
This is a repository copy of Silicon-induced root nodulation and synthesis of essential 
amino acids in a legume is associated with higher herbivore abundance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/116288/

Version: Accepted Version

Article:

Hartley, Susan E orcid.org/0000-0002-5117-687X, Johnson, Scott N., Ryalls, James M. W.
et al. (4 more authors) (2017) Silicon-induced root nodulation and synthesis of essential 
amino acids in a legume is associated with higher herbivore abundance. Functional 
Ecology. ISSN 0269-8463 

https://doi.org/10.1111/1365-2435.12893

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



�

�

�

�

�

�

�����������	�
���������	��������������
�������
��
�����

������������������
�	�
�����������
����������
���
������
�
��	�����
�

�

�

�������	� ���������	
���	���


������������ �����������������


�������������	� ���� �� �!�����

�������"#��� �"���$��%��$��	� �&��

'�#������(����)�%��$���	� ��$����*������+�,��������� ����-�.�����*�/�01��"�������������)����$��

��.���#����
/������*�������2���3+�-�.�������)�4��1*�������#�����)�5���6��
������*���#��+�,��������� ����-�.�����*�/�01��"�������������)����$��
��.���#����
���0*�% �#+�,��������� ����-�.�����*�/�01��"�������������)����$��
��.���#����
��7�"���*�����+�8�0�����$�,�����9))����)���.���#������ �/����6��
������*�
�$���+�,��������� ����-�.�����*���$�����)���������� �/����$�
7$����� �*�%� ��0+�,��������� ����-�.������

:���0�� �	�
�#����� �*���$ �*���6�#�*��� ������*�����6���);����*������� �)����*�
����*�������

��

�

�

Functional Ecology: Confidential Review copy

Functional Ecology: Confidential Review copy



1 

 

�����������	�
���������	��������������
�������


��
�����������������������
�	�
�����������
��

��������
���
������
���	�����
��

 

Scott N. Johnson1*, Susan E. Hartley2, James M.W. Ryalls1, Adam Frew1,  

Jane L. DeGabriel3, Michael Duncan4 and Andrew N. Gherlenda1 

 

1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 

NSW, 2751, Australia 

2 York Environment and Sustainability Institute, Department of Biology, University of York, York 

YO10 5DD, United Kingdom 

 3New South Wales Office of Environment and Heritage, PO Box 1967, Hurstville NSW, 1481, 

Australia 

4School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, 

Australia 

*Corresponding author: Scott Johnson, Hawkesbury Institute for the Environment, Western Sydney 

University, Locked Bag 1797, Penrith, NSW, 2751, Australia (Scott.Johnson@westernsydney.edu.au)  

 

 

�	�������
�����
: Silicon indirectly promotes aphid abundance 

�

�

�

�

�

Page 1 of 29

Functional Ecology: Confidential Review copy

Functional Ecology: Confidential Review copy



2 

 

�	������1 

1.� Ecologists have become increasingly aware that silicon uptake by plants, especially the 2 

Poaceae, can have beneficial effects on both plant growth and herbivore defence. The 3 

effects of silicon on other plant functional groups, such as nitrogen@fixing legumes, have 4 

been less well studied. Silicon could, however, indirectly promote herbivore performance in 5 

this group if reported increases in N2@fixation caused improvements in host plant quality for 6 

herbivores.  7 

2.� We tested how silicon supplementation in the legume ��������	
��	 affected plant growth 8 

rates, root nodulation and foliage quality (silicon content and amino acid profiles) for an 9 

insect herbivore (���
��������������). 10 

3.� Plants supplemented with silicon (Si+) grew three times as quickly as those without 11 

supplementation (Si@), almost entirely in shoot mass. While root growth was unaffected by 12 

silicon uptake, root nodules containing nitrogen@fixing bacteria were 44% more abundant 13 

on Si+ plants. Aphid abundance was twice as high on Si+ plants compared to Si@ plants and 14 

was positively correlated with silicon@stimulated plant growth. 15 

4.� Si+ plants accumulated more than twice as much silicon as Si@ plants, but did not have 16 

higher silicon ������
�	
���� because of dilution effects linked to the rapid growth of Si+ 17 

plants. Si+ plants showed a 65% increase in synthesis of essential foliar amino acids, 18 

probably due to increased levels of root nodulation.  19 

5.� These results suggest that increased silicon supply makes ����	
��	 more susceptible to ���20 

