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Abstract

Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is
key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional,
and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed
separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for
both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these
structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity
components using the high spatial/temporal resolution Hα imaging-spectroscopy data from the CRisp Imaging
SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of
these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g.,
magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule
motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant
either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma
due to spicular bulk transverse motion has a similar Doppler profile to that of the m=0 torsional Alfvén wave
when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure
perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any
purely incompressible MHD wave mode, e.g., the m=0 torsional Alfvén wave.
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1. Introduction

One of the major problems in solar physics today is identifying
the energy transfer mechanisms throughout the chromosphere and
transition region. A key observational “window” into this problem
is the study of spicules, which are thin, long, jet-like magnetic
features that populate the highly dynamic and complex region
between the solar photosphere and corona. These enigmatic
structures are observed in chromospheric spectral lines such as Hα,
Ca II H and K, and He ID3 from both ground- and space-based
instrumentation and are a focus of wave physics in the solar
chromosphere (Zaqarashvili & Erdélyi 2009; Jess et al. 2015;
Verth & Jess 2016). Ever since their discovery by Secchi in 1877,
spicules have been the topic of much debate in the solar physics
community. Understanding spicules has been hampered by
instrumental limitations, and their high velocities, short visible
lifetimes, and narrow widths. Also, spectral diagnostics off-limb,
where spicules are easier to identify, are further complicated by the
presence of many superimposed structures in the line of sight
(LOS). This makes it challenging to decipher the true motions of
spicules and to identify the possible presence of magnetohydro-
dynamic (MHD) wave modes.

Spicules are often modeled as thin magnetic flux tubes since
their widths are far less than their heights. As a further
approximation, spicules are modeled as axisymmetric cylindrical
waveguides that bridge the lower and upper solar atmospheres.
MHD waves passing through these structures can be classified
using azimuthal (m) and axial (kz) wave numbers, derived from
observable quantities (frequency, phase speed, wavelength). In
theory, spicules may support a superposition of MHD waves of

any azimuthal wave number m. However, thus far there have
only been claims of identifying very low order m modes from
spicule observations such as the m=0 torsional Alfvén wave
(De Pontieu et al. 2012) and the m=1 kink wave (Kukhianidze
et al. 2006). The estimated phase/group speeds can further
indicate the corresponding surface/body modes for a given
theoretical equilibrium model. Interestingly, in the linear regime,
magnetic tension is the only restoring force for the incompressible
torsional Alfvén wave and is the main restoring force for
the weakly compressible kink wave. Hence, analysis of two-
dimensional (2D) imaging-spectroscopy data can give somewhat
similar signatures for both Alfvén and kink waves. The difficulties
of interpretation have been discussed by, e.g., Erdélyi & Fedun
(2007), Erdélyi & Taroyan (2008), Van Doorsselaere et al. (2008),
Zaqarashvili & Erdélyi (2009), and Mathioudakis et al. (2013).
Accurate identification of wave modes is crucial in estimating their
energy flux and damping mechanism/rate.
Spicule dynamics, reported in previous observational studies,

are broadly classified into three separate domains: field-aligned
flows, transverse motions in the plane of sky (POS) detected via
imaging, and torsional motions identified in Doppler shifts along
the LOS. The transverse and torsional motions are often
interpreted as kink and Alfvén waves, respectively. Kukhianidze
et al. (2006) reported the first kink mode observations in
spicule structures from spectroscopy data in their excellent but
perhaps unfairly less recognized paper. They advocated that the
oscillatory phenomenon observed in spicules is mainly due to
kink waves excited by buffeting motion due to photospheric
granulation. Transverse motion in spicules with amplitudes of
the order of 10–12 km s−1 and periodicities of 100–500 s were
observed by De Pontieu et al. (2007) and interpreted by these
authors as “Alfvénic” waves. This label has become the subject
of much controversy since that particular interpretation rested on
the assumption of a homogeneous plasma in planar geometry,
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whereas the chromosphere is actually finely structured and
highly inhomogeneous. Later, a mix of upward, downward, and
standing “Alfvénic” transverse waves along spicules were
identified by Okamoto & De Pontieu (2011). Ebadi & Ghiassi
(2014) analyzed high-cadence Ca II H data from Hinode/
SOT and found upward propagating kink waves and their
reconnection-like origins, while Tavabi et al. (2015) analyzed
data for polar spicules and also found signatures of transverse
waves. More significant transverse velocities of up to 60 km s−1

were reported by Pereira et al. (2012), which resulted in spicule
axis displacements of up to 1 Mm, along with upward flows of
the order of 100 km s−1.

