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Abstract

The UK housing stock is responsible for some 27% of national energy demand
and associated carbon dioxide emissions. 80% of this energy demand is due to
heating (60%) and domestic hot water (20%), the former reflecting the poor
average thermal integrity of the envelope of the homes comprising this stock.
To support the formulation of policies and strategies to decarbonise the UK
housing stock, a large number of increasingly sophisticated Housing Stock En-
ergy Models (HSEMs) have been developed throughout the past 25 years. After
describing the sources of data and the spatio-temporal granularity with which
these data are available to represent this stock, as well as the physical and social
phenomena that are modelled and the range of strategies employed to do so, this
paper evaluates the 29 HSEMs that have been developed and deployed in the
UK. In this we consider the models’ predictive accuracy, predictive sensitivity
to design parameters, versatility, computational efficiency, the reproducibility
of predictions and software usability as well as the models’ transparency (how
open they are) and modularity. We also discuss their comprehensiveness. From
this evaluation, we conclude that current HSEMs are lacking in transparency
and modularity, they are limited in their scope and employ simplistic models
that limit their utility; in particular, relating to the modelling of heat flow and
in the modelling of household behaviours relating to investment decisions and
energy using practices. There is a need for an open-source and modular dynamic
housing stock energy modelling platform that addresses current limitations, can
be readily updated as new (e.g. housing survey) calibration data is released and
be readily extended by the modelling community at large: improving upon the
utilisation of scarce developmental resources. This would represent a consid-
erable step forward in the formulation of housing stock decarbonisation policy
that is informed by sound evidence.

Keywords: residential buildings, modularity, energy modelling, policy support

Preprint submitted to Journal of LATEX Templates June 19, 2017



1. Introduction

Building stocks are responsible for a significant proportion of the energy

demands and Greenhouse Gas (GHG) emissions of most countries [1]. In the

UK, the domestic sector is responsible for 27% of national energy demand [2].

A first step towards reducing the energy demand of dwellings is to measure5

that demand precisely. Measurements of energy demand should deepen our

understanding of the relationships between elements of the dynamic system that

comprise a dwelling. These measurements can then be analysed to target policies

promoting new energy technologies (e.g. smart meters), behaviour change (e.g.

reducing standby power), or financial incentives to encourage investments (e.g.10

energy-related taxes) [3, 4, 5, 6]. Crucially such measurements can also be

used to calibrate models with which to evaluate the effectiveness of alternative

policies destined to decarbonise the housing stock [7, 8].

It is useful to identify the principal component parts of the energy system,

in terms of energy supplied (S) and energy demanded (D), which in turn may15

be split into energy used (U) and energy lost via transformation (L). Gas is

the most common supply of domestic energy (68%), which in the UK became

prominent in the 1990s when electricity generation switched from using coal

to natural gas. Electricity is also a prominent supply (24%) and is generated

by nuclear, wind, and hydro-power plants; other fuels include petroleum, coal,20

coke and breeze, and with minor share solid fuels such as bio-energy and waste

[9]. By contrast, the energy demand of dwellings is shaped by the needs of

individual households, which in turn are a function of their socio-demographic

characteristics and associated activities. In dwellings, this energy demand is

attributable to four key services: 60% to space-heating, 20% to domestic hot25

water, 17% to lighting and appliances, and 3% to cooking. Satisfying an energy

demand generally implies the emission of pollutants to the environment when

combustion is involved, but is dependent on the fuel properties and the processes

required to deliver that energy to the 27 million dwellings that comprise the UK

housing stock. The UK’s Climate Change Act aims to reduce national GHG30

2



emissions to 80% below 1990 levels by 2050 [10]. Before formulating policies

to help meet this ambitious target, a full understanding of a dwelling’s energy

system is required, which can be scaled up to consider stocks of dwellings.

The development of a Housing Stock Energy Model (HSEM) starts with a

basic abstraction that captures the energy flow pathways in a single dwelling.35

This mainly comprises the heat transfer through the envelope (to or from the

external environment or conjoined buildings), via conduction and associated

surface convective and radiative transfers and by infiltration and exfiltration,

as well as the thermal gains from occupants and appliances. A key example of

this abstraction is the Building Research Establishment Domestic Energy Model40

(BREDEM), which forms the basis of many other UK dwelling energy models.

This abstraction for a single dwelling can be replicated for a given housing stock,

to capture the variation in dwelling geometry, age, and context. When dwellings

share properties they can be allocated to groups, clusters, or typologies that make

a dataset more manageable and can be used to study a stock of dwelling through45

extrapolation [11, 12, 13, 14]. However, this implies that some of the unique

properties of each dwelling are replaced by a representative value when they are

allocated to a specific group. This loss of information increases uncertainty in

the stock model [15] and so tracing it is important.

The first attempts to model energy flows in dwellings were made in the mid-50

1970s [16, 13], but were constrained by computing power, availability of dwelling

information, and the ability to process it [12]. More recently, the adoption of

more sophisticated algorithms, facilitated by improved computing power, and

the increased availability and resolution of representative data have improved

the accuracy and usability of HSEMs [17, 18]. However, as HSEMs have become55

more sophisticated they require more inputs, which increases the likelihood of

data input errors [19]. Therefore, a sound understanding of domestic energy

flow pathways and the factors influencing them (both housing and household

factors) is essential in formulating policies designed to reduce the energy demand

and associated carbon emissions of any housing stock. It is then imperative to60

identify a parsimonious housing stock energy modelling strategy.
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Stock modelling strategies are shaped by two key aspects. The first is the

information (or stock data) required to achieve satisfactory levels of predictive

accuracy and consistency. Such data might describe the physicality of dwellings

(fabric, shape, location), their components and systems (fuel, water, technol-65

ogy), and their occupancy and use (household composition, patterns of presence

and behaviour). The second aspect relates to the faithfulness with which the

underlying energy model represents reality: the rigour of its modelling of en-

ergy flow pathways. The level of disaggregation required to represent a stock,

the energy flow pathways within it, and the reliability of any of the adopted70

assumptions [20, 21] are important factors. It is relatively straightforward to

assign individual dwellings to a group, but the energy-modelling of the housing

stock is complicated by the fact that most dwellings display heterogeneity, both

physically (the housing) and socio-economically (the household behaviour)1, and

so can also be considered unique. Household behaviour is a known area of mod-75

elling uncertainty, and may be influenced by collective (peer pressure influencing

the penetration of technology), circumstantial (environmental responses or lo-

cal incentives to acquire devices), biological (occupants’ needs according to age

and health conditions), or cultural (habits and patterns) factors [23, 24, 25, 26].

Some of these drivers are strongly interrelated. HSEMs should ideally consider80

the influence of these socio-economic factors on the underlying energy flow path-

ways being modelled, and be regularly updated as housing and household stock

composition changes. This requires an evaluation of the descriptive data sources

and the employed modelling strategies so that they can be accessed and used

by different developers and stakeholders [27].85

The aim of this paper is to review existing HSEMs used to estimate the

energy demand of UK housing stocks for a range of scenarios, utilising existing

and possible future sources of input data. Section 2 describes the composition

of the current UK housing stock and discusses sources of information that are

1A household is defined as one or more persons sharing living accommodation and who are
not necessarily related by blood or marriage [22]
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used by HSEMs to characterise it. Section 3 catalogues the evolution of UK90

HSEMs and summarises their relative advantages and disadvantages. Finally,

Section 4 describes a method for evaluating the functionality of HSEMs and

applies it to 29 existing models. This exercise is used to highlight significant

anomalies in, and omissions from, HSEMs and to show where research should

be focussed to ensure that future HSEMs are simultaneously more rigorous and95

useful for formulating policies and strategies to decarbonise the UK housing

stock. These recommendations are general in character, and as such should be

of value to modellers and policy-makers that are concerned with housing stock

decarbonisation, whichever their country of focus.

