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Abstract—This paper introduces a cognitive architecture for
a humanoid robot to engage in a proactive, mixed-initiative
exploration and manipulation of its environment, where the
initiative can originate from both the human and the robot. The
framework, based on a biologically-grounded theory of the brain
and mind, integrates a reactive interaction engine, a number
of state-of-the art perceptual and motor learning algorithms,
as well as planning abilities and an autobiographical memory.
The architecture as a whole drives the robot behavior to solve
the symbol grounding problem, acquire language capabilities,
execute goal-oriented behavior, and express a verbal narrative
of its own experience in the world. We validate our approach in
a human-robot interaction experiment with the iCub humanoid
robot, showing that the proposed cognitive architecture can be
applied in real time within a realistic scenario.

Index Terms—Cognitive Robotics, Distributed Adaptive Con-
trol, Human-Robot Interaction, Symbol Grounding, Autobio-
graphical Memory

I. INTRODUCTION

THE so-called Symbol Grounding Problem (SGP, [1], [2],
[3]) refers to how a cognitive agent forms an internal

and unified representation of an external word referent from
the continuous flow of low-level sensorimotor data generated
by its interaction with the environment. In this paper, we
focus on solving the SGP in the context of human-robot
interaction (HRI), where a humanoid iCub robot [4] acquires
and expresses knowledge about the world by interacting with
a human partner. Solving the SGP is of particular relevance
in HRI, where a repertoire of shared symbolic units forms the
basis of an efficient linguistic communication channel between
the robot and the human.

To solve the SGP, several questions should be addressed:
• How are unified symbolic representations of external

referents acquired from the multimodal information col-
lected by the agent (e.g., visual, tactile, motor)? This is
referred to as the Physical SGP [?], [13].

• How to acquire a shared lexicon grounded in the senso-
rimotor interactions between two (or more) agents? This
is referred to as the Social SGP [13], [14].

• How is this lexicon then used for communication and
collective goal-oriented behavior? This refers to the func-
tional role of physical and social symbol grounding.

*C. Moulin-Frier and T. Fischer contributed equally to this work.
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Figure 1. The DAC-h3 cognitive architecture (see Section III) is an im-
plementation of the DAC theory of the brain and mind (see Section II-B)
adapted for HRI applications. The architecture is organized as a layered
control structure with tight coupling within and between layers: the somatic,
reactive, adaptive and contextual layers. Across these layers, a columnar
organization exists that deals with the processing of states of the World or
exteroception (left, red), the Self or interoception (middle, blue) and Action
(right, green). The role of each layer and their interaction is described in
Section III. White boxes connected with arrows correspond to structural
modules implementing the cognitive modules proposed in the DAC theory.
Some of these structural modules rely on functional modules, indicated by
acronyms in the boxes next to the structural modules. Acronyms refer to the
following functional modules. SR: Speech Recognizer; PASAR: Prediction,
Anticipation, Sensation, Attention and Response; AD: Agent Detector; ARE:
Action Rendering Engine; OR: Object Recognition; LRH: Language Reservoir
Handler; SSM: Synthetic Sensory Memory; PT: Perspective Taking; SRL:
Sensorimotor Representation Learning; KSL: Kinematic Structure Learning;
OPC: Object Property Collector; ABM: Autobiographical Memory; NSL:
Narrative Structure Learning.

This paper addresses these questions by proposing a com-
plete cognitive architecture for HRI and demonstrating its
abilities on an iCub robot. Our architecture, called DAC-
h3, builds upon our previous research projects in conceiving
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biologically grounded cognitive architectures for humanoid
robots based on the Distributed Adaptive Control theory of
mind and brain (DAC, presented in the next section). In
[?] we proposed an integrated architecture for generating a
socially competent humanoid robot, demonstrating that gaze,
eye contact and utilitarian emotions play an essential role in
the psychological validity or social salience of HRI (DAC-
h1). In [?], we introduced a unified robot architecture, an
innovative Synthetic Tutor Assistant (STA) embodied in a
humanoid robot whose goal is to interactively guide learners
in a science-based learning paradigm through rich multimodal
interactions (DAC-h2).

DAC-h3 is based on a developmental bootstrapping process
where the robot is endowed with an intrinsic motivation to act
and relate to the world in interaction with social peers. This is
referred to by Levinson [15] as the human interaction engine: a
set of capabilities including looking at objects of interest and
interaction partners, pointing to these entities [16], curiosity
as a desire to acquire knowledge [17], as well as showing,
telling and sharing of knowledge with others [16], [18]. This
interaction engine drives the robot to proactively control its
own acquisition and expression of knowledge, favoring the
grounding of acquired symbols by learning multimodal repre-
sentations of entities through interaction with a human partner.
In DAC-h3, an entity refers to an internal or external referent:
it can be either an object, an agent, an action, or a body part.
In turn, the acquired multimodal and linguistic representations
of entities are recruited in goal-oriented behavior and form the
basis of a persistent concept of self through the development
of an autobiographical memory and the expression of a verbal
narrative.

We validate the proposed architecture following a human-
robot interaction scenario where the robot has to learn concepts
related to its own body and its vicinity in a proactive manner,
as well to express those concepts in goal-oriented behavior.
We show a complete implementation running in real-time on
the iCub humanoid robot. The interaction depends on the
internal dynamics of the architecture, the properties of the
environment, as well as the behavior of the human. We analyze
a typical interaction in detail and provide videos showing
the robustness of our system in various environments (http://
clement-moulin-frier.github.io/dac-h3/). Our results show that
the architecture autonomously drives the iCub to acquire
various concepts about the present entities (objects, humans,
and body parts), proactively maintaining the interaction with a
human and recruiting those concepts to express more complex
goal-oriented behavior.

In Section II we position the current contribution with
respect to related works in the field and rely on this analysis to
emphasize the specificity of our approach. Our main contribu-
tion is described in Section III and consists in the proposition
and implementation of an embodied and integrated cognitive
architecture for the acquisition of multimodal information
about external word referents, as well as a context-dependent
lexicon shared with a human partner and used in goal-directed
behavior and verbal narrative generation. The experimental
validation of our approach on an iCub robot is provided in
Section IV, followed by a discussion.

II. RELATED WORKS AND PRINCIPLES OF THE PROPOSED
ARCHITECTURE

In this section, we review related works on each of the
topics related to the features of the proposed cognitive ar-
chitecture. Those features are: (A) a biologically-grounded
cognitive architecture ensuring autonomy, learning and goal-
oriented behavior; (B) the ability to solve the SGP by the
acquisition of symbols grounded in the physical interaction
with the (social) environment; (C) proactivity as a way to
improve HRI and self-monitor knowledge acquisition; (D)
goal-oriented behavior supported by the learned symbol; as
well as (E) autobiographical memory expressed through a
verbal narrative. Each of the subsections below presents related
works in these topics, and briefly describes how the presented
contribution addresses them.

A. Functionally-driven vs. biologically-inspired approaches in
social robotics

Conceiving socially interactive robots relies on two main
approaches [19]. On the one hand, functionally-designed ap-
proaches are based on reverse engineering methods, assuming
that a deep understanding of how the mind operates is not
a requirement for conceiving socially competent robots (e.g.
[20], [21], [22]). On the other hand, biologically-inspired
robots are based on theories of natural and social sciences
and expect two main advantages of constraining cognitive
models by biological knowledge: to conceive robots better
understandable by humans since they are built from similar
principles, and to provide an efficient experimental benchmark
from which the underlying theories can be confronted, tested
and refined (e.g. [23], [24]).

