This is a repository copy of D-module and F-module length of local cohomology modules.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/115305/
Version: Accepted Version

Article:

Katzman, M. orcid.org/0000-0001-7553-3520, Ma, L., Smirnov, I. et al. (1 more author) (2018) D-module and F-module length of local cohomology modules. Transactions of the American Mathematical Society, 370. pp. 8551-8580. ISSN 0002-9947
https://doi.org/10.1090/tran/7266
© 2018 American Mathematical Society. This is an author produced version of a paper subsequently published in Transactions of the American Mathematical Society. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

D-MODULE AND F-MODULE LENGTH OF LOCAL COHOMOLOGY MODULES

MORDECHAI KATZMAN, LINQUAN MA, ILYA SMIRNOV, AND WENLIANG ZHANG

Abstract

Let R be a polynomial or power series ring over a field k. We study the length of local cohomology modules $\mathrm{H}_{I}^{j}(R)$ in the category of D-modules and F modules. We show that the D-module length of $\mathrm{H}_{I}^{j}(R)$ is bounded by a polynomial in the degree of the generators of I. In characteristic $p>0$ we obtain upper and lower bounds on the F-module length in terms of the dimensions of Frobenius stable parts and the number of special primes of local cohomology modules of R / I. The obtained upper bound is sharp if R / I is an isolated singularity, and the lower bound is sharp when R / I is Gorenstein and F-pure. We also give an example of a local cohomology module that has different D-module and F-module lengths.

Contents

1.	Introduction	1
2.	Preliminaries	4
3. A general bound of local cohomology modules as D-modules	7	
4. Formulas and upper bounds on the D-module and F-module length	8	
5. A lower bound on F-module length of local cohomology modules	13	
6. A computation of Fermat hypersurfaces	19	
7.	D-module length vs. F-module length	21
References	28	

1. Introduction

Since its introduction by Grothendieck, local cohomology has become a major part of commutative algebra that has been studied from different points of view. When R is a polynomial or power series ring over a field k, each local cohomology module $\mathrm{H}_{I}^{j}(R)$ admits a natural module structure over $D(R, k)$, the ring of k-linear differential operators $(D(R, k)$-modules will be reviewed in \$22). In characteristic 0 , Lyu93 shows that $\mathrm{H}_{I}^{j}(R)$ has finite length as a $D(R, k)$-module, though $\mathrm{H}_{I}^{j}(R)$ is rarely finitely generated as an R-module. To this day, using the finite length property of $\mathrm{H}_{I}^{j}(R)$ in the category of $D(R, k)$-modules is still the only way to prove that $\mathrm{H}_{I}^{j}(R)$ has finitely many associated primes in characteristic 0 . In characteristic p, Frobenius action on local cohomology modules was used with great success by a number of authors, e.g.,

2010 Mathematics Subject Classification. Primary: 13D45; Secondary:13A35, 13C60.
W. Zhang is partially supported by the National Science Foundation through grant DMS \#1606414. L. Ma is partially supported by the National Science Foundation through grant DMS \#1600198, and partially by the National Science Foundation CAREER Grant DMS \# 1252860/1501102.
[PS73], HS77] and [HS93]. Lyubeznik (Lyu97) conceptualizes the previous work to develop a theory of F-modules in characteristic p (the reader may find an overview in §2).

As we have seen, in characteristic p, local cohomology modules $\mathrm{H}_{I}^{j}(R)$ can be viewed as both $D(R, k)$-modules and F-modules; Lyu97 compares these two points of view. It's shown that each F-module M admits a natural $D(R, k)$-module structure and its length as an F-module, $l_{F_{R}}(M)$, is no more than its length as a $D(R, k)$-module, $l_{D(R, k)}(M)$. The comparison of these two points of view was continued in Bli03, where Blickle shows that over an algebraically closed field the $D(R, k)$-module length is equal to the F^{∞}-module length (F^{∞}-modules will be reviewed in \$22). The fact that local cohomology modules have finite length as $D(R, k)$-modules has found many applications; for instance [NBW14] introduces numerical invariants of local rings using the length of local cohomology modules as $D(R, k)$-modules and shows that there are close connections between these invariants and F-singularities.

Despite the importance of the finiteness of the length of local cohomology modules as $D(R, k)$-modules and F-modules, finding the actual length of local cohomology modules as such modules remains an intriguing and difficult open question. In this paper we provide partial answers to this question in characteristic p.

Theorem 1.1 (Theorems 4.3 and 5.1). Let $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ (or $k\left[x_{1}, \ldots, x_{n}\right]$) with $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$, where k is a field of characteristic $p>0$. Let $A=R / I$ be reduced and equidimensional (respectively, graded reduced and equidimensional) of dimension $d \geq 1$.
(1) If A has an isolated non-F-rational point at \mathfrak{m} (e.g., A has an isolated singularity at \mathfrak{m}), then

$$
l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}+c=\operatorname{dim}_{k}\left(\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}\right)+c
$$

where c is the number of minimal primes of A. Moreover, if k is separably closed, then
$l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{F_{R}^{e}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{F_{R}^{\infty}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{D_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathbf{m}}^{d}(A)}^{*}\right)_{s}+c$.
(2) If A is F-pure and quasi-Gorenstein, then $l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)$ is exactly the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$.

One ought to remark that there is an effective algorithm to compute special primes of $\left.\mathrm{H}_{\mathfrak{m}}^{d}(A)(\boxed{\mathrm{KZ14}}]\right)$, hence the result above provides a practical tool to compute $l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)$ when $A=R / I$ is F-pure and quasi-Gorenstein.

We also construct the first example of a local cohomology module over an algebraically closed field whose $D(R, k)$-module length disagrees with its F-module length.

Theorem 1.2 (Proposition (7.5). Let $R=\overline{\mathbb{F}}_{p}[x, y, z, t]$ with $p \equiv 4(\bmod 7)$ and $f=$ $t x^{7}+t y^{7}+z^{7}$. Then

$$
l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=3<7=l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}\left(\mathrm{H}_{f}^{1}(R)\right) .
$$

While finding the actual length remains elusive in its full generality, we provide both upper and lower bounds.

Theorem 1.3 (Theorem 3.5). Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k and $f \in R$ be a polynomial of degree d. Then

$$
l_{D(R, k)}\left(\mathrm{H}_{f}^{1}(R)\right) \leq(d+1)^{n}-1
$$

Theorem 1.4 (Theorem 4.8). Let $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ (or $k\left[x_{1}, \ldots, x_{n}\right]$) with $\mathfrak{m}=$ $\left(x_{1}, \ldots, x_{n}\right)$, where k is a field of characteristic $p>0$. Let $A=R / I$ be reduced and equidimensional (respectively, graded reduced and equidimensional) of dimension $d \geq 1$. Assume the non-F-rational locus of A has dimension ≤ 1 (e.g., the nonsingular locus has dimension ≤ 1). Then we have

$$
\begin{aligned}
l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right) & \leq c+\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(\mathrm{H}_{P \frac{1}{A_{P}}}^{d-1}\left(\widehat{A_{P}}\right)\right)_{s}+\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s} \\
& \left.=c+\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(0_{\mathrm{H}_{P / A_{P}}^{d-1}}^{*} \widehat{A_{P}}\right)\right)_{s}+\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathbf{m}}^{d}(A)}^{*}\right)_{s}
\end{aligned}
$$

where c is number of minimal primes of I.
Theorem 1.5 (Theorem 5.1). Let k be a field of positive characteristic, let R denote the local ring $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ (or the graded ring $k\left[x_{1}, \ldots, x_{n}\right]$), and $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Let $A=R / I$ be reduced, equidimensional (or, respectively, graded reduced and equidimensional), and F-pure of dimension $d \geq 1$. Then $l_{F_{R}}\left(\mathrm{H}_{I}^{n-j}(R)\right)$ is at least the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{j}(A)$.

The upper and lower bounds on the $D(R, k)$-module and F_{R}-module length in the above results are sharp in many cases (see §4, §5, §6), and we can explicitly describe an F_{R}-submodule filtration of $\mathrm{H}_{I}^{n-d}(R)$ in terms of the generating morphisms when R / I is Cohen-Macaulay, which is maximal when R / I is Gorenstein and F-pure (see Theorem 5.8 and 5.5).

We also construct an example (Example 4.11) of a simple $D(R, k)$-module whose completion at a prime ideal P is not a simple $D\left(\widehat{R}_{P}, \kappa(P)\right)$-module.

Our paper is organized as follows. In Section 2, we recall some basic notions and results regarding $D(R, k)$-modules, F-modules, and tight closure theory. Section 3 is concerned with Theorem 1.3. Section 4 is devoted to proving Theorem 1.4. In Section 5 we prove Theorem [1.5, we also describe explicitly the maximal F_{R}-module filtration of $\mathrm{H}_{I}^{n-d}(R)$ in terms of their generating morphisms when R / I is Gorenstein and F injective (the Cohen-Macaulay F-injective case will also be discussed). In Section 6, we compute the dimension of the stable part (under the natural Frobenius action) of the top local cohomology of Fermat hypersurfaces. §7 proves Theorem 1.2 and related results. Examples and remarks showing the sharpness of our bounds will be given throughout.

Acknowledgements. This material is based partly upon work supported by the National Science Foundation under Grant No.1321794; some of this work was done at the Mathematics Research Community (MRC) in Commutative Algebra in June 2015. The second, third and fourth authors would like to thank the staff and organizers of the MRC and the American Mathematical Society for the support provided. The first author thanks the Department of Mathematics of the University of Illinois at Chicago for its hospitality while working on this and other projects.

2. Preliminaries

Throughout this paper, we always assume that $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ or $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field (not necessarily algebraically closed or perfect), and A is a reduced and equidimensional quotient or graded reduced and equidimensional quotient of R of dimension $d \geq 1$. We set $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. In this section we collect some notations and preliminary results from Lyu97] and [Bli04].
D-modules. The differential operators $\delta: R \rightarrow R$ of order $\leq n$ can be defined inductively as follows. A differential operator of order 0 is just multiplication by an element of R. A differential operator of order $\leq n$ is an additive map $\delta: R \rightarrow R$ such that for every $r \in R$, the commutator $[\delta, r]=\delta \circ r-r \circ \delta$ is a differential operator of order $\leq n-1$. The differential operators form a ring with the multiplication defined via the composition. We denote this ring by D_{R}.

We denote by $D(R, k) \subseteq D_{R}$ the subring of D_{R} consisting of all k-linear differential operators. Since $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ or $R=k\left[x_{1}, \ldots, x_{n}\right]$, it can be verified that $D(R, k)$ is generated by all operators of the form $\frac{1}{j!} \frac{\partial^{j}}{\partial x_{i}^{j}}$. By a D_{R}-module or a $D(R, k)$-module we mean a left module over D_{R} or $D(R, k)$.

When k is a field of characteristic p, it is not hard to show that every differential operator of order $\leq p^{e}-1$ is $R^{p^{e}}$-linear, where $R^{p^{e}} \subseteq R$ is the subring of all the p^{e}-th powers of all the elements of R. In other words, we always have D_{R} is a subring of $\cup_{e} \operatorname{Hom}_{R^{p^{e}}}(R, R)$ In particular, all differential operators are automatically k-linear if k is perfect, thus $D_{R}=D(R, k)$ if k is perfect.
F-modules. Assume that k is a field of characteristic p. The notion of F-modules was introduced in Lyu97, and further investigated and generalized in Bli01, Bli03. We use $R^{(e)}$ to denote the target ring of the e-th Frobenius map $F^{e}: R \rightarrow R$. We shall let $F^{e}(-)$ denote the Peskine-Szpiro's Frobenius functor from R-modules to R-modules. In detail, $F^{e}(M)$ is given by base change to $R^{(e)}$ and then identifying $R^{(e)}$ with R, i.e., $F^{e}(M)=R^{(e)} \otimes_{R} M$.

An F_{R}^{e}-module is an R-module M equipped with an R-linear isomorphism $\theta: M \rightarrow$ $F^{e}(M)$ which we call the structure morphism of M. A homomorphism of F_{R}^{e}-modules is an R-module homomorphism $f: M \rightarrow M^{\prime}$ such that the following diagram commutes

When $e=1$ we simply say M is an F_{R}-module (or F-module if R is clear from the context). It is easy to see that every F_{R}^{e}-module is also an $F_{R}^{e r}$-module for every $r \geq 1$

[^0]by iterating the structure isomorphism r times. The union of the categories of $F_{R^{-}}^{e}$ modules over all e forms what we called the category of F_{R}^{∞}-modules. ${ }^{2}$ With these definitions, the categories of F_{R}^{e}-modules and F_{R}^{∞}-modules are abelian categories.

When $R=k\left[x_{1}, \ldots, x_{n}\right]$ and M is a graded R-module, there is a natural grading on $F(M)=R^{(e)} \otimes_{R} M$ given by $\operatorname{deg}(r \otimes m)=\operatorname{deg} r+p^{e} \cdot \operatorname{deg} m$ for homogeneous elements $r \in R$ and $m \in M$. With this grading, a graded F_{R}^{e}-module is an F_{R}^{e}-module M such that the structure isomorphism θ is degree-preserving. A morphism of graded F_{R}^{e}-modules is a degree-preserving morphism of F_{R}^{e}-modules. It is not hard to see that graded F_{R}^{e}-modules form an abelian subcategory of the category of F_{R}^{e}-modules. Graded F_{R}^{e}-modules, at least for $e=1$, were introduced and studied in detail in [Zha12] and MZ14].

A generating morphism of an F_{R}^{e}-module M is an R-module homomorphism β : $M_{0} \rightarrow F^{e}\left(M_{0}\right)$, where M_{0} is some R-module, such that M is the limit of the inductive system in the top row of the commutative diagram

and $\theta: M \rightarrow F^{e}(M)$, the structure isomorphism of M, is induced by the vertical arrows in this diagram. M_{0} is called a root of M if $\beta: M_{0} \rightarrow F^{e}\left(M_{0}\right)$ is injective. An $F_{R^{-}}^{e}$ module M is called F-finite if M has a generating morphism $\beta: M_{0} \rightarrow F^{e}\left(M_{0}\right)$ with M_{0} a finitely generated R-module. When M_{0} is graded and β is degree-preserving, we say that M is graded F-finite F_{R}^{e}-module.

It is a fundamental result of Lyubeznik (Lyu97]) that local cohomology modules $\mathrm{H}_{I}^{i}(R)$ have a natural structure of F-finite F_{R}^{e}-modules for every $e \geq 1$. Moreover, when $R=k\left[x_{1}, \ldots, x_{n}\right]$ and I is a homogeneous ideal of $R, \mathrm{H}_{I}^{i}(R)$ are graded F-finite F_{R}^{e}-modules Zha12].

Following Lyu97, for any F-finite F_{R}-module M, there exists a smallest F_{R}-submodule $N \subseteq M$ with the property that M / N is supported only at \mathfrak{m}. Hence M / N is isomorphic (as an R-module) to $E^{\oplus r}$ where $E=E_{R}(k)$ denotes the injective hull of k. We define $\operatorname{crk}(M)$, the the corank of M, to be r.