�����, mainly because of increased plant growth and resource availability (i.e. essential 21 

amino acids). While silicon augmentation of the Poaceae frequently improves herbivore 22 

defence, the current study illustrates that this cannot be assumed for other plant families 23 
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where the beneficial effects of silicon on plant growth and nutrition may promote herbivore 24 

performance in some instances.           25 

�
���������amino acids, aphids, legume, nodulation, nitrogen fixation, plant defence, silica, silicon 26 

�27 

�����	�����28 

Plant silicon has multiple functional roles in plants and it is unusual in that it has been suggested to 29 

provide a particularly broad range of benefits to plants, including resistance to both abiotic and 30 

biotic stresses (Cooke, DeGabriel & Hartley 2016; Cooke & Leishman 2016). These include drought 31 

and salinity (Liang et al. 2007; Ma & Yamaji 2008), herbivores (Reynolds, Keeping & Meyer 2009; 32 

Hartley & DeGabriel 2016) and diseases (Fauteux et al. 2006). Silicon is the second most abundant 33 

element in the Earth’s crust, which plants acquire from the soil via uptake of soluble silicic acid (Ma 34 

& Yamaji 2008). The Poaceae, in particular, often accumulate large amounts of silicon, sometimes in 35 

excess of 10% of dry mass, more than any other inorganic constituent (Epstein 1999). The process 36 

of silicon uptake and deposition is still incompletely characterised, but both active and passive 37 

transport mechanisms have been identified in a range of crop species (Ma et al. 2006; Hartley 2015; 38 

Deshmukh & Belanger 2016). Silicon can be deposited within or between cells, in the cell wall or as 39 

discrete opaline phytoliths (Cooke & Leishman 2011). Deposition patterns can be altered markedly 40 

by changes in silicon supply (Hartley et al. 2015).  41 

 42 

Agronomists have recognised since the 1960s that applying silicon to soils can dramatically 43 

increase rates of plant growth with benefits for crop yield in a range of systems (Epstein 1999; 44 

Guntzer, Keller & Meunier 2012). However, most of these studies demonstrated these benefits in 45 

the Poaceae, where silicon can be used as a structural material to support more erect growth as 46 

well as increased rigidity and resistance to lodging (Schoelynck et al. 2010; Stromberg, Di Stilio & 47 
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Song 2016). It is also metabolically ‘cheaper’ than other structural biochemicals (e.g. lignin), so this 48 

silicon@supported upright growth potentially allows plants to increase photosynthetic efficacy and 49 

compete more effectively for light and space (Schoelynck et al. 2010; Stromberg et al. 2016). 50 

However, the existence of these benefits is less@well characterised in other plant functional groups 51 

such as nitrogen@fixing legumes, though there have been some studies which demonstrate growth 52 

increases in silicon supplemented legumes (Horst & Marschner 1978; Miyake & Takahashi 1985; 53 

Guo et al. 2006). In addition to improving plant structure, silicon supplementation may have 54 

another potential benefit for legume growth via increased rates of root nodulation and symbiosis 55 

with nitrogen fixing bacteria (Nelwamondo & Dakora 1999; Mali & Aery 2008). Increased 56 

nodulation and biological nitrogen fixation, however, frequently makes legumes more susceptible 57 

to herbivory via increased plant growth and nitrogen availability in the plant (e.g. Gerard 2001; 58 

Johnson & McNicol 2010; Guo et al. 2013). This seems especially true for fluid@feeding aphids, 59 

which benefit from fluxes in amino acid concentrations in the phloem sap (e.g. Johnson, Ryalls & 60 