De Pontieu et al. (2012) claimed to have observed spicule
rotational motions in Doppler measurements of the order of
25–30 km s−1 and inferred the presence of m=0 torsional
Alfvén waves. This interpretation was challenged by Goossens
et al. (2014), who demonstrated that Doppler signatures for
m=0 torsional Alfvén wave can actually resemble those
generated by m=1 kink waves if the LOS is approximately
perpendicular to the bulk transverse motion. Sekse et al.
(2013) carried out similar observations for on-disk spicules
and further confirmed their rotational motions and transverse
displacements.

In this paper, the identification and interpretation of observed
MHD wave mode(s) are presented along with estimates of
magnetic pressure perturbations for observed spicules. For the
first time, three-dimensional (3D) velocity vector reconstruc-
tions are derived for spicules by combining LOS Doppler
velocity with POS transverse velocity components. Further-
more, we estimate the time- and space- dependent LOS
magnetic field component, which provides insight into the
magnetic pressure changes due to spicule dynamics.

2. Observations

The instrument used was the CRisp Imaging Spectro-
Polarimeter (CRISP) at the Swedish 1-m Solar Telescope
(Scharmeretal.2003, 2008) on La Palma. The Hα imaging-
spectroscopic data of 07:15–07:48 UT, 2012 June 21, is of
Active Region NOAA AR11504, which consisted of two
sunspots at limb position (heliocentric coordinates with respect
to disk center, hereby denoted by Θ=893, Φ=−250). The
AR was scanned using 31 equally spaced line positions with
86 mÅ, steps from −1.376 to +1.29Å, relative to line center,
along with four additional positions in the far blue wing from
−1.376 to −2.064Å. These data were then further processed
using the Multi-Object Multi Frame Blind Deconvolution
(MOMFBD; van Noort et al. 2005) image restoration
algorithm. Also, standard procedures available in the image
pipeline for CRISP data (de la Cruz Rodríguez et al. 2015),
including differential stretching and removal of dark- and flat-
fielding, were implemented. The final science-grade data of
∼30 minute duration had a pixel size of 0 059 (∼43 km) with
a cadence of 7.7 s.

The resultant data shows spicule structures (Figure 1) at far-
wing positions in the Hα line profile. Spicules appear in
clusters or bushes, which makes identification and tracking of
individual structures a challenging task. Eight spicule structures
were finally selected for this study, on the basis that they were
distinct enough from the background and other features in the
image frame during their lifetime in the respective line-scan
positions. The observed lifetimes, inclination, and velocity
ranges in both POS and LOS domains are given in Table 1 and

were found consistent with previous reports (Tsiropoula
et al. 2012). The average lifetime of the spicules under study
was found to be around 127 s while the inclination angle with
respect to the vertical is about 25°.47. Subsequent space- and
ground-based, full-disk images from earlier dates support the
fact that the observed off-limb spicules originated from a quiet-
Sun region, nearly along the same projected LOS as the
observed active region, although this could not be validated
from the data used in the present study.
Figure 2 shows a cartoon of a spicule whose LOS integrated

intensity is projected onto a 2D image plane. The observed
spicule extends from the upper photosphere to the lower corona
and its inclination angle relative to the plane of the photosphere
can influence the observed brightness, apparent height, and
Doppler velocity (Athay & Bessey 1964).

3. Methods

The x- and z-components of the velocity vectors in the POS
were estimated using the Fourier Local Correlation Tracking
algorithm (FLCT; Fisher & Welsch 2008). This technique is
based on the cross-correlation of intensity features observed in
successive frames to estimate POS motions. The main
assumption for this technique is that any variation in the pixel
intensity value is entirely due to plasma motion and not
because of thermal changes. Three input parameters are
required for the FLCT algorithm to estimate velocity. A sigma
value specifies the size of the window for the correlation
function, a minimum intensity threshold, and a function “K”
which serves as a low-pass filter to reduce high-frequency
noise. Input parameters for the FLCT routine were tested
rigorously by introducing an artificial shift in the test images
and determining the most probable parameters that match the
shift. Also, time–distance analysis for the spicule structures at
different heights provided estimates for possible displacement
changes in time. FLCT parameters were updated for these
changes to derive the most optimal velocity outputs for the
observed features. Although there are no direct methods to
estimate the errors associated with these velocity measure-
ments, for the interested reader, the uncertainties associated
with the input region of interest (ROI) for the FLCT algorithm
are discussed in detail in the appendix to Freed et al. (2016).
Spectroscopic measurements in the Hα spectral line at 35

