lymphoid (Fig. 8d and e), consistent with fluorochrome expression being lytic while B cell infection was mainly latent (Fig. 2). Nonetheless GFP+ B cells (B220+) were evident in antibody-treated mice (Fig. 8e and f). Thus, when IFN-I and NK cells were lacking, SSM passed MuHV-4 to B cells.

DISCUSSION

Extracellular fluid returning to the blood provides viruses with a ready-made vehicle of systemic spread. LN are a key checkpoint, and myeloid cells are the gatekeepers: migratory DC survey cell-associated antigens, and sessile SSM survey the afferent lymph. MuHV-4 infects both cell types, but only DC pass infection to B cells. IFN-I and NK cells protected SSM against productive infection by virions adsorbed from the lymph. Other innate immune effectors (53) may also contribute—the immune response is inherently multilayered, and with shared induction pathways, individual effectors rarely act alone—but IFN-I and NK cells had key roles.

A previous study of lung infection (54) found no significant NK cell contribution to MuHV-4 control. However, LN infection was not measured. The defensive role of NK cells identified here was consistent with human genetic deficiency phenotypes (55), prominent NK cell responses to EBV (56), and NK cell-mediated defense against EBV in chimeric mice (57). Protection by IFN-I argued against filtering macrophages being deliberately virus permissive (19); rather, the immune response consistently inhibits infection as it escalates from IFN-I to NK cells to adaptive responses, with each gaining functional prominence if upstream containment fails.

Host defense against viremia has anatomical as well as functional layers. Most extracellular fluid traverses more than one...
lymph node; for example, footpad-inoculated MuHV-4 passes from the PLN to the para-aortic LN (16), and splenic MZM filter the blood. Invasive virus inoculations are often more pathogenic than mucosal inoculations because they bypass the outer defenses: i.p. MuHV-4 reaches the spleen directly (12), and in this context, IFNAR blockade greatly increases macrophage infection (36), consistent with IFNAR−/− mice succumbing more rapidly to i.p. than to i.n. infection (32, 33). Although invasive inoculations cause more disease, host colonization is not necessarily enhanced, as viral genes now operate outside their normal evolutionary context. Thus, protecting against disease after an invasive inoculation is not the same as protecting against natural infection. For example, recombinant gp350 protected tamarins against EBV-induced disease but did not prevent natural human infection (3). Such outcomes emphasize the need to develop vaccine strategies that allow for viral immune evasion.

Natural MuHV-4 infection is probably nasal (22); we studied i.f. infection because the complexity of i.n. infection makes primary and secondary LN effects difficult to separate, but the SSM barrier is relevant to both (16), and increased spleen infection by i.n. MuHV-4 in IFNAR−/− mice (33) is consistent with IFN-I also restricting MuHV-4 passage through mucosa-associated LN. When the host response meets viral evasion, the outcome can depend on cell type, and IFN-I and NK cells evidently restricted MuHV-4 less in DC than in SSM. Most DC infection is initially latent (58). It may become lytic in vivo only after DC have migrated away from inflammatory infection sites and IFN-I signaling has subsided. Migratory DC may also be less IFN-I responsive than SSM (59). Nonetheless, antiviral states are inducible, and vaccine-primed T cells could potentially recruit IFN-I and NK cell responses upon virus challenge. CD4 T cells control long-term MuHV-4 infection (60), interact with LN DC (61), and protect via IFN-II (62), which potentiates IFN-I (63). The efficacy of innate immunity in restricting SSM infection suggested that recruitment of these defenses might also be able to limit DC infection and thus reduce host colonization.

ACKNOWLEDGMENTS

We thank Orry Wyer for technical support and Helen Farrell for helpful discussion.

This work was supported by National Health and Medical Research Council grants 1060138, 1064015, and 1079180; Australian Research Council grant FT130100138; Queensland Health; the Sakzewski Founda-
REFERENCES

25. Mandal P, Krueger BE, Oldenburg D, Andry KA, Beard RS, White DW, Barton ES. 2011. A gammaherpesvirus cooperates with interferon-alpha/beta-induced IRF2 to halt viral replication, control reactivation, and min-