One important feature of $F_{R^{-}}$modules is that they have a natural structure of $D_{R^{-}}$ modules, and thus $D(R, k)$-modules. We briefly recall this here, and we refer to Lyu97, Section 5] for details. Let M be an F_{R}-module with structure isomorphism θ. We set θ_{e} to be the e-th iterate of θ, i.e.,

$$
\theta_{e}=F^{e-1}(\theta) \circ \cdots \circ F(\theta) \circ \theta: M \rightarrow F^{e}(M)
$$

Now every element $\delta \in \operatorname{Hom}_{R^{p}}(R, R)$ acts on $F^{e}(M)=R^{(e)} \otimes_{R} M$ via $\delta \otimes \operatorname{id}_{M}$. We let δ act on M via $\theta_{e}^{-1} \circ\left(\delta \otimes \operatorname{id}_{M}\right) \circ \theta_{e}$. It is not very difficult to check that this action is welldefined. Moreover, an entirely similar construction shows that every F_{R}^{e}-module also have a canonical structure of a D_{R}-module. It follows that F_{R}^{∞}-modules are naturally

[^1]D_{R}-modules, and thus $D(R, k)$-modules. In sum, we have the following inclusion of abelian categories:
$\left\{F_{R}\right.$-modules $\} \subseteq\left\{F_{R}^{e}\right.$-modules $\} \subseteq\left\{F_{R}^{\infty}\right.$-modules $\} \subseteq\left\{D_{R}\right.$-modules $\} \subseteq\{D(R, k)$-modules $\}$.
Therefore for any F_{R}-module M we have the following inequalities on its length considered in the corresponding categories:
\[

$$
\begin{equation*}
l_{F_{R}}(M) \leq l_{F_{R}^{e}}(M) \leq l_{F_{R}^{\infty}}(M) \leq l_{D_{R}}(M) \leq l_{D(R, k)}(M) \tag{2.0.1}
\end{equation*}
$$

\]

$A\{f\}$-modules. Recall that we always assume A is a reduced and equidimensional or graded reduced and equidimensional quotient of R of dimension $d \geq 1$. Assume also that k is a field of characteristic p. Let M be a (in most cases Artinian) module over A. We say that M is an $A\{f\}$-module if there is an additive map $f: M \rightarrow M$ such that $f(a m)=a^{p} f(m)$. We will use $M_{s}=\bigcap k\left\langle f^{i}(M)\right\rangle$ to denote the Frobenius stable part of M. It is well-known that when M is either Noetherian or Artinian over A, M_{s} is a finite dimensional k-vector space [HS77, Lyu97].

Let $\mathscr{H}_{R, A}$ denote the Lyubeznik functor introduced in Lyu97: for every Artinian $A\{f\}$-module M, we have a natural induced map $\alpha: F_{R}(M) \rightarrow M$, since $F_{R}(M)^{\vee} \cong$ $F_{R}\left(M^{\vee}\right)$ by Lyu97, Lemma 4.1], we define

$$
\mathscr{H}_{R, A}(M)=\underset{\longrightarrow}{\lim }\left(M^{\vee} \xrightarrow{\alpha^{\vee}} F_{R}\left(M^{\vee}\right) \xrightarrow{F\left(\alpha^{\vee}\right)} F_{R}^{2}\left(M^{\vee}\right) \rightarrow \cdots\right),
$$

which is an F-finite F_{R}-module. In the graded case we have a similar functor ${ }^{*} \mathscr{H}_{R, A}$ that takes a graded Artinian $A\{f\}$-module to a graded F-finite F_{R}-module: one needs to replace Matlis dual by graded Matlis dual in the construction of ${ }^{*} \mathscr{H}_{R, A}$, (see LSW13] for details). One important example that we will use repeatedly is that $\mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right) \cong$ $\mathrm{H}_{I}^{n-d}(R)$, and in the graded case we also have ${ }^{*} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathrm{m}}^{d}(A)\right) \cong \mathrm{H}_{I}^{n-d}(R)$ Lyu97, Example 4.8], [LSW13, Proposition 2.8].
Tight closure and F-singularities. Tight closure theory was introduced by HochsterHuneke in HH90. In this article, we only need some basic properties of tight closure of zero in the top local cohomology module, $0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}$. Under mild conditions, for example when (A, \mathfrak{m}) is an excellent local domain of dimension $d, 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}$ is the largest proper A-submodule of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ that is stable under the natural Frobenius action on $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ (cf. Smi97]). A local ring (A, \mathfrak{m}) is called F-rational if A is Cohen-Macaulay and $0_{H^{d}(A)}^{*}=0.3$ Under mild conditions on the ring, for example when (A, \mathfrak{m}) is an excellent, reduced and equidimensional local ring, A is F-rational on the punctured spectrum if and only if $0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}$ has finite length.

A local ring (A, \mathfrak{m}) of characteristic $p>0$ is called F-pure if the Frobenius endomorphism $F: A \rightarrow A$ is pure $\sqrt{ }$ Under mild conditions, for example when the Frobenius $\operatorname{map} A \xrightarrow{F} A$ is a finite map or when A is complete, F-purity of A is equivalent to the condition that the Frobenius endomorphism $A \xrightarrow{F} A$ is split [HR76, Corollary 5.3]. The Frobenius endomorphism on A induces a natural Frobenius action on each local

[^2]cohomology module $\mathrm{H}_{\mathfrak{m}}^{i}(A)$ and we say (A, \mathfrak{m}) is F-injective if this natural Frobenius action on $\mathrm{H}_{\mathfrak{m}}^{i}(A)$ is injective for every i (Fed 83). This holds if A is F-pure HR76, Lemma 2.2]. For some other basic properties of F-pure and F-injective singularities, see HR76], Fed83], EH08].

3. A general bound of local cohomology modules as D-modules

In this section, we will establish a bound of $\mathrm{H}_{I}^{j}(R)$ as a $D(R, k)$-module when $R=$ $k\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring over a field k (of any characteristic) in terms of the degrees of generators of I. To this end, we begin with recalling the notion of the Bernstein filtration and k-filtration.

Denote $\frac{1}{t!} \frac{\partial^{t}}{\partial x_{i}^{t}}$ by $D_{t, i}$ for $t \in \mathbb{N}, 1 \leq i \leq n$. Then $D(R, k)=R\left\langle D_{t, i} \mid t \in \mathbb{N}, 1 \leq i \leq n\right\rangle$. We set \mathscr{F}_{j} to be the k-linear span of the set of products

$$
\left\{x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \cdot D_{t_{1}, 1} \cdots D_{t_{n}, n} \mid i_{1}+\cdots+i_{n}+t_{1}+\cdots+t_{n} \leq j\right\} .
$$

Then the Bernstein filtration on $D(R, k)$ ([Lyu11, Definition 2.6]) is defined to be $k=\mathscr{F}_{0} \subset \mathscr{F}_{1} \subset \mathscr{F}_{2} \ldots$

Definition 3.1 (Definition 3.2 in Lyu11). A k-filtration on a $D(R, k)$-module M is an ascending chain of finite-dimensional k-vector spaces $M_{0} \subset M_{1} \subset \cdots$ such that $\cup_{i} M_{i}=M$ and $\mathscr{F}_{i} M_{j} \subset M_{i+j}$ for all i and j.

Theorem 3.2 (Theorem 3.5 in [Lyu11]). Let M be a $D(R, k)$-module with a k-filtration $M_{0} \subset M_{1} \subset \cdots$. Assume there is a constant C such that $\operatorname{dim}_{k}\left(M_{i}\right) \leq C i^{n}$ for sufficiently large i. Then the length of M as a $D(R, k)$-module is at most $n!C$.

The statement of [Lyu11, Theorem 3.5] assumes that there is a constant C such that $\operatorname{dim}_{k}\left(M_{i}\right) \leq C i^{n}$ for all $i \geq 0$; however, the proof of Lyu11, Theorem 3.5] only uses the fact that there is a constant C such that $\operatorname{dim}_{k}\left(\mathscr{M}_{i}\right) \leq C i^{n}$ for sufficiently large i. Hence the proof of Theorem 3.2 is identical to the one of Lyu11, Theorem 3.5], and is omitted.

To illustrate the advantage of only requiring $\operatorname{dim}_{k}\left(M_{i}\right) \leq C i^{n}$ for sufficiently large i, we consider a simple example.

Example 3.3. Set R_{i} to be the k-span of monomials in x_{1}, \ldots, x_{n} of degree at most i. It is clear that $R_{0} \subset R_{1} \subset \cdots$ is a k-filtration of R. It is well-known that $\operatorname{dim}_{k}\left(R_{i}\right)=$ $\binom{n+i}{i}$, which is a polynomial in i of degree n with leading coefficient $\frac{1}{n!}$. Hence, given any $\varepsilon>0$, we have $\operatorname{dim}_{k}\left(R_{i}\right) \leq \frac{1+\varepsilon}{n!} i^{n}$ for sufficiently larg $5^{5} i$. Since the length of a module is an integer, it follows from Theorem 3.2 that the length of R in the category of $D(R, k)$-modules is 1 . On the other hand, if one requires $\operatorname{dim}_{k}\left(R_{i}\right) \leq C i^{n}$ for all i, then one will need $C \geq \frac{n+1}{n!}$ (consider the case when $i=1$) and consequently can not deduce the correct length of R from Lyu11, Theorem 3.5].

Remark 3.4. In the proof of [Lyu11, Corollary 3.6], the following statement is proved: Let M be a $D(R, k)$-module with a k-filtration $M_{0} \subseteq M_{1} \subseteq \cdots$ and $f \in R$ be a polynomial of degree d. If there is a constant C such that $\operatorname{dim}_{k}\left(M_{i}\right) \leq C i^{n}$ for sufficiently large i, then $M_{i}^{\prime}=\left\{\left.\frac{m}{f^{i}} \right\rvert\, m \in M_{i(d+1)}\right\}$ induces a k-filtration of M_{f} such that $\operatorname{dim}_{k}\left(M_{i}^{\prime}\right) \leq C(d+1)^{n} i^{n}$ for sufficiently large i.

[^3]Theorem 3.5. Let $f \in R$ be a polynomial of degree d. Then the length of R_{f} in the category of $D(R, k)$-modules is at most $(d+1)^{n}$. And, the length of $\mathrm{H}_{f}^{1}(R)$ is at most $(d+1)^{n}-1$.

Proof. Combining Example 3.3 and Remark 3.4, we see that R_{f} admits a k-filtration $R_{0}^{\prime} \subset R_{1}^{\prime} \subset \cdots$ such that, for any any $\varepsilon>0$, one has $\operatorname{dim}_{k}\left(R_{i}^{\prime}\right) \leq \frac{1+\varepsilon}{n!}(d+1)^{n} i^{n}$. According to Theorem [3.2, we have that the length of R_{f} in the category of $D(R, k)$ modules is at most $(1+\varepsilon)(d+1)^{n}$ for any $\varepsilon>0$; it follows that the length of R_{f} in the category of $D(R, k)$-modules is at most $(d+1)^{n}$.

The second conclusion follows from the exact sequence $0 \rightarrow R \rightarrow R_{f} \rightarrow \mathrm{H}_{f}^{1}(R)$ and the fact that the length of R is 1 .

Corollary 3.6. Let I be an ideal of R. If I is generated by f_{1}, \ldots, f_{t} with $\operatorname{deg}\left(f_{i}\right)=d_{i}$, then the length of $\mathrm{H}_{I}^{j}(R)$ in the category of $D(R, k)$-modules is at most

$$
\sum_{1 \leq i_{1} \leq \cdots \leq i_{j} \leq t}\left(d_{i_{1}}+\cdots+d_{i_{j}}+1\right)^{n}-1 .
$$

Proof. It is clear from Theorem 3.5 that the length of $\bigoplus R_{f_{i_{1}} \cdots f_{i_{j}}}$ is at most $\sum_{1 \leq i_{1} \leq \cdots \leq i_{j} \leq t}\left(d_{i_{1}}+\right.$ $\left.\cdots+d_{i_{j}}+1\right)^{n}$. Our corollary follows from the fact that $\mathrm{H}_{I}^{j}(R)$ is a proper subquotient of $\bigoplus R_{f_{i_{1}} \cdots f_{i_{j}}}$ in the category of $D(R, k)$-modules.

The bounds in Theorem 3.5 and Corollary [3.6, though general, are very coarse. In the rest of the paper, we will focus on the length of $\mathrm{H}_{I}^{c}(R)$ where c is the height of I and k is of prime characteristic p, where F-module theory and tight closure theory can be used to produce sharper bounds.

4. Formulas and upper bounds on the D-module and F-module length

Notation: Henceforth R denotes $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ or $k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field of characteristic $p>0, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$, and we let $A=R / I$ be reduced and equidimensional or graded reduced and equidimensional of dimension $d \geq 1$.

We first analyze the case when A has an isolated non- F-rational point at $\{\mathfrak{m}\}$. We start with a few lemmas.
Lemma 4.1. Let $0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0$ be an exact sequence of Artinian $A\{f\}$ modules. Let f_{L}, f_{M}, f_{N} denote the Frobenius actions on L, M, N respectively. Then the stable parts form a left exact sequence of finite dimensional vector spaces: $0 \rightarrow$ $L_{s} \xrightarrow{\alpha} M_{s} \xrightarrow{\beta} N_{s}$.
Proof. Let \mathbb{K} be the perfect closure of k; define $A^{\mathbb{K}}=A \otimes_{k} \mathbb{K}$ and for any $A\{f\}$ module X, let $X^{\mathbb{K}}$ be the $A^{\mathbb{K}}\{f\}$-module $A^{\mathbb{K}} \otimes_{k} X$ where the action of f is given by $f\left(\sum_{i=1}^{\mu} x_{i} \otimes \lambda_{i}\right)=\sum_{i=1}^{\mu} f\left(x_{i}\right) \otimes \lambda_{i}^{p}$ for $x_{1}, \ldots, x_{\mu} \in X$ and $\lambda_{1}, \ldots, \lambda_{\mu} \in \mathbb{K}$. Lyu97, Proposition 4.9] implies that $X_{s}^{\mathbb{K}}=X_{s} \otimes_{k} \mathbb{K}$, so if we could show that $0 \rightarrow L_{s}^{\mathbb{K}} \xrightarrow{\alpha^{\mathbb{K}}}$ $M_{s}^{\mathbb{K}} \xrightarrow{\beta^{\mathbb{K}}} N_{s}^{\mathbb{K}}$, the fact that \mathbb{K} is faithfully flat over k would imply the exactness of $0 \rightarrow L_{s} \xrightarrow{\alpha} M_{s} \xrightarrow{\beta} N_{s}$. Therefore we may assume that k is a perfect field.

The exactness at L_{s} and $\beta \alpha=0$ are obvious. Hence to prove exactness it suffices to show that $\operatorname{ker} \beta \subseteq \operatorname{im} \alpha$. Since N is Artinian, by Lyu97, Proposition 4.4] $\cup_{r \geq 1} \operatorname{ker} f_{N}^{r}=$ ker $f_{N}^{r_{0}}$ for some r_{0} sufficiently large and $\operatorname{ker} f_{N} \subseteq \operatorname{ker} f_{N}^{2} \subseteq \cdots$ stabilizes.

Pick $x \in M_{s}$ such that $\beta(x)=0$. Since we are assuming that k is perfect, the k vector space generated by $f^{r}(M)$ is just $f^{r}(M)$ for all $r \geq 0$; therefore, for each $r \geq r_{0}$, there exists $y \in M$ such that $x=f_{M}^{r}(y)$. We have $f_{N}^{r}(\beta(y))=\beta\left(f_{M}^{r}(y)\right)=0$. So $f_{N}^{r_{0}}(\beta(y))=0$ and hence $z=f_{M}^{r_{0}}(y) \in L$. Therefore for each $r \geq r_{0}$, there exists $z \in L$ such that $x=f_{M}^{r-r_{0}}(z)$, hence $x \in L_{s}$.

