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Abstract—In this paper we link the throughput gains, due
to transceiver adaptation, in a point-to-point transmission link
to the expected gains in a mesh network. We calculate the
maximum network throughput for a given topology as we vary
the length scale. We show that the expected gain in network
throughput due to transceiver adaptation is equivalent to the
gain in a point-to-point link with a length equal to the mean
length of the optical paths across the minimum network cut.
We also consider upper and lower bounds on the variation of
the gain in network throughput due to transceiver adaptation
where integer constrained channel bandwidth assignment and
quantized adaptations are considered. This bounds the variability
of results that can be expected and indicates why some networks
can give apparently optimistic or pessimistic results. We confirm
the results of previous authors that show finer quantization
steps in the adaptive control lead to an increase in throughput
since the mean loss of throughput per transceiver is reduced.
Finally we consider the likely network advantage of digital
nonlinear mitigation and show that a significant trade off occurs
between the increase in SNR for larger mitigation bandwidths
and the loss of throughput when routing fewer large bandwidth
superchannels.

Index Terms—Optical fiber communication, optical fiber net-
works, adaptive modulation, flexible networks.

I. INTRODUCTION

TRANSPARENT wavelength routed optical networks form

the backbone of data transport across the Internet. With

increasing demand for data services such networks must be

optimized to maximize the utilization of resources, to transport

more data on the existing optical fiber infrastructure.

In this paper we consider a transparent wavelength routed

optical network with routing in the optical domain carried out

by virtue of the signal wavelength. We will assume that there is

no optical regeneration or wavelength conversion between the

transmitter and receiver. We are considering a network where

fiber resources are at a premium such that data is transmitted

using the latest coherent optical technology with spectrally

efficient modulation formats and coding schemes and are able

to equalize linear distortions electronically.
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Physical layer transmission impairments, caused by stochas-

tic noise and nonlinear propagation, limit the quality and data

capacity of the transmitted signals. The optical losses during

transmission are compensated at regular intervals by basic

amplification to maintain the signal power. This amplification

adds stochastic noise to the signal while the weak nonlinear

refractive index of optical fiber causes intra- and inter-channel

interference. We consider dispersion uncompensated links and

use the Gaussian Noise (GN) model of nonlinear interference

[1]. The nonlinear interference grows with the launch power

cubed and thus limits the maximum launch power and thus the

maximum SNR and data capacity of the transmitted signal.

Software controlled network elements allow remote op-

timization of the use of network resources. Adaptive

transceivers can alter the transmitted signal format to match the

available transmission SNR and the required client data rates.

Reconfigurable optical add drop multiplexers (ROADMs) us-

ing wavelength selective switches can be used to route the op-

tical signals to maximize the utilization of the fiber resources.

To maximize the data transmitted over a given light path

the transceivers can use basic modulation format adaptation

[2], 4D modulation schemes [3], time division hybrid formats

[4], OFDM subcarrier modulation adaptation [5], probabilistic

shaping [6], [7] and FEC overhead (OH) adaptation [8]–[11].

The adaptation of the optical launch power [12], [13] and

mitigation of nonlinear interference using, for example digital

back propagation (DBP) [14], [15], can improve the properties

of the light path. The use of flexible grids with adaptive signal

bandwidth [16], superchannels and sliceable transceivers [17]

allows the light path bandwidth to be better matched to the

clients data requirements. With all of these the size of the

adaptation control steps are important and it has been shown

that finer steps improves network throughput [18], [19].

The potential of these techniques is easily simulated and

demonstrated with point-to-point transmission. The question

we would like to answer is how useful are such adaptation

techniques in a network context? Also given limited resources

for digital signal processing within the coherent transceivers

which adaptation techniques are more effective?

The significant difference between a network and a point-

to-point link is that there are multiple signal sources and

destinations with in general multiple paths between them. As

such a transceiver cannot have complete information about all

the interfering signals that co-propagate with the transmission

signal over part of the light path. The total data transported

by a network also depends on the routing and wavelength
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constraints where to fairly divide the bandwidth may require

unfeasible fractional channels. The signals also travel a variety

of distances and accumulate different levels of impairments

such that the transceiver adaptation has different advantages

for signals transmitted over different light paths.

