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—— Abstract
We consider a modal logic based on mathematical morphology which allows the expression of
mereotopological relations between subgraphs. A specific form of topological closure between
graphs is expressible in this logic, both as a combination of the negation — and its dual -, and as
modality, using the stable relation @), which describes the incidence structure of the graph. This
allows to define qualitative spatial relations between discrete regions, and to compare them with
earlier works in mereotopology, both in the discrete and in the continuous space.
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1 Introduction

Qualitative spatial relations have a long history with two major strands: the Region-
Connection Calculus (RCC) of Randell et al. [10] and the 9-intersection approach of Egenhofer
et al. [5]. These were initially intended to model ‘continuous’, or more precisely ‘dense’; space
that can be subdivided indefinitely often. The RCC is defined in terms of first order axioms
based on a primitive predicate of connection. The intersection-based theories, on the other
hand, evaluate spatial scenarios through a matrix of statements that pairs of features of two
regions have non-empty intersection. In the 9-intersection case a pair of regions A, B is given
a spatial relationship by considering the interior, boundary, and exterior of each region and
obtaining a matrix of truth values from the emptiness or non-emptiness of the 9 possible
intersections between the three features of A and of B.

The mathematical discipline of topology provides one theory of space, related to the
qualitative approach in various ways [17]. Topology is different from geometry as the former
studies the properties of the space that are preserved under continuous deformation, while
the latter includes shapes, relative positions and sizes of figures.

The qualitative spatial approach of the RCC is based on mereotopology, which includes
mereology [13], the theory of parts and wholes.

Mereology alone is not expressive enough to be useful in Qualitative Spatial Reasoning.
Besides the generic notion of parthood one needs also to be able to distinguish between central
and peripheral parthood. Other desirable notions are those of connection and apartness.
To express them a primitive relation of connection is usually introduced, stipulated to be
symmetric and reflexive. Using parthood and connection as primitive, other important
additional relations can be expressed. They are: ‘X is disconnected from Y’, ‘X externally
connected to Y, ‘X is tangential part of Y’, and ‘X is a non-tangential part of Y. This
gives rise to what is known as RCCS8. The only two relations taken as primitive are parthood
and connection, being all the other relations reducible to logical formulae containing these
? Giulia Sindoni and. John G. Stell; .
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two. Systems of this sort are known as mereotopologies. A comprehensive analysis of models
of mereotopological theories in terms of a relation of connection interpreted in a topological
space has been presented by Cohn and Varzi [3].

Another direction in the modelling of qualitative relations in continuous space was
initiated by Bloch [2], who combined modal logic with the image processing techniques
of mathematical morphology [9]. Bloch demonstrated that a modal logic associated with
mathematical morphology could be used to express qualitative spatial relations. More recent
developments in mathematical morphology have seen much interest in applying the techniques
in discrete spaces. These spaces generally consist of graphs in the sense of a set of nodes
together with a binary relation of adjacency between the nodes. This kind of discrete space
is exactly that investigated by Galton [6], [7], who considered how mereotopological notions
could be developed for discrete space. Galton’s notion of discrete space is the one of adjacency
space: sets of nodes linked by a reflexive and symmetric relation of adjacency ~. This is, in
turn, based on the work on digital topology of Rosenfeld [12]. The main concern of digital
topology is the study of topological properties of (subsets of) digital pictures, arrays of lattice
points having positive integers coordinates (x,y). Here, given a point of coordinates (x,y),
one can consider its orthogonal adjacencies, so those points sharing one of the coordinates
with the point considered. Or one can also consider its orthodiagonal adjacencies, consisting
of its orthogonal adjacencies with its four diagonal adjacent point. These constructions are
the adjacency spaces (Z,~4) and (Z, ~g).

Discrete space presents some notable challenges for mereotopology. For example, the
usual definition of part in terms of connection leads inescapably, in the presence of atomic
regions, to the conclusion that some regions will be parts of their complements. This may
call for a different understanding of notions such as complement and part, or alternatively
for novel techniques for developing mereotopological theories. In this paper we present new
results on the mereotopology of discrete space using a recently developed modal logic [15]
with a semantics based on morphological operations on graphs. This allows us use the
approach suggested by Bloch for expressing qualitative relationships but in the very different
setting of discrete space. Our results are related to the algebraic approach advocated by Stell
and Worboys at COSIT twenty years ago [16]. This work took the bi-intuitionistic algebra of
subgraphs that Lawvere [8] noted and showed its relevance to qualitative relations in discrete
space. The current paper extends this significantly through its use of the modal logic [15]
thus allowing us to adapt Bloch’s insights about the use of morphological operations to the
discrete case.