2. The Composition and Evolution of the UK Housing Stock100

2.1. Stock Structure

As of 20112, the UK housing stock was comprised of 27.4 million dwellings

(83.3% England, 5.1% Wales, 8.9% Scotland and 2.7% Northern Ireland). It has

homogeneity in its physical features and can be divided into five groups: 28%

terraced, 9% bungalow, 26% semi-detached, 17% detached, and 20% apartments105

[28] (see Figure 1:a). In the last forty years, the number of detached dwellings

and apartments increased by 124% and 75%, respectively [28, 29], but this in-

crease does not correlate well with the number of householders. The number

of UK households is rising at around 1% per annum [30, 28], but the average

household size of 2.2 is gradually falling because of increased family fragmen-110

tation and reduced fertility rates (see Figure 1:b). Concurrently, changes in

the ownership and use of appliances and systems are causing fluctuations in

dwelling energy demand [31, 32, 33], despite improvements in their efficiency3.

The energy demand of some systems, especially those for heating, is correlated

2This document uses 2011 data as a reference because: (1) it is the same year of the last
Census; (2) the CHM, a reference HSEM for national documents, also uses 2011; and (3)
Super Output Areas, the sample units of many HSEMs, are constructed for this year.

3The same phenomenon was pointed out more than a hundred years ago by Jevons [34],
although specifically for coal. This has recently been termed the rebound effect [35] and is a
relevant phenomenon that affects the energy performance at stock level.
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with the associated housing typologies [9, 36]. This is due to façade elements115

and construction technologies adopted in their period of construction.

Six age bands are traditionally used to characterise the UK housing stock:

pre 1919, inter-war, post-war 1950s, industrial 1970s, modern 1980s and post

2000 (see Figure 1:c). More than one-third of the stock date from the first

two bands, in which most of the constructions employ solid masonry (see Fig-120

ure 1:d) and the floor area is significantly larger than the average size of 92 sqm

[29]. The housing stock increased by 45% between 1970 and 2011, with a major-

ity of these dwellings built with cavity walls. Changes in construction methods

during this period were, in general, intended to reduce the thermal transmit-

tance of the envelope as well as uncontrolled air leakage. The registered age of125

construction provides thus an indication of the energy performance of the cur-

rent housing stock, considering that energy conservation standards for dwellings

were developed in response to the 1973 oil crisis and were maintained in the

1980s by the Housing Act [37, 38, 29]. In addition, the conformation of typolo-

gies within these bands is complemented by changes in the tenure composition.130

These changes reflect government (in particular monetarist) policies to encour-

age home ownership and the associated transfer of ownership of local authority

housing [39]. By 1970, 47% of properties were owner-occupied; by 2011, this

tenure increased to 65% of the stock (see Figure 1:e) [28, 40]. As a result, not

only these compositional changes affected services and energy usage, but also135

indoor conditions, although not always positively [23].

[Figure 1 about here.]

Since 1970, the mean external air temperature has increased by around 1K

whereas the mean indoor air temperature has risen by around 6K [9] (see Fig-

ure 1:f). This significant increase is attributable to improvements in fabric140

properties, the prevalence of central heating systems, an increase in acceptable

comfort temperatures [23], and more onerous regulations relating to the con-

servation of heat and power. Some of these changes have delivered improved

indoor comfort and health co-benefits [41], but have not significantly reduced
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fuel bills or lowered carbon emissions.145

[Figure 2 about here.]

2.1.1. Evolution of Domestic Services

Figures 1:g-h highlight the significant changes in installed space heating sys-

tems supplied by gas, and in the Domestic Hot Water (DHW) technologies

found in UK dwellings [2, 42]. Incidentally, gas is also the most common source150

of energy used by UK power stations to generate electricity and for district

heating, especially since the 1990s, by the supply shift from coal to natural gas

in power stations. This shift helped to reduce carbon emissions significantly

(see Figure 1:i). Figure 2 shows that gas is, directly and indirectly, responsible

for some 73% of all space heating, 79% of all DHW, 36% of all lighting and155

appliance energy, and 55% of all cooking energy [2]. Some houses in rural lo-

cations use petroleum or oil and Figure 2 shows that they satisfy 8% of total

demand for space heating. Together, heating systems (space and water) rep-

resent around three-quarters of the energy demand and so are significant. For

that reason, highly disaggregated information about these systems should be160

included in datasets so that they can be modelled accurately by HSEMs.

Since 1970, the ownership of household appliances and its aggregate energy

demand has experienced continuous growth, having doubled in size [43, 44,

45, 28]. Meanwhile, significant improvements have been made in appliance

energy efficiency over the same period [46, 45]. Increased ownership is partly165

attributable to population growth, consumer-biased lifestyles and the rebound

effect, where improvements in appliance efficiency have created a gap in dwelling

energy demand that is filled by the acquisition of more appliances, or their more

intense use [23, 47].

Correspondingly, cold appliances (fridges, freezers) are responsible for 4%170

of overall domestic annual energy demand, wet appliances (washing machines,

dishwashers) use 5%, lighting uses 3%, cooking (ovens, stoves, cookers) uses 2%,

and brown electronics (TV, audio systems, PCs) use 5%. Cold and wet appli-

ances may be associated with dwelling typologies because of their relationship

7



with household size, and their overall energy demand can be described well by175

their energy efficiency labels. However, the energy demand for lighting, cooking,

brown appliances, and to some extent wet appliances, is more related to users’

activities and interactions [30, 11, 12], which is subject to stochasticity. Given

that the relative proportion of total energy demand due to these services will

increase as the thermal integrity of housing improves, explicit modelling of these180

services and the socio-demographic factors influencing them would be merited;

though this implies that data representing the housing stock be augmented with

that representing household characteristics [11, 48].

[Table 1 about here.]

2.2. Sources of Information: Scope and Quantity185

In the UK, a national census is conducted every ten years, providing a

rich picture of the population by household, giving the number of inhabitants,

their education, employment and social affairs, and building information in-

cluding tenure, size and installed heating system4. However, the accuracy of

the data may deteriorate over time as household composition and characteris-190

tics evolve. To address this, the census is updated annually using information

from specific topical surveys and regional data, such as the Annual Popula-

tion Surveys (APSs) [49]. Census data is also enriched with estimates and

direct measures from electricity and gas sales in the domestic sector [40], to in-

crease the resolution of energy-related information. For example, the UK Gov-195

ernment’s Department for Environment, Food and Rural Affairs (DEFRA)’s

Market Transformation Programme (MTP) can model the energy demand of

domestic appliances, and make detailed estimations of their usage by calibrat-

ing ownership with energy demand [45] although the level of disaggregation is

constrained by the available supply subtotals, and cannot describe behaviours200

affecting the energy use in dwellings.

4The collection of national and regional statistics is conducted by Office for National Statis-
tics (ONS), National Records of Scotland (NRS), Statistics for Wales (SW), and Northern
Ireland Statistics and Research Agency (NISRA), respectively
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Limited attempts have been made to identify environmental attitudes and

energy-using behaviours. For example, a highly disaggregated study regarding

appliances’ energy demand was conducted in the 1990s [50], and was extrapo-

lated and calibrated for an estimation of national energy demand but limited to205

a small sample in the south of the UK. More recently, DEFRA, the Department

of Energy and Climate Change (DECC) and the Energy Saving Trust (EST)

commissioned a detailed field study of electricity use by 251 households at a one-

minute resolution [46, 32, 51]. DECC published these studies as cross-tabulated

data [2], which is a source for the Digest of UK Energy Statistics (DUKES).210

These data calibrate and reconcile HSEMs [52, 53, 54] for a sample of the na-

tional housing stock.