Karley 2014; Ryalls et al. 2016). Silicon supplantation may therefore indirectly promote the 61 

performance of some herbivores if it causes such changes in the host plant.  62 

 63 

In addition to promoting plant growth, silicon deposition in plant tissues has been shown to be an 64 

effective defence against both vertebrate (Massey & Hartley 2006; Wieczorek et al. 2015) and 65 

invertebrate herbivores (Keeping & Meyer 2006; Massey, Ennos & Hartley 2006; Frew et al. 2016). 66 

Silicon negatively affects herbivores via abrasive effects on herbivore mouthparts (Massey & 67 

Hartley 2009; but see Kvedaras et al. 2009), reduced digestive efficiency (Massey et al. 2006; Massey 68 

& Hartley 2006; Wieczorek et al. 2015) and induction of secondary metabolites (Reynolds et al. 69 

2009), which can include metabolites involved in indirect defences (e.g. recruitment of herbivore 70 

natural enemies) (Kvedaras et al. 2010).  71 

 72 
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The range of effects of silicon supplementation on legumes presents a dichotomy whereby 73 

increasing silicon availability could either make legumes better defended against herbivores via 74 

increased silicon defences in the foliage (Reynolds et al. 2009) or make them more nutritious for 75 

herbivores via increased nodulation increasing nitrogen availability (Mattson 1980). The relative 76 

balance of these two effects, operating either directly (e.g. defence) or indirectly (e.g. nutritional 77 

quality), has not yet been tested experimentally and is the rationale for this study.  78 

 79 

The objective of this study was to determine whether increasing silicon availability for lucerne 80 

(�����	����	
��	�L.) affected an insect herbivore (the aphid ���
��������������) either via 81 

increased silicon uptake into the foliage and/or altered concentrations of amino acids in the 82 

foliage. Based on observations that silicon can increase root nodulation in legumes (Nelwamondo 83 

& Dakora 1999; Mali & Aery 2008), we predicted that silicon supplementation would increase plant 84 

growth rates and root nodulation, which would increase foliar amino acid concentrations and 85 

consequently herbivore performance.  86 

�87 

��
�����������
�����88 

���������
	������������89 

Lucerne (����	
��	�L., cv. Sequel) plants were grown from seed at 26/18ºC (day:night) in a 90 

glasshouse receiving supplemental light (15:9 light:dark) and humidity controlled at 55% (see Ryalls 91 

et al. 2013 for further technical details).  Eighty eight plants were grown in 70 mm diameter pots 92 

that were 135 mm deep (allowing unrestricted root growth for the duration of the experiment). 93 

Each contained c. 700g of soil excavated from the Hawkesbury campus of Western Sydney 94 

University (latitude −33.608847, longitude 150.747016). The soil is typified as low@fertility sandy 95 

loam in the Clarenden Formation (Chromosol), which has low bioavailable Si content of 17 mg kg@1 96 

(see Barton et al. 2010 for full details). Sandy loam soils typically contain c. 35 mg kg@1 of 97 
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bioavailable Si (Environmental Analysis Laboratory, Southern Cross University personal 98 

communication). Plants were irrigated with c. 70 ml of tap water (3ppm Si) three times a week. 99 

After two weeks of growth, half of the plants continued to receive tap water at the same intervals 100 

while the other half received 70 ml of 500 mg l@1 soluble Si in the form of NaSiO3.9H2O (Sigma@101 

Aldrich, Castle Hill, NSW, Australia) three times a week for six weeks. NaSiO3.9H2O has been used in 102 

numerous studies to increase silicification of leaves and deter herbivores (reviewed by Reynolds et 103 

al. 2009). When plants were six weeks old, 22 of the plants receiving the silicon supplementation 104 

and 22 of the plants receiving tap water were each inoculated with two teneral female ��������� 105 

Plants were configured in a randomised fashion in the glasshouse.  ���
�������������� used in 106 

the experiment were taken from an established culture originating from an individual 107 

parthenogenetic adult female collected from a lucerne field on campus (Ryalls et al. 2017). Cultures 108 

were maintained on spare lucerne plants (cv. Sequel) for at least six generations prior to the 109 

inoculation period. 110 

 111 

White mesh (organza) bags (125 x 170 mm) were applied tightly around the rim of all pots 112 

confining aphids to their allocated plants. After two weeks, bags were removed from all plants, 113 

aphid colonisation assessed (% plants with > 1 aphid present) and individuals removed with a fine 114 

paintbrush to be counted. Plants were separated and cleaned free of soil with water before 115 

measuring shoot height, maximum rooting depth and counting the number of root nodules 116 