Understanding the advantages of adaptation in a network

context has previously been estimated considering the adap-

tation as a perturbation to a previously calculated optimal

routing and wavelength assignment (RWA) [20]. While in [21]

the advantage of low loss, low nonlinearity fiber is estimated

by considering each light path in isolation. These approaches

can be inaccurate in a network where the advantage due to

adaptation or physical layer performance depends on the light

path length and thus to give all light paths a similar gain in

throughput will require a redistribution of bandwidth and a

change to the RWA solution. For larger networks heuristic

Monte-Carlo based estimation techniques using sequential or

dynamic demands have been used. Such techniques have

been used to compare RWA algorithms [22], [23] and the

advantages of adaptive networking [24], [25] for dynamic

networks. Monte-Carlo techniques with sequential loading

techniques have also been used [26] and more recently the

SNAP, statistical network assessment process, algorithm [27]

has been developed. The stochastic nature of the demands

means the traffic matrix is less well defined and the RWA

solution may skew towards more easily accommodated de-

mands. This limitation could be overcome with a careful

implementation of the Monte-Carlo approach.

In this work, that extends our previous paper [28], we assess

the effect of adaptation on the network for an optimal RWA

giving the maximum network throughput. The RWA is fully

re-optimised for the unadapted and adapted case to compare

optimal throughputs in both cases. The main contribution of

this work is the comparison of the advantages of adaptation for

a network with those of the more easily calculated point-to-

point link. We illustrate the deviation from this point-to-point

expectation of network throughput and investigate the lower

and upper bounds on the throughput gains due to adaptation.

Section II outlines the physical layer impairment model

used in this work, the definition of network data throughput

along with the methods used to find the upper bounds and

optimum throughput. Section III shows the throughput results

of a number of simple adaptations in a point-to-point link

and two network topologies. Finally in section IV we discuss

global conclusions that can be drawn for the advantages of

adaptive transceivers in nonlinear networks.

II. BACKGROUND

A. Transmission Impairment Model

For the physical network we consider a transparent optical

infrastructure composed of nodes formed of ideal (ROADMs)

and links formed of a number of equal length fiber spans

with erbium doped fiber amplifiers (EDFA) to compensate for

the span loss. We consider polarization multiplexed coherent

optical signals operating on a fixed 50 GHz grid, a total

of 80 channels each of 32 GBaud Nyquist sinc pulses. It

is assumed that linear impairments are ideally compensated

TABLE I
FIBER PARAMETERS USED.

Parameter Symbol Value

Span Length L 80 km

Attenuation Coefficient α 0.22 dB·km−1

Chromatic Dispersion Coefficient β2 16.7 ps·nm−1·km−1

Nonlinear Coefficient γ 1.3 W−1·km−1

at the receiver and that the only significant physical layer

impairments are amplified spontaneous emission (ASE) noise

from the EDFAs and nonlinear interference. The imperfections

of non-ideal network components, for example crosstalk and

optical filtering [29], [30], in the ROADMs along with PDL

and EDFA imperfections, have not been included in this study.

The ASE noise accumulates linearly with the number of

spans, where the additional noise per span in the receiver

matched filter bandwidth, nASE , is given by

nASE = 10
NF
10 hν 10

αL
10 R (1)

where NF is the amplifier noise figure assumed to be 5 dB

here, h is Plank’s constant, ν is the optical carrier frequency

of 193.5 THz, α is the optical fiber attenuation coefficient, L

is the span length and R is the noise bandwidth of the receiver

matched filter and for the assumed white noise is equal to the

symbol rate. The fiber parameters used are shown in table I

and lead to nASE = 0.7466 µW.

The nonlinear interference is estimated using the coherent

GN model [1] assuming the links are fully loaded and all

operating at the same launch power. For each light path the

symbol SNR of the received signal, on the worst case central

channel, is estimated as

SNR =
p0

Ns nASE +N
(1+ǫ)
s η p30

(2)

where p0 is the launch power on all channels, Ns is the number

of spans in the light path, η is the nonlinear interference

coefficient and ǫ is the coherent addition factor. The nonlinear

interference is the worst case impairing the central channel of a

fully loaded DWDM transmission. Similar to the LOGON [31]

approach the launch power p0 was optimised to maximise the

SNR on the central channel transmitted over a distance equal

to the mean shortest path, for fully loaded DWDM transmis-

sion. The use of the fully loaded link assumption is expected

to have a small detrimental effect on network performance.