Common approaches used to reconcile a representative and statistically valid

sample of the housing stock are sampling and clustering. Sampling involves

random or systematic selection of units (e.g., households, dwellings, neighbour-215

hoods) amongst the population, whereas clustering involves the identification of

groups that share characteristics. Both methods use weights to then match the

population totals. Table 1 identifies the characteristics of the three clustering

strategies that are most commonly used to describe the UK population, and to

account for dwellings and households: Local Authority (LA), Nomenclature of220

Territorial Units for Statistics (NUTS) and Super Output Area (SOA).

Firstly, the LA classification are helpful in that they represent administrative

areas, and thus express relationship with the government and its structures. An

LA may have access to specific datasets (public and private), which enhance the

calibration of the stock weights [55, 56]. Secondly, NUTS is a geocode standard225

used for referencing the subdivisions of countries for statistical purposes and is

regulated by the European Union. Its different layers align with UK regions; for

example, the former Government Office Regions are equivalent to NUTS-1 [40].

Finally, the SOA is designed to improve the reporting of small area statistics and

are made up of groups of output areas and LAs [55]. They are constructed by230

clustering households by socio-economic status. These clusters have been used

to support the development of national housing surveys because they maintain
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characteristic attributes (demographic, household composition, housing, socio-

economic and employment) and so can be considered as representative subsets

of the population.235

Furthermore, for the analysis of very specific dwelling properties, reference

typologies have been deployed with representative attributes associated with

them [57, 58, 59]. Reference typologies include the variability among dwellings

and can be linked to the stock typologies, even though their attributes result

from extrapolation. Nevertheless, they can also be useful for the calibration and240

reconciliation of HSEMs with the different sources of information. Besides, one

advantage of this approach is that the typologies can be scaled, although the

procedure for each subset needs to be correspondingly refined [57, 60, 14]. By

contrast, representative sampling provides real examples of the housing stock

and can be used to study performance under realistic constraints; for instance,245

they can support cost-effective analyses based on household energy expenditure.

An example of this type is the English Housing Survey (EHS).

The EHS [61]5 is a particularly valuable source of data for the purposes of

UK housing stock modelling (representing 83.3% of the UK stock). It adopts a

clustering method to select a statistically representative sample of more than 14250

thousand English dwellings. The data collected includes a household question-

naire and a visual survey of dwellings’ physical properties. The EHS samples

are calibrated with SOAs. Hence, by using the EHS, it is possible to limit

the analysis to a specific group of typologies defined by epoch of construction,

dwelling type, location, tenure and floor areas. Many HSEMs have directly255

used this dataset to develop their studies, such as: Building Research Establish-

ment’s Housing Model for Energy Studies (BREHOMES) [62], Johnston’s model

[57], Domestic Energy and Carbon Model (DeCarb)[63], Cambridge Housing

Model (CHM) [54], Domestic Energy and Carbon Model (DECM) [52], Domestic

Ventilation Model (DOMVENT) [64], and Lorimer’s model [53]. Likewise, the260

5In April 2008 the EHS was created by merging the English House Condi-
tion Survey with the Survey of English Housing www.gov.uk/government/collections/

english-housing-survey
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Living in Wales survey (succeeded by the National Survey for Wales), the North-

ern Ireland House Condition Survey and the Scottish House Condition Survey,

all contain equivalent information describing the dwellings of their respective

countries, and apply similar sampling and weighting methods to those of the

EHS.265

Other surveys and databases used to characterise the housing stock are

contained in Table 2. Sources with smaller samples improve the resolution of

the collected information. For example, the Energy Follow Up Survey (EFUS)

measures indoor temperature and provides additional socio-demographic infor-

mation. Furthermore, both the National Energy Efficiency Data-framework270

(NEED) and the Homes Energy Efficiency Database (HEED) analyse and fore-

cast the adoption of retrofit measures across the stock, but reduce their own

resolutions. The HEED [65] specifically gives information on retrofitted energy

efficiency measures and a wealth of physical dwelling characteristics (property

age, property tenure, glazing type, heating system or insulation), but its data275

is limited to a number of UK regions and so suffers from sampling biases and

reductions.

[Table 2 about here.]

2.3. Reductions and Imputations: Common Assumptions in Stock Data

In the context of building performance modelling, it has been argued that as280

the quantity of required input data increases, so the average quality of this data

reduces and the risk of input errors increases[19]. Whilst it may be theoretically

possible to acquire data for the 27 million dwellings that comprise the UK

housing stock, this is neither viable nor is it necessarily desirable. Conversely, a

sampling process may over-simplify the data, if it is not repeated when updates285

are made. Furthermore, surveyors are constrained by limits on budget, time, or

personnel, but computational advances can offset these limitations by increasing

the speed of data collection and by improving the number of variables collected.

Sampling is required to form representative datasets of the entire housing

stock, with inherent risks of bias and errors needing to be managed. Sampling290
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bias is related to the procedures, criteria, and strategies taken when selecting

samples, and is commonly compensated by a weighting process. Buckley et

al. [66] describe one such method for weighting nationwide surveys. Sampling

errors occur during the process of collecting data and can be random (false

occupant responses, survey mistakes, typographic errors) or systematic (instru-295

ment error, inaccurate resolution, conversion errors) [67, 18]. When combined

with confidentiality issues, these errors may impose limitations on the use of

the datasets. Nevertheless, the process of sampling an entire stock is of such a

magnitude that some information must be absent (the data has gaps).

The process of reducing gaps in the collected dataset is tackled either by300

retaining missing values or by applying imputations: assumptions about values

used to fill gaps. Imputations can be arbitrary or systematic, but any replace-

ments can introduce errors. However, these replacements can be calibrated us-

ing derived census data, manufacturer specifications, and in-situ measurements.

But their availability needs to be standardised and centralised based for example305

on CIBSE guidelines [68] or the Standard Assessment Procedure (SAP)—the

UK government’s method of assessing the energy performance of dwellings [69].

The SOAs that provide a robust basis for sampling socio-economic clusters

in the UK cover around 1500 households per cluster, so that some details are

missed or are over-simplified. Here, fabric properties can be inferred statisti-310

cally for a given SOA, but other properties may differ significantly, even though

these details are regulated at LA and ward level where homogeneity can be

expected. These differences arise due to locale-specific construction practices.

Other properties that are extrapolated (and hence simplified) in SOAs are loca-

tion, orientation, geometry, and household-specific information. Nevertheless,315

SOAs provide a sound starting point to study homogeneous groups and to link

them with more granular and spatially detailed data.

In summary, the impacts of information loss from sampling biases have been

widely studied and discussed in the literature [70, 71, 72, 18], but little attention

has been given to the magnitude of errors attributable to sampling methods.320

A high level of inaccuracy may be present in datasets generated from censuses
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and nationwide surveys. Therefore, it is important to track error propagation

through each layer of the data, so that specific criteria can be adopted to main-

tain a workable source of information. An example of this tracking is achieved

via monitoring indicators that identify the most influential parameters in the325

composition of a stock of dwellings [60, 14]. Monitoring indicators are used

to help validate model outcomes. They may be available directly from survey

data, or else are derived directly from this data, but without requiring uncertain

assumptions. Parsimony is imperative.