The proposed DAC-h3 cognitive architecture takes ad-
vantage of both methods. It is based on an established
biologically-grounded cognitive architecture of the brain and
the mind (the DAC theory, presented below) that is here
adapted for the HRI domain. However, whereas the global
structure of the architecture is constrained by biology, the
actual implementation of specific modules composing it can
sometimes be driven by their functionality, i.e. using state-
of-the-art methods from machine learning that are powerful
at implementing a particular function without being directly
constrained by biological knowledge.

B. Cognitive architectures and the SGP

Another distinction in approaches for conceiving social
robots, which is of particular relevance for addressing the SGP,
reflects an historical distinction from the more general field of
cognitive architectures (or unified theories of cognition [25]).
Historically, two opposite approaches have been proposed for-
malizing how cognitive functions arise in an individual agent
from the interaction of interconnected information processing
modules structured in a cognitive architecture. On one hand,
top-down approaches rely on a symbolic representation of a
task, which has to be decomposed recursively into simpler
ones to be executed by the agent. They mostly rely on meth-
ods from symbolic artificial intelligence (from the General

http://clement-moulin-frier.github.io/dac-h3/
http://clement-moulin-frier.github.io/dac-h3/
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Problem Solver [26] to Soar [27] or ACT-R [28]). Although
relatively powerful at solving abstract symbolic problems, top-
down architectures are not able to solve the SGP per se be-
cause they presuppose the existence of symbols and therefore
are not suitable for addressing how they are acquired from
low-level sensorimotor signals. On the other hand, bottom-
up approaches instead implement behavior without relying
on complex knowledge representation and reasoning. This is
typically the case in behavior-based robotics [29], emphasizing
lower-level sensory-motor control loops as a starting point of
behavioral complexity as in the Subsumption architecture [30].
Those approaches are not suitable to solve the SGP either
because they do not consider symbolic representation as a nec-
essary component of cognition (referred as intelligence without
representation in [29]). Interestingly, this distinction between
top-down representation-based and bottom-up behavior-based
approaches still holds in the domain of social robotics [31],
[32].

Top-down representation-based approaches rely on mod-
eling psychological aspects of social cognition (e.g. [33]),
whereas bottom-up behavior-based approaches emphasize the
role of embodiment and reactive control to enable the dynamic
coupling of agents [34]. Solving the SGP, both in its physical
and social aspects, therefore requires an integration of bottom-
up processes for acquiring and grounding symbols in the
physical interaction with the (social) environment, with top-
down processes for taking advantage of the abstraction, rea-
soning and communication abilities provided by the acquired
symbol system. This has been referred as the micro-macro
loop, i.e. a bilateral relationship between an emerged symbol
system at the macro level and a physical system consisting
of communicating and collaborating agents at the micro level
[35].

Several contributions in social robotics rely on such hybrid
architectures integrating bottom-up and top-down processes
(e.g. [38], [37], [36], [?]). In [36], an architecture called
embodied theory of mind was developed to link high-level
cognitive skills to the low-level perceptual abilities of a
humanoid and implementing joint attention and intentional
state understanding. In [37] or [38], the architecture combines
deliberative planning, reactive control, and motivational drives
for controlling robots in interaction with humans.

In this paper, we adopt the principles of the Distributed
Adaptive Control theory of the mind and the brain (DAC, [39],
[40]). DAC is a hybrid architecture which posits that cognition
is based on the interaction of four interconnected control loops
operating at different levels of abstraction (see Figure 1). The
first level is called the somatic layer and corresponds to the
embodiment of the agent within its environment, with its sen-
sors and actuators as well as the physiological needs (e.g. for
exploration or safety). Extending bottom-up approaches with
drive reduction mechanisms, complex behavior is bootstrapped
in DAC from the self-regulation of an agent’s physiological
needs when combined with reactive behaviors (the reactive
layer). This reactive interaction with the environment drives
the dynamics of the whole architecture [41], bootstrapping
learning processes for solving the physical SGP (the adaptive
layer) and the acquisition of higher-level cognitive represen-

tations such as abstract goal selection, memory and planning
(the contextual layer). These high-level representations in
turn modulate the activity at the lower levels via top-down
pathways shaped by behavioral feedback. The control flow
in DAC is therefore distributed, both from bottom-up and
top-down interactions between layers, as well as from lateral
information processing into the subsequent layers.

C. Solving the SGP

Other contributions have focused on the grounding of a
lexicon from the physical interaction of a robot with its
environment. Since the pioneering paradigm of “language
games” proposed in [42], a number of multi-agent models have
been proposed showing how particular properties of language
can self-organize out of repeated dyadic interactions between
agents of a population (e.g. [43], [44]). In the domain of HRI,
contributions have focused on lexicon acquisition through the
transfer of sensorimotor and linguistic information from the
interaction between a teacher and a learner through imitation
[45], action [46], [47] or active exploration [48]. In all these
contributions, solving the SGP requires integrating multimodal
information about external world entities (physical SGP) with
linguistic labels acquired or negotiated through the interaction
with social peers (social SGP).

In the proposed DAC-h3 architecture, entities refer to either
object, agents, actions or body parts. Visual, tactile, motor and
linguistic information about the present entities is collected
proactively through reactive control loops triggering knowl-
edge acquisition and expression behaviors in interaction with
a human partner. An entity is therefore represented internally
in the robot’s memory as the association between multimodal
representations and linguistic labels.

D. Autonomous exploration and proactive behavior in HRI

Significant progress has been made in allowing robots to
interact with humans, for example in learning shared plans
[5], [6], [7], learning to imitate actions [8], [9], [10], and
learning motor skills [11] that could be used for engaging
in joint activities. In most of these interactions, the human
is in charge and the robot is following the human’s lead: the
choice of the concept to learn is left to the human and the
robot must identify it. In this case, the robot must solve the
referential indeterminacy problem described by Quine [12],
where the robot language learner has to extract the external
concept that was referred to by a human speaker. However,
acquiring symbols by interacting with other agents is not only
an unidirectional process of information transfer between a
teacher and learner [15].

Autonomous exploration and proactive behavior allow
robots to take the initiative in exploring their environment [49]
and interacting with people [50]. The benefit of these abilities
for knowledge acquisition has been demonstrated in several
HRI experiments. In [48], it is shown how a combination of
social guidance and intrinsic motivation improve the learning
of object visual categories in HRI. In [51], planning conflicts
due to the uncertainty of the detected human’s intention are
resolved by proactive execution of the corresponding task that
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optimally reduces the system’s uncertainty. In [52], the task
is to acquire human-understandable labels for novel objects
and learning how to manipulate them. This is realized through
a mixed-initiative interaction scenario and it is shown that
proactivity improves the predictability and success of human-
robot interaction.

A central aspect of the DAC-h3 architecture is the robot’s
ability to act proactively in a mixed-initiative scenario. This
allows the self-monitoring of the robot’s own knowledge
acquisition process, instead of only relying on the human’s
initiative. Interestingly, proactivity in a sense reverses the ref-
erential indeterminacy problem mentioned above, by shifting
the responsibility of solving ambiguities to the agent who is
endowed with the adequate prior knowledge to solve it, i.e.,
the human in a HRI context. The robot is now in charge of
the concepts it wants to learn, and can use joint attention
behaviors to guide the human toward the knowledge it wants
to acquire. In the proposed system, this is realized through
a set of behavioral control loops, self-regulating knowledge
acquisition, and proactively requesting missing information
about entities from the human partner.

E. Language learning, autobiographical memory and narra-
tive expression

Several works address the ability of language learning in
robotics. The cognitive architecture of iTalk [53] focuses
on modeling the emergence of language by learning about
the robot’s embodiment, learning from others, as well as
learning linguistic capability. Cangelosi et al. [54] propose
that action, interaction and language should be considered
together as they develop in parallel, and one influences the
others. Antunes et al. [55] assume that language is already
learned, and address the issue that linguistic input typically
does not have a one-to-one mapping to actions. They propose
to perform reasoning and planning on three different layers
(low-level robot perception and action execution, mid-level
goal formulation and plan execution, and high-level semantic
memory) to interpret the human instructions. Similarly, [56]
proposes a system to recognize novel objects using language
capabilities in one shot. In these works, language is typically
used to understand the human and perform actions, but not
necessarily to talk about past events which the robot has
experienced.