Lemma 4.2. Suppose $\operatorname{dim} A=d \geq 1$, then $\left(0_{\mathbf{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s} \cong\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}$.
Proof. We have $0 \rightarrow 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow 0$. By Lemma 4.1, it suffices to show that $\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}=0$. But by Lyu97, Proposition 4.10], $\operatorname{dim}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}=\operatorname{crk} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$. Let P_{1}, \ldots, P_{c} be all the minimal primes of A. By [Bli04, Theorem 4.3 and 4.4], $\mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$ is a direct sum of simple F_{R}-modules, each has P_{i} as its unique associated prime. This implies $\operatorname{crk} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)=0$ because $\operatorname{dim} A \geq 1$, and hence $\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}=0$ as desired.

Theorem 4.3. Let (R, \mathfrak{m}) and $A=R / I$ be as in the above Notation. Assume that A has an isolated non-F-rational point at \mathfrak{m} (e.g., A has an isolated singularity at \mathfrak{m}). Then

$$
l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathbf{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}+c=\operatorname{dim}_{k}\left(\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}\right)+c
$$

where c is the number of minimal primes of A. Moreover, if k is separably closed, then we also have

$$
l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{F_{R}^{e}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{F_{R}^{\infty}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=l_{D_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}+c
$$

Proof. The second equality follows immediately from Lemma 4.2. Thus it suffices to show $l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}+c$ and $l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}+c$ when k is separably closed, since the other equalities would follow from (2.0.1).

The short exact sequence $0 \rightarrow 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow 0$ induces:

$$
0 \rightarrow \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right) \rightarrow \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right) \cong \mathrm{H}_{I}^{n-d}(R) \rightarrow \mathscr{H}_{R, A}\left(0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right) \rightarrow 0
$$

Now by Bli04, Corollary 4.2 and Theorem 4.4], $\mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$ is a direct sum of simple $D(R, k)$-modules, each supported at a different minimal prime of A, so its $D(R, k)$-module length is c, and in fact each of these simple $D(R, k)$-modules are (simple) F_{R}-modules Bli04, Theorem 4.3]. Thus $l_{D(R, k)}\left(\mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)\right)=$ $l_{F_{R}}\left(\mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)\right)=c$.

Since A has an isolated non- F-rational point at $\mathfrak{m}, 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}$ has finite length as an A module. This implies that $\mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)$ is supported only at \mathfrak{m}. Hence $\mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)$, as a $D(R, k)$-module, is a direct sum of finitely many copies of $\mathrm{H}_{\mathfrak{m}}^{n}(R)$ by Lyu00, Lemma (c)]. Moreover, when k is separably closed, $\mathscr{H}_{R, A}\left(0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$ is a direct sum of $E=\mathrm{H}_{\mathfrak{m}}^{n}(R)$ even as an F_{R}-module Ma14a, Lemma 4.3]. The number of copies of $\mathrm{H}_{\mathfrak{m}}^{n}(R)$ is exactly its $D(R, k)$-module length (F_{R}-module length when k is separably closed). However, since $\mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$ is an F_{R}-module supported only at \mathfrak{m}, the number of copies of $\mathrm{H}_{\mathfrak{m}}^{n}(R)$ is by definition crk $\mathscr{H}_{R, A}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)$, which is $\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}$ by Lyu97, Proposition 4.10].

Hence $l_{D(R, k)}\left(\mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)\right)=\operatorname{dim}_{k}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)_{s}$, and $\left.l_{F_{R}}\left(\mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)\right)=\operatorname{dim}_{k}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)\right)_{s}$ when k is separably closed.

Remark 4.4. When k is not separably closed, $l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}+c$ fails to hold in general, see Corollary 7.4. However, if k is a finite field, then we always have $l_{F_{R}^{\infty}}\left(\mathrm{H}_{I}^{n-d}(R)\right)=\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathbf{m}}^{d}(A)}^{*}\right)_{s}+c$, see Proposition 7.7.
Remark 4.5. When I is a homogeneous reduced and equidimensional ideal in $R=$ $k\left[x_{1}, \ldots, x_{n}\right]$ (i.e., A is a graded domain), it is easy to check that $\left(0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)_{s}=\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}=$ $\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}\right)_{s}$ since the stable part will be concentrated in degree 0 . Therefore, we have an upper bound of the $D(R, k)$-module length of $\mathrm{H}_{I}^{n-d}(R)$ in the graded isolated singularity case: it is at $\operatorname{most} \operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}\right)+c$. Geometrically, it is at $\operatorname{most}^{\operatorname{dim}} k\left(\mathrm{H}^{d-1}\left(X, \mathcal{O}_{X}\right)\right)+c$ where $X=\operatorname{Proj}(A)$.

We have the following application:
Example 4.6. Let $A=k\left[x_{1}, \ldots, x_{n}\right] /(f)$ where k is a field of prime characteristic p and $\operatorname{deg}(f)=n$. Denote $k\left[x_{1}, \ldots, x_{n}\right]$ be R. Then there is a commutative diagram of short exact sequences

where F denotes the natural Frobenius maps. It follows that $\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{n-1}(A)_{0}\right)=$ $\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{n}(R)_{-n}\right)=1$. It also follows from the diagram that $F: \mathrm{H}_{\mathfrak{m}}^{n-1}(A)_{0} \rightarrow \mathrm{H}_{\mathfrak{m}}^{n-1}(A)_{0}$ is injective if and only if so is $f^{p-1} F: \mathrm{H}_{\mathfrak{m}}^{n}(R)_{-n} \rightarrow \mathrm{H}_{\mathfrak{m}}^{n}(R)_{-n}$ which holds if and only if $f^{p-1} \notin \mathfrak{m}^{[p]}$.

Assume further that f is irreducible with an isolated singularity at \mathfrak{m} over a perfect field k, i.e., A is Calabi-Yau hypersurface over k. Then by Fedder's Criterion, $F: \mathrm{H}_{\mathfrak{m}}^{n-1}(A)_{0} \rightarrow \mathrm{H}_{\mathrm{m}}^{n-1}(A)_{0}$ is injective if and only A is F-pure. Consequently, $\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{n-1}(A)_{0}\right)_{s}=1$ if and only A is F-pure. Thus it follows from Theorem 4.3 that:

$$
l_{D(R, k)}\left(\mathrm{H}_{f}^{1}(R)\right)= \begin{cases}1 & A \text { is not } F-\text { pure } \\ 2 & \text { otherwise }\end{cases}
$$

In particular, when $\operatorname{Proj}(A)$ happens to be an elliptic curve, there are infinitely many primes p such that $\mathrm{H}_{f}^{1}(R)$ is a simple $D(R, k)$-module and infinitely many primes p such that $\mathrm{H}_{f}^{1}(R)$ has length 2 as a $D(R, k)$-module.

Next we partially generalize Theorem 4.3 to the case that the dimension of the singular locus of R / I is 1 . We first prove a lemma, which should be well known to experts.
Lemma 4.7. Let M be an (F-finite) F_{R}-module (resp., F_{R}^{∞}-module). Then M_{P} and $M \otimes \widehat{R_{P}}$ are (F-finite) $F_{R_{P}}$ and $F_{\widehat{R_{P}}}$-modules (resp., $F_{R_{P}}^{\infty}$ and $F_{\widehat{R_{P}}}^{\infty}$-modules). Moreover, if M is a simple F_{R}-module (resp., simple F_{R}^{∞}-module), then M_{P} and $M \otimes \widehat{R_{P}}$, if not zero, are simple as $F_{R_{P}}$ and $F_{\widehat{R_{P}}}$-modules (resp., simple as $F_{R_{P}}^{\infty}$ and $F_{\widehat{R_{P}}}^{\infty}$-modules).

Proof. The conclusion for F-modules follows from Proposition 2.7 and Corollary 2.9 of [Bli04]. The argument for F_{R}^{∞}-modules is very similar, we omit the details.

Theorem 4.8. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Let I be a homogeneous reduced and equidimensional ideal of R. Set $A=R / I$ with $\operatorname{dim} A=d \geq 2$. Suppose the non-F-rational locus of A has dimension ≤ 1 (e.g., the nonsingular locus has dimension ≤ 1). Then we have

$$
\begin{aligned}
l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right) & \leq c+\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(\mathrm{H}_{P \widehat{A_{P}}}^{d-1}\left(\widehat{A_{P}}\right)\right)_{s}+\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s} \\
& =c+\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(0_{\mathrm{H}_{P}^{d-\frac{1}{A_{P}}}}^{*}\left(\widehat{A_{P}}\right)\right)_{s}+\operatorname{dim}_{k}\left(0_{\mathrm{H}_{\mathbf{m}}^{d}(A)}^{*}\right)_{s}
\end{aligned}
$$

where c is number of minimal primes of I.
Proof. Clearly the second equality follows from Lemma 4.2. Therefore it suffices to prove the first inequality. We may assume that the dimension of the non- F-rational locus is 1 , since otherwise the result follows from Theorem 4.3 (the second term is 0). We begin with the following claim:

Claim 4.8.1. There exists graded F_{R}-submodules

$$
0 \subseteq L \subseteq M \subseteq \mathrm{H}_{I}^{n-d}(R)
$$

such that every $D(R, k)$-module composite factor of L is supported at a minimal prime of A, every $D(R, k)$-module composite factor of M / L is supported at a dimension 1 prime, and $\mathrm{H}_{I}^{n-d}(R) / M$ is supported only at \mathfrak{m}.

Proof of Claim. We have a short exact sequence

$$
0 \rightarrow 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*} \rightarrow 0
$$

that induces:

$$
0 \rightarrow^{*} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right) \rightarrow^{*} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right) \cong \mathrm{H}_{I}^{n-d}(R) \rightarrow^{*} \mathscr{H}_{R, A}\left(0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right) \rightarrow 0
$$

By the graded version of [Bli04, Corollary 4.2 and Theorem 4.4], ${ }^{*} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$ is a direct sum of simple $D(R, k)$-modules, each supported at a different minimal prime of A. So we set $L={ }^{*} \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A) / 0_{\mathrm{H}_{\mathfrak{m}}^{d}(A)}^{*}\right)$. The existence of M follows by applying [LSW13, Theorem $2.9(3)$] to ${ }^{*} \mathscr{H}_{R, A}\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)$, which is a graded F-finite F_{R}-module. Note that the support of each $D(R, k)$-module composite factor of M / L has dimension 1. This is because the support of ${ }^{*} \mathscr{H}_{R, A}\left(0_{\mathbf{H}_{\mathbf{m}}^{d}(A)}^{*}\right)$ has dimension 1 since the dimension of the non- F-rational locus is 1 .

We know that $l_{D(R, k)}(L)=c$. Moreover, it is clear from the above claim that M is the smallest $F_{R^{-}}$-submodule of $\mathrm{H}_{I}^{n-d}(R)$ such that $\mathrm{H}_{I}^{n-d}(R) / M$ is only supported at \mathfrak{m}. So $\mathrm{H}_{I}^{n-d}(R) / M$ is isomorphic, as a $D(R, k)$-module, to $E^{\oplus r} \cong \mathrm{H}_{\mathfrak{m}}^{d}(R)^{\oplus r}$ where $r=\operatorname{crkH}_{I}^{n-d}(R)$ by Lyu00, Lemma (c)] and the definition of corank. Thus we have $l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R) / M\right)=\operatorname{crk} \mathrm{H}_{I}^{n-d}(R)=\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}$ by [Lyu97, Proposition 4.10].

It remains to estimate the $D(R, k)$-module length of M / L. Suppose we have

$$
\begin{equation*}
0 \subseteq L=M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{t}=M \subseteq \mathrm{H}_{I}^{n-d}(R) \tag{4.8.2}
\end{equation*}
$$

such that each $N_{i}=M_{i} / M_{i-1}$ is a simple $D(R, k)$-module. We know that each N_{i} has a unique associated prime P with $\operatorname{dim} R / P=1$ and A_{P} not F-rational.
Claim 4.8.3. The number of N_{i} such that $\operatorname{Ass}\left(N_{i}\right)=P$ is at most crk $\mathrm{H}_{I}^{n-d}\left(\widehat{R_{P}}\left(\widehat{R_{P}}\right)\right.$.
Proof of Claim. We localize (4.8.2) at P and complete. We have

$$
0 \subseteq L \otimes \widehat{R_{P}}=M_{0} \otimes \widehat{R_{P}} \subseteq M_{1} \otimes \widehat{R_{P}} \subseteq \cdots \subseteq M_{t} \otimes \widehat{R_{P}}=\mathrm{H}_{I \widehat{R_{P}}}^{n-d}\left(\widehat{R_{P}}\right)
$$

with successive quotients $N_{i} \otimes \widehat{R_{P}}$ (the last equality follows because $\mathrm{H}_{I}^{n-d}(R) / M$ is supported only at $\mathfrak{m})$. Each $N_{i} \otimes \widehat{R_{P}}$ is either 0 or a $D\left(\widehat{R_{P}}, k\right)$-module supported only at $P \widehat{R_{P}}$ (and thus a direct sum of $E\left(\widehat{R_{P}} / P \widehat{R_{P}}\right)$), depending on whether $\operatorname{Ass}\left(N_{i}\right)=P$ or not. Therefore $\mathrm{H}_{I \widehat{R_{P}}}^{n-d}\left(\widehat{R_{P}}\right) /\left(L \otimes \widehat{R_{P}}\right)$, at least as an $\widehat{R_{P}}$-module, is isomorphic to $E\left(\widehat{R_{P}} / P \widehat{R_{P}}\right)^{r}$. The number of N_{i} such that $\operatorname{Ass}\left(N_{i}\right)=P$ is thus $\leq r$.

But $L \otimes \widehat{R_{P}}$ is a direct sum of simple $F_{\widehat{R_{P}}}$-submodule of $\mathrm{H}_{I}^{n-d}\left(\widehat{R_{P}}\right)$ supported at minimal primes of $\widehat{A_{P}}$ by Lemma 4.7, so we have $r=\operatorname{crk} \mathrm{H}_{I \widehat{R_{P}}}^{n-d}\left(\widehat{R_{P}}\right)$ by the definition of corank. This finishes the proof of the claim.

Applying the above claim to (4.8.2) we get:

$$
l_{D(R, k)}(M / L) \leq \sum_{\operatorname{dim} R / P=1} \operatorname{crk} H_{I \widehat{R_{P}}}^{n-d}\left(\widehat{R_{P}}\right) .
$$

Because $\mathscr{H}_{\widehat{R_{P}}, \widehat{A_{P}}}\left(\mathrm{H}_{P}^{d-1} \widehat{A_{P}}\left(\widehat{A_{P}}\right)\right) \cong \mathrm{H}_{I}^{n-d} \widehat{R_{P}}\left(\widehat{R_{P}}\right)$ (the indices match because I is equidimensional), by Lyu97, Proposition 4.10], we have

$$
\operatorname{crk} H_{I}^{n-d}\left(\widehat{R_{P}}\left(\widehat{R_{P}}\right)=\operatorname{dim}_{\kappa(P)}\left(\mathrm{H}_{P \widehat{A_{P}}}^{d-1}\left(\widehat{A_{P}}\right)\right)_{s}\right.
$$

Finally, summing up the $D(R, k)$-module length of $L, M / L$, and $\mathrm{H}_{I}^{n-d}(R) / M$, we have:

$$
l_{D(R, k)}\left(\mathrm{H}_{I}^{n-d}(R)\right) \leq c+\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(\mathrm{H}_{P \widehat{A_{P}}}^{d-1}\left(\widehat{A_{P}}\right)\right)_{s}+\operatorname{dim}_{k}\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)\right)_{s}
$$

We end this section with some remarks and questions regarding Theorem 4.8,
Remark 4.9. It is clear that the sum $\sum_{\operatorname{dim} R / P=1} \operatorname{dim}_{\kappa(P)}\left(\mathrm{H}_{P \widehat{A_{P}}}^{d-1}\left(\widehat{A_{P}}\right)\right)_{s}$ in Theorem 4.8 is a finite sum: in fact we only need to consider those primes P such that A_{P} is not F rational (which form a finite set by our assumption). We ought to point out that, more generally, without any assumption on the F-rational locus, Lyu97, Proposition 4.14] shows that there are only finitely many prime ideals P such that $\left(\mathrm{H}_{P \widehat{A_{P}}}^{j}\left(\widehat{A_{P}}\right)\right)_{s} \neq 0$.