3. The Conformation of Housing Stock Energy Models330

Generally, domestic energy demand models can be categorised as top-down

or bottom-up. Top-down approaches follow a deductive method, and start at a

macroscopic level by considering measures such as appliance efficiency labels,

energy price, or weather conditions. Bottom-up approaches follow an induc-

tive method, considering measures such as internal conditions, building proper-335

ties, or system usage. Each approach can be further categorised by statistical

and physical modelling methods. Statistical methods generally apply regression

techniques to describe and predict phenomena, whereas physical methods typi-

cally utilise simplified analytical models of physical phenomena [73, 12, 74, 13].

It is common for HSEMs to combine the virtues of these two approaches, by cal-340

ibrating the predictions of physical models with statistical data that describes

a stock; primarily employing bottom-up strategies [8].

[Figure 3 about here.]

In the UK, the first HSEMs were developed in the 1970s in response to the oil

crisis [40]. They supported the identification and testing of strategies to reduce345

building energy demand and the formulation of building regulations to enforce

them. Subsequently, many new approaches have developed. Figure 3 displays

the temporal evolution of UK HSEMs, and shows the underlying energy-related

policies, guidelines, and national programmes that motivated their incremental
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evolution. Most models predict the energy required by systems and appliances350

to satisfy occupant demands for comfort and services.

There are three important elements that are common to many HSEMs:

1) descriptions of building geometry and fabric; 2) analysis of the inter-relationships

between dwelling components and zones; and 3) representation of occupancy and

appliance usage within dwellings. The latter element is particularly complex and355

is neglected by many models.

3.1. Building Geometry and Fabric

When modelling a single dwelling, it is possible to describe the attributes of

the building with a high level of resolution. However, when modelling a stock

of dwellings, only the most relevant properties, such as those for geometry and360

fabric, are used to describe physical attributes, because they are essential for

understanding the energy flows in any building. It is also important to under-

stand their composition (arrangement, layout) and their context (environment,

climate).

BREDEM (see Section 1) does not require an explicit three-dimensional rep-365

resentation of building geometry. Its energy balance calculation requires that

heat gains and losses across each element of the envelope, infiltration, and in-

ternal heat gains, are represented as parameters [75]. Thus the envelope is

described by a series of elemental areas and properties supplemented by total

floor area, AT , and height, to determine the internal volume. The CHM [76]370

improves BREDEM’s geometric representation of dwellings by including multi-

ple stories and additional spaces, such as attics and basements. Consequently,

additional parameters are derived to describe the physical space, such as living

area fractions (allowing heating demand to be allocated more specifically) and

linear scalar factors (used to calibrate the solar radiation gains).375

The physical space is enclosed by surfaces constructed of materials with dif-

ferent properties. These elemental properties include heat transfer coefficients,

solar reflectance values, and thicknesses. If they are unspecified then default

values can be assigned from guidelines (e.g. [77, 78, 68]). In BREDEM, the
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wall thickness is not a direct input, but it is indirectly included in a general380

thermal mass parameter, which is used to account for thermal storage of solar

gains and gains from intermittently used heating systems. The CHM derives

wall thicknesses and material properties from the age of construction and thus

provides more detailed building fabric properties than BREDEM.

The resulting heat transfer is a direct function of the (unintentional) infil-385

tration and (intentional) ventilation rates, which are represented by a number

of different approaches. BREDEM uses a simple air exchange rate associated

with both infiltration and ventilation that is a function of the average regional

wind speed. The algorithm for ventilation is improved by the CHM, which in-

cludes the number of sheltered sides and a draught factor. More recently, the390

DOMVENT improved the prediction of infiltration in dwellings by generating

façades and including detailed parameters that account for local surroundings

[79]. This can in principle be used by HSEMs.

The context of a stock of dwellings defines the general composition of each

of the buildings, and the external conditions that interact with them. The395

Domestic Energy, Carbon Counting and Carbon Reduction model (DECoRuM)

correlates the shape of a stock of dwellings with their energy demand. It uses a

Geographical Information System (GIS) to estimate energy demand as a func-

tion of dwelling size and location and estimates the risk of overheating. How-

ever, its ability to model the energy demand of dwellings is constrained by400

limited data and simplistic algorithms [80]. Similarly, the Domestic Dwelling

Model (DDM) model [81] links aerial imagery with census data. Both models

improve the efficiency with which energy-related measures may be assessed and,

by using GIS, can link detailed regional information about dwelling fabric and

its context. Steadman’s model also includes a built form parameter to explore405

general retrofits, but this is limited to Middle-SOAs and a very limited stock

size [82, 65, 83].

Although dwelling geometry and orientation are both essential for an ini-

tial estimate of solar gains, the latter is only considered by BREDEM when

estimating the energy contribution of photovoltaic cells, as a correction fac-410
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tor for incident solar irradiation. In contrast, the CHM explicitly considers

gains through two theoretical windows to represents daylight-responsive artifi-

cial lighting use. Solar loads through walls are not represented by the BREDEM

algorithm because of its simplified representation of dwelling geometry and of

heat flow.415

3.2. System Components and Inter-Relationships

Section 3.1 described the conceptual approximations of energy flows used

by HSEMs as a function of dwelling geometry and fabric properties. We now

describe the abstract representation of dwelling gains and losses to explore in

more detail the performance of a single building that can be extrapolated to a420

housing stock.

3.2.1. Abstraction of Energy Flow Pathways

A classic representation of dwelling energy flow pathways includes the sum

of external heat gains Qext[W ] (net solar radiation gains and transmitted heat

from the surroundings) and internal heat gains Qint[W ] (occupants, appliances

and systems), balanced with the energy lost to the environment Qout[W ].

Qext +Qint = Qout (1)

External gains are mostly caused by radiation (direct solar gains Qsg and

long-wave radiation Qlwg). Other external gains gains are attributable to ad-

jacent connected buildings Qbg as transmitted heat from the local environment

Qxg.

Qext = (Qsg +Qlwg) +Qbg +Qxg (2)

Internal gains comprise the indirect effects of lighting Qlg, appliances Qag,

cooking Qcg, occupants Qog and, more substantially, the direct effects of heating

systems Qhg.

Qint = Qlg +Qag +Qcg +Qog +Qhg (3)
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The right side of Figure 2 disaggregates end-use energy demand and in so

doing identifies the relative contributions of internal gains to Qint.

The losses, Qout, can be directly transmitted through the fabric, Qfl, lost

to the environment via purpose-provided ventilation, Qvl, and infiltration, Qil,

or stored by thermal mass, Qtm. In addition, the fabric losses Qfl occur via

transmission through those parts of the envelope in contact with the outside

air, Qftl, thermal bridges, Qtbl, and floors in contact with the ground, Qgl.

Qout = Qfl + (Qvl +Qil) +Qtm (4)

Qfl = Qftl +Qtbl +Qgl (5)

This energy balance is specified by [84] and by BREDEM [77], and is sim-425

plified or further elaborated depending on the desired accuracy of a model and

the availability of calibration data. Therefore, algorithms vary in each HSEM

according to the complexity of the chosen energy flow pathways. A number of

notable anomalies and omissions are discussed in Section 4.1.1.

3.2.2. Abstraction of Energy Inputs430

External gains (Equation 2) are commonly calculated in HSEMs using monthly

factors as well as adjustments to represent transmitted gains from solar and

long-wave radiation. These typological and contextual properties also relate to

the heating systems and, in some cases, households activities (use of appliances,

utilisation of spaces in houses that are frugally heated). The consideration of the435

external environment (Qbg and Qxg in Equation 2) and its influence on dwelling

energy demand is limited in most HSEMs; for example, BREDEM only consid-

ers an over-shading factor. The Local Area Resource Analysis (LARA) model

includes regional information at SOA resolution but focusses on the estimations

of fuel use and associated GHG [85]. Furthermore, the Energy and Environment440

Predictions (EEP) model uses local neighbourhood and home hazard informa-

tion from the EHS to estimate negative health consequences of poor indoor air
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quality, such as respiratory diseases [86]. Yet the extent to which it applies

Equation 2 is poorly defined.