Various works investigate the expression of past events
by developing narratives based on acquired autobiographical
memories [57], [58], [59]. In [59], a user study is presented
which suggests that a robot’s narrative allows humans to get an
insight to long term human-robot interaction from the robot’s
perspective. The method in [58] takes user preferences into
account when referring to past interactions. Similarly to our
framework, it is based on the implementation and cooperation
between both episodic and semantic memories with a dialog
system. However, no learning capabilities (neither language
nor knowledge) are introduced by the authors.

In the proposed DAC-h3 architecture, the acquired lexicon
allows the robot to execute action plans for achieving goal-
oriented behavior from human speech requests. Relevant in-
formation throughout the interaction of the robot with humans

is continuously stored in an autobiographical memory used
for the generation of a narrative self, i.e., a verbal description
of the own robot’s history over the long term (able to store
and verbally describe interactions from a long time ago, e.g.
several months ago).

In the next section, we describe how the above features
are implemented in a coherent cognitive architecture relying
on functional modules which are implemented as YARP [60]
modules running in real-time on the iCub robot.

III. THE DAC-H3 COGNITIVE ARCHITECTURE

This section presents the DAC-h3 architecture in detail,
which is an instantiation of the DAC architecture for human-
robot interaction. The proposed architecture provides a general
framework for designing autonomous robots which act proac-
tively for 1) maintaining social interaction with humans, 2)
bootstrapping the association of multimodal knowledge with
its environment that further enrich the interaction through goal-
oriented action plans, and 3) express a verbal narrative. It
allows a principled organization of various functional modules
into a biologically grounded cognitive architecture.

In DAC-h3, the somatic layer consists of an iCub humanoid
robot equipped with advanced motor and sensory abilities
for interacting with humans and objects. The reactive layer
ensures the autonomy of the robot through drive reduction
mechanisms implementing proactive behaviors for acquiring
and expressing knowledge about the current scene. The adap-
tive layer learns high-level multimodal representations (visual,
tactile, motor and linguistic) for the categorization of entities
(objects, agents, actions and body parts) and associates them
in unified representations. Finally, the contextual layer deals
with goal representation and action planning, as well as the
formation of an autobiographical memory of the robot that can
be expressed in the form of a verbal narrative.

The complete DAC-h3 architecture is shown on Figure 1.
It is composed of structural modules reflecting the cogni-
tive modules proposed by the DAC theory. Each structural
module possibly relies on one or more functional modules
implementing more specific functionalities (e.g. dealing with
motor control, object perception, and scene representation). In
this section, we describe each structural module layer by layer,
as well as their interaction with the functional modules.

A. Somatic layer

The somatic layer corresponds to the physical embodiment
of the system. We use the iCub robot, an open source hu-
manoid platform developed for research in cognitive robotics
[4]. The iCub is a 104 cm tall humanoid robot with 53 degrees
of freedom (DOF). It has two dexterous hands with 19 under-
actuated joints and 9 DOF each. The robot is equipped with
cameras in its articulated eyes allowing stereo vision, and
tactile sensors in the fingertips, palms of the hand, arms and
torso. The iCub is augmented with an external RGB-D camera
above the robot head for agent detection and skeleton tracking.
Finally, an external microphone and speakers are used for
speech recognition and synthesis, respectively.
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The somatic layer also contains the physiological needs of
the robot that will drive its reactive behaviors, as described in
the following section on the reactive layer.

B. Reactive layer

Following DAC principles, the reactive layer oversees the
self-regulation of the internal drives of a cognitive agent from
the interaction of sensorimotor control loops. The drives aim at
self-regulating internal state variables (the needs of the somatic
layer) within their respective homeostatic ranges. In biological
terms, such an internal state variable could for example reflect
the current glucose level in an organism, with the associated
homeostatic range defining the minimum and maximum values
of that level. A drive for eating would then correspond to a
self-regulation mechanism where the agent actively searches
for food whenever its glucose level is below the homeostatic
minimum, and stops eating even if food is present whenever
it is above the homeostatic maximum. A drive is therefore
defined as the real-time control loop triggering appropriate
behaviors whenever the associated internal state variable goes
out of its homeostatic range, as a way to self-regulate its value
in a dynamic and autonomous way.

In the social robotics context that is considered in this paper,
the drives of the robot do not reflect biological needs as above,
but are rather related to knowledge acquisition and expression
in social interaction. At the foundation of this developmental
bootstrapping process is the intrinsic motivation to interact
and communicate. As described by Levinson [15], a part
of the human interaction engine is a set of capabilities that
include the motivation to interact and communicate through
universal (language independent) manners; including looking
at objects of interest and at the interaction partner, and pointing
to these objects. These reactive capabilities are built into the
reactive layer of the architecture forming the core of the
DAC-h3 interaction engine. These interaction primitives allow
the DAC-h3 system and the human to share attention around
specific entities (body parts, objects, or agents), bootstrapping
learning mechanisms in the adaptive layer that associate
visual, tactile, motor and linguistic representations of entities
(see next section on the adaptive layer).

Currently the architecture implements the following two
drives, however DAC-h3 is designed in a way that facilitates
the addition of new drives for further advancements. First,
a drive for knowledge acquisition provides the iCub with
an intrinsic motivation to acquire new knowledge about the
current scene. The internal variable associated with this drive
is modulated by the number of entities (object, agents, body
parts, etc.) in the current scene with missing information (e.g.
unknown name, or missing property). The self-regulation of
this drive is realized by proactively requesting the human to
provide missing information about entities, for instance their
name via speech, synchronized with gaze and pointing; or
asking the human to touch its skin associated to a specific
body part. Second, a drive for knowledge expression allows
the iCub to proactively express its acquired knowledge by
interacting with the human and objects. The internal variable
associated with this drive is modulated by the number of

entities in the current scene without missing information. The
self-regulation is then realized by triggering actions toward the
known entities, synchronized with verbal descriptions of those
actions (e.g. pointing towards an object or moving a specific
body part, while referring verbally to the considered entity).

The implementation of these drives is realized through the
three structural modules described below, interacting with each
other as well as with the surrounding layers: 1) sensations, 2)
allostatic controller, and 3) behaviors (see Figure 1).

1) Sensations: The sensations module pre-processes the
data acquired by the sensors at the somatic level: the positions
of entities present in the current scene (objects and the human),
their visual salience, skeleton information from the RGB-D
camera, as well as information indicating the presence or
absence of the entity properties (linguistic label, or in case
of body parts touch and motor information). The sensations
module relies on several functional modules described below.
Agent detector and the prediction, anticipation, sensation,
attention and response module maintain information relative to
the position of each entity and its respective salience, as well as
speech recognition which deals with speech-to-text processing
to provide relevant information for meaning extraction in the
adaptive layer.

The agent detector is a functional module processing in-
formation gathered by the RGB-D camera and concerning a
human agent present in the scene. This includes the location
of the body parts of the human (of interest in this paper is
the head location for gazing at the partner, the location of the
hands for detecting pointing actions of the human, as well as
the face image of the agent for face recognition.

The prediction, anticipation, sensation, attention and re-
sponse (PASAR, [?]) functional module analyses the salience
of entities in the world. The salience of an object is increased
through acceleration of the entity, its appearance and disap-
pearance, the human pointing to the object; and decreases
when the iCub looks at the entity. The module receives
information about properties of detected entities (position,
color, presence), and about the human interaction with them
(pointing to, waving to, etc.). After performing analysis of
the salience of the object, the system generates the updated
salience for the entities. This can be used to guide the gaze to
the most pertinent objects.