Remark 4.10. We do not know whether the inequality in Theorem 4.8 is an equality. This is due to the fact that, in the proof of Claim 4.8.3, we do not know whether the $D\left(\widehat{R_{P}}, k\right)$-module $N_{i} \otimes \widehat{R_{P}}$ is isomorphic to a single copy of $E\left(\widehat{R_{P}} / P \widehat{R_{P}}\right)$.

In general, a simple $D(R, k)$-module may not stay simple as a $D\left(\widehat{R}_{P}, \kappa(P)\right)$-module after taking localization and completion. We point out the following example which is derived from Bli03, Example 5.1].

Example 4.11. Let $R=k[x]$ where k is an algebraically closed field of positive characteristic. Let $M=R \oplus R$ be a free R-module of rank 2 . We give M an $F_{R^{-}}$ module structure by setting the composition map

$$
R \oplus R \xrightarrow{\theta_{M}} F(R) \oplus F(R) \xrightarrow{\theta_{R}^{-1} \oplus \theta_{R}^{-1}} R \oplus R
$$

to be the map represented by the matrix:

$$
\left(\begin{array}{cc}
-x & 1 \\
1 & 0
\end{array}\right)
$$

where θ_{R} denotes the standard isomorphism $R \cong F(R)$.
Next we pick a nonzero simple F_{R}^{∞}-module $N \subseteq M$ (note that the only associated prime of N is 0). By [Bli03, Corollary 4.7], N must be a simple $D(R, k)$-module since k is algebraically closed. However, after we localize at 0 , that is, tensor with the fraction field $k(x)$ of $R, M \otimes_{R} k(x)$ becomes a simple $F_{k(x)}^{\infty}$-module because $M \otimes_{R} k(x)^{1 / p^{\infty}}$ is a simple $F_{k(x)^{1 / p \infty}-\text { module by Bli03, Example 5.1] } 6 \text { Thus we must have } N \otimes_{R} k(x) \cong, ~}^{\infty}$ $M \otimes_{R} k(x)$, but $M \otimes_{R} k(x)$ is not a simple $D(k(x), k(x))$-module because obviously every one-dimensional $k(x)$-subspace is a nontrivial $D(k(x), k(x))$-submodule.

Remark 4.12. One approach to generalizing Theorem 4.8 is to find an F-submodule M of $\mathrm{H}_{I}^{c}(R)$ such that none of the composition factor of M has 0-dimensional support and the support of $\mathrm{H}_{I}^{c}(R) / M$ is contained in $\{\mathfrak{m}\}$. In the graded case, the existence of such an M follows from the proof of [LSW13, Theorem 2.9]. We don't know whether [LSW13, Theorem 2.9] can be extended to non-graded case.

Hence it is natural to ask the following:
Question 4.13. Does there always exist an F-submodule M of $\mathrm{H}_{I}^{c}(R)$ such that none of the composition factor of M has 0-dimensional support while the support of $\mathrm{H}_{I}^{c}(R) / M$ is contained in $\{\mathfrak{m}\}$?

Despite the above remarks and questions, we still expect that there should be an analogue of Theorem 4.3 and Theorem 4.8 or similar estimates in the local case and without the restriction on the non- F-rational locus.

5. A Lower bound on F-module length of local cohomology modules

In this section we will give lower bounds on $l_{F_{R}}\left(\mathrm{H}_{I}^{c}(R)\right)$. Throughout this section we will still assume $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ or $k\left[x_{1}, \ldots, x_{n}\right]$ with $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ where k is a field of characteristic $p>0$, and $A=R / I$ be reduced and equidimensional or graded reduced and equidimensional of dimension $d \geq 1$. Henceforth in this section $E=E_{R}(k)$ will denote the injective hull of the residue field of R and $E_{A}=E_{A}(k)=\operatorname{Ann}_{E} I$ will denote the injective hull of the residue field of A.

We first collect definitions and facts from [Sha07] and [Kat08]. Given an Artinian $A\{f\}$-module W, a special ideal of W is a prime ideal of A that is also the annihilator of some $A\{f\}$-submodule $V \subseteq W$, a special prime is a special ideal that is also a prime

[^4]ideal (note that the special ideals depend on the $A\{f\}$-module structure on W, i.e., the Frobenius action f on W). An important result of Sharp [Sha07, Corollary 3.7] and Enescu-Hochster [EH08, Theorem 3.6] shows that, when f acts injectively on W, the number of special primes of W is finite.

The module of inverse polynomials E comes equipped with a natural Frobenius map T given by $T\left(\lambda x_{1}^{-\alpha_{1}} \ldots x_{n}^{-\alpha_{n}}\right)=\lambda^{p} x_{1}^{-p \alpha_{1}} \ldots x_{n}^{-p \alpha_{n}}$ for all $\lambda \in k$ and $\alpha_{1}, \ldots, \alpha_{n} \geq 0$. Any Frobenius map on E has the form $u T$ where $u \in R$ and any Frobenius map on E_{A} has that form with $u \in\left(I^{[p]}: I\right)$. (cf. [Bli01, Proposition 3.36]). Such an action $u T$ on E_{A} is injective if and only if $u \notin \mathfrak{m}^{[p]}$, and is nonzero if and only if $u \notin I^{[p]}$. If we now specialize the notion of special ideals to the $A\{f\}$-module E_{A} where $f=u T$, we see that these are ideals J such that $u \in J^{[p]}: J$ and we refer to these as u-special ideals ([Kat08, Theorem 4.3]). A u-special prime is a u-special ideal that is also a prime ideal.
5.1. F-pure case. Our main result in this subsection is the following:

Theorem 5.1. Assume $A=R / I$ is reduced and equidimensional or graded reduced and equidimensional of dimension $d \geq 1$. Suppose A is F-pure. Then $l_{F_{R}}\left(\mathrm{H}_{I}^{n-j}(R)\right)$ is at least the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{j}(A)$. Moreover, when A is quasi-Gorenstein, $l_{F_{R}}\left(\mathrm{H}_{I}^{n-d}(R)\right)$ is exactly the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$.
Proof. Let P be a special prime of $\mathrm{H}_{\mathfrak{m}}^{j}(A)$. Take an $A\{f\}$-submodule $N \subseteq \mathrm{H}_{\mathfrak{m}}^{j}(A)$ such that Ann $N=P$. Recall that the Frobenius action on N induces a map $F(N) \rightarrow N$. We claim that this map is surjective: let $N^{\prime} \subseteq N$ be the image, we have $N^{\prime} \subseteq N \subseteq$ $\mathrm{H}_{\mathfrak{m}}^{j}(A)$ are $A\{f\}$-submodules such that the Frobenius action on N / N^{\prime} is nilpotent. But $\mathrm{H}_{\mathfrak{m}}^{j}(A)$ is anti-nilpotent (i.e., the Frobenius action on $H_{\mathfrak{m}}^{j}(R) / N^{\prime}$ is injective) by Ma14b, Theorem 3.7]. So we must have $N^{\prime}=N$ and thus $F(N) \rightarrow N$ is surjective.

Taking the Matlis dual (or graded Matlis dual in the homogeneous case), we get $N^{\vee} \hookrightarrow F(N)^{\vee} \cong F\left(N^{\vee}\right)$. This shows that N^{\vee} is a root of $\mathscr{H}_{R, A}(N)$ (recall that by definition, $\mathscr{H}_{R, A}(N)=\underset{\rightarrow}{\lim }\left(N^{\vee} \rightarrow F\left(N^{\vee}\right) \rightarrow F^{2}\left(N^{\vee}\right) \rightarrow \cdots\right)$. In particular, we know that the set of associated primes of N^{\vee} is the same as the set of associated primes of $\mathscr{H}_{R, A}(N)$ (this follows easily from the argument in Lyu97, Remark 2.13]). But $\operatorname{Ann} N=\operatorname{Ann} N^{\vee}=P$ and N^{\vee} is a finitely generated R-module, thus P is a minimal associated prime of N^{\vee} and hence a minimal associated prime of $\mathscr{H}_{R, A}(N)$. This implies that $\mathscr{H}_{R, A}(N)$ must have a simple F_{R}-module composite factor with P its unique associated prime. But we have $\mathrm{H}_{I}^{n-j}(R) \cong \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{j}(A)\right) \rightarrow \mathscr{H}_{R, A}(N)$, hence for every special prime P of $\mathrm{H}_{\mathfrak{m}}^{j}(A), \mathrm{H}_{I}^{n-j}(R)$ has a simple F_{R}-module composite factor with P its unique associated prime. This proves that $l_{F_{R}}\left(\mathrm{H}_{I}^{n-j}(R)\right)$ is at least the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{j}(A)$.

Finally, when A is quasi-Gorenstein, $\mathrm{H}_{\mathfrak{m}}^{d}(A) \cong E_{A}$, the injective hull of the residue field. So there is a one-one correspondence between $A\{f\}$-submodules of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ and their annihilator ideals. Let P_{1}, \ldots, P_{m} be all the special primes with ht $P_{1} \geq$ ht $P_{2} \geq$ $\cdots \geq$ ht P_{m}. Let $Q_{j}=P_{1} \cap P_{2} \cap \cdots \cap P_{j}$. We have an ascending chain of $A\{f\}$ submodules of $H_{\mathfrak{m}}^{d}(A)=E_{A}$:

$$
0 \varsubsetneqq \operatorname{Ann}_{E} Q_{1} \varsubsetneqq \operatorname{Ann}_{E} Q_{2} \varsubsetneqq \cdots \varsubsetneqq \operatorname{Ann}_{E} Q_{m}=E_{A} .
$$

It suffices to show that $\mathscr{H}_{R, A}\left(\operatorname{Ann}_{E} Q_{j} / \operatorname{Ann}_{E} Q_{j-1}\right)$ is a nonzero simple F-module. It is nonzero because the Frobenius action on $\operatorname{Ann}_{E} Q_{j} / \operatorname{Ann}_{E} Q_{j-1}$ is not nilpotent (in fact
it is injective because $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ is anti-nilpotent). If it is not simple, then there exists another $A\{f\}$-submodule M such that $\operatorname{Ann}_{E} Q_{j-1} \varsubsetneqq M \varsubsetneqq \operatorname{Ann}_{E} Q_{j}$, which implies $Q_{j} \varsubsetneqq$ Ann $M \varsubsetneqq Q_{j-1}$. But since the Frobenius action on $\mathrm{H}_{\mathfrak{m}}^{d}(A)=E_{A}$ is injective and M is an $A\{f\}$-submodule, Ann M is an intersection of the special primes by Sha07, Corollary 3.7] or [EH08, Theorem 3.6]. This is then impossible by our height hypothesis on P_{i} and the definition of Q_{j}.

Remark 5.2. When A is not F-pure, the number of special primes of $H_{\mathfrak{m}}^{j}(A)$ is not necessarily a lower bound of $l_{F_{R}}\left(\mathrm{H}_{I}^{n-j}(R)\right)$. In fact, in Example 4.6, when $A=R / f$ is a Calabi-Yau hypersurface that is not F-pure, then $l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=1$ while the number of special primes of $H_{\mathfrak{m}}^{1}(A)$ is $2:(f)$ and \mathfrak{m} are both special primes of $H_{\mathfrak{m}}^{1}(A)$. So the first conclusion of Theorem 5.1 needs not hold when A is not F-pure.

Example 5.3. Let $A=k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i} x_{j} \mid 1 \leq i<j \leq n\right)=R / I$. Then A is a one-dimensional F-pure ring, and A is not Gorenstein when $n \geq 3$. A straightforward computation using [EH08, Theorem 5.1] shows that

$$
\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong\left(\oplus_{j} \mathrm{H}_{x_{i}}^{1}\left(k\left[x_{i}\right]\right)\right) \oplus k^{n-1}
$$

and thus

$$
\mathrm{H}_{I}^{n-1}(R) \cong \mathscr{H}_{R, A}\left(\mathrm{H}_{\mathfrak{m}}^{1}(A)\right) \cong\left(\oplus_{i} \mathrm{H}_{\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)}^{n-1}(R)\right) \oplus \mathrm{H}_{\mathfrak{m}}^{n}(R)^{n-1}
$$

It follows that the special primes of $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ are $P_{i}=\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)$ and \mathfrak{m}. Thus there are $n+1$ special primes. But $l_{F_{R}}\left(\mathrm{H}_{I}^{n-1}(R)\right)=2 n-1$. Hence $l_{F_{R}}\left(\mathrm{H}_{I}^{n-1}(R)\right)$ is strictly bigger than the number of special primes when $n \geq 3$ (and the difference can be arbitrarily large when $n \gg 0$). This shows the second conclusion of Theorem 5.1 needs not hold when A is not quasi-Gorenstein.
5.2. Gorenstein case: a second approach. In this subsection we assume that $A=R / I$ is Gorenstein and F-injective (equivalently, Gorenstein and F-pure). In this case $\mathrm{H}_{I}^{i}(R)$ vanishes unless $i=n-d$ and we already know from Theorem 5.1 that $l_{F_{R}}\left(\mathrm{H}_{I}^{n-j}(R)\right)$ is equal to the number of special primes of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$. Our goal here is to give a more detailed analysis on the F_{R}-submodules of $\mathrm{H}_{I}^{n-j}(R)$ in terms of their generating morphisms, and in particular we recover the second conclusion of Theorem 5.1.

Since A is Gorenstein, $E_{A} \cong \mathrm{H}_{\mathfrak{m}}^{d}(A)$ and thus there is a natural Frobenius action on E_{A}. In this case the module $\frac{I^{[p]} \cdot I}{I^{[p]}}$ is cyclic and the natural Frobenius action on E_{A} is given up to sign by $u T$ where the image of u in $\frac{I^{[p]}: I}{I^{[p]}}$ generates it (and T denotes the natural Frobenius on E). The u-special ideals (resp. u-special primes) are thus the special ideals (resp. special primes) and they are finite by [Sha07, Corollary 3.7] or [EH08, Theorem 3.6].

Following the construction in [yu97, section 4], we obtain a generating morphism for $\mathrm{H}_{I}^{n-d}(R)$ of the form $R / I \xrightarrow{u} R / I^{[p]}$ with u as above. To obtain a root, we let $K=\cup_{e \geq 1}\left(I^{\left[p^{e}\right]}: u^{1+\cdots+p^{e-1}}\right)$ and now $R / K \xrightarrow{u} R / K^{[p]}$ is a root of $\mathrm{H}_{I}^{n-d}(R)$.

Lemma 5.4. The set of all proper F-finite F-submodules of $\mathrm{H}_{I}^{n-d}(R)$ have roots $J / K \xrightarrow{u} J^{[p]} / K^{[p]}$ as J ranges over all proper u-special ideals, and, furthermore, distinct special ideals J define distinct F-finite F-submodules of $\mathrm{H}_{I}^{n-d}(R)$.

Proof. Lyu97, Corollary 2.6] establishes a bijection between F-finite F-submodules \mathcal{N} of $\mathrm{H}_{I}^{n-d}(R)$ and R-submodules of the root R / K which is given by $\mathcal{N} \mapsto \mathcal{N} \cap R / K$.