Both the mereotopological work of Galton [6] and the morphological investigations of
Cousty et al. [4] take place in a setting where space consists of nodes which may or may
not be linked by edges. Galton’s adjacency spaces can be regarded as graphs. Anyway
there is a notable difference between theory of adjacency space and graph theory, as Galton
underlines [7]. A substructure of an adjacency space can be specified just in terms of nodes,
two nodes being connected by only one edge, or relation of adjacency. This is not true in
the general setting of a graph, where multiple edges may occur between two nodes, and,
therefore, different subgraphs sharing the same set of nodes may be considered. Cousty et
al. find indeed that edges need to play a more central role, and make the key observation
that sets of nodes which differ only in their edges need to be regarded as distinct. The logic
used in the present paper takes its semantics in a setting where regions in a graph are more
general still. We allow graphs to have multiple edges between the same pair of nodes, thus
using a structure sometimes called a multi-graph. This generality appears important in
practical examples, such as needing to model two distinct roads between the same endpoints,
or distinct rail connections between the same two stations.
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The contribution of the present paper is thus to develop the interaction between modality
and morphology identified by Bloch but in the discrete setting. In doing so we are able
to show how this relates to earlier work in mereotopology both in the discrete and in the
continuous case. We start in Section 2 by reviewing the framework of Cohn and Varzi
and showing that the discrete connection of Galton’s work lies outside this framework. In
Section 3 we review the semantics of a multi-modal logic where formulas are interpreted as

subgraphs. This is used in Section 4 to express qualitative spatial relations within the logic.

We provide conclusions in Section 5.

2 Connection in Continuous and Discrete Space

In this section we review the approach of Cohn and Varzi [3] and show that it needs to be
generalized if it is to capture the notion of discrete connection defined by Galton [6].

2.1 Mereotopological Connection from Topological Closure

Giving a set A, a topology 7 on A is usually given as a collection of subsets of A which is
closed under finite intersections and arbitrary unions. The set A together with the topology
7 on A is a topological space, and the elements of 7 are the open sets of the space. A set
is closed if and only if it is the complement of an open set. An alternative formulation of
topology, dual to the one in terms of open sets, can be given. Closed sets are the fundamental
elements, and a topology on a set A is a collection of subsets that is closed under finite union
and arbitrary intersection [14].

Cohn and Varzi [3] give three definitions of connection which depend on the notion of
topological closure.

» Definition 1. A closure operator on a set A is a function ¢ associating with each x C A a
set ¢(x) C A, which satisfies the following axioms (Kuratowski axioms) for all z,y C A.
K1. ¢(2) =2.

K2. z C ¢(x).

K3. ¢(c(z)) C e(x).

K4. c(zUy) = c(x) Uc(y).

Given a set A together with an operator c¢ satisfying K1-K4 axioms is equivalent to
specifying a topological space in terms of open sets or in terms of closed sets. The closed
sets of a topological space correspond to the sets © C A for which ¢(z) = x.

» Definition 2. Let ¢ be a topological closure on A. Three binary relations of connection
between subsets z,y C A are defined as follows.

1. Ci(z,y) exznNy # 0.

2. Cyz,y) e clx)Ny# D orzNcly) # 2.

3. Ci(z,y) < clz)Nely) # 9.

Cohn and Varzi use a setting where a mereotopological theory might allow only certain
subsets of the topological space as its entities. For example, they draw a line between theories
which allow as elements in the domain of quantification boundary elements, which, intuitively
are elements with an empty interior, such as points, lines and surfaces, and theories which
exclude such boundary elements. However, the spatial relationship of connection is defined
in a way that is applicable to arbitrary subsets of the topological space.

The Region-Connection Calculus (RCC) is one of the most popular theories in qualitative
spatial reasoning. An important models of the RCC is to take regions to be non-empty
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regular closed subsets of R2, with the usual topology. A subset is called regular closed when
it is equal to the closure of its interior. In particular, this means that although a single point,
or a line including its endpoints, is a closed set in R2, it is not regular closed, as its interior
is empty. Therefore, such elements are not considered as regions in this context, and the
RCC belongs to those theories which do not allow boundary elements in their domain. In the
regular-closed model of RCC, all three connections above yield the same relation between
regions, and connection means sharing at least one point. External connection, or abutting
in the language of Cohn and Varzi, is distinguished from connection as regions that abut
share points in this model but do not share regions. However, in other models of RCC and
in other mereotopological systems the three notions of connection can have substantially
different properties.

The contribution of Cohn and Varzi is to have provided a framework within which
numerous mereotopological notions are expressible by varying the notion of connection used
as well as the two key derived notions of part and fusion. In the case of part, the three
connections yield three parthoods as follows.

Pi(z,y) © Vz(Ci(z,2) = Ci(z,y)) .

Although Cohn and Varzi [3, p359] aim for neutrality with respect to density of space, that
is whether space can be repeatedly sub-divided ad infinitum, we shall see next that the use
of topological closure prevents the framework including one of the most straightforward
examples of connection in a discrete space.