The speech recognition functional module extracts text from
human speech sensed by a microphone, using the MicrosoftTM

speech API. With a given grammar provided by different
modules or given by default, this module returns the sentence
heard by the robot in textual form. This will be further
processed in the adaptive layer described in the next section
to extract meaning from those sentences.

2) Allostatic Controller: In many situations, several drives
which may conflict with each other, can be activated at the
same time (in the case of this paper, the drive for knowledge
acquisition and the drive for knowledge exploration). Such
possible conflicts can be solved through the concept of an
allostatic controller [61], [62], defined as a set of simple
homeostatic control loops and dealing with their scheduling
to ensure an efficient global regulation of the internal state
variables. According to the internal state of the robot and



6 Submission to the IEEE Transactions on Cognitive and Developmental Systems

the output of the sensations module, the allostatic controller
updates the drive levels in real-time and has the role of
deciding which drive to regulate at the current time. For
example, the knowledge acquisition drive is modulated by
the amount of unknown information about the entities present
in the current scene, whereas the knowledge expression drive
is modulated by the amount of already acquired information
about the entities present in the current scene. The decision of
which drive to follow depends on several factors: the distance
of each drive level to their homeostatic boundaries, as well as
predefined drive priorities (in DAC-h3, knowledge acquisition
has priority over knowledge expression, which results in a
curious personality).

3) Behaviors: To regulate the aforementioned drives, the
allostatic controller is connected to the behaviors module,
and each drive is linked to corresponding behaviors which are
supposed to bring it back into its homeostatic range whenever
needed. The drive for knowledge acquisition is regulated by
requiring information about entities through coordinated be-
haviors. Those behaviors depend on the type of the considered
entity:

• In case of an object, the robot produces speech (e.g.
“What is this object?”) while pointing and gazing at the
unknown object.

• In case of an agent, the robot produces speech (e.g. “Who
are you?”) while looking at the unknown human.

• In case of a body part, the robot either asks for the
name (e.g. “How do you call this part of my body?”)
while moving it or, if the name is already known from
a previous interaction, asks the human to touch the body
part while moving it (e.g., “Can you touch my index while
I move it, please?”).

The multimodal information collected through these behaviors
will be used to form unified representation of entities in the
adaptive layer (see next section).

The drive for knowledge expression is regulated by execut-
ing actions towards known entities, synchronized with speech
sentences parameterized by the entities’ linguistic labels ac-
quired in the adaptive layer (see next section).

Motor actions are realized through the action rendering
engine (ARE [63]) functional module, executing complex
actions (e.g. push, reach, take, look) in terms of primitive
motor movements in both the joint and the Cartesian space.
The ARE system takes as input the label of the requested
action (e.g. push) along with the 3D coordinates of the object
(provided by the sensations module) over which the action
needs to be executed. The whole trajectory gets decomposed in
multiple trajectories via points whose intermediate movements
are resolved by means of a non-linear constraints optimiza-
tion, and then performed by a multi-referential operational
controller as described in [63]. The robot executes the motor
actions moving its limbs in a coordinated human-like fashion.

Language production abilities are also present in the reactive
layer, implemented in the form of predefined grammars (for
example naming an object or requesting information about it).
Semantic words associated to entities are not present at the
reactive level, but are provided from the learned association
operating in the adaptive layer (see next section). The iSpeak

module implements a bridge between the iCub and a voice
synthesizer (e.g. Festival1, Acapela2) by synchronizing the
produced utterance from a string with the LEDs of the iCub’s
mouth, producing lips movements to realize a more vivid
interaction [64].

The positive influence of such a drive regulation mechanism
on the acceptance of the HRI by naive users has been demon-
strated in previous papers [65], [66]. In this paper, the focus
is on its integration with an adaptive and contextual layer,
as described in the next two sections, providing a complete
cognitive architecture for HRI.

C. Adaptive layer

The adaptive layer oversees the acquisition of a state space
of the agent-environment interaction by binding visual, tactile,
motor and linguistic representations of entities. It integrates
functional modules for maintaining an internal representation
of the current scene, visually categorizing entities, recogniz-
ing and sensing body parts, extracting linguistic labels from
human speech, and learning associations between multimodal
representations. They are grouped in three structural modules
described below: perceptions, associations and action selec-
tion (see Figure 1).

1) Perceptions: The object recognition functional mod-
ule [67] is used to learn the categorization of objects directly
from the visual information given by the iCub eyes. It provides
a complete chain to address the real-world object recognition
problem by coding the images with resort to the most recent
deep convolutional networks, and successively applying a
support vector machine linear classification. The input to this
system are images acquired from the robot cameras containing
the objects we aim to recognize. Objects are segmented out of
the background relying on the local binary pattern technique;
their bounding boxes are then fed to the learning module for
the recognition stage. The whole chain can run in near real-
time. The output of the system consists of the 2D (in the image
plane) and 3D (in the world frame) positions of the identified
objects along with the corresponding classification scores as
stored in the objects properties collector memory (explained
below).

The transformation of human speech into meaning (com-
prehension of narrative discourse) and vice versa (production
of narrative discourse) is realized by the language reservoir
handler (LRH). These models (comprehension and production
of narrative discourse) are recurrent neuronal networks based
on reservoir computing [68], [69], [70]. The model of narrative
discourse production (meaning to speech) receives a represen-
tation of meaning and generates the corresponding sentence.
The narrative discourse comprehension model is the opposite
of the production model. It receives a sentence and produces
the representation of the corresponding meaning, which is
based on the theory of Goldberg [71] who proposes a tight
correspondence between the structure of perceptual events that
are basic to human experience, and constructions for the cor-
responding basic sentence types. In a simplistic way, this cor-

1http://www.cstr.ed.ac.uk/projects/festival/
2http://www.acapela-group.com/

http://www.cstr.ed.ac.uk/projects/festival/
http://www.acapela-group.com/
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responds to saying that the meaning of a sentence is contained
in the semantic words that compose it. Thereby, we represent
the meaning in term of PAOR: predicate(arguments) where ar-
guments correspond to thematic roles (agent,object,recipient).
These thematic roles called “Open Class Words” (OCW) are
at the interface of syntax and semantics. They are a first level
of “poor” semantics. From a syntactic point of view, thematic
roles are linked to grammatical functions (such as to, the, in,
on, a) also called “Closed Class Words” (CCW). The first
role we can define is the “agent” role (such as I, John, iCub).
It typically characterizes a person or entity with intelligence
and cognitive properties that initiates or undergoes an action
described by a verb (such as put, push, feel). We then find the
notion of “patient” or “recipient” (iCub gives the box to John,
in this example, the recipient is John), which characterizes the
entity that undergoes the action described by the predicate.
The “predicate” thematic role represents the key thematic
role of an action. In case of narrative structure, we can also
find narrative function words like “before”, “then”, etc. This
meaning representation in term of PAOR corresponds to the
format of data contained in the autobiographical memory
described in the next section (contextual layer).

The synthetic sensory memory (SSM) module provides
abilities for pattern learning, recall, pattern completion and
association, as defined by experimental psychologists and neu-
roscientists [86]. The functionality in SSM draws inspiration
from the role of the hippocampus by fusing multiple sensory
input streams and representing them in a latent feature space,
which emerges as Deep Gaussian Processes [87] are used
as the underlying technology. SSM takes various data as
input as provided from the sensations module, e.g. vision,
auditory, and touch information. SSM is capable of voluntary
recall, involuntary recall, as well as imagination. During
voluntary recall, SSM performs classification of incoming
sensory data and returns a label along with an uncertainty
measure corresponding to the returned label. SSM is also
capable of imagining novel inputs or reconstructing previously
encountered inputs and sending the corresponding generated
sensory data which allows for the replay of memories using the
visual memory inspector [88]. In DAC-h3, SSM is currently
employed for face recognition and action recognition using
a fusion of RGB-D data and object location data. In terms
of action recognition, SSM has been trained to automatically
segment and recognize the following actions: push, pull, lift,
drop, wave, and point, while also actively recognizing if the
current action is known or unknown.