Fix such \mathcal{N} and write $J / K=\mathcal{N} \cap R / K$. The fact that \mathcal{N} is a F-finite F-submodule of $\mathrm{H}_{I}^{n-d}(R)$ implies that the image of the restriction of the map $R / K \xrightarrow{u} R / K^{[p]}$ to J / K is in $F(J / K)=J^{[p]} / K^{[p]}$ and hence J is a u-special ideal. Clearly, any such u-special ideal defines a F-finite F-submodule of $\mathrm{H}_{I}^{n-d}(R)$, i.e., $\lim _{\rightarrow}\left(J / K \xrightarrow{u} J^{[p]} / K^{[p]} \xrightarrow{u^{p}} J^{\left[p^{2}\right]} / K^{\left[p^{2}\right]} \xrightarrow{u^{p^{2}}} \ldots\right)$.

To finish the proof we need to show that any two distinct u-special ideals J_{1} and J_{2} define different F-finite F-submodules of $\mathrm{H}_{I}^{n-d}(R)$. If this is not the case then for some $e \geq 0, u^{\nu_{e}} J_{1} / K^{\left[p^{e}\right]}=u^{\nu_{e}} J_{2} / K^{\left[p^{e}\right]}$ where $\nu_{e}=1+p+\cdots+p^{e-1}, u^{\nu_{e}} J_{1}+K^{\left[p^{e}\right]}=$ $u^{\nu_{e}} J_{2}+K^{\left[p^{e}\right]}$.

The fact that f is injective on E is equivalent to $u^{\nu_{e}} \notin L^{\left[p^{e}\right]}$ for all $e \geq 1$ and all proper ideals $L \subsetneq R$ ([Kat08, Theorem 4.6]), and in particular $u^{\nu_{e}} \notin J_{1}^{\left[p^{e}\right]}$ and $u^{\nu_{e}} \notin J_{2}^{\left[p^{e}\right]}$. But now $u^{\nu_{e}} J_{1} \subseteq u^{\nu_{e}} J_{2}+K^{\left[p^{e}\right]} \subseteq J_{2}^{\left[p^{e}\right]}$ and $J_{2}^{\left[p^{e}\right]}$ is a primary ideal (because R is regular), hence $J_{1} \subseteq \sqrt{J_{2}^{\left[p^{e}\right]}}=J_{2}$. Similarly, also $J_{2} \subseteq J_{1}$, contradicting the fact that $J_{1} \neq J_{2}$.

Theorem 5.5. Let $A=R / I$ be Gorenstein and F-injective where $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ or $k\left[x_{1}, \ldots, x_{n}\right]$ with $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Let $\left\{P_{1}, \ldots, P_{m}\right\}$ be the set of all the special prime ideals of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ which contain K, and assume that these were ordered so that ht $P_{1} \geq$ ht $P_{2} \geq \cdots \geq$ ht P_{m}. Write $Q_{j}=P_{1} \cap \cdots \cap P_{j}$ for all $1 \leq j \leq m$. The chain of roots

corresponds to a maximal filtration of $\mathrm{H}_{I}^{n-d}(R)$ in the category of F_{R}-modules.
Proof. Since $u Q_{j} \subseteq Q_{j}^{[p]}$ and $u K \subseteq K^{[p]}$ the vertical maps are well defined, and the diagram is clearly commutative.

To show that the factors are non-zero, note that if $Q_{j+1}=P_{1} \cap \cdots \cap P_{j+1}=P_{1} \cap$ $\cdots \cap P_{j}=Q_{j}$ then $P_{j+1} \supseteq P_{1} \cap \cdots \cap P_{j}$ and $P_{j+1} \supseteq P_{i}$ for some $1 \leq i \leq j$. But the ordering of P_{1}, \ldots, P_{m} implies that ht $P_{j+1} \leq$ ht P_{i}, giving $P_{i}=P_{j+1}$, a contradiction.

If the factors are not simple, then for some $1 \leq j \leq m$ there exists a special ideal J such that $P_{1} \cap \cdots \cap P_{j} \cap P_{j+1} \subsetneq J \subsetneq P_{1} \cap \cdots \cap P_{j}$. Being special, J is radical and has the form $P_{1} \cap \cdots \cap P_{j} \cap P_{k_{1}} \cap P_{k_{2}} \cap \cdots \cap P_{k_{s}}$ for $j<k_{1}, \ldots k_{s} \leq m$. Now for every $1 \leq \ell \leq s, P_{k_{\ell}} \supseteq P_{1} \cap \cdots \cap P_{j+1}$ so $P_{k_{\ell}} \supseteq P_{w}$ for some $1 \leq w \leq j+1$, and the height condition implies $P_{k_{\ell}}=P_{w}$ and we conclude that $J \subseteq P_{1} \cap \cdots \cap P_{j+1}$, a contradiction.

It remains to show that the F_{R}-submodules defined by the roots $Q_{j} / K \xrightarrow{u} Q_{j}^{[p]} / K^{[p]}$ are distinct: this follows from Lemma 5.4.

Corollary 5.6. Suppose $A=R / I$ is Gorenstein and F-injective. The length of $\mathrm{H}_{I}^{n-d}(R)$ in the category of F_{R}-modules equals the number of u-special primes of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ that contain K.

Remark 5.7. Suppose $A=R / I$ is Gorenstein and F-injective. We can actually prove that the length of $\mathrm{H}_{I}^{n-d}(R)$ in the category of F_{R}^{e}-modules for every e (and hence in the category of F_{R}^{∞}-modules) equals the number of u-special primes of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ that contain K. It suffices to prove that every $F_{R^{-}}^{e}$ submodule of $\mathrm{H}_{I}^{n-d}(R)$ is already an $F_{R^{-}}$ submodule of $\mathrm{H}_{I}^{n-d}(R)$. By the same argument as in Lemma 5.4, all F_{R}^{e}-submodules of $\mathrm{H}_{I}^{n-d}(R)$ have roots of the form J / K where J is an ideal containing K with the property $u^{1+p+\cdots+p^{e-1}} J \subseteq J^{\left[p^{e}\right]}$. Since $A=R / I$ is Gorenstein and F-injective (and hence F-pure), u corresponds to the generator of $\left(I^{[p]}: I\right) / I^{[p]}$ as an R / I-module and $u \notin \mathfrak{m}^{[p]}$ by Fedder's criterion Fed83]. We will show that these imply $u J \subseteq J^{[p]}$ and
 regular, there is a p^{-1}-linear map (i.e., a Frobenius splitting) $\phi: R \rightarrow R$ such that $\phi(u)=1$. Therefore $u^{1+p+\cdots+p^{e-1}} \in J^{\left[p^{e}\right]}: J$ implies
$u^{1+p+\cdots+p^{e-2}}=\phi\left(u^{p\left(1+p+\cdots+p^{e-2}\right)} \cdot u\right)=\phi\left(u^{1+p+\cdots+p^{e-1}}\right) \in \phi\left(J^{\left[p^{e}\right]}: J\right) \subseteq \phi\left(J^{\left[p^{e}\right]}: J^{[p]}\right)=J^{\left[p^{e-1}\right]}: J$
and thus by an easy induction we have $u \in J^{[p]}: J$ (note that we have used $\left(J^{\left[p^{e-1}\right]}\right.$: $J)^{[p]}=J^{\left[p^{e}\right]}: J^{[p]}$ because R is regular so the Frobenius endomorphism is flat).
5.3. Cohen-Macaulay case. In this subsection we assume that $A=R / I$ is CohenMacaulay with canonical module $\Omega / I=\omega \subseteq A$. This inclusion is compatible with the Frobenius endomorphism, and the short exact sequence $0 \rightarrow \omega \subseteq A \rightarrow A / \omega \rightarrow 0$ induces an A-linear map

$$
0 \rightarrow \mathrm{H}_{\mathfrak{m}}^{d-1}(A / \omega) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(\omega) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A / \omega) \rightarrow 0
$$

Now each of the Artinian A-modules is equipped with a Frobenius map induced by the Frobenius endomorphism acting of the short exact sequence, and $H_{\mathfrak{m}}^{d}(A / \omega)$ vanishes since $\operatorname{dim} A / \omega<\operatorname{dim} A=d$. So we obtain a short exact sequence of $A\{f\}$-modules

$$
0 \rightarrow \mathrm{H}_{\mathfrak{m}}^{d-1}(A / \omega) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(\omega) \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow 0
$$

We can now identify $\mathrm{H}_{\mathfrak{m}}^{d}(\omega)$ with $E_{A}=\operatorname{Ann}_{E} I$, and since the annihilator of $\mathrm{H}_{\mathfrak{m}}^{d-1}(A / \omega)$ is ω, we may identify $\mathrm{H}_{\mathfrak{m}}^{d-1}(A / \omega)$ with $\operatorname{Ann}_{E} \Omega$.

We now have a short exact sequence

$$
0 \rightarrow \operatorname{Ann}_{E} \Omega \rightarrow \operatorname{Ann}_{E} I \rightarrow \mathrm{H}_{\mathfrak{m}}^{d}(A) \rightarrow 0
$$

of $A\{f\}$-modules, and we can also write $\mathrm{H}_{\mathfrak{m}}^{d}(A)=\operatorname{Ann}_{E} I / \operatorname{Ann}_{E} \Omega$. Recall that any Frobenius action on $\mathrm{Ann}_{E} I$ has the form $u T$ where T is the natural Frobenius on E and $u \in\left(I^{[p]}: I\right)$. Fix $u \in R$ to be such that $u T$ is the Frobenius action on $\mathrm{Ann}_{E} I$ in the exact sequence above. We now can obtain an F_{R}-module filtration of $\mathrm{H}_{I}^{n-d}(R)=\mathscr{H}_{R, A}\left(\operatorname{Ann}_{E} I / \operatorname{Ann}_{E} \Omega\right)$ by applying the Lyubeznik functor $\mathscr{H}_{R, A}$ to a chain of surjections

$$
\operatorname{Ann}_{E} I / \operatorname{Ann}_{E} \Omega \rightarrow \operatorname{Ann}_{E} I / \operatorname{Ann}_{E} J_{1} \rightarrow \cdots \rightarrow \operatorname{Ann}_{E} I / \operatorname{Ann}_{E} J_{m}
$$

where J_{1}, \ldots, J_{m} are u-special ideals such that $\Omega \supseteq J_{1} \supseteq \cdots \supseteq J_{m} \supseteq I$. We let $K=\cup_{e \geq 1}\left(I^{\left[p^{e}\right]}: u^{1+p+\cdots+p^{e-1}}\right)$ so that $\Omega / K \xrightarrow{u} \Omega^{[p]} / K^{[p]}$ is a root for $\mathrm{H}_{I}^{n-d}(R)=$ $\mathscr{H}_{R, A}\left(\mathrm{Ann}_{E} I / \mathrm{Ann}_{E} \Omega\right)$.
Theorem 5.8. Assume $A=R / I$ is Cohen-Macaulay. Let $\left\{P_{1}, \ldots, P_{m}\right\}$ be the set of all the u-special prime ideals $P \supseteq K$ such that $P \nsupseteq \Omega$ and $u \notin P^{[p]}$, and assume that
these were ordered so that ht $P_{1} \geq$ ht $P_{2} \geq \cdots \geq$ ht P_{m}. Write $Q_{j}=\Omega \cap P_{1} \cap \cdots \cap P_{j}$ for all $1 \leq j \leq m$. The chain of roots

corresponds to a filtration of $\mathrm{H}_{I}^{n-d}(R)$ in the category of F-modules with non-zero factors.

Proof. The homomorphic images $\operatorname{Ann}_{E} I / \operatorname{Ann}_{E} Q_{1}, \ldots, \operatorname{Ann}_{E} I / \operatorname{Ann}_{E} Q_{1}$ of $\mathrm{Ann}_{E} I / \operatorname{Ann}_{E} \Omega$ are preserved by the natural Frobenius action on $\mathrm{H}_{\mathfrak{m}}^{d}(A) \cong \operatorname{Ann}_{E} I / \mathrm{Ann}_{E} \Omega$ because each Q_{i}, being the intersection of u-special ideals, is itself special.

An application of the Lyubeznik functor $\mathscr{H}_{R, A}$ to the chain of surjections

$$
\operatorname{Ann}_{E} I / \operatorname{Ann}_{E} \Omega \rightarrow \operatorname{Ann}_{E} I / \operatorname{Ann}_{E} J_{1} \rightarrow \cdots \rightarrow \operatorname{Ann}_{E} I / \operatorname{Ann}_{E} J_{m}
$$

yields a filtration of $\mathrm{H}_{I}^{n-d}(R)$ whose generating morphisms are the vertical maps in the following commutative diagram

We can replace these generating morphisms by their corresponding roots, and obtain the commutative diagram

where now all vertical maps are roots and, once we show that the inclusions in this diagram are strict, this gives a filtration of $\mathrm{H}_{I}^{n-d}(R)$ with non-zero factors.

We need to show that for all $e \geq 1$, and all $1 \leq i<m$,

$$
\left(Q_{i+1}^{\left[p^{e}\right]}: u^{\nu_{e}}\right) \subsetneq\left(Q_{i}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)
$$

where $\nu_{e}=1+p+\cdots+p^{e-1}$. If we have equality, we may take radicals of both sides to obtain

$$
\sqrt{\left(\Omega^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \cap \bigcap_{j=1}^{i+1} \sqrt{\left(P_{j}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)}=\sqrt{\left(\Omega^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \cap \bigcap_{j=1}^{i} \sqrt{\left(P_{j}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)}
$$

and so

$$
\sqrt{\left(P_{i+1}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \supseteq \sqrt{\left(\Omega^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \cap \bigcap_{j=1}^{i} \sqrt{\left(P_{j}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} .
$$

We claim that $u^{\nu_{e}} \notin P_{j}^{\left[p^{e}\right]}$ for each j and we will use induction on e to prove this. When $e=1$, this is precisely our assumption that $u \notin P_{j}^{[p]}$. Assume that $u^{\nu_{e}} \notin P_{j}^{\left[p^{e}\right]}$ and we wish to prove $u^{\nu_{e+1}} \notin P_{j}^{\left[p^{e+1}\right]}$. If $u^{\nu_{e+1}} \in P_{j}^{\left[p^{e+1}\right]}$, then we would have

$$
u^{\nu_{e}} \in\left(P_{j}^{\left[p^{e+1}\right]}: u^{p^{e}}\right)=\left(P_{j}^{[p]}: u\right)^{\left[p^{e}\right]} \subseteq P_{j}^{\left[p^{e}\right]}
$$

a contradiction, where the last inclusion follows from the fact that $P_{j}^{[p]}$ is P-primary and our assumption that $u \notin P_{j}^{[p]}$.

Consequently $\left(P_{i+1}^{\left[p^{e}\right]}: u^{\nu_{e}}\right) \neq R$ and we must have $\left(P_{i+1}^{\left[p^{e}\right]}: u^{\nu_{e}}\right) \subseteq P_{i+1}$ and so $P_{i+1} \supseteq \sqrt{\left(\Omega^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \cap \bigcap_{j=1}^{i} \sqrt{\left(P_{j}^{\left[p^{e}\right]}: u^{\nu_{e}}\right)}$ and hence P_{i+1} must contain one of the ideals in the intersection; since these ideals are among the unit ideal, P_{1}, \ldots, P_{i} and $\sqrt{\left(\Omega^{\left[p^{e}\right]}: u^{\nu_{e}}\right)} \supseteq \Omega$, this is impossible.