At the maximum network throughput the bottleneck links will

be full and many other links are likely to be heavily loaded.

In our previous study [32] of the NSF network topology, at

maximum throughput, the effect of adapting individual launch

powers only increased the received SNR by order 0.1 dB.

The nonlinear interference coefficient η was calculated for

a transmitted power spectral density formed of 80 channels of

32 GBaud sinc pulses on a 50 GHz grid. Table I shows the fiber

parameters assumed. The total nonlinear interference, η p3, on

the central channel was calculated by integrating the nonlinear

interference power spectral density over the receiver match

filter bandwidth [19, equation (3)]. The integration was carried

out numerically using an importance sampled Monte-Carlo

algorithm. The coherent accumulation factor ǫ was calculated
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TABLE II
NONLINEAR INTERFERENCE COEFFICIENTS CALCULATED.

No. channels DBP η [mW−2] ǫ Symbol SNR
at 2000 km [dB]

0 9.149·10−4 6.207·10−2 13.9

1 7.444·10−4 1.927·10−3 14.5

2 6.632·10−4 1.426·10−3 14.7

4 5.917·10−4 1.370·10−3 14.9

by comparing the numerical integration of the GN model for

100 spans with the η for a single span.

In the case where we consider digital nonlinear compen-

sation of the intra-superchannel nonlinear interference we

assumed that this is ideally removed from the total nonlin-

ear interference. The nonlinear coefficient η represents the

nonlinear interference on the worst channel within the worst

superchannel. That is the outside channel within a super-

channel that is in the centre of a fully loaded band. The

outer most channel of a superchannel experiences the most

nonlinear interference from the neighbouring superchannel

while the central superchannel experiences the most nonlinear

interference from the fully loaded band. Table II lists the

nonlinear interference coefficients, coherence addition factor

and SNR calculated after 2000 km of transmission for 0, 1, 2

and 4 channels of digital nonlinear mitigation.

B. Tested Topologies

In this work we consider three topologies to test the effects

of transceiver adaptation. A simple point-to-point link, a 3-

node linear network and a 9-node network based on the DT

core topology [21]. For each topology the number of spans

in each link will be varied to test the robustness of results

and avoid any favorable or unfavorable result due a fortuitous

length scale. Figure 1 illustrate the topologies considered and

shows the link lengths relative to the reference link length.

These networks are all small enough to solve optimally,

either analytically or using integer linear programming (ILP)

techniques in a reasonable time.

C. Ideal Transceiver Model

We consider an ideal AWGN Shannon capacity transceiver

with the addition of a coding gap and quantized throughput

rates. The transceiver throughput is given by

θ = q

⌊

2 R

q
log2

(

1 +
SNR

g

)⌋

(3)

where q is the quantization steps, in this work 100 Gb·s−1,

25 Gb·s−1 and continuous with q → 0. g is the coding gap to

the ideal Shannon capacity, g = 2 represents a 3 dB coding

gap and g = 1 for ideal Shannon capacity and R is the symbol

rate. ⌊x⌋ represents the largest integer less than x. The coding

gap g represents how close the throughput of a practically

transceiver is to the Shannon capacity while the quantization

step q allows for the implementation of discrete rather than

continuous adaptation of coding rates. The use of an ideal

AWGN Shannon capacity transceiver allows investigation with

both continuous and quantized rate adaptation. The ideal case
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Fig. 1. Topologies considered. (a) a point-to-point link, (b) a 3-node linear
network and (c) the 9-node mesh network considered, based on the DT
network [21]. All show link lengths relative to the reference link length.

with coding gap, g = 1, provides rates that are optimistic in

comparison to practically achievable rates. The correct choice

of g can better approximate practically achievable transmission

rates. This variation in coding gap, g, rescales the received

SNR and to first order rescales the distance axis in the results

presented.

D. Definition of Network Throughput

In this work the performance metric of interest is the net-

work data throughput. We define data throughput as the total

data transported by the network that satisfies some predefined

traffic profile [11]. That is if we have a traffic profile, a matrix

of elements detailing the fraction of total traffic requested

between each source destination node pair, and the matrix of

data rate available between each source destination node pair

then the throughput is the maximum traffic as a multiplier of

the traffic profile that can be transported by the network.