2) Associations: The associations structural module pro-
duces unified representations of entities by associating the
multimodal categories formed in the perception module. Those
unified representations are formed in the objects properties
collector (OPC), a functional module storing all information
associated with a particular entity at the present moment in a
proto-language format as detailed in [65]. An entity is defined
as a concept which can be manipulated, and is thus the basis
for emerging knowledge. In DAC-h3, each entity has a name
associated, which might be unknown if the entity has been
discovered but not yet explored. More specifically, higher level
entities such as objects, body parts and agents have additional

intrinsic properties. For example, an object also has a location
and dimensions associated to it. Furthermore, whether the
object is currently present is encoded as well, and if so, its
saliency value (as computed by the PASAR module described
in Section III-B). On the other hand, a body part is an entity
which contains a proprioceptive property (i.e. a specific iCub’s
joint), and a tactile information property (i.e. which tactile
sensor are associated to it). Thus, the OPC allows integrating
multiple modalities of one and the same entity to ground the
knowledge about the self, other agents, and objects, as well as
their relations. Relations can be used to link several instances
in an ontological model (see III-D1 Episodic Memory).

Learning the multimodal associations that form the internal
representations of entities relies on the behavior generated by
the knowledge acquisition drive operating at the reactive level
(see previous section). Multimodal information about entities
generated by those behaviors is bound together by registering
the acquired information in the specific data format used by
the OPC. For instance, the language reservoir handler module
described above deals with speech analysis to extract entity
labels from human replies (e.g. “this is a cube”; {P:is, A:this,
O:cube, R:∅}). The extracted labels are associated with the
acquired multimodal information which depends on the entity
type: visual representations generated by the object recognition
module in case of an object or agent detector in case of an
agent, as well as motor and touch information in case of a
body part.

The associations of representations can also be applied to
the developmental robot itself (instead of external entities as
above), to acquire motor capabilities or to learn the links
between motor joints and skin sensors of its body [72].
Learning self-related representations of the robot’s own body
schema is realized by the sensorimotor representation learning
functional module dedicated to forward model learning by
means of an online heterogeneous ensemble of predictors
[73]. This learning method achieves predictions which are
more accurate compared with single models’ alternatives by
combining multiple predictors of different types. The ensemble
includes echo-state networks [74], online echo state Gaussian
processes [75] and locally weighted projection regression
models [76]. The system receives sensory data collected from
the robot’s sensors (e.g. cameras, skin, joint encoders). Sensory
predictions are then produced using the self-learned forward
model implemented by the proposed ensemble method.

The kinematic structure learning functional module [77],
[78] estimates an articulated kinematic structure of arbitrary
objects (including the robot’s body parts, and humans) using
local feature point trajectories extracted from the visual input
videos of the iCub eye cameras. By combining estimated
motion and skeleton information, it generates elaborate and
plausible kinematic structures. Based on the estimated artic-
ulated kinematic structures [77], we also allow the iCub to
anchor two objects’ kinematic structure joints by observing
their movements [78]. For this goal, we formulated the prob-
lem of finding corresponding kinematic joint matches between
two articulated kinematic structures via hypergraph matching,
whilst being accurate and plausible under appearance and
motion variations. The similarity measures consider structural
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topology (first order), kinematic correlation (second order) and
combinatorial motion (third order) similarities simultaneously.
This allows the iCub to infer correspondences between its own
body parts (its left arm and its right arm), as well as between
its own body and the body of the human as retrieved by the
agent detector.

Finally, the perspective taking functional module [79] en-
ables the robot to reason about the state of the world from the
partner’s perspective. This is important in situations where the
views of the robot and the human diverge, for example due
to objects which are hidden to the human but visible to the
robot. Interestingly, it was proposed that there are two separate
processes involved in perspective taking depending on the
difficulty of the task [80]. We follow this proposal and solve
rather simple tasks such as determining whether an object is
visible to the human using line of sight tracing. Complex tasks
such as visually imagining the world from the human’s point
of view are solved by a mental rotation. For this, the point
cloud acquired from the RGB-D camera is rotated such that the
origin coincides with the head of the human. Furthermore, the
mental rotation allows algorithms to reason as if the input data
was acquired from an egocentric perspective, which can be
used for left/right judgments of object locations. As input, the
system receives the object locations; the estimated head pose
of the partner; and the point cloud acquired from the RGB-D
camera. The system produces an output that characterizes the
visibility of each object, the spatial location of each object (left
/ right of human), as well as a reconstructed view from the
human’s perspective. This can then be used when reasoning
about the object which is referred to by the human.

3) Action Selection: The action selection module uses the
information from associations to provide context to the be-
haviors module at the reactive level. This context corresponds
to entity names which are provided as parameters to the
behaviors module, for instance pointing at a specific object or
using the object linguistic label in the parameterized grammars
defined at the reactive level. This module also deals with the
scheduling of action plans from the contextual layer according
to the current state of the system as explained in the next
section.

D. Contextual layer

The contextual layer deals with higher-level cognitive func-
tions that extend the time horizon of the cognitive agent, such
as an episodic memory, goal representation, planning and the
formation of a persistent autobiographical memory of the robot
interaction with the environment. These functions rely on the
unified representations of entities acquired at the adaptive
level. The contextual layer consists of three functional modules
that are described below: 1) episodic memory, 2) goals and
action plans, and 3) autobiographical memory used to generate
a narrative structure.

1) Episodic Memory: The episodic memory relies on ad-
vanced functions of the object property collector (OPC) to
store and associate information about entities in a uniform for-
mat based on the interrogative words “who”, “what”, “where”,
“when”, “why” and “how” called an H5W data structure [65].

It is used for goal representation and as elements of the auto-
biographical memory. Formalizing the content and evolution
of a scene requires the combination of perceptual, symbolic
and rule based reasoning in a single unified framework. Such
processes will generate information about who is acting, what
they are doing, where and when it happens, and this will give
cues about why it is happening. H5W have been argued to be
the main questions any conscious being must answer in order
to survive in the world [81], [82].

The concept of relations is the core of the H5W framework.
It links up to five concepts and assigns them with semantic
roles to form a solution to the H5W problem. We define
a relation as a set of five edges connecting those nodes in
a directed and labeled manner. The labels of those edges
are chosen so that the relation models a typical sentence
from the English grammar of the form: Relation → Subject
Verb [Object] [Place] [Time]. The brackets indicate that the
complements are facultative; the minimal relation is therefore
composed of two entities representing a subject and a verb.

2) Goals and action plans: Goals can be provided to the
iCub from human speech, and a meaning is extracted by the
language reservoir handler, forming the representation of a
goal in the goals module. Each goal consequently refers to
the appropriately predefined action plan, defined as a state
transition graph with states represented by nodes and actions
represented by edges of the graph. The action plans module
extracts sequences of actions from this graph, with each
action being associated with a pre- and a post-condition state.
Goals and action plans can be parameterized by the name
of a considered entity. For example, if the human asks the
iCub to take the cube, this loads an action plan for the goal
“Take an object” which consists in two actions: “Ask the
human to bring the object closer” and “Pull the object”. In
this case, each action is associated with a pre- and post-
condition state in the form of a region in the space where
the object is located. In the action selection module of the
adaptive layer, the plan is instantiated toward a specific object
according to the knowledge retrieved from the associations
module (e.g. allowing to retrieve the current position of the
cube). The minimal sequence of actions achieving the goal is
then executed according to the perceived current state updated
in real-time, repeating each action until its post-condition is
met (or giving up after a predefined timeout).