(housing nitrogen@fixing bacteria). Plants were freeze dried for 48 hr and weighed. Leaves were 117 

separated from the stems and ball@milled to a fine power prior to chemical analysis.   118 

�119 

������	��	�	������120 

Chemical analysis was conducted on insect@free plants (44 of the 88 plants). To provide enough 121 

dried leaf material to perform both amino acid and silicon analysis to be conducted on the same 122 
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plants it was necessary to pool foliar samples (2@3 plants per sample). This resulted in nine 123 

replicates of Si+ and Si@ plants. Foliar silicon concentrations were analysed with X@ray fluorescence 124 

spectrometry according to the methodology set out in Reidinger, Ramsey & Hartley (2012). In brief, 125 

plant material was ground to a fine powder and pressed into 13mm@diameter pellets. Following the 126 

methods of Reidinger et al. (2012), foliar silicon concentration was determined using a Niton XL3t 127 

XRF analyzer (Thermo Fisher Scientific, Inc., MA, USA), for a measurement time of 30 seconds. 128 

Results were expressed as foliar silicon concentration (as % of dry mass), calibrated against plant@129 

certified reference material of known silicon content (Garbuzov, Reidinger & Hartley 2011).  130 

 131 

Soluble amino acids were extracted and analysed from milled foliar samples (10@15 mg) following 132 

the protocol set out by Ryalls et al.�(2015). Foliar amino acid composition is tightly correlated with 133 

phloem amino acids in ����	
��	, so analysing foliar material is a reliable proxy for phloem quality 134 

(Ryalls et al. 2017). Amino acid standards within the AAS@18 (Fluka, Sigma@Aldrich) reference amino 135 

acid mixture were supplemented with asparagine and glutamine (A0884 and G3126, respectively, 136 

from Sigma, Sigma@Aldrich). Nine essential amino acids (i.e. those that cannot be synthesised by 137 

insects �������), including arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, 138 

threonine and valine (Morris 1991) and 10 non@essential amino acids (alanine, asparagine, aspartic 139 

acid, cysteine, glutamic acid, glutamine, glycine, proline, serine and tyrosine) were detected using 140 

this method. 141 

�142 

�
	
��
��	��	�	�����143 

The effects of silicon supplementation and aphid inoculation and the interaction between these 144 

terms on plant dry mass, shoot height, rooting depth, root nodule abundance and root nodules per 145 

cm of roots were analysed with two way analysis of variance (ANOVA) tests. Differences in silicon 146 

content (log transformed) and concentrations between treatment groups were analysed with a 147 
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one@way ANOVA (silicon supplementation included as a fixed factor). The effects of Si addition on 148 

aphid colonisation success and aphid abundance were analysed with generalised linear models 149 

with binomial error structure and a logit link function and Poisson error structure with a log link 150 

function, respectively. Silicon supplementation was included as a fixed effect and the dispersion 151 

parameter was estimated.  Pearson’s correlation tests were used to explore relationships between 152 

plant parameters and aphid abundance. Where appropriate, data transformations (see Figure and 153 

Table legends for details) were chosen to meet model assumptions and give residual diagnostic 154 

plots which fitted a normal distribution and showed least heteroscedasticity. Permutational 155 

multivariate analysis of variance (PERMANOVA) was used to explore the impacts of silicon 156 

supplementation on amino acid composition and concentrations for total, essential and non@157 

essential amino acids. ANOVA and generalised linear models were performed with Genstat (version 158 

17, VSN International, UK), whereas the PERMANOVA was conducted in R v3.3.1 using the using 159 

the R@package vegan (Oksanen et al. 2017). 160 

�161 

�
�	���162 

Silicon supplementation (Si+ plants) increased plant biomass almost three@fold compared to those 163 

grown without silicon supplementation (Si@ plants), whereas the presence of aphids had no 164 

significant impact on plant biomass (Fig. 1 A). This increase in biomass in Si+ plants was attributed 165 

to increased growth in the shoots rather than the roots, the latter being similar in Si+ and Si@ plants 166 