If T is a matrix defining the traffic profile with elements

Ts,d representing the fraction of traffic between source node,

s, and destination node, d, where T is normalized such that
∑

s

∑

d

Ts,d = 1 (4)

and C is a matrix defining the data transport capability with

elements Cs,d representing the available data rate between

source node, s and destination node, d. Cs,d is the sum of all

the transceiver data rates, θ, providing a connection between

the source and destination node pair, s, d.
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Hence the throughput is the maximum Θ such that

Cs,d ≥ ΘTs,d ∀ s, d (5)

This definition of throughput is similar to that used by

S. A. Jyothi et al. [33] except for a slight difference in the

normalization of the traffic profile, T. The inclusion of the

traffic profile constraint in the definition ensures that during

network optimization easier connections are not favoured and

the capability of all connections is adjusted fairly.

Throughout this paper we consider the case of a uniform

all to all traffic profile with elements Ts,d are given by

Ts,d =

{

1
N(N−1) s 6= d

0 s = d
(6)

where N is the number of nodes. In this case the network

throughput simplifies to

Θ = N (N − 1) min
s,d,s6=d

Cs,d. (7)

E. Calculation of Network Throughput

A number of techniques have been used to estimate and

calculate the maximum throughput of computer data networks

[34], [35]. For optical communications networks techniques

include minimum cut to estimate throughput upper bounds,

Monte-Carlo simulations to route sequential [26], [27] or

dynamic demands to find the blocking load and integer linear

program (ILP) based multicommodity flow solutions [36].

Cut techniques are based on the idea that where a cut

divides the network into two connected subgraphs then all the

traffic between the subgraphs must cross the cut. Traditional

minimum cut techniques are used to find the minimum number

of wavelengths required to fully connect the graph [37]. In this

work we use the minimum cut technique to find the throughput

upper bound given a traffic profile and the impairment limited

throughput of transmissions between each node pair.

The maximum multicommodity flow is the maximum

throughput where individual traffic flows between source and

destination can be simultaneously transmitted through the net-

work while satisfying the wavelength, routing and impairment

constraints.

The maximum network throughput was found by optimally

solving the RWA using an integer linear program (ILP). The

k-shortest light paths between each node pair where pre-

calculated, along with their SNR and supported data rate.

The ILP allocates transmitters to light paths and wavelengths,

to maximize the overall network throughput subject to the

constraints imposed by the uniform traffic profile, wavelength

continuity and avoidance of wavelength collisions being sat-

isfied [36]. The time required to compute the solution can

be reduced by providing the linear program solver with tight

upper bounds and for this the minimum cut technique proved

useful.

Consider the network topology defined by the graph

G(V,E) with a set V of vertices formed of ROADMs and a set

E of edges formed of fiber pairs. The cut technique requires

that the graph be divided into two sub-graphs G1(V1, E1) and

G2(V2, E2) by cutting EC edges. That is E is the full set of

edges, E := E1 ∪ E2 ∪ EC and V is the full set of vertices

V := V1 ∪ V2. The two sub-graphs, i ∈ {1, 2} are connected

such that signals from source node s ∈ Vi to destination node

d ∈ Vi can be routed over the links e ∈ Ei. The total network

throughput is calculated in proportion with the traffic profile

from the maximum traffic between the two sub-graphs routed

across the cut links e ∈ EC . The minimum cut is the cut which

minimizes the total network throughput. This estimate of the

network throughput from the minimum cut is an upper bound

of the maximum multicommodity flow based on an optimal

ILP solution of the routing and wavelength assignment [35].

Finding the minimum cut is also an NP hard problem however

enumerating over all possible cuts can to be completed in a

short time for moderate sized networks.

The maximum network throughput constrained by the links,

e ∈ EC , between the two sub-graphs is calculated as follows.

Firstly the shortest path route between all the source nodes

s ∈ V1 and all the destination nodes d ∈ V2 is calculated using

Dijkstra’s algorithm. Given the shortest path we calculate the

quality of transmission over this path using the impairment

model to get the received symbol SNR. Then using the

transceiver model the data rate capability θs,d of a transceiver

utilizing the shortest path can be calculated.