Although quite rigid in its current implementation, in the
sense that action plans are predefined instead of being learned
from the interaction, this planning ability allows closing the
loop of the whole architecture, where drive regulation mech-
anisms at the reactive layer can now be bypassed through
contextual goal-oriented behavior.

3) Autobiographical Memory: The autobiographical mem-
ory (ABM [83], [84], [85]) collects long term information
(days, months, years) about interactions. It stores data (e.g.
objects locations, human presence) from the beginning (i.e. to
extract pre-conditions) to the end (i.e. to extract the effect) of
an episode by taking snapshots of the environmental informa-
tion from the episodic memory. This allows the generation of
high level concepts extracted by knowledge-based reasoning.
The memory information itself is stored in a SQL database.
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The ABM is bio-motivated based on the human declarative
long term memory situated in the medial temporal lobe, and
the distinction between facts and events [83], [84]. In addition,
the ABM captures continuous information during an episode
(e.g. images from the camera, joints values). This can be
used by reasoning modules which focus on the action itself,
leading to the production of a procedural memory (e.g. through
learning from motor babbling or imitation) [85].

The narrative structure learning module builds on the
language processing and ABM capabilities. Narrative struc-
ture learning occurs in three phases: First the iCub acquires
experience in a given scenario. This generates the meaning
representation in the ABM. The iCub then formats each
story using an IGARF graph (for Initial Goal Action Result
Final) according to the different states, actions and results of
actions encountered [70]. The human then provides a narration
(that is understood using the reservoir system explained in
Section III-C) for the scenario. By mapping the events of
the narration to the event of the story, the robot can extract
the meaning of different discourse functions words (such as
because). It can thus automatically generate the corresponding
form-meaning mapping that defines the individual grammatical
constructions, and their sequencing that defines the narrative
construction for a new narrative.

E. Layer Synergy

The complete system described in this section therefore inte-
grates several state-of-the-art algorithms for cognitive robotics,
and integrates them into a structured cognitive architecture
grounded in the principles of the DAC theory. This allows a
complex control of the iCub robot proactively interacting with
humans trough drive reduction mechanisms in the reactive
layer, which allows the bootstrapping of adaptive learning
of multimodal representations about entities in the adaptive
layer. Those representations form the basis of an episodic
memory for goal-oriented behavior through planning in the
contextual layer. The life-long interaction of the robot with
humans continuously feed an autobiographical memory able to
retrieve past experience from request and to express it verbally
in a narrative.

IV. EXPERIMENTAL RESULTS

This section validates the cognitive architecture described
in the previous section on a real demonstration with an iCub
humanoid robot interacting with objects and a human. We
first describe the experimental setup, then the autonomous
and goal-oriented abilities provided to the robot. Finally we
analyze the scenario progression in detail.

The code for reproducing this experiment on any iCub
robot is available open-source on GitHub at https://github.com/
robotology/wysiwyd. It consists of all modules described in the
last section implemented in either C++ or Python, and relies
on the YARP middleware [60] for defining their connections
and ensuring their parallel execution in real-time.

A. Experimental setup

We consider an HRI scenario where the iCub and a human
face each other with a table in the middle and objects placed
on it. The surface of the table is divided in three distinct areas,
as shown in Figure 2:

1) an area which is only reachable by the iCub (I),
2) an area which is only reachable by the human (H), and
3) an area which is reachable by both agents (S for Shared).

The behaviors available to the iCub are the following:

• “Acquire missing information about an entity”, which is
described in more detail in Section IV-B1.

• “Express the acquired knowledge”, which is described in
more detail in Section IV-B2.

• “Move an object on the table”, either by pushing it from
the region I to S or pulling it from the region S to I ,

• “Ask the human to move an object”, either asking to push
the object from region H to S or asking to pull it from
region S to H .

• “Show learned representations on screen” while explain-
ing what is being shown, e.g. displaying the robot kine-
matic structure learned from a previous arm babbling
phase.

• “Interact verbally with the human” while looking at
her/him. This is used for replying to some human requests
as described in Section IV-C below.

These behaviors are implemented in the behaviors module
and can be triggered from two distinct pathways as shown in
Figure 1. The behaviors for acquiring and expressing knowl-
edge are triggered through the drive reduction mechanisms
implemented in the Allostatic Controller (Section III-B). The
remaining behaviors are triggered from the Action Selection
module (Section III-C), scheduling action sequences from the
Goals and Action Plans modules (Section III-D. We describe
these two pathways in the two following subsections.

B. Autonomous behavior

Two drives for knowledge acquisition and knowledge ex-
pression implement the interaction engine of the robot (see
Section III-B). They regulate the knowledge acquisition pro-
cess of the iCub and proactively maintain the interaction with
the human. The generated sensorimotor data feeds the adaptive
layer of the cognitive architecture to acquire multimodal
information about the present entities (see Section III-C).
In the current experiment, the entities are objects on the
table, body parts (fingers of the iCub), interacting humans,
and actions. The acquired multimodal information depends
on the considered entity. Object representations are based on
visual categorization and stereo-vision based 3D localization
performed by the object recognition functional module. Body
part representations associate motor and touch events. Agents
and actions representations are learned from visual input in the
synthetic sensory memory module presented in Section III-C1.
Each entity is also associated with a linguistic label learned
by self-regulating the two drives detailed below.

https://github.com/robotology/wysiwyd
https://github.com/robotology/wysiwyd
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Figure 2. The setup consists of an iCub robot interacting with objects on the
table and a human in front of it. The three regions of the table mentioned in
the text (I , S and H) are indicated (separated by horizontal lines).

1) Drive to acquire knowledge: This drive maintains a
curiosity-driven exploration of the environment by proactively
requesting to the human information about the present entities,
e.g. the name of an object or the touch of a body part. The
drive level decays proportionally to the amount of missing
information about the present entities (e.g. the unknown name
of an entity). When below a given threshold, it triggers a
behavior following a generic pattern of interaction, instantiated
according to the nature of the knowledge to be acquired. It
begins with a behavior to obtain a joint attention between the
human and the robot toward the entity that the robot wants to
learn about. After the attention has been attracted toward the
desired entity, the iCub asks for the missing information (e.g.
the name of an object or of the human, or in case of a body
part the name and touch information) and the human replies
accordingly. In a third step, this information is passed to the
adaptive layer and the knowledge of the robot is updated in
consequence.

Each time the drive level reaches the threshold, an entity is
chosen in a pseudo-random way within the set of perceived
entities with missing information, with a priority to request
the name of a detected unknown human partner. Once a
new agent enters the scene, the iCub asks for her/his name,
which is stored alongside representations of its face in the
synthetic sensory memory module. Similarly, the robot stores
all objects it has previously encountered in its episodic memory
implemented by the object property collector module. When
the chosen entity is an object, the robot asks the human to
provide the name of interest while pointing at it. Then, the
visual representation of the object computed by the object
recognition module is mapped to the name. When the chosen
entity is a body part (left hand fingers), the iCub first raises
its hand and moves a random finger to attract the attention of

the human. Then it asks for the name of that body part. This
provides a mapping between the robot’s joint identifier and
the joint’s name. This mapping can be later extended to also
include tactile information, by asking the human to touch the
body part the robot is moving.

Once a behavior has been triggered, the drive is reset to
its default value and decays again as explained above (the
amount of the decay being reduced according to what has
been acquired).