line positions were used to estimate the LOS velocity
component. The Doppler velocity estimation for spicules is
not straightforward. Each image frame with the ROI has pixels
with both absorption and emission profiles (Figure 3). This
results in the selected spicules having asymmetric line profiles,
restricting the use of simple fitting procedures. To address this,
we employed a double-Gaussian function given by
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where l( )I is the discrete intensity line profile, λ is the

wavelength, b is the background signal level, I is the intensity,

μ is the mean of the distribution, and σ is the standard

deviation. The number in the subscript refers to the two

Gaussians. Further, line profiles from spicules show multiple

peaks. A potential explanation could be the LOS super-

position effects from multiple threads in spicule structure

(Skogsrud et al. 2014). A similar explanation was also

postulated by Antolin et al. (2014), where they showed that
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multiple thread-like features could be generated by a

combination of the LOS angle and K-H vortices resulting

from large amplitude transverse MHD wave propagation

(Scullion et al. 2011).
The estimated LOS and POS with mean errors±4.34 km s−1

and±2.76 km s−1, respectively, are then combined to

determine the 3D velocity vector at each pixel projected onto

the 2D image plane. With time cadence (dt), the resultant 3D

velocity vector (vr) can also provide the displacement ( dv tr ) and

acceleration (d dv tr ) at each pixel, giving a more detailed

insight into the time and space evolution of the plasma
dynamics of spicules.

4. Results

In this section, spicule velocity vector maps, along with
other quantities (resultant displacement, acceleration) will be
constructed by combining LOS and POS velocity estimates at
every pixel in the 2D image frame. Furthermore, particular
examples of spicules with their transverse motion mostly in the
LOS or POS will be examined in detail to identify the possible

Figure 1. Examples of Hα limb spicules (marked by the dashed line) at different line-scan positions. The features were selected for the least possible superposition
with any nearby structures during its lifetime in the observed line-scan positions. In this paper, two spicules are presented in detail as being representative examples of
having their bulk transverse motion mostly in the POS (SP5) or along the LOS (SP8).

Table 1

Data of the Eight Spicules Studied Including POS and LOS Velocity Range and the Dominant Plane of Transverse Motion

Spicule ls (Å) Ti (minute) Ttot (s) Length (Mm) Height (Mm) Inc. Angle (°) POSvel (km s−1
) LOSvel (km s−1

) Planetrans

SP1 −1.204 5.9 100.1 4.1 4.9 23.6 −11.6–16.7 −37.1–25.0 LOS

SP2 −1.209 19.5 84.7 2.5 4.1 13.0 −5.6–11.1 −13.5–24.1 LOS

SP3 +0.430 21.8 92.4 2.2 4.8 35.7 −16.7–16.7 −13.0–44.7 LOS

SP4 −1.032 21.9 61.6 3.7 4.4 32.2 −16.7–27.9 −8.8–1.8 POS

SP5 −1.032 21.6 215.6 3.8 5.3 21.4 −27.9–33.5 −12.0–10.0 POS

SP6 −1.118 22.3 123.2 3.8 5.4 24.5 −16.7–22.3 −8.2–12.4 POS

SP7 −1.204 33.5 84.7 2.5 4.4 20.2 −11.6–11.6 −22.9–29.5 LOS

SP8 −0.946 25.2 254 3.1 4.4 33.0 −5.6–11.6 −17.9–29.3 LOS

Note. ls is the line-scan position from the Hα line core, Ti is the time when the spicule first appeared in the observed line-scan position, while Ttot is the total lifetime

of the spicule structure. The apparent visible length and apex height of the spicules under study are shown in the following columns. Inclination angle indicates the tilt

of the spicules w.r.t. the vertical. Velocity ranges of spicular waveguides in both POS and LOS are given in subsequent columns with the dominant plane of transverse

motion.
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presence of MHD wave modes through their velocity and
associated magnetic field perturbations.