Firstly if we allow fractional channel bandwidth assign-

ments1, then for a throughput upper bound, Θf , the required

bandwidth, in number of channels, for the flow between

source, s, and destination, d, is given by Θf
Ts,d

θs,d
. Equating the

total required bandwidth for the flows across the network cut

to the available bandwidth in the cut links then this minimum

cut network throughput is given by Θf as

Θf = min
EC






|EC | W





∑

s∈V1,d∈V2

Ts,d

θs,d





−1





(8)

where EC is the set of links in the minimum cut, |EC | is the

number of links cut and W is the number of channels, 80, in

each link.

Applying the integer constraint on the allocation of

transceivers and channels, then for a network throughput Θ′,
the bandwidth required for the flow between the two subnets

is given by
∑

s∈V1,d∈V2

⌈

Θ′ Ts,d

θs,d

⌉

, where ⌈x⌉ is defined as the

smallest integer greater or equal to x. This required bandwidth

must be less than the available bandwidth across the cut given

by |EC | W . We introduce an indicator function, I (Θ′, EC)
given by

I (Θ′, EC) =

{

1, if
∑

s∈V1,d∈V2

⌈

Θ′ Ts,d

θs,d

⌉

≤ |EC | W

0, otherwise.
(9)

The minimum cut maximum network throughput, the upper

bound of the multicommodity flow based maximum through-

put, ΘUB is found by solving

ΘUB = min
EC

[

max
Θ′

(Θ′ · I (Θ′, EC))
]

. (10)

1That is we allow a transceiver to operate between source and destination
utilizing only a fraction of a channel bandwidth. This is not allowed in our
fixed grid approach but removes the integer constraint giving an upper bound.

 

This is the author’s accepted version. Copyright IEEE.  
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective 

works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

Published at http://dx.doi.org/10.1109/JLT.2017.2674308 



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. X, NO. X, MONTH 20YY 5

The inner part of (10) was solved iteratively over Θ′, while

the outer part of (8) and (10) was solved by enumerating over

all connected sub-graphs G1(V1, E1), G2(V2, E2). Finally the

network throughput, Θ, was found using an ILP to solve the

multicommodity flow RWA and imposing the constraint Θ ≤
ΘUB .

To summaries Θf is the maximum throughput estimated

from a minimum cut where there has been a fractional

assignment of channel bandwidth, while ΘUB is the maxi-

mum throughput estimated from a minimum cut where there

has been an integer assignment of channel bandwidth. Both

minimum cut results are upper bounds since the exact routing

assignment is not made and wavelength continuity is not

constrained. Only that the total capacity between subnets will

satisfy the total demand between subnets. Θ is the maximum

multicommodity flow calculated using a fully constrained

ILP and represents the maximum network throughput. Θ ≤
ΘUB ≤ Θf . We could also insert an estimation based on

a wavelength continuity relaxed ILP between Θ and ΘUB .

The order of these results can be intuitively understood as

in moving from the right most Θf with minimal constraints

each move left adds additional constraints until Θ contains all

routing, wavelength and integer channel allocation constrains.

III. RESULTS

The physical layer impairment model, transceiver model

and throughput estimation techniques described in section II

were used to calculate the network benefits of reducing the

coding gap, reducing the data rate adaptation quantization and

considering the advantages of digital nonlinear impairment

mitigation.

A. Reduction of Coding Gap

We consider the case where an improvement in the

transceiver coding and modulation allows the data rate to

more closely approach the Shannon limit. Beginning with a

transceiver that exhibits a 3 dB SNR gap to the Shannon

capacity that is improved to be an ideal Shannon capacity

transceiver we calculate the data throughput of the three test

topologies for the two coding gaps. In the case of the 3-

node network and the DT network we calculate the upper

bound for a fractional channel bandwidth assignment using

the minimum cut technique, using equation (8) and also the

actual maximum throughput based on an analytical solution

for the 3-node linear network and an ILP multicommodity

flow approach for the 9-node DT network.

Figure 2 shows the maximum throughput for the three

topologies as a function of the length scale. The fractional

channel bandwidth assigned result shows a smooth upper

bound that decreases as the network length scale is increased.