2) Drive to express knowledge: This drive regulates how
the iCub expresses the acquired knowledge through synchro-
nized speech, pointing and gaze. It aims at maintaining the
interaction with the human by proactively informing her/him
about its current state of knowledge. The drive level decays
proportionally to the amount of already acquired information
about the present entities. When below a given threshold
(meaning that a significant amount of information has been
acquired), it triggers a behavior alternating gazing toward
the human and a known entity, synchronized with speech
expressing the knowledge verbally, e.g. “This is the octopus”,
or “I know you, you are Daniel”. Once such a behavior has
been triggered, the drive is reset to its default value and
decays again as explained above (the amount of the decay
changing according to what is learned by satisfying the drive
for knowledge acquisition).

These two drives allow the robot to balance knowledge
acquisition and expression in an autonomous and dynamic
way. At the beginning of the interaction, the robot does not
know much about the current entities and therefore favors
behaviors for knowledge acquisition. By acquiring more and
more knowledge, it progressively switches to behaviors for
knowledge expression. If new entities are introduced, e.g. a
new object or another human, it will switch back to triggering
more behaviors for knowledge acquisition and so on.

C. Goal-oriented behavior

The representations acquired by satisfying the drives above
allow a more complex interaction through goal-oriented be-
havior managed by the contextual layer (see Figure 1 and
Section III-D). Goals can be provided to the iCub from human
speech and a meaning is extracted by the language reservoir
handler, forming the representation of a goal in the goals
module. Each goal is associated with an action plan on the
form of a sequence of actions together with their pre- and post-
conditions in the action plans module. The action selection
module takes care of the execution of the plan according to
the associations known to the robots, triggering the appropriate
behaviors according to its current perception of the scene
updated in real time. Goal achievement bypasses the reactive
behavior described in the previous subsection by freezing all
the drive levels during the execution of the plan. The available
goals are described below.

1) Give or take an object: These goals are generated from
a human verbal request, e.g. “Give me the octopus” or “Take
the cube”. Here, the goal is represented as a region on the
table, either the human area H (for the “Give” goal) or
the iCub area I (for the “Take” goal), where the mentioned
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Figure 3. State transition graph used for generating the action plans of the
goals “Give” and “Take”. Nodes correspond to the table regions indicated
in Figure 2. Arrows correspond to the actions to be executed for realizing a
transition. According to the observed current state of the object, the iCub will
execute the action which brings it closer to the goal state. For example, if the
goal is to take an object which is in the human area, the robot will first ask
the human to push it, then it will pull it.

object should be placed. Action plans are generated from
the state-transition graph shown in Figure 3. State perception
is updated in real-time according to the perceived location
of the object computed through stereo-vision in the object
recognition module.

2) Point to an object: This goal is generated through a
verbal request, e.g. “Point to the octopus”. If the mentioned
object is not known to the iCub, it will first ask the human to
point to it in order to learn the new association between the
name and the object visual representation. Once the name is
known, or if it was already known, the iCub will point to the
object.

3) Say the name of a recognized action: This goal is
generated through a verbal request, e.g. “How do you call
this action?” formulated just after the human has performed
an action on an object. Four actions can be recognized: “push”,
“pull”, “lift”, “drop”, “wave”, and “point”. The reply from the
iCub provides the name of the action and the object as well
as the hand used by the human, e.g. “You pushed the cube
with your left hand”. The action classification is realized by
the synthetic sensory memory module.

4) Tell what happened during a past interaction with a
human: This goal is generated through a verbal request,
e.g. “What have you done the other day?”. Based on its
past interactions with the environment and with humans, the
iCub has stored all the relevant information in its autobi-
ographical memory (see Section III-D), including its own
drives, motivations and actions, as well of the actions of the
human (both, spoken and physically enacted). The narrative
handler functional module is able to generate a narrative
discourse from the content of the autobiographical memory
and to generate an action plan on the form of a sequence of
sentences. The human can request more detailed information
about an event using sentences like “What happened next?”
or “Why did you do that?”, this later question being answered
according to the stored drive levels and goal states of the
considered events. The robot can also learn a set of questions
that it can re-use in the context of another story. Figure 4
shows an example of a generated narrative.

5) Show the learned kinematic structure: As for the pre-
vious goals, this goal is generated through verbal requests.
When asked “What have you learned from your arm babbling”,
the iCub refers the human to look at the screen where the
kinematic structures of its arms are displayed. Also lines
which connect nodes of the kinematic structures indicate the
correspondences which the iCub has found between its left and
right arm. Similarly, the iCub displays the correspondences

First I wanted to get the toy.
First you have the toy.
Then I fail to grasp it.
After I fail to grasp, I reasoned.
Because I reasoned, I ask for the toy to you
Finally you gave me the toy
Now I have the toy
I have the toy because you gave it to me
You gave the toy to me because I wanted it

Figure 4. Example of a narrative generated by the robot. The language
reservoir handler will decompose the words in the narrative discourse in 3
categories: the discourse function words (DFW) which direct the discourse
from one sentence to the other, the open class words (OCW) which
correspond to the meaningful words in terms of vocabulary of the sentence,
and the closed class words (CCW) which have a grammatical function in the
sentence (see [70]).

which it has found between one of its arms and the body of
the human (see Figure 5).

D. Scenario Progression

We propose to evaluate our system in a mixed-initiative
scenario, where the iCub behaves autonomously as described
in Section IV-B, and so does the human. The human can
interrupt the robot behavior by formulating verbal requests
as described in Section IV-C. The scenario can follow various
paths according to the interaction between the iCub’s internal
drive dynamics, its perception of the environment and the
behavior of the human.

We provide a series of videos of live interactions in a lab
environment at http://clement-moulin-frier.github.io/dac-h3/.

Here, we describe one particular instance of the scenario.
Figure 6 shows the corresponding drive dynamics and human-
robot interactions, and Figure 1 shows the connections be-
tween the modules of the cognitive architecture. Each of the
numbered items below is refers to its corresponding number
in Figure 6.

Figure 5. Examples of the kinematic structure correspondences which the
iCub has found. The top figure shows the correspondences between the left
and right arm of the iCub, which can be used to infer the body part names of
one arm if the corresponding names of the other arm are known. Similarly,
the bottom figure shows correspondences between the robot’s body and the
human’s body.

http://clement-moulin-frier.github.io/dac-h3/
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1) At the beginning of the interaction, the iCub does not
know much information about the current scene. In the
sensations module, the agent detector detects the pres-
ence of a human and extracts its skeleton. The object
recognition module performs blob detection for extracting
objects on the table from the visual input of the eye
cameras and trains a classifier to categorize them. The
3D locations of the present objects are also computed
in object recognition through stereo vision. This form a
first incomplete representation of the scene in the episodic
memory where the object property collector registers the
location and type of each detected entity (here objects
and an agent). It also contain slots for unknown body
parts of the iCub, here the five fingers of its right hand.

2) The presence of a large amount of missing information
(presence of unknown objects, human and body parts)
in the sensations module makes the drive for knowledge
acquisition decaying rapidly in the allostatic controller
and the drive for knowledge expression is kept constant
(since there is no knowledge to express yet).

3) When this drive level is below threshold, it triggers
the associated behavior (behaviors module) for acquiring
information about an entity. The choice of the unknown
entity is pseudo-random, with priority for requesting the
name of an unknown human. This makes the robot look at
the human. The visual input is passed to the perceptions
module where the synthetic sensory memory segments
the face from the background and attempts to recognize
it from previously seen faces. It does not recognize the
face and asks “I do not know you, who are you?”. The
human replies, e.g., “I am Daniel”. The level of the drive
is reset to its default value and both drives are frozen
during the behavior execution.

4) The perceived speech is analyzed by the language reser-
voir handler in perceptions to extract the name “Daniel”
and is associated with the face representation in the
associations module. Thus, the next time the iCub will
interact with this person, it will directly recognize him
and not ask for his name.