2.2 Galton’s Discrete Connection

Galton [6] studied a notion of connection between subsets of a particular kind of discrete
space. The spatial setting is a set N together with a relation of adjacency o« C N x N. The
relation « is symmetric and reflexive, but not transitive. Connection, C,, is defined for
subsets 2,y C N by Cy(z,y) if there are a € x and b € y such that (a,b) € a. We shall show
next that there are spaces N, where this connection is not expressible as any Cj, in the
sense of Cohn and Varzi, for any topological closure on N. A specific example appears in
Figure 1 where the links indicate adjacencies between distinct elements of the five element
set N = {m,n,p,q,r}.

First, C, cannot be C7 as two adjacent nodes give disjoint singleton subsets which
are C, connected. So suppose that C, = Cy for some topological closure c. If k is any
node in N then {k} is C\, connected to no singletons except those {k'} such that a(k,k’).
Thus ¢({k}) contains only nodes which are adjacent to k. Hence for the specific nodes
m and n we have ¢({m}) C {r,m,n} and c¢({n}) C {m,n,p}. Now {m} and {n} are
connected in the connection C, so if they are Cy connected we must have n € ¢({m}) or
m € c({n}). Consider first the case that n € ¢({m}). This implies {n} C ¢({m}) so that
c({n}) Cc(e({m})) C e({m}). Thus p ¢ c({n}) and ¢({n}) C {m,n}. But {n} and {p} are
connected in Cy, so n € ¢({p}), and hence c({n}) C c¢({p}). As m ¢ c({p}) we conclude
c¢({n}) = {n} in the case that n € ¢({m}). In the case that m € c({n}) we conclude that
c({m}) = {m}. Thus in either case one of the sets {m} and {n} is a closed set, and they
cannot both be closed since they need to be Cy connected.

This applies to each pair of adjacent nodes in IV; one of them is a closed set and the
other is not. With an odd number of nodes in total this is a contradiction. Hence no
such topological closure, ¢, can generate a Cy connection equal to C,. There remains the
possibility that C, is of the form C3. Suppose then that some topological closure on N
generates C, as C3. We must have ¢({m}) Ne¢({n}) # @. For similar reasons to the Co
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Figure 1 A discrete space where connection cannot be defined in terms of topological closure.

case we must have c¢({m}) C {r,m,n} and ¢({n}) C {m,n, p}, so to obtain the non-empty
intersection either m € ¢({n}) or n € ¢({m}). In the case that n € c¢({m}) we get p ¢ ¢({n})
as c({n}) C e¢({m}). But n and p are adjacent so are connected singletons and ¢({n}) and
c¢({p}) must intersect and the only possibility for this intersection is n. Now if m € ¢({n})
we get m € c¢(c({p})) which would make m and p adjacent. Hence c({n}) can only be {n}.
It is straightforward to continue to a contradiction as in the Cy case.

3 Modal Logic with Graph Morphology Semantics

3.1 Classical Modal Logic

The syntax of classical propositional modal logic provides propositional variables p,q,r, ...,
the usual logical connectives V, A, —, -, and the modalities ¢, and [J. Formulae are defined
by stipulating that propositional variable are formulae, and if ¢, ¢ are formulae then so are
OAY, oV, o =Y, 2w, O, and Op. The semantics for this logic allows an interpretation
of atomic propositions as subsets of a set of ‘worlds’ and formulae correspond to subsets
constructed out of these. While an abstract set has no spatial structure by itself, we shall
see that a more elaborate logic has a natural semantics in which formulae correspond to
subgraphs of a graph. This means that spatial relations between subgraphs can be expressed
in the logic. Before introducing this logic we need to review the connection between classical
propositional modal logic and the morphological operations of dilation and erosion.

Kripke semantics for propositional modal logic is based on a binary relation on a set
of worlds, W (see [1] for an introduction to Kripke semantics). Propositional variables are
then interpreted as subsets of W, and truth and falsity in the language, often denoted T
and | are interpreted respectively as W and @. In this setting the logical connectives V,
A, - are interpreted as the set-theoretic operations of union, intersection and complement.
Once we are given a subset [p] C W for each propositional variable p, we can assign to each
non-modal formula ¢ its interpretation as a subset [¢] C W. Implication — is handled by
defining [ — ¥] = —[¢] U [¢/] where — is set-theoretic complement. This means [¢ — 9]
holds in a given interpretation if and only if [¢] C [] making a connection between the
logic and the mereological assertion that one set is a part of another.

The semantics of the modalities ¢ and [0 can easily be expressed in terms of the morpho-
logical operations of dilation and erosion which are defined as follows.

» Definition 3. For any subset X C W, and any relation R C W x W, we define:
Dilation: X @R ={w e W | Jz(z Rw and z € X)},
Erosion: R© X = {w € W | Va(w R z implies € X)}.

In order to understand how dilation and erosion work, we do an example

» Example 4. Let W = {a,b,¢,d,e} and X = {a,b,c} and R = {(a,a), (a,b), (¢,d), (e, c)}.
Then X & R = {a,b,d} and RS X = {a,e}.