(Table 1). Plants inoculated with aphids grew slightly less tall than those without (Table 1). Silicon 167 

supplementation also resulted in c. 44% increase in root nodulation (Fig. 1B), which was reflected in 168 

higher nodule density on the roots (Table 1). Nodulation was unaffected by aphids (Fig. 1B, Table 169 

1).  170 

 171 
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Aphid colonisation success was similar on Si@ and Si+ plants (73% and 64%, respectively; F1,42 = 172 

0.42, ��= 0.517).  Aphids were substantially more abundant (+112%) on Si+ plants than Si@ plants 173 

(Fig. 2). Moreover, aphid abundance was positively correlated with plant biomass (Fig. 3A) and 174 

plant height (Fig. 3B).  175 

 176 

Si+ plants accumulated over twice as much silicon as Si@ plants (mean ± standard error: 262 ± 177 

48.14 mg and 124.35 ± 14.05, respectively) (F1,16 = 12.05,���= 0.003). However, because Si+ plants 178 

grew so much bigger than Si@ plants, this diluted foliar silicon concentrations by 26% in Si+ plants 179 

(Fig. 4A). PERMANOVA analysis showed that Si+ plants had 65% higher concentrations of essential 180 

amino acids than Si@ plants (Fig. 4B). Overall there was no difference in total and non@essential 181 

amino acid concentrations between the two groups, but there was a significant increase in the 182 

concentrations of 11 of the 18 amino acids tested in the silicon treated plants compared to controls 183 

(Fig. S1; Table S1).   184 

�185 

����	������186 

This study has shown that silicon supplementation caused a significant increase in root nodulation 187 

in a legume, despite no increase in root length. This contributed to silicon@induced increases in 188 

shoot biomass and enhanced foliar resources in the form of essential amino acids. While silicon 189 

accumulation increased substantially in silicon supplemented plants, foliar silicon concentrations 190 

were diluted due to this rapid increase in plant growth. These silicon@induced changes to plant 191 

physiology and chemistry were associated with significant increases in herbivore abundance.  192 

 193 

Enhanced growth of the meristems and increased synthesis of essential amino acids were the most 194 

likely drivers of increased aphid abundance on Si+ plants. Aphids often feed on actively growing 195 

stems because nutrients, specifically amino acids, are being translocated to these tissues for growth 196 
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(Raven 1983; Dixon 1998; Johnson, Elston & Hartley 2003). We found a positive correlation 197 

between aphid abundance and plant growth (both dry mass and plant height), which supports the 198 

conclusion that aphids performed better on the faster growing plants. Silicon supplementation also 199 

increased concentrations of essential amino acids in the foliage by 65% relative to plants without 200 

silicon supplementation. The concentration of essential amino acids in the phloem sap of plants is 201 

comparatively low (10@30% of total protein amino acids; Douglas 2003), so silicon@induced 202 

increases could promote aphid performance. In particular, >90% of total amino acid content of 203 

aphid tissues are essential amino acids (Douglas 2003) so this group is very important for aphid 204 

nutrition. We did not attempt to directly relate aphid abundance to amino acid concentrations of 205 

specific plants on which aphids were feeding because aphids themselves have large qualitative and 206 

quantitative effects on phloem amino acids (Douglas 2003), particularly in �����	�� spp. (Guo et al. 207 

2013). This confounds interpretation of how silicon supplementation was affecting amino acid 208 

concentrations on aphid@infested plants, not least because aphid populations were much larger on 209 

Si+ plants (and possibly having larger impacts on amino acids than on Si@ plants). Nonetheless, it 210 

seems likely that silicon@induced increases in foliar essential amino acids were at least partly 211 

responsible for increased aphid abundance. 212 

 213 

While silicon has been shown to increase root nodulation and nitrogen fixation in legumes 214 