5) Once this interaction is achieved, the drives continue to
decay. Since the iCub has just acquired more information,
the decay of the drive for knowledge acquisition is slower
and the one for knowledge expression is increased. Still,
the drive for knowledge acquisition reaches the threshold
first. The behavior for acquiring information is therefore
triggered again. This time, the random choice of an
unknown entity makes the robot point to an object and
ask “What is this object?”. The human replies e.g. “This
is the cube”. The language reservoir handler extracts the
name of the object from the reply and the associations
module associates it with the visual representation of the
pointed object from object recognition. Now the cube can
later be referred by its name.

6) The drives continues to decay. This time, the drive for
knowledge expression reaches the threshold first. This
triggers the behavior for expressing the acquired knowl-
edge. A known entity is chosen, here the cube, which is
pointed while saying “This is a cube”.

Figure 6. Drive level dynamics during a typical mixed-initiative scenario
described in Section IV-D. Each drive starts at its default value and decays
following the dynamics described in Section IV-B. When reaching a given
threshold (dashed horizontal line) the associated behavior is triggered (green
rectangles), the corresponding drive level is reset to its default value and both
drive levels are frozen for the duration of the behavior. Human behavior is
indicated by the red rectangles, being either a reply to a question asked by
the iCub (small rectangles), or a request to the iCub triggering goal oriented
behavior (here: “Take the cube”). The numbers refer to the description of the
scenario progression in the main text.

7) The human asks “Take the cube”. A meaning is extracted
by the language reservoir handler in perceptions and
forms the representation of a goal to achieve in the
goal module (here the desired location of the object,
i.e. the region of the iCub I for the goal “take”, see
Figure 3). An action plan is built in action plans with
the sequence of two actions “Ask the human to push the
object” then “Pull the object”, together with their pre-
and post-conditions in term of states (I , S or H). The
action selection module takes care of the realization of
the plan. First, it instantiates the action plan toward the
considered object, here the cube, through its connection
with associations. Then, it executes each action until its
associated post-condition is met (repeating it three times
before giving up). Since the cube is in the human area H ,
the iCub first triggers the behavior for interacting verbally
with the human, asking “Can you please bring the cube
closer to the shared area?”. The human pushes the cube
to the shared area S and the state transition is noticed
by the robot thanks to the real-time object localization
performed in object recognition. Then the robot triggers
a motor action to pull the cube. Once the goal is achieved
(i.e. the cube is in I), the drive levels which were frozen
during this interaction continue to decay.

8) The drive for knowledge acquisition reaches the threshold
first. The associated behavior now chooses to acquire the
name of a body part. The robot triggers the behavior for
raising its hand and moving a random unknown body
part, here the middle finger. It looks at the human and
asks “How do you call this part of my body?”. The name
of the body part is extracted from the human’s reply and is
associated with the joint that was moved in associations.

The interaction continues following the dynamics of the
drives and interrupted by the requests from the human. Once
all available information about the present entities is acquired,
the drive for knowledge acquisition stops to decay. However,
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the robot still maintains the interaction through its drive
for knowledge expression and the human can still formulate
requests for goal-oriented behavior. When new entities are
introduced, e.g. an unknown object or another human entering
in the scene, the drive for knowledge acquisition decays again
and the process continues.

V. CONCLUSION AND FUTURE WORKS

This paper has introduced DAC-h3, a proactive robot cog-
nitive architecture to acquire and express knowledge about the
world and the self. The architecture is based on the Distributed
Adaptive Control (DAC) theory of the brain and mind, which
provides a biologically grounded framework for organizing
various functional modules into a coherent cognitive archi-
tecture. Those modules implement state-of-the-art algorithms
modeling various cognitive functions for autonomous self-
regulation, whole-body motor control, multimodal perception,
knowledge representation, natural language processing, and
goal-oriented behavior. They are all implemented using the
YARP robotic middleware on the iCub robot, ensuring their
parallel execution in real time and providing synchronous and
asynchronous communication protocols among modules.

The main contribution of this paper is not about the mod-
eling of the specific functional modules, which already have
been published (see Section III), but rather about the integra-
tion of a heterogeneous collection of modules into a coherent
and operational cognitive architecture. For this aim, the DAC-
h3 architecture is organized as a layered control structure with
tight coupling within and between layers (Figure 1 and Sec-
tion III): the somatic, reactive, adaptive, and contextual layers.
Across these layers, a columnar organization exists that deals
with the processing of states of the world or exteroception,
the self or interoception and action. Two main control loops
generate the behavior of the robot. First, a reactive-adaptive
control loop ensures autonomy and proactivity through the
self-regulation of internal drives for knowledge acquisition
and expression. It allows the robot to proactively manage
its own knowledge acquisition process and to maintain the
interaction with a human partner, while associating multimodal
information about entities with their linguistic labels. Second,
an adaptive-contextual control loop allows the robot to satisfy
human requests, triggering goal-oriented behavior relying on
the acquired knowledge. Those goal-oriented behaviors are
related to action planning for object passing, pointing, action
recognition, narrative expression and kinematic structure learn-
ing demonstration.

We have implemented the entire DAC-h3 architecture and
presented a HRI scenario where an iCub humanoid robot
interacts with objects and a human to acquire information
about the present objects and agents as well as its own
body parts. We have analyzed a typical interaction in detail,
showing how DAC-h3 is able to dynamically balance the
knowledge acquisition and expression processes according to
the properties of the environment, and to deal with a mixed
initiative scenario where both the robot and the human are
behaving autonomously. In a series of video recordings, we
show the ability of DAC-h3 to adapt to different situations
and environments.

The current work has the following limitations. First, some
of the available abilities deserve to be better integrated into the
HRI scenario. For example, this is the case for the kinematic
structure learning process which is currently executed in a
separated learning phase instead of being fully integrated
within the interaction scenario. Similarly, the narrative can
only be generated from specific chunks of the robot’s history
as recorded in the autobiographical memory. Second, in this
paper we do not provide a statistical analysis of the HRI
experiments. The reason is that we focus on the description
of the entire architecture and on their theoretical principles.
Statistical analysis will allow to better demonstrate the utility
of some of these principles, for example how proactivity helps
solving the referential indeterminacy problem, as well as the
effect of the robot’s autonomy on the acceptability of the
system by naive users. Third, although DAC-h3 is able to
solve parts of the Symbol Grounding Problem (SGP), it still
presupposes a symbolic concept of entity which is given a
priori to the system. Therefore, our contribution is more about
the ability to proactively acquire multimodal information about
these entities, and linking them to linguistic labels that can be
reused to express complex goal-oriented behavior later on.

We are currently extending the proposed architecture in the
following ways. First, we are better integrating some of the
available abilities within the interaction scenario as mentioned
above. This will allow to start the knowledge acquisition
process from scratch in a fully autonomous way. Second, we
are considering to use more biologically plausible models for
some of the existing modules, namely the action planning
and action selection modules. These are currently algorithmic
implementations using predefined action plans. We want to
replace it with an existing model of rule learning grounded
in the neurobiology of the prefrontal cortex which is able to
learn optimal action policies from experience to maximize
long-term reward [?]. An interesting feature of this model
for solving the SGP is that it relies on neural memory-units
encoding sensorimotor contingencies with causal relationships
learned through adaptive connections between them. Such sen-
sorimotor contingencies, adaptively learned from experience,
could provide the basis of emerging symbols without relying
on a pre-existing concept of entity as in the current version of
the architecture. Third, we are also integrating more low-level
reactive control abilities through an acquired notion of a peri-
personal space [?], where the robot will be able to optimize
its own action primitives to maintain safety distances with
aversive objects (e.g. a spider) in real time while executing
reaching actions toward other objects. Finally, we are work-
ing on a self-exploration process to autonomously discover
the area which is reachable by the robot, and subsequently
employing this self-model and applying it to the human partner
to estimate his/her reachability.
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