The line-scan positions, lifetimes, velocity range in both
LOS and POS, and dominant planes of transverse motion of the
eight spicules shown in Figure1are listed in Table 1. The

velocity estimate ranges for transverse motions are consistent
with the previously reported cases referred to in Section 1. In
this particular sample, about 40% of the spicules have the POS
as the dominant plane of transverse motion. The other 60%
have their transverse motion mainly along the LOS.
As a spicule undergoes this bulk transverse motion, it is

pushing into the external plasma, hence it is natural to expect
that pressure perturbations will accompany this movement.
Even linear kink wave predicts this, although it must be noted
that it is the restoring force of magnetic tension that dominates
over any plasma and magnetic pressure perturbations in this
regime. However, to date, measurement of magnetic pressure
changes associated with transverse spicule motion has not been
possible due to instrumental limitations and other technical
difficulties with direct methods (e.g., Zeeman splitting and
gyroresonant emission). To circumvent this, we will simply
introduce a model background magnetic field and estimate the
perturbations of this assumed magnetic field due to the
observed time and space evolution of a spicule’s velocity
field. The model background field chosen here (as shown
in Figure 4) is self-similar and the external atmospheric
parameters are from Vernazza et al. (1981). Conveniently, this
class of magnetic field is given by a simple closed analytical
expression. The full description of the methods employed to
construct such a field, along with boundary conditions and
tests, are given by, e.g., Shelyag et al. (2008) and Gent et al.
(2013). It is known that intergranular magnetic fields are
measured to be between 100 and 200 G for the quiet-Sun
region (Trujillo Bueno et al. 2004); therefore, we choose the
footpoint magnetic field to be 150 G.

Figure 2. Cartoon showing the LOS intergrated spicule intensity projected onto
a 2D image plane. Here, the spicule is projected onto the xz-plane with the
z-axis normal to the surface and the y-axis along the observer’s LOS. The
actual 3D plasma velocity is a resultant of the estimated LOS and POS
components at each pixel.

Figure 3. Examples of a double-Gaussian fit to the line profile of pixels, both
inside and outside the spicule structure. The dotted–dashed line marks the
normalized intensity magnitudes at the line-scan positions on either side of the
line center (marked by the vertical line) with s as error bars. The solid line is
the double-Gaussian fit with the σ confidence level of the overall fit as the
highlighted region for both line profiles.

Figure 4. 3D rendering of the background magnetic field along with selected
field lines. The isosurface illustrates the expanding intergranular magnetic field
with an exponential drop in magnetic field strength with height. A vertical 2D
slice of the background magnetic field is illustrated in the middle, which is used
to estimate the associated model magnetic field perturbations from an observed
spicule’s velocity field.

4
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In order to have an estimate for the perturbations in magnetic
pressure for the given background magnetic field, we employ
3D velocity vector components in the linearized induction
equation. The velocity vectors, ( )v x y z t, , , , in terms of tube
displacement, x ( )x y z t, , , , can be given as xd d=v t. For the
model chromospheric background magnetic field B0, the
induction equation can be expressed as

xd d=  ´ ´( ) ( )b B . 10

Since x x xd = - -n n n 1 is the change in displacement of the
tube at a given frame number n, the perturbed magnetic field
can be rewritten as

x xd =  ´ - ´-[( ) ] ( )b B . 2n n n 1 0

The LOS component of the perturbed magnetic field is then

d
d
d

dx dx

d
d

dx dx

= -

- -

( )

( ) ( )

b
x
B B

z
B B . 3

y n x y n x n y

y z n y n z

, 0 , , 0

0 , , 0

Here, B0 and dx with subscripts x y z, , refer to the
components of the background magnetic and estimated
displacement fields. Equation (3) is applied in Sections 4.1
and 4.2 for two particular spicules, SP5 and SP8, to model LOS
magnetic field perturbations with their observed velocity field
dynamics as an input. Spicules SP5 and SP8 are discussed in

detail since they are representative examples that have their
transverse motion mostly in the POS or along the LOS.
To compare observations with linear kink wave theory,

Figure 5 shows the Doppler shifts and magnetic pressure
perturbations expected for an observer with an LOS both
perpendicular and parallel to the bulk transverse motion (see,
e.g., Goossens et al. 2014). Note that in Figure 5 the spicule
plasma is taken to be optically thick, i.e., the emission on the
observer side of the spicule is taken to be dominant. The
comparison between the kink wave model and observation will
be particularly insightful since the theory does not actually
account for the fact that the spicule may not be in a quiescent
environment.