COSIT 2017
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Using these operations we then define [0¢] = [¢] @ R and [O¢] = RO [¢]. Note the use
of the converse R; that is O holds at worlds accessible from worlds in [¢] via the converse
of the accessibility relation.

3.2 Graphs and Relations on Graphs

We move now to consider not merely subsets of a set but subgraphs of a graph. This builds
on the use of algebraic operations on subgraphs as introduced to the COSIT community
by Stell and Worboys [16], but now in the context of a modal logic which allows the
expression of mereotopological relations between subgraphs. The logic itself appears in [15]
in a more general context, but the applications to discrete spatial representation have not
been investigated before. We need first to explain what we mean by a graph.

A graph in which there are potentially multiple edges between nodes, and potentially
(multiple) loops on the nodes can be defined a set W, thought of as consisting of all the
nodes and edges together, with a relation @ C W x W. This relation relates every edge to
its incident nodes and no other elements of W are related. Thus w @ v holds iff w is an edge
incident with node v. From @) we derive its reflexive closure, which we denote by H. Given
just W and H we can distinguish nodes from edges as a node is an element of W related only
to itself by H, whereas an edge must be related both to itself and at least one other element
of W. The subgraphs of a graph (W, H) are the subsets which for each edge include all the
incident nodes. A set X C W will be a subgraph iff X @ H C X or equivalently X & Q C X.

The algebra of subgraphs, already noted by Lawvere as cited in [16], provides unions and
intersections of subgraphs but most significantly two distinct types of complement. Given a
subgraph X C W we can obtain both a largest subgraph disjoint from X and also a smallest
subgraph whose union with X gives all of W. These are denoted =X and — X respectively
and can be expressed as H © (—X) and (—X) @ H respectively.

To give a semantics for a modal logic where formulae are interpreted as subgraphs we
need a notion of a relation on a graph which extends the notion of a relation on a set as used
in classical Kripke semantics.

Let W be a set, let Py be its power set, and let S be a function such that S : Py — Py ;
then

» Definition 5. S is a union preserving function on Py if and only if for any family of
indexed set Z; C X we have S(U;(Z;) = U;S(Z;).

Given a union preserving function S on Py, it is always possible to define a binary
relation R C W x W as follows: for any w and v € W, w Rv if and only if v € S({w}). All
binary relations on sets come in this way. On the other hand, given a relation R C W x W,
a union preserving function on Py can be defined as follows, given VC W

SV)y={weW |FweVand v Rw}.

Therefore, relations on a set W can be modelled as union-preserving functions on the power
set of W. When it comes to the case of a graph, so a set carrying a pre order H, the union
preserving functions on the lattice of subgraphs correspond to relations on W that are stable.
Given a graph (W, H) we say a relation R C W x W is stable with respect to H provided
H;R:;H C R where ; denotes the composition of relations. The stable relations include the
universal relation U = W x W, and the relations Q and H.

Stable relations are closed under composition, H being the identity element, but are not,
in general, closed under converse. Denoting the standard converse of R by R, is not always
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the case that H; J?; HCR. However, for a stable R, it is possible to define a relation, called
left converse, characterized as the smallest stable relation containing R.

» Definition 6. The left converse of a stable relation R, is R = H; Fi; H, where R is the
(ordinary) converse of R.

3.3 Graph-based Modal Logic

Bi-intuitionistic stable tense logics are a group of logics, described in [15], with a Kripke
semantics where worlds in a frame are equipped with a pre-order as well as with an accessibility
relation which is ‘stable’ with respect to the pre-order. We do not need the full generality of
this setting here, and will give a semantics in a graph G = (W, H). The relation H is easily
seen to be reflexive and transitive, so that it is a pre-order. The syntax of the multi-modal
version of BISKT, called so from [15] because is the system K of this group of logics, is that
of classical propositional logic extended with dual negation —, dual implication >, and four
indexed modalities: [R], (R), )R(, and |R].

The semantics needs, besides a graph G = (W, H), a stable relation for each index R.

Such a structure will be called a BISKT-model, and often denoted M. Given a valuation,
assigning to each propositional variable p a subgraph [[p], we extend the semantic function
[_]. thus (we will omit the subscription ‘v’ when no confusion arises):

[L], = @& [, = w
[[80\/1/1]],/ = [[SDHVU[[/(M]V H@Awﬂu = [[SO]]I/Q[[/IZ}]]V

[-¢l. = -l¢l. [l = -[¢l.
[[@—“ﬁ]]u = H@((—[[SOHV)UWHV) [[prwﬂu = (H@Hum(_ﬂ¢ﬂu))®H
[[Rl¢]l. = Rol¢l. (R el = [¢l®(R)
DRl = [el®R DR[#], = (vR)olel

A graph will be indicated by G = (W, H); a valuation function v, is a function going from
formulas in the logic to subgraphs, such that for a formula ¢, v(p) = [¢],. The pair G,v is
a BISKT-model and we write G,v E ¢ when [¢], is the whole graph G.