We have the following immediate corollary of Theorem 5.8.
Corollary 5.9. Let A, R, I, u, K, Ω be as in Theorem 5.8. The length of $\mathrm{H}_{I}^{n-d}(R)$ in the category of F-modules is at least the number of u-special prime ideals $P \supseteq K$ of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ such that $P \nsupseteq \Omega$ and $u \notin P^{[p]}$.
Remark 5.10. If A is quasi-Gorenstein and we take $\Omega=R$, the prime special ideals in the statement of Theorem 5.8 are the prime special ideals $P \supseteq I$ of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ such that $P \supseteq K$, and $u \notin P^{[p]}$. The set of all such primes has been known to be finite ([KS12, Remark 5.3]) and if A is also F-injective, we obtain the same set of primes as in Theorem 5.5 thus Theorem 5.8 generalizes Theorem 5.5.

6. A computation of Fermat hypersurfaces

We have seen from Theorem 4.3 and Remark 4.5 that the problem of computing the $D(R, k)$-module length of $\mathrm{H}_{I}^{n-d}(R)$ when $A=R / I$ is a graded isolated singularity comes down to computing the dimension of the Frobenius stable part of $\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}$. In this section we study this problem for Fermat hypersurfaces $A=k\left[x_{0}, \ldots, x_{d}\right] /\left(x_{0}^{n}+x_{1}^{n}+\right.$ $\left.\cdots+x_{d}^{n}\right)$ with $d \geq 2$. We express the dimension of the Frobenius stable part of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ explicitly in terms of the number of solutions to a system of equations on remainders. These results generalize earlier computations of Blickle in [Bli01, Examples 5.26-5.29].
Remark 6.1. Let $A=k\left[x_{0}, x_{1}, \ldots, x_{d}\right] /\left(x_{0}^{n}+x_{1}^{n}+\cdots+x_{d}^{n}\right)$. Then the degree 0 part of the top local cohomology $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ has a k-basis consisting of the elements of the form $\frac{x_{0}^{c}}{x_{1}^{a_{1} \ldots x_{d}^{a_{d}}}}$, where a_{1}, \ldots, a_{d} are positive integers and $a_{1}+\cdots+a_{d}=c \leq n-1$. Therefore, its dimension is $\binom{n-1}{d}$.

In the following we will use $s \% t$ to denote the remainder of $s \bmod t$.
Remark 6.2. We want to record an elementary observation. Let $n \geq 2$ be an integer and p be a prime. Let $p=n k+r$ where r is the remainder. If for some positive integer $a<n, n \mid a r$, then we claim that $p=r$ and $p \mid n$.

This is because $n \mid a r$ and $a<n$ implies that n and r must have a nontrivial common divisor. But $p=n k+r$ is prime, so the only nontrivial common divisor that n and r could have is p, in which case we must have $p=r$ and p (equivalently, r) divides n.

Theorem 6.3. Let $A=k\left[x_{0}, x_{1}, \ldots, x_{d}\right] /\left(x_{0}^{n}+x_{1}^{n}+\cdots+x_{d}^{n}\right)$ with $d \geq 2$. Suppose $p \equiv r \bmod n$. If p does not divide n, then the dimension of the stable part of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ can be computed as the number of solutions of the following system of inequalities on $1 \leq a_{i} \leq n-1$

$$
\left\{\begin{array}{l}
a_{1}+\cdots+a_{d}<n \\
\left(r a_{1}\right) \% n+\cdots+\left(r a_{d}\right) \% n<n \\
\left(r^{2} a_{1}\right) \% n+\cdots+\left(r^{2} a_{d}\right) \% n<n \\
\quad \vdots \\
\left(r^{\varphi(n)-1} a_{1}\right) \% n+\cdots+\left(r^{\varphi(n)-1} a_{d}\right) \% n<n
\end{array} .\right.
$$

If p (equivalently, r) divides n, then we also need to require that $r^{h} a_{i}$ is not divisible by n for all h and i.

Proof. A basis of the degree 0 part of $\mathrm{H}_{\mathfrak{m}}^{d}(A)$ is formed by the elements

$$
\frac{x_{0}^{c}}{x_{1}^{a_{1}} \cdots x_{d}^{a_{d}}}
$$

where $a_{1}+\cdots+a_{d}=c<n$ and $a_{i} \geq 1$. On such element, Frobenius acts as

$$
\frac{x_{0}^{c}}{x_{1}^{a_{1}} \cdots x_{d}^{a_{d}}} \mapsto \frac{x_{0}^{c p}}{x_{1}^{a_{1} p} \cdots x_{d}^{a_{d} p}}=\frac{x_{0}^{(c r) \% n} \cdot\left(-x_{1}^{n}-\cdots-x_{d}^{n}\left\lfloor\frac{c p}{n}\right\rfloor\right.}{x_{1}^{a_{1} p} \cdots x_{d}^{a_{d} p}} .
$$

After expanding the expression we obtain the sum of monomials of the form

$$
(-1)^{\left\lfloor\frac{c p}{n}\right\rfloor}\binom{\left\lfloor\frac{c p}{n}\right\rfloor}{\alpha_{1}, \ldots, \alpha_{d}} \frac{x_{0}^{(c r) \% n} \cdot\left(x_{1}^{n \alpha_{1}} \cdots x_{d}^{n \alpha_{d}}\right)}{x_{1}^{a_{1} p} \cdots x_{k}^{a_{d} p}}
$$

for $\alpha_{1}+\cdots+\alpha_{d}=\left\lfloor\frac{c p}{n}\right\rfloor$. This element will be zero unless $\alpha_{i} n<a_{i} p$ for all i. Hence it is zero if $\alpha_{i}>\left\lfloor\frac{a_{i} p}{n}\right\rfloor$ for some i. In particular, the element $\frac{x_{0}^{c}}{x_{1}^{a_{1} \ldots x_{d}^{a_{d}}}}$ is in the kernel of the Frobenius map if

$$
\alpha_{1}+\cdots+\alpha_{d}=\left\lfloor\frac{c p}{n}\right\rfloor>\left\lfloor\frac{a_{1} p}{n}\right\rfloor+\cdots+\left\lfloor\frac{a_{d} p}{n}\right\rfloor
$$

i.e., $a_{1} p \% n+\cdots+a_{d} p \% n=a_{1} r \% n+\cdots+a_{d} r \% n \geq n$. Similarly, if

$$
\left\lfloor\frac{c p}{n}\right\rfloor=\left\lfloor\frac{a_{1} p}{n}\right\rfloor+\cdots+\left\lfloor\frac{a_{d} p}{n}\right\rfloor,
$$

the only term that can possibly survive is

$$
\binom{\left\lfloor\frac{c p}{n}\right\rfloor}{\left\lfloor\frac{a_{1} p}{n}\right\rfloor, \ldots,\left\lfloor\frac{a_{d} p}{n}\right\rfloor} \frac{(-1)^{\left\lfloor\frac{c p}{n}\right\rfloor} x_{0}^{(c r) \% n} \cdot\left(x_{1}^{\left\lfloor\frac{a_{1} p}{n}\right\rfloor} \cdots x_{d}^{\left\lfloor\frac{a_{d} p}{n}\right\rfloor}\right)^{n}}{x_{1}^{a_{1} p} \cdots x_{d}^{a_{d} p}}=\binom{\left\lfloor\frac{c p}{n}\right\rfloor}{\left\lfloor\frac{a_{1} p}{n}\right\rfloor, \ldots,\left\lfloor\frac{a_{d} p}{n}\right\rfloor} \frac{(-1)^{\left\lfloor\frac{c p}{n}\right\rfloor} x_{0}^{(c r) \% n}}{x_{1}^{\left(a_{1} r\right) \% n} \cdots x_{d}^{\left(a_{d} r\right) \% n} .}
$$

Since $\left\lfloor\frac{c p}{n}\right\rfloor<p$, the binomial coefficient $\binom{\left\lfloor\frac{a_{1} p}{n}\right\rfloor, \ldots,\left\lfloor\frac{c p}{n}\right\rfloor}{\left\lfloor\frac{a_{d} p}{n}\right\rfloor}$ is nonzero. Thus the last possibility that the above term be zero is that $a_{i} r$ is divisible by n for some i. Now as explained in Remark 6.2, this can happen only if $p=r$ and p divides n.

In sum, an element of the basis

$$
\frac{x_{0}^{c}}{x_{1}^{a_{1}} \cdots x_{d}^{a_{d}}}
$$

is not in the kernel of Frobenius if and only if

$$
\left(r a_{1}\right) \% n+\ldots+\left(r a_{k}\right) \% n<n
$$

and, if p (equivalently, r) divides $n, a_{i} r$ are not divisible by n for all i. Thus the claim follows after considering further iterates of Frobenius (we only need to consider the first $\varphi(n)-1$ iterates because $r^{\varphi(n)} \equiv 1 \bmod n$ by Fermat's little theorem, so further iterates would repeat this pattern), because if a basis element is not in the kernel of all the iterates of the Frobenius map, then it contributes to an element in $\mathrm{H}_{\mathfrak{m}}^{d}(A)_{s}$.

Corollary 6.4. Frobenius acts injectively on $\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}$ if and only if $p \equiv 1 \bmod n$. As a consequence, $\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}\right)_{s}=\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}$ if and only if $p \equiv 1 \bmod n$.

Proof. If $p \equiv 1 \bmod n$ the claim immediately follows from Theorem 6.3, For the other direction, we need to show that there are integers $a_{i} \geq 1$ such that $a_{1}+\cdots+a_{d}<n$ but $\left(r a_{1}\right) \% n+\cdots+\left(r a_{d}\right) \% n \geq n$.

If r is invertible modulo n, take $1 \leq a_{1}<n-1$ such that $a_{1} r \equiv-1 \bmod n$. Then since $r a_{i} \geq 1$ for all $i>1$, we always have $\left(r a_{1}\right) \% n+\ldots+\left(r a_{d}\right) \% n \geq n$ as $d \geq 2$. If r is not invertible, $p=r$ must divide n. Then any a_{1} such that $p a_{1}=n$ satisfies the required conditions.

Corollary 6.5. If $p^{h} \equiv-1 \bmod n$ for some h, then Frobenius acts nilpotently on $\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}$. As a consequence, $\left(\mathrm{H}_{\mathfrak{m}}^{d}(A)_{0}\right)_{s}=0$ in this case.

Proof. Consider the equation

$$
\left(-a_{1}\right) \% n+\cdots+\left(-a_{d}\right) \% n<n
$$

corresponding to $r^{h}\left(\right.$ which is $\left.\equiv p^{h} \equiv-1 \bmod n\right)$. Since $1 \leq a_{i} \leq n-1,\left(-a_{1}\right) \% n=$ $n-a_{1}$, so the equation becomes

$$
d n-a_{1}-\cdots-a_{d}<n
$$

But this equation has no solution since $a_{1}+\cdots+a_{d}<n$ and $d \geq 2$.
Remark 6.6. The converse to the last corollary does not hold. For example, if $n=11$ and $d=2$, then a direct computation shows that Frobenius acts nilpotently on $\mathrm{H}_{\mathfrak{m}}^{2}(A)_{0}$ unless $p \equiv 1 \bmod n$.

7. D-module length vs. F-module length

We continue to use the notation as in the beginning of Section 4 and Section 5. In [Bli03], Blickle made a deep study on the comparison of D-module and F-module length. For example, in Bli03, Theorem 1.1 or Corollary 4.7] it was proved that if k is algebraically closed, then for every F-finite F_{R}^{∞}-module M, we have $l_{F_{R}^{\infty}}(M)=l_{D_{R}}(M)$, which is also $=l_{D(R, k)}(M)$ since $D_{R}=D(R, k)$ when k is perfect. Moreover, when k is perfect but not algebraically closed, Blickle constructed an example [Bli03, 5.1] of a simple F_{R}^{∞}-module that is not D_{R}-simple (equivalently, not $D(R, k)$-simple since k is perfect). In particular, even the F_{R}^{∞}-module length may differ from the $D(R, k)$-module length in general.

However it is not clear that whether these pathologies are artificial, i.e., can they occur for local cohomology modules with their natural F_{R}-module structure? In this section we will construct an example of a local cohomology module of R, with k algebraically closed, such that its F_{R}-module length is strictly less than its D_{R}-module length.

To begin, let V be a vector space over a field k of positive characteristic p. Then we can describe a e-th Frobenius action f on V in the following way. Choose a basis e_{1}, \ldots, e_{n} of V. Let $f\left(e_{i}\right)=a_{1 i} e_{1}+\ldots+a_{n i} e_{n}$. Then for any element $b=\left(b_{1}, \ldots, b_{n}\right)^{T}$ written in the basis e_{i}, we can write

$$
f(b)=A b^{\left[p^{e}\right]}
$$

where $A=\left(a_{i j}\right)$ and $\left[b^{p^{e}}\right]$ raises all entries to p^{e}-th power. Or explicitly,

$$
f(b)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{m 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
b_{1}^{p^{e}} \\
\vdots \\
b_{n}^{p^{e}}
\end{array}\right) .
$$

Via this description it is very easy to see the following result.
Lemma 7.1. Let k be a field of positive characteristic p and let V be a finite dimensional vector space with a e-th Frobenius action f. Let A be a matrix describing the action of f in some basis e_{i}. Then in a new basis obtained by an orthogonal matrix O, f is represented by the matrix $O A\left(O^{\tau}\right)^{\left[p^{e}\right]}$, where all entries of the transpose O^{τ} are raised to the p^{e}-th power.

Proposition 7.2. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ or $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and V be a k-vector space with a e-th Frobenius action f. Then $l_{F_{R}^{e}}\left(\mathscr{H}_{R, R}(V)\right)$ is the length of any longest flag of f-subspaces

$$
0 \subset V_{1} \subset V_{2} \subset \ldots \subset V_{m}=V
$$

such that f is not nilpotent on V_{i} / V_{i-1} for every i.
In particular, $l_{F_{R}^{e}}\left(\mathscr{H}_{R, R}(V)\right)=\operatorname{dim} V$ if and only if there is a basis of V such that, with the notation as in Lemma 7.1, f can be represented by an upper-triangular matrix A with nonzero entries on the main diagonal.

Proof. The first claim is Lyu97, Theorem 4.7].
If $l_{F_{R}^{e}}\left(\mathscr{H}_{R, R}(V)\right)=\operatorname{dim} V$, then we must have $\operatorname{dim} V_{i}=i$. Then we will choose a compatible basis for the flag, i.e., $V_{i}=k\left\langle e_{1}, \ldots, e_{i}\right\rangle$. Since $f\left(V_{i}\right) \subseteq V_{i}$. Now $f\left(e_{i}\right)=$ $a_{i 1} e_{1}+\ldots+a_{i i} e_{i}$. Thus the matrix representing f is upper-triangular. Moreover, since f acts nontrivially on V_{i} / V_{i-1}, we must have $a_{i i} \neq 0$. So the matrix have nonzero entries on the main diagonal.

Conversely, if the matrix is upper-triangular with nonzero entries on the main diagonal in some basis, it is easy to see that $V_{i}=k\left\langle e_{1}, \ldots, e_{i}\right\rangle$ form a flag of f-subspaces with f acts nontrivially on V_{i} / V_{i-1}.