The main contributor to Qint (Equation 3) is the heating system (Qhg). Its445

output is usually estimated as a function of the local climatic conditions and

the number of heating degree days using a base temperature (also known as a

balance-point temperature). This estimate is then scaled by the variation of the

external air temperature over a year. Modern heating systems can improve their

performance by adding semi-automatic controls, but their operation is typically450

seasonal. The CHM includes the SAP catalogue and increases the number of

heating systems and their properties to provide a more detailed estimate of

the direct heat gains from them. Furthermore, BREDEM estimates an overall

monthly water demand that can differentiate between hot and cold water use.

The Domestic Hot Water (DHW) demand is estimated using a typical number455

of heating systems and their corresponding fuel type, and is adjusted by the

number of occupants N .

If N is unknown then BREDEM estimates the value as a function of the

total floor area, AT , [87] where

N = 1 + 1.76(1− e−0.00035(AT−13.9)2 + 0.0013(AT − 13.9); AT ≥ 13.9 (6)

N is also used to estimate average metabolic heat gains (Qog).

In BREDEM, lighting L and appliances A, and later their corresponding

heat gains (Qlg and Qag), are estimated by assuming a correlation between AT

and N [69]. The power law relationship described by Equation 7 has been esti-

mated from electricity meter readings. These lumped gains are then allocated

according to the weights of L (0.21) and A (0.79) [88].

L+A = 263 · (AT ·N)0.47 (7)

However, this model for L and A cannot replicate the large variations in ap-

pliance energy use that are observed in practice [89]. Lorimer [53] has developed460
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a more disaggregated model of lighting and appliance energy demand, but its

scope is limited to the HEED and therefore a limited number of UK regions.

In particular, the energy used for cooking tends to be highly simplified

in HSEMs, because it is generally only responsible for a minor proportion of

dwelling energy demand (see Figure 2). In BREDEM, cooking type coefficients465

are derived to estimate yearly demands aggregated by fuel types. This lack of de-

tail may be problematic, because cooking directly affects indoor air quality and

the responses of ventilation systems and householders to it, with corresponding

impacts on ventilation losses.

Finally, the losses described by Equation 4 are varied in HSEMs. Infiltration470

(Qil) is represented in BREDEM as a correlation factor derived from material

properties. Purpose-provided ventilation (Qvl) is calculated monthly using an

adjustment factor that accounts for internal flues and an exposure factor. The

CHM ascribes ventilation losses to different ventilation systems (mechanical and

forced), thus increasing its variability across the stock, although there are only475

a limited number of these systems in the model. More detailed descriptions of

ventilation are developed in the Health Impact of Domestic Energy Efficiency

Measures (HIDEEM) [90] and the DOMVENT models [91, 64]. Energy trans-

mission through the envelope (Qfl) and thermal bridges (Qtm) are simplified

to average values, which result as a function of the materials and the estimated480

dwelling geometry.

So although Equations 1-5 are simplified representations of heat flows in

dwellings, they do nevertheless represent the principal factors influencing them.

Many of the underlying drivers of operational and investment behaviours that

directly affect energy flow pathways could and should be linked to them. An485

HSEM can in principle be used to assess the consequences of householder be-

haviours that influence decision-making on dwelling energy performance; al-

though reliably predicting the consequences of operational behaviours in the

absence of the prediction of the dynamic stimuli influencing them would not be

straightforward.490

19



3.3. Decision Making in HSEMs

HSEMs poorly describe the influence of occupants and their behaviour on

energy demands [30], likewise local climatic conditions [74]. Statistically biased

HSEMs are often more accurate than their physical counterparts, but their

predictive capabilities are less flexible [17].495

Meanwhile, significant advances have been made in the modelling of occu-

pants’ activities and dependent behaviours and their corresponding impacts on

thermal and electrical energy demands [48, 92, 93, 94, 95]. But these models

do not consistently handle diversity in household characteristics or in housing

attributes, both of which can influence activities and behaviours. For example,500

the preferred living room temperature may be decided individually or following

negotiation with other householders [96, 94]. There is also a relatively poor

quantitative understanding of the extent to which investment and day-to-day

operational (e.g. use of lights and windows) behaviours can be influenced. For

example, decisions to invest in new technologies may be the consequence of peer505

pressure, social incentives, or taxation programmes to encourage the efficient use

of energy in homes.

In the absence of comprehensive stochastic models of occupants’ diverse

behaviours and the factors influencing them, occupants currently tend to be

represented simply as average heat sources (e.g. by BREDEM and CHM),510

undermining their ability to account for strategies that may drive behaviour

change.

In order to represent this behaviour in a HSEM, each occupant (or collective

of them) may be represented as a unit with adaptive rules and responses, also

known as agency. This agency enables heterogeneity in occupants’ behaviour to515

be captured. For example, the Agent Home Owner Model of Energy (AHOME)

and the improved DeCarb-Agent Based Modelling (ABM) are able to include

householder responses at building and neighbourhood scales [97, 98].

These responses of householders can also vary considerably over time be-

cause of socio-demographic changes, such as the ageing of the population. For520

example, by reconciling the energy demand with national consumption figures,
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the BREHOMES predicts housing stock changes by also considering social fac-

tors. This approach is also at the core of BREDEM [99]. More detail is pro-

vided by the DECM [52], the (Energy Systems Research Unit) Domestic En-

ergy Model (EDEM) [100] and the Stochastic Urban Scale - Domestic Energy525

Model (SUSDEM) [17], which all include household employment and occupancy

profiles to represent collective responses (decision-making), albeit at a regional

scale. Steadman’s model [83] focuses on the consequence of decision-making and

was built to estimate the impact of retrofitted energy efficiency measures and

the applicability of related policies, particularly on loft and cavity insulation,530

and glazing and boiler replacements.

3.4. Top-Down and Hybrid Modelling

BREDEM and its derivatives are essentially bottom-up approaches to the

energy modelling of the housing stock. But, top-down and most of the statis-

tical approaches have also been developed to support strategic decision mak-535

ing. Examples of top-down approaches are the Annual Delivered Energy, Price

and Temperature (ADEPT) model and the Seasonal Temperature Energy Price

(STEP) model [101], and the Energy Demand Model (EDM) [102]. The EDM is

a sophisticated econometric predictor with the ability to reconcile policies with

energy demand. The ADEPT and STEP models can efficiently estimate the540

consequences of changes to these external factors.

Integrating the virtues of both top-down and bottom-up approaches into a

coherent whole may have merit: handling housing and household behaviours

in a parsimonious way. An example of this reconciliation is found in the

Technology Assessment for Radically improving the Built Asset baSE domes-545

tic model (TARBASE) [103] which evaluates decarbonisation and refurbishment

scenarios using algorithms to represent lighting, appliances, DHW, refrigeration,

glazing, insulation and solar technologies. This model also enhances the assump-

tions applied to Equations 2-3 by including more parameters for each gain, but

using deterministic profiles. Similarly [104], the Domestic Energy Model for550

Scotland (DEMScot) complements the building-physics approach with forecasts
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related to fuel elasticity and carbon intensities; refurbishment maintenance costs

and demolition rates; and direct rebound effects.

HSEMs and their underlying datasets have become progressively more com-

prehensive in their scope and sophisticated in the methods employed. But there555

remain some shortcomings when representing the 27 million dwellings as a func-

tion of their geometric and physical properties and from the chosen statisti-

cal modelling approaches. These can be overcome by allowing open access to

datasets and modelling modules of HSEMs, and by documenting the decisions

and assumptions made during their development. Section 4 identifies some ob-560

vious omissions in the scope of HSEMs to support the formulation of policy

measures designed to decarbonise the built environment. It also provides the

foundations for a systematic evaluation of HSEMs to highlight key areas that

require further work.