4.1. Case 1. Transverse Motion Dominant in POS

Figure 6 shows an intensity image (I) of spicule SP5
observed at −1.032Å, from the Hα line-core position and
difference image (dI ) with perturbed LOS Doppler velocity
(dVy), magnetic field (dby), and acceleration estimates. It can be
seen that for the observed spicule the LOS Doppler velocity
(Figure 6(c)) shows a red–blue Doppler shift asymmetry across
its width, which has previously been interpreted as the
signature of m=0 torsional Alfvén waves by De Pontieu
et al. (2012). Estimates for the acceleration (Figure 6(d)) show
LOS magnitudes up to 1 km s−2 along the spicule. For our
chosen background magnetic field, the magnitude of the LOS

Figure 5. Spicule undergoing linear kink wave motion where the bulk transverse motion is perpendicular (panels (a) and (b)) and parallel (panels (c) and (d)) to the
LOS. The plasma is assumed to be optically thick. The top row shows the spicule’s displacement field (ξ) in the xy-plane with the observer’s LOS along the y-axis. The
arrow at the center of the spicule marks the direction of its motion and the perturbed magnetic pressure color-coded around its boundary. The corresponding profiles
for the Doppler velocities (Vy) and the perturbed y-component of the magnetic field (dby) are given in panels below for the spicule with radius (R).
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perturbation shown in Figure 6(e) is up to 0.3G. The
magnitude of the perturbed magnetic field when compared to
the background field is of the order of ∼0.01–0.13.

The POS displacement of spicule SP5 as a function of time
can be seen in Figure 7. This indicates that there is a dominant
component of the bulk transverse motion in the POS. At the

Figure 6. Observed and estimated parameters of spicule SP5 (marked by the line). In panel (a), the ROI is highlighted in the Hα intensity image. Panels (b) to (e) show
the intensity difference (dI ), Doppler velocity (dVy), acceleration (ay), and the LOS magnetic field perturbation (dby), respectively. The horizontal line marks the

location of the slit used for the time–distance plot shown in Figure 7. Analysis of the intensity and Doppler shifts provided the POS and LOS velocity and acceleration
components while the LOS magnetic field perturbation is used as a proxy for pressure changes in the vicinity of the spicule.

Figure 7. (a) Hα intensity (I) profile for spicule SP5 with its POS transverse displacement highlighted by the yellow lines. In panel (b), the positions of the arrows
show that the Doppler velocity has a transverse red/blue asymmetry, which alternates with time. The arrows also mark the direction of spicule transverse
displacement. In panels (c) and (d), at the arrow locations there is also evidence of transverse asymmetry in both acceleration and the perturbed LOS magnetic field.

6

The Astrophysical Journal, 840:96 (9pp), 2017 May 10 Sharma, Verth, & Erdélyi



transverse anti-nodes, indicated by the black arrows, it can be
seen in Figure 7(b) that the LOS velocity shows the same red–
blue asymmetry across the spicule width as shown in
Figure 6(c). The kink wave model shown in Figures 5(a) and
(b) indicates that this asymmetry in Doppler velocity can be
attributed to its associated m=1 dipolar velocity field if the
LOS is approximately perpendicular to the bulk transverse

motion. This is an alternative explanation to the m=0
torsional Alfvén wave interpretation of De Pontieu et al.
(2012). Note also that the Doppler shifts are higher around the
boundary of the spicule, indicating strong counterstreaming in
the external plasma.
Although De Pontieu et al. (2007) interpreted the transverse

waves observed in spicules with the Solar Optical Telescope on

Figure 8. Observed and estimated parameters of spicule SP8 (marked by line). In panel (a), the ROI is highlighted in the Hα intensity image. Panels (b) to (e) show the
intensity difference (dI ), Doppler velocity (dVy), acceleration (ay), and the LOS magnetic field perturbation (dby), respectively. The horizontal line marks the location

of the slit used for the time–distance plot shown in Figure 9.

Figure 9. Comparison of timescale evolution of the observed/estimated parameters for spicule SP8. Panel (a) shows Hα intensity (I) profiles at line-scan positions
( l = 0.946s ) and panel (b) shows Doppler shifts providing evidence that the bulk transverse motion of the spicule is along the LOS. Panels (c) and (d) show
variations in acceleration (ay) and the modeled LOS magnetic field perturbations (dby) along the spicule.