The use of morphology in connection with modal logic for spatial reasoning by Bloch [2]
is in a classical setting. In BISKT, unlike the classical case, box and diamond modalities are
not mutually interdefinable. Working in discrete space the bi-intuitionistic logic is essential
to express spatial relations as we will see in the next section.

4  Expressing qualitative relations

In this section we express in a direct way, in BISKT, some qualitative spatial relationships
between graphs. Then, we compare these expressions with their correspondents found in [3]
and [10]. The first relation we analyse is the one of connection!.

4.1 A Cech Closure for Graphs

We have seen that connection in Galton’s sense cannot always be expressed as one of the
connections in the framework of Cohn and Varzi by using a topological closure. However, a

! The reader must be aware of the fact that the notion of connection between graphs, which we refer
to, is not the same as the notion of connectivity of a graph. In the latter case a graph is connected
if between any two nodes there is always an edge connecting them. In our context, two subgraphs,
that are connected in the sense expressed by one of the forthcoming relations of connection, are not
necessarily connected subgraphs themselves.
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weaker notion of closure does have the right properties. An operator satisfying Kuratowski
axioms K1, K2 and K4 but not necessarily K3 is known as a Cech closure (see definition
from [14, p.657]).
In BISKT the following formulas are tautologies:
ol &L
P — o,
(e V) & oV
However, the following formula is not a tautology:
= (=) = - e
Interpreting L as the empty subgraph @, the formulas ¢ and 1 on the respective subgraphs
[¢] and [¢], we have that the operator on graphs ‘=’ satisfies
K1l. = —\[[J_]] =,
K2. [¢] € - =l
K4 (el U D) = = =lel v —-[4l,
but not necessarily

K3. —=(=-lel) € =[]
Given the above tautologies we can define a Cech closure ¢ on a graph G by

C(K) =K

for any K C G.

4.2 Connection expressed modally

In this section we show that Cech closure operator defined earlier, is expressible by a modality
in BISKT, for a suitable choice of a stable accessibility relation R on W.

Consider the relation @ introduced in Section 3.2. When it is taken as the stable relation,
then the Cech closure of a subgraph, can be expressed by a modality indexed by Q.

» Theorem 7. Let Q) be the stable relation introduced above. Consider the graph G. For any
formula o, the following holds:

-l = [(Q) ¢] -

Proof. We sketch the idea of the proof in Figure 2, showing how \» Q works. When dilation
by ‘@ is applied to a node, it takes the node itself and all the nodes one-edge-away from
it. When dilation by \» @ is applied to an edge, it produces the edge itself , the edges
one-node-apart from it, and all the nodes incident with these edges. Since, in BISKT, the
smallest subgraph including a node is the node itself, and the smallest subgraph including an
edge is the edge plus the nodes incident to it, — — acts extending any subgraph with all the
nodes one-edge away and all the edges incident to them, which means dilating the subgraph
by Q. <

By taking R to be the universal relation U on W, that is U = W x W we can interpret
“somewhere ¢” by (U) ¢ and “everywhere ¢” by [U] ¢, or equivalently just ¢. The three
notions of connection expressed by Cohn and Varzi [3] depend on being able to express that
a subset is non-empty. We can handle this within our modal logic as (U)(¢) holds if and
only if [] # @. Thus, for any graph G and any valuation v, given two formula z and y, and
given the Cech closure ¢ introduced above we have that

G,vE Uz Ay) iff ([«], N [y].) # 2,

GvEUN({Q) zAy)V (z A (Q)y)) iff (c([x].) N [y].) U (zNe(y]))) # 2,

G,v E(U)((Q)x A Q) y) iff c([z]) Ne(ly]y) # 2.
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Figure 2 Effect of \» Q on one node and on one edge.

This gives us three definitions of connection for regions in discrete space, analogous to
C1,C4, C5 defined by Cohn and Varzi for regions in continuous space:
L Ci([=]v, [v].) iff G,vE (U)(z Ay).
2. Co([x]o, [yl) iff G, v = U)(((Q)z Ay) V (2 A (Q)y))-
3. Cs([z]v, [¥]) iff G, v E (U)((Q)z A (Q)y).

4.3 Qualitative Relations Modally

Other qualitative spatial relations can be expressed in a direct way in this modal logic. We
consider here the notions of non empty part, general part, proper part, tangential proper
part, non-tangential proper part, and external connection. We index them notationally with
¢ in order to make the distinction with their mereotopological correspondents.