4. Evaluation of Housing Stock Energy Models565

HSEMs are developed to describe the energy flow pathways in a sample of

dwellings, and are extrapolated to represent an entire stock. For reasons of

practicality, representations of these pathways (such as heat gains, ventilation

and infiltration losses) are simplified. However, it is important that these sim-

plifications are appropriate and that the principle of parsimony is respected so570

that a model is as simple as possible, but no simpler. If it is too simple, its

ability to make reliable estimates of performance and inform decarbonisation

policies and strategies is undermined.

In previous reviews of HSEMs [12, 74, 105], a set of performance gaps have

been identified. The first set is related to data resolution: a) a reliance on iso-575

lated historical data to formulate correlations; b) assumptions about typology

form and fabric homogeneity; c) onerous computational requirements. The sec-

ond set is related to the sophistication of physical and behavioural modelling

strategies: d) poor representation of social and environmental influences on oc-

cupant behaviours; e) inaccurate descriptions of energy-related decision-making;580
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f) inability to represent investments in new technologies; g) unlinked methods

for the co-simulation of specific modelling algorithms.

These gaps have since been partially addressed by augmenting existing al-

gorithms and techniques. For example, societal effects have been improved in

models that include agency, such as DeCarb and AHOME. They account for585

human interactions with a dwelling, its systems, and appliances, although these

relationships are based on a modest amount of empirical evidence. Furthermore,

models such as AHOME, SUSDEM, EDEM and DDM have improved our abil-

ity to assess building fabric by adopting GIS to better represent building form,

and by including investment scenarios.590

In addition to these assumptions and considerations of modelling scope and

rigour, it is important that an HSEM be modular. Kavgic et al. [74] find that

BREDEM is modular but its links are not always transparent. All algorithms

should be editable and thoroughly documented, if their scope of applicability is

to be well understood.595

4.1. Evaluation of Functionality

Some concerns about data resolution and modelling abstractions were iden-

tified in Sections 2 and 3, respectively, highlighting a need to evaluate existing

HSEMs to determine their fitness for purpose. To this end we evaluate the func-

tionality and accessibility of some twenty-nine UK HSEMs. We use ASHRAE’s600

general framework [106] for selecting, or determining the appropriateness of a

modelling strategy, using six criteria:

1) Accuracy: Has the model been tested and validated and is it capable of esti-

mating prediction uncertainties?

2) Sensitivity: How sensitive is the model to the design options under consider-605

ation?

3) Versatility: Does the modelling method allow for the analysis of all design

options under consideration?

4) Computability: How appropriate is the computational time when compared

to the resolution of predictions?610
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5) Reproducibility: Is it likely that different users aiming to solve the same prob-

lem will make the same input choices and how reproducible are the predictions?

6) Usability: How easy is it for a user to make their input choices and to analyse

predictions?

615

Although these criteria are helpful in guiding our review of the principal mod-

ules that comprise HSEMs; in particular to determine the ability of an HSEM

to successfully model energy flows and the socio-economic drivers that influence

them; it is worth noting that they were developed to evaluate energy models of

individual buildings rather than of stocks of buildings, and so they do not ex-620

plicitly address the characterisation of the housing stock that is being modelled.

To do this, databases should be evaluated considering their resolution (sample),

completeness (scope), coherence (compatibility between datasets), regularity of

updates, and the integrity of any underlying databases that have been unified.

Nevertheless, the ASHRAE criteria, augmented by an analysis of transparency,625

are a valuable starting point. They are used here to support our evaluation

of both data resolution and modelling sophistication, which is summarised in

Table 3. In this, transparency or accessibility is evaluated by assigning scores

according to whether each of the modules are restricted or absent (black box:

0), open and editable (white box: 1), or somewhere in-between (grey box: 1
2 ).630

We also consider accessibility to the HSEMs’ documentation, the operating sys-

tem(s) used and software license restrictions. The evaluation also aims to iden-

tify the components of HSEMs that could be augmented by the consideration

of diverse disciplines that have historically been unrelated to energy models,

such as health and socio-demographic studies that explore responses to indoor635

stimuli.

Some of these models cannot strictly speaking be considered HSEMs, but

they have been included because they share common data sources (e.g. DDM

and MDM) or computational engines (e.g. RdSAP). The SAP is included in this

analysis because some HSEMs directly use elements of it to make predictions640

(e.g. EDEM, DEMScot, DECoRuM, CHM, DDM and RdSAP), or apply it indi-
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rectly via its reduced format RdSAP (e.g. CHM and TARBASE). Furthermore,

given the fact that BREDEM is at the core of many HSEMs to perform their

energy balance [53, 52], we adopt its structure to define the evaluation categories

(rows in Table 3), which correspond to the description given in Sections 3.1, 3.2645

and 3.3. Likewise, we differentiate among the three categories: fabric, systems

and occupancy. The evaluated HSEM are grouped by their modelling approach,

and we use their latest version in our evaluation (see Figure 3).

By way of demonstration of our evaluation, as set out in Table 3, let us

consider BREDEM’s geometry module. Firstly, its sensitivity, adaptability, us-650

ability, and accuracy can be assessed as limited, because it does not explicitly

consider the dwelling volume and only retains AT , a derivative of building ge-

ometry. However, this module could in principle be replaced by a more detailed

model to improve the accuracy of energy demand predictions. The outputs of

this module are inputs to other modules and so its usability is restricted. Hence,655

four of the criteria are considered to be grey boxes (i.e. 4· 12 ). Further, this mod-

ule is highly compatible with other algorithms and data, and so its predictions

are reproducible (i.e. 1 · 1
6 ). In the same vein, its adaptability depends on the

purpose of the model because it can easily be included in isolated algorithms or

in stock models (i.e. 1 · 1
6 ). Overall, the geometry module scores 4 of 6 and is660

considered to be a white-box module because of the likelihood of future editing

and the consequent improvement of its attributes.

Let us similarly consider CHM and DECM, which are bottom-up physically

biased models, both of which use BREDEM [54]; although DECM does not

fully document the algorithms it applies. DECM’s focus is on the assessment of665

uncertainties, which is valuable but limited by its lack of model transparency.

Neither model explicitly accounts for dynamic responses to indoor conditions

or detailed household representations. The assessment of energy performance

and carbon intensity is limited to their sample units, which are SOA and LA,

respectively. If we compare these two HSEMs, the CHM ranks higher because670

it is more transparent, despite the fact that DECM supports scenario projec-

tions and uses an index of carbon intensity. However, its limited transparency
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undermines its functionality.

The Domestic Equipment and Carbon Dioxide Emissions (DECADE) model

and DECoRuM are both statistical biased models. DECADE relies heavily on675

historical tendencies to create a set of scenarios using some fixed conditions

[43, 107]. DECoRuM uses BREDEM and SAP to calibrate its estimations,

although their application is restricted spatially to a district scale analysis.

DECoRuM is essentially a visualisation tool, and so its dependence on phys-

ical models provides an easy opportunity to expand its scope [108, 80]. The680

approaches of both models render them unable to represent geometrical- and

contextual-related values. Changes to these values are embedded into their

models, which are assessed as partially or fully restricted. Nevertheless, their

ability to represent trends and changes in the properties of the elements (i.e.

ageing) is highly beneficial and may complement the outcomes from physical-685

biased approaches. Some of the other statistically-biased models are ranked

lower than DECADE and DECoRuM because of their limited scope or focus,

and not because they are less fit-for-purpose.