The integer channel ILP multicommodity flow is equal to or

less than the minimum cut fractional channel bandwidth as-

signed throughput, Θf , as there may be some unused channels,

when there is insufficient spare channels to increase all the data

flows fairly.

Figure 3 compares the relative increase in network through-

put for the three topologies. Good agreement was found
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Fig. 2. Comparison of maximum throughput for ideal and non-ideal Shannon
capacity transceivers as a function of length. The transceivers have a contin-
uous rate adaptation. For a) a point-to-point link, b) a 3-node network and c)
the DT network. The continuous lines show fractional channel bandwidth
assigned, minimum cut upper bounds, Θf , while symbols show integer
channel maximum multicommodity flow results, Θ. Note for a point-to-point
link Θ = Θf as there is only one flow and one route and as such all channels
are assigned fully to that flow.

between the gain in fractional channel bandwidth assigned

minimum cut upper bound when the length scale was cal-

culated as the mean shortest path across the minimum cut.
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For the topologies studied, this suggests that in an idealized

fractional bandwidth routed network the increase in network

throughput achieved by improving the transceiver coding can

be estimated from a point-to-point link with length equal to

the average path length across the minimum cut. If we then

move to an integer channel multicommodity flow solution we

know the network throughput will be reduced as previously

shown in figure 2, b) and c). Figure 4 shows the histogram

of the ratio of the integer channel multicommodity flow to

the fractional channel minimum cut upper bound for the 3-

node and DT networks. For the 3-node network there are

two bidirectional flows across the minimum cut and thus

two flows compete for bandwidth in each fiber giving the

routing one degree of freedom. The histogram of the ratio

between the fractional channel and integer channel solutions

shows a near uniform distribution with a mean 0.9855 and

standard deviation 0.0085. This is comparable to either flow
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flow result for continuous transceiver rate adaptation. Also shown are the
expected gain and upper and lower bounds due to the integer channel
constraint.

 0

 10

 20

 30

 40

 50

 60

 100  1000

D
at

a 
T

h
ro

u
g

h
p

u
t 

G
ai

n
 [

%
]

Reference Link Length [km]

Calculated
Expected

U/L bounds

Fig. 6. DT network throughput gain when the transceiver coding gap is
reduced from 3 to 0 dB in the case of integer channel RWA, multicommodity
flow result for continuous transceiver rate adaptation. Also shown are the
expected gain and upper and lower bounds due to the integer channel
constraint.

being within half a channel of the optimum ≈ 39.5
40 = 0.9875

with a variation given by a uniform distribution with standard

deviation ≈ 0.5
40

√
3

= 0.0072. For the DT network there

are 18 bidirectional flows across the minimum cut that cuts

four fibers, 320 channels. The distribution of the DT network

results in figure 4 depends on the competition for bandwidth

between the 18 bidirectional flows with 5 different lengths

and has a mean 0.9782 and standard deviation 0.0068. This

is comparable to each flow being within half a channel of the

optimum giving an expected mean of ≈ 17.5
18 = 0.9722 and

a standard deviation due to the four degrees of freedom of

≈ 0.5
18

√
3

1√
4
= 0.0080.

It is interesting to consider the bounds on the network

throughput gains when the RWA is constrained to integer

channels. We have already seen that the mean throughput gain

follows the gain of a point-to-point link with length equal to

the mean path length across the minimum network cut. The
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TABLE III
MEAN LOST CAPACITY PER TRANSCEIVER

Loss per transceiver [Gb·s−1]

Quantisation 100 Gb·s−1 25 Gb·s−1

P2P Link 51.2 ± 32.5 12.2 ± 7.1

3 Node Network 55.8 ± 16.7 12.1 ± 5.9

DT Network 59.4 ± 11.5 14.0 ± 4.8

lower bound for data throughput gain is limited by the gain in

the worst light path when the RWA solution remains unaltered.