NEPy([z]y,[y].) if Gov E(U)z A —y

GPy([z],[¥],) if G,vEz =y

PPy([x]0, [y].) iff G,v Ex — yA{U)(—x Ay)

Oo([z]w, [y]») it G,v E(U)(z Ay)

ECy([2]v, [yly) HE G, v E—~(z Ay) AU)Q)z Ay) vV (U)(x A (Q)y)
TPy([2]v, [v]) Hf G,v Ex =y A (U)((Q)x A —y)

NTPy([z]., [y].) it G.v F(Q)x =y

EQo([z]v, [y]) if GivEx+ gy

DC([z]v, [yly) Hf G, v E~(((Q)x Ay) V (z AQ)y))

The notion of parthood comprises three different relations: the general notion of part
(GPy), the one restricted to those parts = of y different from the empty graph (NEP;),
and the notion of proper part (PFPy). A separate section will be dedicated to the notion of
boundary graph, since, as we shall see, a variety of possible definitions arises in BISKT.

In the next sections we will compare our definitions with those given in [3, 10]. In order
to do so, we introduce the following lemmas

» Lemma 8. Given a world w € W, if for some v € W v o Q w, then w\»Q v or there
exists a world u such that w\>Q u and u € v H.

Proof. Four cases need to be addressed. (i) v and w are both nodes. The case v = w is trivial.
So suppose v # w. v\ Q w holds. Then there is an edge u incident with both v and w such
that v H u Q w H w. Therefore w H w Q u H v. (ii) v and w are both edges. The case
v = w is trivial. So suppose v # w. Then there exists a node u incident with both v and w
suchthathquHw. SowHuQvHv. (iii) v is a node and w is an edge. If v U Q w
then the only possibility is v H v Q w H w. Therefore w H v Q w H v. (iv) Suppose v is an
edge and w is a node. Then (iv.i) w is a node incident to v: v H w Q v H w. In this case
w H w Qv H v; or (iv.ii) there is a node u such that u € v ® H and an edge k, such that
vHqu:Hw.ThereforewHkaHu,anduEU@H. <

1:9
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» Lemma 9. Given a BISKT-model G,v, and two formulas x and y representing two
subgraphs [z] and [y]

GvEU)({QzNy) < GrE{U)(zN(Q)y)

Proof. Given a graph G, a valuation v and a world w, we can give the semantics clause for
(Q) ¢ as follows

w FE (Q) ¢ iff for some v, (v\ > Q w) and v E .

For the left-to-right direction: assume that G,v E (U)({(Q)x A y). Then, for allw €
W exists a v € W such that (w U v) and v F (Q)x A y. This means that v F y, and for
some u such that (v '\ Q v), u F . For lemma 1, or v \»Q u, so that u E A (Q)y, or
there is a j € v @ H such that j \»Q u. So j F y because j € v® H, and j F (Q)z. So
Jj ExA{(Q)y. Therefore, under the initial assumption, G,v F (U)(z A (@) y) holds. The
right-to-left direction works in analogous way. |

Given this lemma, the notion of connection Cy can be shortened to (U)((Q) x Ay). When
this holds for z and y, the corresponding subgraphs are Cs-connected.

» Lemma 10. Given a graph G and a valuation function, and x, y propositional variables,
v, if Gy E(U)x and G,vE © — y then G,v E (U)y.

Proof. G,v F (U)z iff for all w € v, there is a v € W such that vF z. G,v F ax — y iff for
all w e W, for all w € W such that w H w, if u F « then v F y. Take v: v (U)z and v F z.
Also, v H v. Then v E y. Therefore, under the initila assumptions, somewhere in the graph
y must hold: G,v E (U)y. <

4.4 Qverlapping

Overlapping regions are defined by Cohn and Varzi [3] as O(X,Y) = 3Z(P(Z, X)&P(Z,Y)),
where the predicate of parthood is restricted just to non-empty regions. We show that

» Theorem 11. Let G be a graph and v a valuation. Given x, y and z propositional variables,
the following holds

G,vE({U)(xANy)

iff there is a subgraph K of G such that for any valuation v’ which agrees with v on x and y,
and where 2], = K

GV EUYzANz—=zand GV E{U)zNz—y.

Proof. Suppose G,v E (U)(z Ay). Then, for all w € W, w £ (U)(z A y). So for all
w € W there is a world v € W such that v F « and v E y. This means that v € [z], and
v € [y],. So v € [z], N [y],. Then, for all the valuations v’ that agree with v on x and
y, there is a subgraph [z],, = K = v ® H such that K,v' E z, because K = [z],/, and
K,V E z — z, because [z],s C [z],/, and K,V E z — y, because [z],» C [y],,. Therefore
GV E{U)zNz—xand G,V E(U)zANz—y.

On the other hand, suppose [z],» = K, and G,V E (U) zAz = xand G,v' E (U) zAz — y.
But then G,v' E (U) zAz — (xAy), since, given p, g, r propositional variables, (p — ¢)A(p —
r) <> p — (¢ Ar) is a tautology in BISKT. But then for lemma 4, G,v' F (U)(x A y) and
since ' and v agree on z and y, G,v E (U)(z A y). <
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4.5 Tangential Part

Cohn and Varzi give the following definition of Tangential part: TP(X,Y) = P(X,Y) &
Z(C(X, Z2)& — O(Z,Y)), where ‘—’, is the symbol for classical negation. We show that our
relation T Py ([x], [y]) gives the same entailments on subgraphs.