Remark 7.3. Before proceeding further, we need a simple result in linear algebra. Over a finite field \mathbb{F}_{p} where $p \neq 3$, consider the matrix

$$
\left(\begin{array}{lll}
0 & 0 & a \\
a & 0 & 0 \\
0 & a & 0
\end{array}\right) .
$$

where $a \neq 0$ in \mathbb{F}_{p}. The characteristic polynomial of this matrix is

$$
\lambda^{3}-a^{3}=(\lambda-a)\left(\lambda^{2}+\lambda a+a^{2}\right)
$$

The discriminant of the quadratic polynomial is $D=-3 a^{2}$. Thus if -3 is a quadratic residue in \mathbb{F}_{p} then the characteristic polynomial has three distinct eigenvalues. On the other hand, if -3 is not a quadratic residue, then $(1,1,1)$ is the only eigenvector and the restriction of this matrix on the orthogonal subspace

$$
\left(\begin{array}{ll}
0 & -a \\
a & -a
\end{array}\right)
$$

has no eigenvalues over \mathbb{F}_{p}.
By Quadratic Reciprocity, -3 is a quadratic residue if and only if $p=1(\bmod 3)$. Thus if $p \neq 1(\bmod 3)$, the matrix has no eigenvalues over \mathbb{F}_{p} and thus cannot be transformed in an upper-triangular form by a change of basis. Otherwise, it has three eigenvectors and can be transformed in an upper-triangular form.

Our first example shows that $l_{F_{R}}\left(\mathrm{H}_{I}^{n-c}(R)\right)$ can be strictly less than $l_{F_{R}^{\infty}}\left(\mathrm{H}_{I}^{n-c}(R)\right)$ and thus strictly less than $l_{D(R, k)}\left(\mathrm{H}_{I}^{n-c}(R)\right)$ by (2.0.1) if k is not separably closed, even when $A=R / I$ has isolated singularities.

Corollary 7.4. Let p be a prime number, $R=\mathbb{F}_{p}[x, y, z]$, and $f=x^{7}+y^{7}+z^{7}$. Then

$$
l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=l_{D_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)= \begin{cases}16 & \text { if } p \equiv 1 \quad(\bmod 7) \\ 7 & \text { if } p \equiv 2 \text { or } 4 \quad(\bmod 7) \\ 1 & \text { otherwise }\end{cases}
$$

On the other hand,

$$
l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)= \begin{cases}16 & \text { if } p \equiv 1 \quad(\bmod 7), \\ 7 & \text { if } p \equiv 2 \text { or } 4 \quad(\bmod 7) \text { and } p \equiv 1 \quad(\bmod 3) \\ 5 & \text { if } p \equiv 2 \text { or } 4 \quad(\bmod 7) \text { and } p \not \equiv 1 \quad(\bmod 3) \\ 1 & \text { otherwise }\end{cases}
$$

In particular, $l_{D_{R}}\left(\mathrm{H}_{f}^{1}(R)\right) \neq l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)$ for any $p \equiv 11(\bmod 21)$.
Proof. Let V denote the k-vector space $\left(0_{\mathrm{H}_{\mathfrak{m}}^{2}(R / f)}^{*}\right)_{s}=\left(\mathrm{H}_{\mathfrak{m}}^{2}(R / f)_{0}\right)_{s}$. By Corollary 6.4 and Corollary 6.5, Frobenius acts injectively on $\mathrm{H}_{\mathfrak{m}}^{2}(R / f)_{0}$ if $p \equiv 1(\bmod 7)$ and nilpotently if $p \equiv 3,5,6(\bmod 7)$. When $p \equiv 2$ or $4(\bmod 7)$, using the algorithm described in Theorem 6.3 it can be checked that the Frobenius map (i.e., $e=1$) on V is spanned by two 3 -cycles. If $p \equiv 4(\bmod 7)$, the cycles are

$$
\frac{z^{3}}{x^{2} y} \rightarrow \frac{z^{5}}{x y^{4}} \rightarrow \frac{z^{6}}{x^{4} y^{2}} \text { and } \frac{z^{3}}{x y^{2}} \rightarrow \frac{z^{5}}{x^{4} y} \rightarrow \frac{z^{6}}{x^{2} y^{4}}
$$

While if $p \equiv 2(\bmod 7)$, the cycles become

$$
\frac{z^{3}}{x^{2} y} \rightarrow \frac{z^{6}}{x^{4} y^{2}} \rightarrow \frac{z^{5}}{x y^{4}} \text { and } \frac{z^{3}}{x y^{2}} \rightarrow \frac{z^{6}}{x^{2} y^{4}} \rightarrow \frac{z^{5}}{x^{4} y}
$$

In particular, one obtains that

$$
\operatorname{dim} V= \begin{cases}15 & \text { if } p \equiv 1 \quad(\bmod 7) \\ 6 & \text { if } p \equiv 2 \text { or } 4 \quad(\bmod 7) \\ 0 & \text { otherwise }\end{cases}
$$

Since $R /(f)$ is an isolated singularity, $l_{D_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=\operatorname{dim} V+1$ by Theorem 4.3, In the cases when Frobenius acts injectively or nilpotently on $\mathrm{H}_{\mathfrak{m}}^{2}(R / f)_{0}$, we also deduce from Proposition 7.2 that $l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=\operatorname{dim} V+1$ (note that when Frobenius acts injectively on $\mathrm{H}_{\mathfrak{m}}^{2}(R / f)_{0}$, the proof of Theorem 6.3 shows that Frobenius sends each canonical basis element of $\mathrm{H}_{\mathfrak{m}}^{2}(R / f)_{0}$ to a multiple of itself, so the representing matrix is diagonal).

In the remaining cases, in order to compute its F_{R}^{e}-module length we will study a matrix which represents the Frobenius map on V by Proposition 7.2. We can use the proof of Theorem 6.3 to describe the Frobenius action on the cycles. If $p=7 k+4$, one obtains that the Frobenius action on both cycles are described by the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & (-1)^{6 k+3}\binom{6 k+3}{2 k+1} \\
(-1)^{3 k+1}\binom{3 k+1}{k} & 0 & 0 \\
0 & (-1)^{5 k+2}\binom{5 k+2}{k} & 0
\end{array}\right)
$$

where we have chosen the natural bases, e.g. $e_{1}=\frac{z^{3}}{x^{2} y}, e_{2}=\frac{z^{5}}{x y^{4}}, e_{3}=\frac{z^{6}}{x^{4} y^{2}}$ for the first cycle. Similarly, if $p=7 k+2$, the matrix is

$$
\left(\begin{array}{ccc}
0 & 0 & (-1)^{5 k+1}\binom{5 k+1}{4 k+1} \\
(-1)^{3 k}\binom{3 k}{k} & 0 & 0 \\
0 & (-1)^{6 k+1}\binom{6 k+1}{4 k+1} & 0
\end{array}\right) .
$$

We claim that the non-zero entries of A are equal. Observe that by Wilson's theorem $(n-1)!(p-n)!=(n-1)!(p-n)(p-n-1) \cdots 1=(n-1)!(-n)(-n-1) \cdots(-p+1)=(-1)^{n}$ $\bmod p$. Furthermore, because $p=7 k+4$ is odd, k is odd. Thus we can rewrite

$$
\binom{5 k+2}{k}=\frac{(5 k+2)!}{(k)!(4 k+2)!}=\frac{(p-2 k-2)!}{(p-6 k-4)!(4 k+2)!}=(-1)^{4 k+2}\binom{6 k+3}{2 k+1}=\binom{6 k+3}{2 k+1}
$$

and

$$
\binom{5 k+2}{k}=\frac{(5 k+2)!}{(k)!(4 k+2)!}=\frac{(p-2 k-2)!}{k!(p-3 k-2)!}=(-1)^{5 k}\binom{3 k+1}{k}=-\binom{3 k+1}{k}
$$

The case of $p=7 k+2$ is identical.
Since $a^{p}=a$ for any element $a \in \mathbb{F}_{p}$, the Frobenius action is linear. Thus by Lemma 7.1 and Remark 7.3, the matrix associated to the Frobenius map on the chosen basis can be transformed into upper-triangular form if and only if $p \equiv 1(\bmod 3)$. Thus by Proposition 7.2, in the case $p=7 k+4$ or $p=7 k+2$, we obtain that $l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=$ $l_{F_{R}}\left(\mathscr{H}_{R, R}(V)\right)+1=7$ when $p \equiv 1(\bmod 3)$, and otherwise $l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=5$.

Last, it is easy to see that the third iterate of the Frobenius map on V can be represented by a diagonal matrix, hence

$$
l_{F_{R}^{3}}\left(\mathscr{H}_{R, R}(V)\right)=l_{F_{R}^{3}}\left(\mathscr{H}_{R, R}\left(0_{\mathrm{H}_{\mathbf{m}}^{2}(R / f)}^{*}\right)\right)=l_{F_{R}^{\infty}}\left(\mathscr{H}_{R, R}\left(0_{\mathrm{H}_{\mathbf{m}}^{2}(R / f)}^{*}\right)\right)=6
$$

and $l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=7$.
Finally, we exhibit an example of a local cohomology module of R, with k algebraically closed, such that its $D(R, k)$-module length (equivalently, its F_{R}^{∞}-module length) is strictly bigger than its F_{R}-module length. Recall that by Theorem 4.3, this cannot happen if $A=R / I$ has isolated singularities.

Proposition 7.5. Let $p=7 k+4$ be a prime number. Let $R=\overline{\mathbb{F}}_{p}[x, y, z, t]$ and let $f=t x^{7}+t y^{7}+z^{7}$. Then

$$
l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R)\right)=3<7=l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}\left(\mathrm{H}_{f}^{1}(R)\right) .
$$

Proof. Denote $R /(f)$ by A. First we claim that $(x, y, z) A$ is the only height- 2 prime ideal of A that contains the test ideal $\tau(A)$ of A. By [ST12, Theorem 6.4], we have

$$
\tau(A)=\sum_{e} \sum_{\phi \in \operatorname{Hom}_{A}\left(A^{1 / p^{e}}, A\right)} \phi\left(c^{1 / p^{e}}\right)
$$

where c is a test element for A. According to Hoc07, Theorem on page 184], z^{6} is a test element for A and we may set $c=z^{6}$. Since $A=R /(f)$, we have

$$
\tau(A)=\left(\sum_{e} \sum_{\varphi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)} \varphi\left(\left(f^{p^{e}-1} z^{6}\right)^{1 / p^{e}}\right)\right) A
$$

It is straightforward to check that $\left(x^{6}, y^{6}, z^{6}\right) \subset \tau(A)$ and $\tau(A)$ has height 2. Hence $(x, y, z) A$ is the only height-2 prime ideal that contains the test ideal $\tau(A)$ of A. Consequently, \widehat{A}_{P} is F-rational for each height-2 prime $P \neq(x, y, z) A$, or equivalently $0_{\mathrm{H}_{P \widehat{A}_{P}}^{2}\left(\widehat{A}_{P}\right)}^{*}=0$.

Next we calculate the stable part of $H_{\mathfrak{m}}^{3}(A)$ where $\mathfrak{m}=(x, y, z, t)$. To this end, we assign the grading $\operatorname{deg}(x)=\operatorname{deg}(y)=1, \operatorname{deg}(z)=2$, and $\operatorname{deg}(t)=7$ degrees $1,1,2,7$ to R and, consequently, f is homogeneous. It is straightforward to check that $\mathrm{H}_{\mathfrak{m}}^{3}(A)_{0}$ has a $\overline{\mathbb{F}}_{p}$-basis:

$$
\left[\frac{z^{5}}{t x^{2} y}\right],\left[\frac{z^{5}}{t x y^{2}}\right],\left[\frac{z^{6}}{t x^{3} y}\right],\left[\frac{z^{6}}{t x^{2} y^{2}}\right],\left[\frac{z^{6}}{t x y^{3}}\right]
$$

and each of these elements is nilpotent under the natural Frobenius action. Hence $H_{\mathfrak{m}}^{3}(A)_{s}=\left(\mathrm{H}_{\mathfrak{m}}^{3}(A)_{0}\right)_{s}=0$.

Given the grading on R, we are in the situation of Theorem4.8. By Claim4.8.1, there exists a graded F_{R}-module filtration $0 \subseteq L \subseteq M \subseteq \mathrm{H}_{f}^{1}(R)$ where L is supported at (f), each $D\left(R, \overline{\mathbb{F}}_{p}\right)$-module (equivalently, D_{R}-module or F_{R}^{∞}-module) composite factor of M / L is supported at (x, y, z), and $\mathrm{H}_{f}^{1}(R) / M$ is supported only at $\mathfrak{m}=(x, y, z, t)$.

By [Bli04, Corollary 4.2 and Theorem 4.4],

$$
l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}(L)=l_{F_{R}^{\infty}}(L)=l_{F_{R}}(L)=1,
$$

because there is only one minimal prime (f) of A. Moreover, we have

$$
l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}\left(\mathrm{H}_{f}^{1}(R) / M\right)=l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R) / M\right)=l_{F_{R}}\left(\mathrm{H}_{f}^{1}(R) / M\right)=0
$$

since $\operatorname{dim}_{\overline{\mathbb{F}}_{p}}\left(\mathrm{H}_{\mathfrak{m}}^{3}(A)\right)_{s}=0$. Thus we actually have $M=\mathrm{H}_{f}^{1}(R)$ in this example.
It remains to compute $l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}(M / L), l_{F_{R}^{\infty}}(M / L)$, and $l_{F_{R}}(M / L)$. Note that the first two are equal because we are working over an algebraically closed field Bli03, Theorem 1.1]. Moreover, if we take an F_{R}^{∞}-module (resp. F_{R}-module) filtration of M / L, say

$$
L=M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{l}=M=\mathrm{H}_{f}^{1}(R)
$$

such that each $N_{i}=M_{i} / M_{i-1}$ is a simple F_{R}^{∞}-module (resp. simple F_{R}-module) supported at $P=(x, y, z)$. Then if we localize at P and complete, we have

$$
L \otimes \widehat{R_{P}}=M_{0} \otimes \widehat{R_{P}} \subseteq M_{1} \otimes \widehat{R_{P}} \subseteq \cdots \subseteq M_{l} \otimes \widehat{R_{P}}=\mathrm{H}_{f}^{1}\left(\widehat{R_{P}}\right)
$$

such that each successive quotients $N_{i} \otimes \widehat{R_{P}}$ is still simple as an $F_{\widehat{R_{P}}}^{\infty}$-module (resp. simple as an $F_{\widehat{R_{P}}}$-module) by Lemma 4.7.