(Nelwamondo & Dakora 1999; Dakora & Nelwamondo 2003; Mali & Aery 2008), the mechanisms 215 

for this have yet to be demonstrated. The simplest explanation is that increased root growth 216 

increases potential invasion sites for rhizobial bacteria (Mali & Aery 2008), but we found that silicon 217 

increased nodule density and had little impact on root growth ������. Using comparable application 218 

rates (480 mg l@1) as the present study (500 mg l@1), Nelwamodo & Dakora (1999) similarly found 219 

that nodule density increased on sand@grown cowpea (����	���������	
	) plants.   220 
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In a follow up study, Nelwamondo et al. (2001) showed that silicon supplementation increased the 221 

abundance of bacteroids and symbiosomes (the plant@derived membrane that encases the 222 

bacteroids) in root nodules, which they suggested could explain enhanced N2 fixation. They also 223 

found that silicon increased cell wall thickness of root nodules which appeared to decrease 224 

intercellular spaces which should, in theory, reduce N2 fixation because of lower gaseous diffusion 225 

(Nelwamondo et al. 2001). The fact that N2@fixation actually increased led Nelwamondo et al. (2001) 226 

to speculate that silicification reduced the need for lignin, which is costly in terms of carbon; carbon 227 

could then be channelled into bacteroid respiration to increase N2@fixation. It is also possible that 228 

carbon could be channelled towards enhanced nodule organogenesis. Nelwamondo et al. (2001) 229 

also proposed that silicon supplementation had parallels with phosphorus fertilisation in terms of 230 

stimulating root nodulation, including increased production of compounds that upregulate 231 

nodulation genes (Dakora & Nelwamondo 2003). This has yet to be tested. 232 

 233 

The efficacy of silicon defence against sap@feeders, such as aphids, appears less clear cut than on 234 

chewing herbivores and has been the subject of debate (Massey et al. 2006; Keeping & Kvedaras 235 

2008; Kvedaras et al. 2009). Published studies have shown silicon has either no (e.g. Hogendorp, 236 

Cloyd & Swiader 2009; Cherry et al. 2012; Keeping, Miles & Sewpersad 2014) or negative (e.g. 237 

Gomes et al. 2008; Costa, Moraes & DaCosta 2011; Dias et al. 2014) effects on this feeding guild. 238 

The variation in these published findings probably reflects the fact that whilst silicon can negatively 239 

affect aphids via epidermal resistance to stylet penetration, aphids can circumvent some of the 240 

consistent negative impacts reported for chewing herbivores (e.g. mandible wear and impaired 241 

food breakdown) simply by virtue of their feeding behaviour (i.e. fluid acquisition via a stylet). 242 

Further experimental work and meta@analysis of existing studies would help to address the extent 243 

to which different herbivore guilds are affected by silicon defences. In the present study, silicon 244 
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application did not affect aphids adversely because Si+ plants did not have higher concentrations 245 

of silicon in the foliage.  246 

 247 

In addition to promoting physical defences at the leaf surface, silicon can also stimulate 248 

phytohormonal pathways in the plant, such as the jasmonic acid (JA) pathway (Ye et al. 2013), 249 

which underpins synthesis of secondary metabolites with defensive functions (Wu & Baldwin 2010). 250 

Stimulation of the JA pathway is known to supress the salicylic acid (SA) pathway, which is often 251 

triggered by phloem@feeding herbivores and can result in plants mounting a defensive response 252 

against these herbivores (Ode, Johnson & Moore 2014). We still know very little about how silicon 253 

affects other plant defences, but if silicon application were to stimulate the JA pathway (and 254 

supress the SA pathway), this may have also contributed to the success of aphids on silicon 255 

supplemented plants in this study. We can conclude, however, that if defences were activated by 256 

silicon application, they had minimal impacts on aphids in this system.     257 

 258 

This study has shown that lucerne plants benefitted from silicon supplementation in terms of both 259 

increased growth and resource acquisition via root nodulation, whereas the concentrations of 260 

silicon in the foliage tended to decrease in silicon supplemented plants. Aphid abundance 261 

increased substantially on these faster@growing plants. There a number of hypotheses considering 262 

the relationships between resources (nitrogen, water), plant growth and herbivory (reviewed by 263 