» Theorem 12. Let G be a graph and v a valuation. Given x, y and z propositional variables,
the following holds

G,vFE (z—y) ANU)Q)x A—y)

iff there is a subgraph K of G such that for any valuation v’ which agrees with v on x and y,
and where [z], = K

GV Er—yand GV E{U)(Q)zAz) and G,V E zNy.

Proof. Assume G,vE (x — y) A{U)((Q) z A —y). Then, for all w € W in the graph w € W,
w E (x — y). Then, since v and v/ agree on z and y, also G,V E (z — y). From the
assumption it follows also that G,v F (U)({Q) x A —y). Again since v and v/ agree on x and
y, also G,V E(U)({Q) x A —y). Take as [z],» = K the subgraph [—y], . There exists such a
subgraph such that (U)((Q) x A z). Suppose G,v' E z Ay. That means that G, E -y A y.
But this is impossible since in BISK T, for any propositional variable p, (p A —p) — L is a
tautology. Therefore, for the chosen subgraph [z],-, necessarily G,V ¥ z A y.

For the other direction, assume G,v' F x — y. Since v/ and v agree on z and v,
G,v E 2 — y. Suppose there exists some [z],- = K, subgraph of G, and G, v/ E (U)({(Q) z A
z) and G,V ¥ z Ay. That means that i) for all w € W, there is the v € W such that
vE(Q)x and v E z; and ii) it does not exist any ¢t € W such that t E z Ay. So, for all t € W,
if t E z then t ¥ y. But, since [z],» = K, for all K € W’ such that (W/,H) = K, k F z. So,
also, for all those k, k ¥ y. That means that for all m such that vHm, m ¥ y, and then,
v E —y. Therefore, v E (Q)z and v F —y. That means that, considering the valuation v,
G, vk U)(Q)x A ). «

4.6 Non-tangential part

The spatial relation of non-tangential parthood is defined by Cohn and Varzi as follows, for
any two regions X and Y: NTP(X,Y) = P(X,Y) & VZ(C(X,Y) — O(Z,X)). We show
that just one direction of this entailment holds in BISKT.

» Theorem 13. Let G be a graph and v a valuation. Given x, y and z propositional variables,
the following holds

if G,vE(Q)(x) =y,
then, for any valuation v which agrees with v on x and y
GvEz—y
and for all the subgraph K of G such that [z], = K
if G,V E(UY{Q)z A 2) then G,V E(U)(z Ay).

Proof. Assume G,v E (Q)x — y. Then, for all w € W, if wF (Q) x then w F y, or, if w €
[{Q) ], then w € [y],. But ‘»—’is a Cech closure, and by theorem 1, - —[z], = [(Q) z]..

COSIT 2017
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LON . IO\

[z] A —[] ([=] A =l2]) A 2]

Figure 3 The Boundaries of [z].

So if w € [z], then w € [(Q) z],, and then w € [x], implies that w € [y],. So, for all the
valuations v’ agreeing with v on z and y, we have that G, v’ F 2 — y. Suppose that for some
subgraph K such that [z],, = K, i) G,V E (U)((Q) z A z), and ii) G, ¥ (U)(z Ay). So
for i) there exists some v € W such that v F (@) z and v F z. Since [z],» = K, v € K, and
K,V EF(Q)x and K,V F z. For ii) for all w € W, if w E z then w ¥ y. So for all the k € K
k ¥ y, that implies that for all the m such that vAHm, m ¥ y. That implies that v E —y.
Therefore G, V' E (U)((Q) 2 A—y). That means z is both non-tangential and tangential part of
y. However, in BISKT this formula is a tautology: ((Q)z — y) — =((Q) z A —y). So, under
the assumption that G,v F (Q) z — y, it cannot be the case that G,v' E (U)((Q) z A —~y),
because —((Q) z A —y) must hold everywhere in the graph. This also means that if a [z]
is a non tangential part of [y], it cannot be also its tangential part. Therefore, under the
initial assumption, if a subgraph [z], is such that G,v £ (U)({Q) x A z, we must have
G,V E(U)(zNy).

The other direction of the entailment does not hold. Consider the example of a graph G
composed of a node n and an edge e going from n to n itself. Consider [z],, = [y]., = n.
We have that G, v’ E © — y. The possible subgraphs K such that [z],, = K are [z]./, [y]./
and the whole graph G. All of them are Co-connected to [z], and overlap [y], . Anyway,
the closure of [z],/ is [(Q)z],, = G, and G is not part of [y],s. Therefore [z],/ is not
non-tangential part of [y],/, and G, v E (Q) x — y does not hold. <

4.7 Boundary and Boundary part

Galton uses a notion of boundary graph already found in [8], that is, in our notation

B([«]) = [« A ] .