Table 3 systematically rates all HSEMs that are currently available (dis-

tributed and/or published) in the UK using a range of core underlying functions690

(see Section 3) to rate and rank them. The rankings are based on the assump-

tion that individual functions (rows in the table) are equally weighted, and so

they should be used with caution. Table 3 shows that statistically biased and

top-down models, which lack fidelity in the handling of physical phenomena, are

nevertheless able to consider societal parameters reasonably well. The bottom695

row of Table 3 suggests that CHM can be considered the best performing model.

Its relative functionality and transparency may explain why it is used to pro-

vide a statistical evaluation of the UK housing stock for the Energy in the UK

documents [54]. However, CHM and other similar models could be improved

considerably by substituting modelling algorithms, for example to support dy-700

namic simulation, by substituting the calibration data with more up-to-date

or sophisticated alternatives, and by accounting for household attributes that

affect decision-making and the way energy is used in the stock of dwellings.
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4.1.1. Anomalies and Omissions705

The inclusion of detailed household information is essential for assessing the

effects of changes in energy demand when occupants adopt reduction measures,

either by investing on new technologies or by modifying patterns of use. Mitton

et al. [109] identify two advantages of including this type of household infor-

mation: the ability to represent ageing elements, and the ability to describe710

the—typically complex—interactions between them. To date, their inclusion

is still problematic and can create gaps in an HSEM. It is easier to insert

a replacement module and validate it if it is directly linked to a single open

source platform rather than persisting with the current practice of developing

and maintaining a plethora of closed-source HSEMs.715

Therefore, it is important to consider the representation of occupants’ be-

haviours in response to underlying environmental stimuli or the demand of

energy-related services. Behavioural responses can result from the interplay be-

tween the building, its systems, and the interactions between them. Currently,

the parameters that affect behaviour are blurred in HSEMs (see Table 3). The720

indoor environment of a building may be affected by available fuel sources and

geometric shape constraints that are a function of its location. A building can

define an occupant’s needs, but an occupant may also define the building’s en-

vironment. For example, larger spaces may demand more energy to keep them

warm, but occupants may invest in insulation technology so heat losses are725

minimised. Conversely, they may alter their utilisation of space and, with time,

reduce the volume used and heated during the heating season. A modelling

approach that considers householder behaviours as a function of occupancy and

environmental stimuli would signify a transition from a simplified energy bal-

ance modelling approach to dynamic simulation. An inability to accurately730

represent these dynamic processes, and the socio-economic processes that in-

fluence household decisions, seriously undermines the functionality of HSEMs.

Required information could be obtained from socio-economical surveys and used

to inform either top-down or bottom-up models.

28



The representation of domestic appliances in a HSEM requires data related735

to household ownership, efficiencies or rated powers, and associated usage pat-

terns. To date, there is no HSEM that comprehensively represents these param-

eters. Current representations of appliance use and its dependency on household

characteristics is often reduced to a scalar correlation factor using national stock

averages. Any departure from this simplified function (whose theoretical basis740

is unclear) would negatively impact on its predictive accuracy. For example,

Equation 7 is incapable of encapsulating factors that affect appliance use. As a

result, its associated energy demand is insufficiently granular.

Societal factors could be incorporated from AHOME or Steadman’s model,

or even substituted with more rigorous alternatives. Improving the modularity745

of the CHM, and other similar models, would also allow modelling algorithms

and calibration data to be substituted with more sophisticated and up-to-date

alternatives. For instance, descriptions of dwelling geometry could be improved,

perhaps using a similar volumetric method to that used by DOMVENT, yet

focussed on ventilation and infiltration rates. Incidentally, several studies have750

identified that dwelling heating demand is most sensitive to fluctuations in these

rates [110, 79]. It has also been suggested [79] that existing algorithms, such

as those used by SAP [111] and BREDEM [75], may be overly simplistic and

based on limited empirical evidence. This suggests that there is a need for a more

rigorous representation of infiltration rates in homes, requiring a combination755

of rigorous fieldwork and improved modelling. This would then lead to more

refined predictions of health risks in homes.

Some other parameters that are required to model the complex energy in-

terplay within dwellings are neglected in many existing HSEMs. These include

lighting level, air quality, and noise. Different ratios of artificial and natural760

light affect the indoor light quality and activities that depend on it. Similarly,

airflow between a dwelling and its external environment is considered via a

range of different strategies, and so the pollutant content of that air should be

considered. Some activities, such as cooking, will affect indoor air quality and

occupants’ use of windows and fans to regulate it. Noise is also related to the765
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energy demand of a dwelling. For example, occupants may attempt to moder-

ate external noises by closing windows, or attempt to mitigate internal noise by

switching off, or avoiding the use of, fans. It is clear that the consideration of

noise and air quality should not be decoupled.

One final factor that is often overlooked is householder health, which a770

dwelling can both improve and harm. The main purpose of a dwelling is to

provide shelter from the weather, but it also provides security, comfort, and

privacy. However, these benefits may cause a building to limit flows of daylight,

air, noise, moisture, and heat (affecting temperature and thermal comfort). Ac-

cordingly, poor indoor environment quality may adversely affect the physical775

and mental health of occupants. This highlights the relevance and importance

of health as an HSEM module.

It is clear that the underlying drivers that affect householder behaviour

(i.e. investments and energy using practices) and their interaction with their

dwellings are limited in some HSEMs and ignored by most. A consideration of780

these drivers could lead to real changes in the energy demand of houses, and their

omission from HSEMs significantly limits their ability to estimate the varying

conditions of housing and households at stock level [98, 26]. Multi-agent simula-

tion techniques would appear to have much to offer in this endeavour [112, 113].

Finally, the ability of HSEMs to predict indoor comfort, and the impacts of785

associated heating system set-point temperature choices, is limited by the gran-

ularity of the underlying energy model. Predicting comfort and the impacts of

the allocation of the energy and comfort co-benefits from energy-related ren-

ovation investments, meaning that potential energy savings may be offset by

improved comfort and health arising form high set-point temperatures, requires790

dynamic simulation.

4.2. Future Functionality

A transparent model clearly describes its underlying algorithms so that its

users can comprehend its rationale and either confirm or discard them to adapt

the model to meet specific needs. A preliminary open framework rationale is795
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presented in [63], whose processes can only be accomplished under an open-

source philosophy. This philosophy requires a significant reinterpretation of the

way data is handled, collected, processed, and shared. Hence, emphasis should

be placed on the usability of data, so that it can enhance the communication

between models and users. For instance, the National Statistics Harmonisation800

Programme whose rationale is to standardise classifications, definitions, and

standards among datasets [114], and the pool of energy-related building data

developed by European countries to improve the analysis of regional and local

stocks [14]. By improving data collection intervals and the way data is cali-

brated, the likelihood of its adoption can be increased. Instead of relying on805

historical data, models can use more up-to-date and more comprehensive hous-

ing and household data. Lorimer [53] finds that the calibration of data can also

be used to help implement measures designed to reduce non-heating end-use

energy demand as part of national programmes.

Improvements in the transparency of HSEM data and modelling algorithms810

should be complemented with improvements to modularity. Modularity pro-

longs the life of a model by allowing it to be improved and delays obsolescence.