Observe that

$$
\widehat{R_{P}} /(f) \cong \overline{\mathbb{F}}_{p}(t)[[x, y, z]] /\left(t x^{7}+t y^{7}+z^{7}\right)
$$

which is an isolated singularity. Hence by Proposition 7.2 (and the proof of Theorem 4.3), the $F_{\widehat{R_{P}}}^{\infty}$-module (resp. $F_{\widehat{R_{P}}}$-module) length of $\mathrm{H}_{f}^{1}\left(\widehat{R_{P}}\right) /\left(L \otimes \widehat{R_{P}}\right)$ is the longest flag of Frobenius-stable subspaces of

$$
V=\left(0_{\mathrm{H}_{\mathbf{m}}^{2}}^{*}\left(\mathbb{F}_{p}(t)[[x, y, z]] /\left(t x^{7}+t y^{7}+z^{7}\right)\right)\right)_{s} .
$$

Via a direct computation similar to the proof of Theorem 6.3 one can show that $\operatorname{dim} V=6$ and V is a direct sum of two three-dimensional Frobenius-stable subspaces. In the natural bases as in the proof of Corollary 7.4, the Frobenius action on each cycle is represented by the matrix:

$$
A=\left(\begin{array}{ccc}
0 & 0 & \binom{3 k+1}{k} t^{6 k+3} \\
\binom{3 k+1}{k} t^{3 k+1} & 0 & 0 \\
0 & \binom{3 k+1}{k} t^{5 k+2} & 0
\end{array}\right)=\binom{3 k+1}{k}\left(\begin{array}{ccc}
0 & 0 & t^{6 k+3} \\
t^{3 k+1} & 0 & 0 \\
0 & t^{5 k+2} & 0
\end{array}\right)
$$

We can easily see that the third iterate of the Frobenius map on V can be represented by a diagonal matrix, hence by Proposition 7.2

$$
l_{F_{F_{P}}^{3}}\left(\mathrm{H}_{f}^{1}\left(\widehat{R_{P}}\right) /\left(L \otimes \widehat{R_{P}}\right)\right)=l_{F_{F_{P}}^{\infty}}\left(\mathrm{H}_{f}^{1}\left(\widehat{R_{P}}\right) /\left(L \otimes \widehat{R_{P}}\right)\right)=6,
$$

and thus by the above discussion

$$
l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}\left(\mathrm{H}_{f}^{1}(R)\right)=l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=1+6=7
$$

Finally let us show that V has no proper subspace stable under the Frobenius action. If U is a proper Frobenius-stable subspace and $v \in U$, then we must have that $\left\langle v, F(v), F^{2}(v)\right\rangle \subseteq U \varsubsetneqq V$. Thus if $v=(a, b, c)$ in the standard basis, then

$$
\operatorname{det}\left(\begin{array}{ccc}
a & t^{6 k+3} c^{p} & t^{6 k+3+(5 k+2) p} b^{p^{2}} \\
b & t^{3 k+1} a^{p} & t^{3 k+1+(6 k+3) p} c^{p^{2}} \\
c & t^{5 k+2} b^{p} & t^{5 k+2+(3 k+1) p} a^{p^{2}}
\end{array}\right)=0
$$

Observe that if $w=\lambda v$ then

$$
\operatorname{det}\left(w, F w, F^{2} w\right)=\lambda^{p^{2}+p+1} \operatorname{det}\left(v, F v, F^{2} v\right)
$$

so we can multiply v by the common denominator of a, b, c and assume that $a, b, c \in$ $\overline{\mathbb{F}}_{p}[t]$.

By a direct computation, we have

$$
\begin{aligned}
\Delta= & \operatorname{det}\left(\begin{array}{lll}
a & t^{6 k+3} c^{p} & t^{6 k+3+(5 k+2) p} b^{p^{2}} \\
b & t^{3 k+1} a^{p} & t^{3 k+1+(6 k+3) p} c^{p^{2}} \\
c & t^{5 k+2} b^{p} & t^{5 k+2+(3 k+1) p} a^{p^{2}}
\end{array}\right) \\
= & t^{(3 k+1) p+8 k+3} a^{p^{2}+p+1}-t^{(6 k+3) p+8 k+3} a b^{p} c^{p^{2}}-t^{(3 k+1) p+11 k+5} a^{p^{2}} b c^{p} \\
& +t^{(6 k+3) p+9 k+4} c^{p^{2}+p+1}+t^{(5 k+2) p+11 k+5} b^{p^{2}+p+1}-t^{(5 k+2) p+9 k+4} a^{p} b^{p^{2}} c .
\end{aligned}
$$

Note that we may factor out $t^{(3 k+1) p+8 k+3}$ and obtain $\Delta=t^{(3 k+1) p+8 k+3} \Delta^{\prime}$, where

$$
\begin{aligned}
& \Delta^{\prime}=a^{p^{2}+p+1}-t^{(3 k+2) p} a b^{p} c^{p^{2}}-t^{3 k+2} a^{p^{2}} b c^{p} \\
& \\
& \quad+t^{(3 k+2) p+k+1} c^{p^{2}+p+1}+t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-t^{(2 k+1) p+k+1} a^{p} b^{p^{2}} c .
\end{aligned}
$$

Let $\operatorname{deg} a=\alpha, \operatorname{deg} b=\beta, \operatorname{deg} c=\gamma$. Then we have

$$
\begin{aligned}
\operatorname{deg} a^{p^{2}+p+1} & =p^{2} \alpha+p \alpha+\alpha \\
\operatorname{deg} t^{(3 k+2) p} a b^{p} c^{p^{2}} & =p^{2} \gamma+p(\beta+3 k+2)+\alpha \\
\operatorname{deg} t^{3 k+2} a^{p^{2}} b c^{p} & =p^{2} \alpha+p \gamma+\beta+3 k+2 \\
\operatorname{deg} t^{(3 k+2) p+k+1} c^{p^{2}+p+1} & =p^{2} \gamma+p(\gamma+3 k+2)+\gamma+k+1 \\
\operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1} & =p^{2} \beta+p(\beta+2 k+1)+\beta+3 k+2 \\
\operatorname{deg} t^{(2 k+1) p+k+1} a^{p} b^{p^{2}} c & =p^{2} \beta+p(\alpha+2 k+1)+\gamma+k+1 .
\end{aligned}
$$

Now we prove that there is always a nonzero term with highest degree in Δ^{\prime} (hence Δ^{\prime} cannot be zero). We consider the following three cases:
(1) $\gamma \geq \max \{\alpha, \beta\}$.
(2) $\beta>\gamma$ and $\beta \geq \alpha$.
(3) $\alpha>\max \{\beta, \gamma\}$.

The point is that in case (1) (similarly, in cases (2) and (3)), $\operatorname{deg} t^{(3 k+2) p+k+1} c^{p^{2}+p+1}$ (resp. $\operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}, \operatorname{deg} a^{p^{2}+p+1}$), is strictly bigger than the degree of the other five terms. We give a detailed explanation in case (2) and leave the other cases to the reader to check (they are all very similar). In case (2), since $p=7 k+4$, we have:

$$
\begin{aligned}
& \operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-\operatorname{deg} a^{p^{2}+p+1} \geq 3 k+2>0 \\
& \operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-\operatorname{deg} t^{(3 k+2) p} a b^{p} c^{p^{2}} \\
& \quad>p^{2}(\beta-\gamma)-p(k+1) \geq p^{2}-p(k+1)>0 \\
& \operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-\operatorname{deg} t^{3 k+2} a^{p^{2}} b c^{p}>p^{2}(\beta-\alpha)+p(\beta-\gamma)>0 \\
& \operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-\operatorname{deg} t^{(3 k+2) p+k+1} c^{p^{2}+p+1} \\
& \quad>\left(p^{2}+p\right)(\beta-\gamma)-p(k+1) \geq p^{2}+p-p(k+1)>0
\end{aligned}
$$

$\operatorname{deg} t^{(2 k+1) p+3 k+2} b^{p^{2}+p+1}-\operatorname{deg} t^{(2 k+1) p+k+1} a^{p} b^{p^{2}} c=p(\beta-\alpha)+2 k+1>0$.
This finishes the proof that V does not have Frobenius stable subspaces and thus

$$
l_{F_{\widehat{R_{P}}}}\left(\mathrm{H}_{f}^{1}\left(\widehat{R_{P}}\right) /\left(L \otimes \widehat{R_{P}}\right)\right)=2
$$

and hence by the above discussion

$$
l_{D\left(R, \overline{\mathbb{F}}_{p}\right)}\left(\mathrm{H}_{f}^{1}(R)\right)=l_{F_{R}^{\infty}}\left(\mathrm{H}_{f}^{1}(R)\right)=1+2=3
$$

Remark 7.6. Blickle [Bli03, Section 5] showed that for a general F-finite F_{R}^{∞}-module M the two lengths $l_{F_{R .}^{\infty}}(M)$ and $l_{D(R, k)}(M)$ might be different if the residue field k is perfect but not algebraically closed. However, we do not know whether this can happen when $M=\mathrm{H}_{I}^{c}(R)$. The Fermat hypersurfaces cannot provide such an example: the
natural Frobenius action decomposes into cycles and thus the matrix representing some large iterate of the Frobenius action will be a diagonal matrix, hence Theorem 4.3 and Proposition 7.2 shows that the two lengths always coincide in this case.

We end with a slight generalization of Blickle's result ([Bli03, Theorem 1.1]) to local cohomology modules of rings with an isolated non- F-rational point over finite fields:

Proposition 7.7. Let (R, \mathfrak{m}, k) and $A=R / I$ be as in the Notation at the beginning of Section 4. Assume k is a finite field and A has an isolated non-F-rational point at \mathfrak{m}. Then $l_{F_{R}^{\infty}}\left(\mathrm{H}_{I}^{c}(R)\right)=l_{D(R, k)}\left(\mathrm{H}_{I}^{c}(R)\right)$.

Proof. Following the proof of Theorem 4.3 and Proposition 7.2, it is enough to show that there exists $e>0$ such that the matrix B_{e} representing the e-th Frobenius action on $\left(0_{\mathrm{H}_{\mathrm{m}}^{d}(A)}^{*}\right)_{s}$ is an upper triangular matrix. We will show that in fact B_{e} is the identity matrix for $e \gg 0$ sufficiently divisible. It is easy to observe that $B_{e}=B_{1} \cdot B_{1}^{[p]} \cdots B_{1}^{\left[p^{e-1}\right]}$ where $B^{\left[p^{i}\right]}$ denotes the matrix obtained by raising each entry of B to its p^{i}-th power. Suppose $k=\mathbb{F}_{p^{n}}$ and thus $B^{\left[p^{n}\right]}=B$. Hence we know that $B_{n e}=B_{1}^{e} \cdot\left(B_{1}^{[p]}\right)^{e} \cdots\left(B_{1}^{\left[p^{n-1}\right]}\right)^{e}$. Now the result follows from the elementary fact that over $\mathbb{F}_{p^{n}}$, every invertible matrix B has a power that is the identity matrix: look at the Jordan normal form of B in $\overline{\mathbb{F}}_{p}$, taking a large p^{m}-th power will make each Jordan block into a diagonal matrix. But an invertible diagonal matrix over $\overline{\mathbb{F}}_{p^{n}}$ can be raised to a large power to make each diagonal entry be 1.

References

[Bli01] M. Blickle: The intersection homology D-module in finite characteristic, Thesis, University of Michigan (2001).
[Bli03] M. Blickle: The D-module structure of $R[F]$-modules, Trans. Amer. Math. Soc 355 (2003), no. 4, 1647-1668.
[Bli04] M. Blickle: The intersection homology D-module in finite characteristic, Math. Ann. $\mathbf{3 2 8}$ (2004), no. 3, 425-450.
[EH08] F. Enescu and M. Hochster: The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), no. 7, 721-754.
[Fed83] R. Fedder: F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461-480.
[HS77] R. Hartshorne and R. Speiser: Local cohomological dimension in characteristic p, Ann. of Math. (2) 105 (1977), no. 1, 45-79.
[Hoc07] M. HochSter: Foundations of tight closure theory, http://www.math.lsa.umich.edu/~hochster/711F07/fndtc.pdf.
[HH90] M. Hochster and C. Huneke: Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116.
[HR76] M. Hochster and J. L. Roberts: The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), no. 2, 117-172.
[HS93] C. Huneke and R. Y. Sharp: Bass numbers of local cohomology modules, Trans. Amer. Math. Soc 339 (1993), no. 2, 765-779.
[Kat08] M. Katzman: Parameter-test-ideals of Cohen-Macaulay rings, Compos. Math. 144 (2008), no. 4, 933-948.
[KS12] M. Katzman and K. Schwede: An algorithm for computing compatibly Frobenius split subvarieties, J. Symbolic Comput. 47 (2012), no. 8, 996-1008.
[KZ14] M. Katzman and W. Zhang: Annihilators of Artinian modules compatible with a Frobenius map, J. Symbolic Comput. 60 (2014), 29-46. 3131377
[Lyu93] G. Lyubeznik: Finiteness properties of local cohomology modules (an application of Dmodules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41-55.
[Lyu97] G. LYUBEZNIK: F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65-130.
[Lyu00] G. LyUbeznik: Injective dimension of D-modules: a characteristic-free approach, J. Pure Appl. Algebra 149 (2000), no. 2, 205-212.
[Lyu11] G. Lyubeznik: A characteristic-free proof of a basic result on \mathscr{D}-modules, J. Pure Appl. Algebra 215 (2011), no. 8, 2019-2023. 2776441 (2012b:13068)
[LSW13] G. Lyubeznik, A. K. Singh, and U. Walther: Local cohomology modules supported at determinantal ideals, J. Eur. Math. Soc., to appear, arXiv: 1308.4182.
[Ma14a] L. Ma: The category of F-modules has finite global dimension, J. Algebra 402 (2014), 1-20.
[Ma14b] L. Ma: Finiteness properties of local cohomology for F-pure local rings, Int. Math. Res. Not. (2014), no. 20, 5489-5509.
[MZ14] L. Ma AND W. Zhang: Eulerian graded \mathscr{D}-modules, Math. Res. Lett. 21 (2014), no. 1, 149-167.
[NBW14] L. NúÑez-Betancourt and E. E. Witt: Generalized Lyubeznik numbers, Nagoya Math. J. 215 (2014), 169-201. 3296589
[PS73] C. Peskine and L. Szpiro: Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. (1973), no. 42, 47-119.
[ST12] K. Schwede and K. Tucker: A survey of test ideals, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 39-99.
[Sha07] R. Y. Sharp: Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure, Trans. Amer. Math. Soc 359 (2007), no. 9, 4237-4258.
[Smi97] K. E. Smith: F-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159-180.
[Yek92] A. Yekutieli: An explicit construction of the Grothendieck residue complex, Astérisque (1992), no. 208, 127, With an appendix by Pramathanath Sastry. 1213064 (94e:14026)
[Zha12] Y. Zhang: Graded F-modules and local cohomology, Bull. Lond. Math. Soc. 44 (2012), no. 4, 758-762.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom

E-mail address: M.Katzman@sheffield.ac.uk
Department of Mathematics, University of Utah, Salt Lake City
E-mail address: lquanma@math.utah.edu
Department of Mathematics, University of Michigan, Ann Arbor
E-mail address: ismirnov@umich.edu
Department of Mathematics, University of Illinois at Chicago, Chicago
E-mail address: wlzhang@uic.edu

[^0]: ${ }^{1}$ In fact $D_{R}=\cup_{e} \operatorname{Hom}_{R^{p^{e}}}(R, R)$ when R is F-finite, i.e., R is finitely generated as a R^{p}-module Yek92.

[^1]: ${ }^{2}$ In Bli01, Bli03, Bli04], F_{R}^{e}-modules and F_{R}^{∞}-modules are called unit $R\left[F^{e}\right]$-modules and unit $R[F]$ modules respectively. In this paper we will use Lyubeznik's notation Lyu97, Remark 5.6] since we think this is more natural in comparison with the usual F_{R}-modules.

[^2]: ${ }^{3}$ This is not the original definition of F-rationality, but is shown to be equivalent (Smi97).
 ${ }^{4}$ A map of A-modules $N \rightarrow N^{\prime}$ is pure if for every A-module M the map $N \otimes_{A} M \rightarrow N^{\prime} \otimes_{A} M$ is injective. This implies that $N \rightarrow N^{\prime}$ is injective, and is weaker than the condition that $0 \rightarrow N \rightarrow N^{\prime}$ be split.

[^3]: ${ }^{5}$ We should remark that how large i needs to be certainly depends on ε.

[^4]: ${ }^{6}$ Note that the matrix we used here is the inverse of the matrix as in Bli03, Example 5.1]. This is because we are describing the matrix representing the F-module structure on $M \otimes_{R} k(x)^{1 / p^{\infty}}$ while Blickle was working with the matrix representing the Frobenius action on $M \otimes_{R} k(x)^{1 / p^{\infty}}$. We leave the reader to check that they defined the same F-module structure on $M \otimes_{R} k(x)^{1 / p^{\infty}}$.