However this is not the only notion of boundary possible in our setting, that is different
from Galton’s one because, in a BISKT-graph, multiple edges may occur between a pair of
nodes. We examine, in this section the notion of boundary-graph and the spatial relation of
boundary part that can be expressed in BISKT.

Consider the subgraph [z], in bold in Figure 3, with its underlying graph. The subgraph
([x A = z]) corresponds to the nodes incident with the edges which are not in [z]. However,
it is reasonable to ask that also the edges incident with these nodes, and which belong to
[x], are considered as part of the boundary of [x]. We can define another notion of graph
boundary as

Bo([2]) = [-=(z A —z) A ]

shown in Figure 3.
Cohn and Varzi’s definition of the spatial relationship of Boundary part is

BP(X,Y)=VZ(P(Z,X) = (TP(Z,Y))).
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Figure 4 The Boundaries of [z].

A region X is part of the boundary of a region Y if for any of its parts Z, Z is a tangential
part of Y. This spatial relationship is based on the intuition that the boundary of a region is
connected with the outside of the region. Translating this definition in our language, the
expected definition of Boundary part is the following (we assume any boundary part to be
not empty)

BPy([]v, [y]) iff for all [z],, if NEPy([z]., [2],) then (T'Py([z]., [y].)) -

We want to explore whether the definition of graph boundary B([z]) given above is
coherent with the spatial relation of Boundary part.
We notice the following:

(i) The definition of boundary part does not hold when [-y] is empty. Take the example of
a graph composed of two nodes 11, no and two edges e1, eo incident with them. Consider
the subgraph [z] = {n1,e1,n2}. Here B([z]) = [z] and [-z] = @. For any [z] part of
[«], [#] C [=], the closure of [z] is the whole underlying graph, and the intersection
of the whole graph with the empty set is empty. Therefore G,v ¥ (U)((Q)z A —x) is
contradictory. This last consideration gives the hint that a better notion of boundary
graph is “what leads outside of the graph” where the outside is [-x]. Therefore, another
sensible definition of boundary of x may be “ everything which is connected to [-z]”.

(ii) If we adopt Bo([z]) = [-—(z A = 2) A x] as definition of graph boundary, the notion of
boundary part does not hold. Consider, again, the graph [z] in figure3. Its negation —x
is composed of all the nodes not in [z], plus the edges incident with them. According to
the notion of Boundaty graph, every subgraph which is part of [-=(z A 2 z) A z] is such
that its closure overlaps [-x]. It is easy to see that this is not true. Just for two of the
three nodes are such that their closure overlap [-].

We put forward other two definitions of graph boundary:
By ([2]) = [+ A (Q)~a] and By (x) = [~=(x A (Q)-z) Aa].

These new definitions single out the boundary subgraphs which are connected with [-x],
and which support the definition of boundary part of [3]. The former considers just the
nodes adjacent with edges adjacent with [-z], the latter adds also the edges between those
nodes as shown in Figure 4. Eventually, another possible notions of boundary part is

B7([2]) = [= A (@) 2]

shown also in Figure 4.

5 Conclusions and Further Work

We have examined discrete space from the viewpoint of a modal logic based on relations
on graphs, rather than on sets, as the accessibility relations. This has enabled us to bring
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together for the first time the approach to spatial reasoning using a modal logic based in
mathematical morphology proposed by Bloch, with the mereotopological analysis of discrete
space developed by Galton.

We have shown that the general framework of Cohn and Varzi can be generalized to
accommodate discrete spatial relationships, but that closure operators which satisfy all of
the Kuratowski axioms cannot be used to describe the notion of connection in some discrete
spaces. By adopting the less restrictive version of closure due to Cech we have been able to
realize the connection described by Galton as a Cs connection in the framework of Cohn and
Varzi.

The specific form of closure needed can be expressed as the negation, -, and dual negation,
-, in the logic BISKT. The combination of the semantic counterparts of these operations to
express the idea of extending a subgraph by one step along the links is by no means new.
This was already noted at COSIT 1997 by Stell and Worboys [16] citing the work of Reyes
and Zolfaghari [11]. However, in the present work we have been able to express this closure
as a modality using the stable relation ¢ which describes the incidence structure of the
graph. Reyes and Zolfaghari [11] view this closure in a modal setting quite different from
our use of stable relations on graphs. By working within the context of the BISKT logic we
have been able to express not only connection itself, but other spatial relations including
non-tangential parthood and a variety of notions of boundary.

In our formulation stating that two regions are connected is expressible through a formula
in our logic. This depends on being able to express non-emptiness, which we achieve through
the universal modality (U), “somewhere”. In the setting of Bloch [2] a relation such as
tangential part is expressed not just by a formula holding but by one formula holding and
another being consistent. Expressing mereotopological relations entirely within our logic
can be expected to facilitate the use of automated reasoning tools for modal logics, such as

n [15], for spatial reasoning. We will explore this in further work, as well as extending our
analysis to a wider range of relationships and examining these with notions of uncertainty
and vagueness for discrete spatial regions.
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