7
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board Hinodeas being incompressible, Figure 7(d) shows that
by inputting the estimated velocity field from both imaging and
spectroscopy in Equation (3), a perturbed LOS component of
the magnetic field is a natural consequence. Taking this as a
proxy for magnetic pressure variations along the spicule, this
questions the idea that these motions are incompressible. In
fact, the kink wave model in Figures 5(a) and (b) predicts such
asymmetric pressure variations across the width of the spicule
if the LOS is approximately perpendicular to its bulk transverse
motion. There is also supporting evidence of this asymmetry at
the positions of the black arrows in Figure 7(d).

4.2. Case 2. Transverse Motion Dominant Along LOS

Figure 8 gives a comparison of the different observed and
estimated quantities for spicule SP8. The slice across the
spicule to produce the time–distance plots in Figure 9 is shown
in Figure 8(a). It can be seen from Figures 8(c) and 9(b) that the
Doppler velocity is symmetric across the width of the spicule.
This is consistent with the kink wave model shown in Figures 5
(c) and (d), where the LOS is along the direction of the bulk
transverse motion. This interpretation does not permit the
appearance of an apparent m=0 torsional Alfvén wave and is
consistent with what we actually observe. If the LOS is
perpendicular to the spicule axis, m=0 motion is independent
of the azimuthal viewing angle; however, m=1 motion is not.
From the data analyzed here, spicules that do not have a
notable transverse POS motion do not exhibit the red–blue
Doppler asymmetry across their widths, which De Pontieu et al.
(2012) interpreted as m=0 torsional Alfvén waves. Therefore,
this supports the idea that the asymmetric Doppler shift across
spicules shown in Figures 5(c) and 6(b) is actually due to
m=1 rather than m=0 rotational motion. In such a scenario,
the rotational and transverse motions could be coupled (see,
e.g., Goossens et al. 2014) and this should be the focus of a
future study.

The kink wave model of Figures 5(c) and (d) suggests that a
positive Doppler velocity should correspond to a positive LOS
magnetic field component. However, comparison between
Figures 9(b) and (d) shows a more asymmetric profile for the
modeled magnetic perturbation. Since the time–distance plots
of Figure 9 also show a weaker but still noticeable transverse
displacement in the POS, this could be due to external pressure
gradients in the spicule’s environment, or indeed another kink
wave polarized at a different angle. The kink wave model
illustrated in Figure 5 assumes that there is only one kink wave
present and that the spicule is undergoing “free oscillation.” Of
course, this is highly idealized and the assumption of a
quiescent environment may be far from reality. However, in
agreement with Case 1 in Section 4.1, our modeling suggests
that pressure forces in and around spicules play a part in their
observed dynamics and that the initial interpretation of
incompressible motion by De Pontieu et al. (2007) may have
been too simplified.

5. Conclusions

To gain a better insight into the true nature of 3D spicular
motion from observations, it is crucial to carefully analyze the
LOS and POS velocity components and how they relate to each
other. Here, we have achieved this by combining both imaging
and spectroscopic Hα data from the high spatial temporal
resolution CRISP instrument. From a case study of eight

spicules, it was found that 40% had their bulk transverse
motion mainly in the POS and the other 60% had this motion
dominant along the LOS, with results consistent with those
reported as Cases 1 and 2, respectively. This allowed us to
analyze this transverse motion from two approximately
perpendicular angles. When the LOS is mostly parallel to the
transverse motion, no signatures of apparent m=0 torsional
Alfvén waves were found. However, when the LOS is almost
perpendicular to the spicule transverse motion, a red–blue
asymmetry, indicative of apparent m=0 torsional Alfvén
waves, is present. This contradiction can be most readily
explained by the m=1 kink wave, which has both transverse
and rotational components that are not independent of the LOS.
It should be the purpose of a future study to investigate possible
coupling between these velocity components and whether
mode conversion is taking place. Further support was found for
the kink wave interpretation by modeling the LOS magnetic
perturbation using estimates of the LOS and POS velocity as
input for the magnetic induction equation. It was found that the
spicular transverse motion cannot be assumed to be incom-
pressible and that even pressure gradients in the environment
may influence their observed dynamics. This investigation
opens the way to obtaining more accurate information about
actual 3D spicular motion. This knowledge is necessary for a
more precise interpretation of MHD wave modes and
estimation of their associated energy flux. The forthcoming
DKIST instrument, with the highest spatial/temporal resolution
yet, will provide another leap forward in this regard.
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