Such modularity should also facilitate the execution of sensitivity analysis meth-

ods that can be used to identify the most important inputs to a model, to high-

light areas where further data gathering should be focussed, and where models815

should be refined to more faithfully represent phenomena addressed by them

[107, 18, 115, 79]. These analyses should be complemented by a quantification

of the uncertainties in a model’s predictions. It should account for both de-

terministic (building physics) and stochastic (behavioural) phenomena, and the

data that underpin their representation. The reporting of errors and omissions820

enhances the understanding of the accuracy of different modelling strategies and

their descriptions of the energy flow pathways at stock level.
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5. Conclusions

This paper evaluates some twenty-nine Housing Stock Energy Models (HSEMs)

that have been used to investigate the consequences of energy demand reduc-825

tion policies and interventions in UK housing, and the data that are used to

provide inputs to them. Our evaluation of these HSEMs and their function-

ality shows that very few are completely transparent, which makes it difficult

to understand all of the methods and algorithms that have been used to make

predictions of energy demand and thus to judge their fitness for purpose. This830

is compounded by the limited scope and simplicity of many HSEMs, which are

generally based on simplified steady-state energy balance models augmented

with statistical models relating to lighting, system and appliance usage extrap-

olated to the stock of like typologies. Here, it is important to understand how

physical phenomena have been (over-)simplified, or where and on what basis835

statistical relationships have been incorporated, so that they can be improved

in the future, as necessary. Failing to do so undermines the utility of HSEMs

and their ability to faithfully predict performance at the stock level, or for the

stocks of individual building typologies.

Future HSEMs should have a modular architecture and be freely available so840

that they can be edited and updated continuously. This could encourage cross-

disciplinary collaboration and increase the rate of improvement to the modelling

of phenomena within HSEMs where there is significant prediction uncertainty,

such as householder behaviour. Furthermore, whilst some HSEMs specialise in

the prediction of a specific aspect of dwelling energy demand, both their utility845

and longevity could be improved by incorporating them within a larger modular

HSEM architecture.

The analysis of data sources shows that it is easy for significant errors to be

incorporated into a database. These can occur from a wide number of processes,

such as sampling biases, the imputation of missing data, or the aggregation of850

information to make it more manageable. One process that is currently unavoid-

able is the identification of properties shared by a large number of dwellings so
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that they can be clustered together. Whatever the process, it is clearly impor-

tant to track the origins of data to avoid error propagation at each stage of

aggregation. Finally, most sources of data are updated periodically, but most855

housing stocks evolve more or less continuously. Accordingly, there is a need

to continually update databases to maintain their validity and to share them

freely.

Essentially, all models are wrong, but some are useful [116]. It is important

that HSEMs are made less wrong and more useful by improving their trans-860

parency and modularity, by using better data, and by sharing both the model

and the data freely. Only then can one reasonably hope to provide HSEMs that

are useful and informative tools used to support policies makers who seek to

reduce the energy demand and carbon emissions of housing stocks.
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Abbreviations865

ABM Agent Based Modelling

ADEPT Annual Delivered Energy, Price and Temperature

AHOME Agent Home Owner Model of Energy

APS Annual Population Survey

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning870

Engineers

BREDEM Building Research Establishment Domestic Energy Model

BREHOMES Building Research Establishment’s Housing Model for Energy

Studies

CHM Cambridge Housing Model875

DDM Domestic Dwelling Model

DECADE Domestic Equipment and Carbon Dioxide Emissions

DeCarb Domestic Energy and Carbon Model

DECC Department of Energy and Climate Change

DECM Domestic Energy and Carbon Model880

DECoRuM Domestic Energy, Carbon Counting and Carbon Reduction model

DEFRA Department for Environment, Food and Rural Affairs

DEMScot Domestic Energy Model for Scotland

DHW Domestic Hot Water885

DOMVENT Domestic Ventilation Model

DUKES Digest of UK Energy Statistics
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EDEM (Energy Systems Research Unit) Domestic Energy Model

EDM Energy Demand Model

EEP Energy and Environment Predictions890

EFUS Energy Follow Up Survey

EHS English Housing Survey

EST Energy Saving Trust

GHG Greenhouse Gas

GIS Geographical Information System895

GOR Government Office Regions

HEED Homes Energy Efficiency Database

HIDEEM Health Impact of Domestic Energy Efficiency Measures

HSEM Housing Stock Energy Model

LA Local Authority900

LARA Local Area Resource Analysis

MDM Cambridge Multisectoral Dynamic Model of the British Economy

MTP Market Transformation Programme

NEED National Energy Efficiency Data-framework

NSW National Survey for Wales905

NIHCS Northern Ireland House Condition Survey

NISRA Northern Ireland Statistics and Research Agency

NRS National Records of Scotland

NSW National Survey for Wales
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NUTS Nomenclature of Territorial Units for Statistics910

ONS Office for National Statistics

RdSAP Reduced Standard Assessment Procedure

SAP Standard Assessment Procedure

SHCS Scottish House Condition Survey

SOA Super Output Area915

STEP Seasonal Temperature Energy Price

SUSDEM Stochastic Urban Scale - Domestic Energy Model

SW Statistics for Wales

TARBASE Technology Assessment for Radically improving the Built Asset

baSE domestic model920

UK United Kingdom
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Figure 1: Housing stock growth comparison
Source: [9, 40]
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Figure 2: Change in domestic final energy consumption by fuel supply and demand services
Source: [9]
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Figure 3: Development of HSEM and energy related policies in the UK (adapted from [16])
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Census LA NUTS? SOA◦

People Households Dwellings LA 1st 2nd 3rd Middle Lower

United Kingdom 62,055,838 27,651,734 27,580,884 406 12 37 140 8,429 41,773

Great Britain 60,267,499 26,903,499 26,832,836 380 11 36 135 8,429 40,883

England and Wales 55,071,113 24,429,618 24,359,880 348 10 32 112 7,194 34,378

England 52,059,931 23,044,097 22,976,066 326† 9 30 100 6,781 32,482

Wales 3,011,182 1,385,521 1,383,814 22 1 2 12 413 1,896

Scotland 5,196,386 2,473,881 2,472,956 32 1 4 23 1,235 6,505

Northern Ireland 1,788,339 748,235 748,048 26 1 1 5 NA 890

Notes:

† Local Authorities (LAs) include non-metropolitan districts, metropolitan districts, unitary au-
thorities and London boroughs.

? These values correspond to the NUTS-2010 nomenclature, regulated by the European Union.

◦ The output areas define synthetic polygons around an average of 125 households. Lower-SOAs
are made of output areas and typically enclose about 1500 households. Middle-SOAs contain an
average of about 7200 households.

Table 1: UK regional classification in 2011
Source: Office for National Statistics (ONS)
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†

Source Size Sampling Units Scope and Properties Coverage Support

EHS ∼ 14 k sample of Postcodes
and LSOA

X X X X X Eng DCLG

EFUS ∼ 2.5 k extract from EHS
physical surveys

X X X X X X X Eng BRE,
DECC

NSW ∼ 1.2 k sample of LSOA X X X X X Wal UK Data &
Wal Gov

NIHCS ∼ 10 k sample of Postcodes X X X X X X NI UK Data &
NI Gov

SHCS ∼ 18 k sample of LA X X X X X X X Sct UK Data &
Sct Gov

DUKES ∼ 27 M readings from Post-
codes and LA

X X X UK DECC

Census ∼ 27 M UK household popula-
tion

X X X X UK ONS

NEED ∼ 25 M sample from Experian
(HEED and EPC)

X X X X Eng,Wal DECC

HEED ∼ 15 M EST X X X UK EST

Notes:

† Include retrofits on insulation, boiler, heaters and windows

◦ Include metrics from coal, petroleum, gas, electricity, renewables and combined
heat and power

Table 2: Summary of Surveys and Datasets
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Table 3: Evaluation of models according to the level of transparency as a function of accuracy,
computability, reproducibility, sensitivity, adaptability and usability. Models are sorted by
year and type of approach Notation: ⌅: black-box models, ⇥: grey-box models, ⇤: white-box
models
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