Hartley & Jones 1997). Our results are consistent with the resource availability hypothesis (Coley, 264 

Bryant & Chapin 1985), which predicts that faster growing plants, with increased access to 265 

resources (e.g. either through silicon fertilisation or biologically fixed nitrogen) will be less well 266 

defended against herbivores. Increasing the rate of silicon supplementation may increase foliar 267 

silicon concentrations, but increasing the concentrations of silicon application much beyond those 268 

used in this study would most likely inhibit nodulation and N2@fixation, as has been reported for 269 
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cowpea plants (Mali & Aery 2008). In that study, high doses of silicon application reduced calcium 270 

concentrations in the plant; calcium increases biosynthesis of isoflavonoid nodulation signals in 271 

legumes (Dakora & Phillips 1996) so it was suggested this was the reason for high silicon 272 

application diminishing nodulation (Mali & Aery 2008).  273 

 274 

To our knowledge, this is the first study to report beneficial effects of silicon addition on herbivore 275 

performance which arose indirectly via promotion of root nodulation and amino acid biosynthesis. 276 

Further work on non@grass species is needed, but our results suggest that in some functional 277 

groups of plants, such as legumes, the positive effects of silicon on plant growth and nitrogen 278 

acquisition may outweigh any additional defensive function of silicon supplementation.  Our 279 

findings suggest that silicon supplementation of legumes may not provide the benefits that such 280 

applications provide to grasses such as cereals (Guntzer et al. 2012), at least in part because the 281 

positive effects on nodulation, nutrient content and yield may make these crops more susceptible 282 

to aphids pests and the diseases they vector. There is an increasing need to extend the use of 283 

legumes in agriculture because of their benefits to soil fertility, so understanding how silicon 284 

promotes nodulation and N2@fixation and its indirect impact on plant susceptibility to herbivores 285 

could be a promising area of research.  286 

�287 

�	����������	������288 
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�.����
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/����0����11�

�
����0��1�

��2��	���������

�
.��0��1�

�������	�
��.
��

���������2�

Si@ 
Control 7.52 ± 0.76 10.06 ± 1.01 0.68 ± 0.10 

Aphids 6.70 ± 0.60 11.47 ± 0.79 0.35 ± 0.05 

Si+ 
Control 13.84 ± 1.32 11.40 ± 1.17 0.78 ± 0.19 

Aphids 10.22 ± 0.93 9.92 ± 1.11 0.86 ± 0.20 

�
	
��
��	��	�	�����    

Silicon F1,84 = 27.11,  

� < 0.001 

F1,84 = 0.01,  

� = 0.918 

F1,84 = 4.19,  

� = 0.044 

Aphids F1,84 = 3.99,  

� = 0.049 

F1,84 = 0.01,  

� = 0.970 

F1,84 = 0.71,  

� = 0.401 

Silicon x Aphids F1,84 = 1.12,  

� = 0.293 

F1,84 = 1.12,  

� = 0.164 

F1,84 = 1.82,  

� = 0.181 
1 log transformed 468 

2 log+1 transformed 469 

�470 

�471 
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3��	�
�4
�
����472 

3��	�
� *�Impacts of silicon supplementation and aphid inoculation on the (A) biomass (log 473 

transformed) and (B) abundance of root nodules on ����	
��	. Mean values ± standard error shown. 474 

N = 22. 475 

3��	�
�%. Impact of silicon supplementation on aphid (��������) abundance on colonised plants. 476 

Mean values per plant ± standard error shown. N = 14 (Si@) and N = 16 (Si+). 477 

3��	�
�&* Correlations between aphid abundance and (A) plant biomass and (B) plant (shoot) 478 

height. N= 30. Solid lines represent linear regression through all the points. Dashed lines represent 479 

95 % confidence intervals 480 

3��	�
�#. Impacts of silicon supplementation on foliar (A) silicon concentrations (logit transformed) 481 

and (B) essential amino acids in ����	
��	. Mean values ± standard error shown. N = 9. 482 
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