That is the overall network throughput increases in proportion

with the gains in the worst improved light path. The upper

bound on the throughput gain occurs when in the initial case

the RWA is 1 channel below optimum for the shortest path

across the minimum network cut. Thus when the transceiver

rate is improved the network throughput increases proportion

with the average gains and the gain due to 1 extra channel in

this shortest flow. Figures 5 and 6 show the gains in network

throughput as the transceiver is improved from a 3 dB coding

gap to an ideal Shannon capacity along with the lower bound,

expected and upper bounds for the anticipated throughput

gains. It can be seen for the 3-node network these bounds

tightly fit the data while for the DT network the larger number

and variation of path length leads to a lower probability that

the throughput gains will deviate from the mean and approach

the bounds.

B. Quantization of Transceiver Throughput

An important consideration with adaptive transceivers is

how finely must the parameters be adapted? To understand

the effect of the granularity of the adaptation on the network

throughput the three topologies were tested with ideal Shannon

rate transceivers, coding gap 0 dB with g = 1, where the

rate was either adapted continuously or quantized to give data

rates in steps of either 100 or 25 Gb·s−1. Figure 7 shows the

maximum throughput for the three topologies as a function of

length scale for the three transceiver adaptation granularities.

To compare the three networks we consider the maximum

throughput gap between the quantized and continuous adapta-

tion per transceiver. For the point-to-point link there are 160

active transceivers, for the 3 node network an average of 228

active transceivers and for the DT network an average of 1210

active transceivers. Table III shows the throughput loss per

transceiver for 100 and 25 Gb·s−1 quantization for the three

topologies. It can be seen the average loss per transceiver is

approximately half the quantization steps while the standard

deviation of the loss is considerably reduced in the network

case where the large variation of path lengths renders the

extreme values less likely.

The advantages of finer transceiver adaptation is known

and recently assessed by a number of authors [18], [19].

It is an important consideration in the design of adaptive

transceivers and we highlight here the general result relating

to the average loss of throughput per transceiver. This allows

some quantifiable estimation for the trade-offs in adaptive

transceiver design.
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C. Nonlinear Digital Mitigation

We consider the case where the transmitted signal SNR

is improved by ideal digital nonlinear mitigation, for exam-

ple digital back propagation, DBP. In the network case the

transceiver only has full knowledge of signals transmitted to-

gether from source to destination nodes. As shown in table II,
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and similar to [38], single channel DBP will only improve

the SNR by approximately 0.6 dB. To improve the nonlinear

mitigation further requires multichannel DBP, but in that case

the channels must be routed together as a superchannel. We

consider superchannels formed of 2 or 4 channels, where all
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Fig. 9. Normalised maximum network throughput for the DT network as a
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allocation, continuous rate adaptation and single channel DBP. The results
shown are maximum mutlicommodity flow network throughput with and
without single channel DBP for rate adaption quantized in 25 Gb·s−1 and
100 Gb·s−1.

the signals are routed as superchannels so that all benefit

from the DBP. The worst case SNR of a central superchannel

in a fully loaded link improves by 0.8 dB and 1.0 dB

for the 2 and 4 channel superchannels respectively. These

SNR gains are comparable to those suggested in [38]. This

improves the throughput of the point-to-point link as shown

in figure 8 a) with larger multichannel DBP superchannels

giving ever increased throughput. For the case of a wavelength

routed network the grouping of channels into superchannels

reduces the number of routed entities and leads to a loss

of throughput where the RWA cannot divide the bandwidth

optimally. Figures 8 b) and c) show the throughput for the

3-node linear network and DT network respectively. It can be

seen that the loss due to the RWA is often greater than the

gains due to multichannel DBP such that single channel DBP

often out performs multichannel DBP in a network context.

Figure 9 show the normalised maximum throughput

achieved with and without single channel DBP when the

transceiver data rate is quantized in steps of 100 and 25 Gb·s−1

respectively. The throughput has been normalised to Θf the

throughput upper bound for continuous rate adaptation, with

single channel DBP and fractional channel bandwidth assign-

ment estimated from the minimum cut. It is observed that

with 100 Gb·s−1 quantization of the transceiver data rate

that in approximately half of the instances single channel

DBP has no effect on throughput while in some case single

channel DBP gives a substantial enhancement. However with

25 Gb·s−1 quantization of the transceiver data rate, single

channel DBP improves the throughput in most cases. It is

observed from figure 9 that moving to 25 Gb·s−1 quantization

of the transceiver data rate is more effective than single

channel DBP with 100 Gb·s−1 quantization.

IV. CONCLUSIONS

This paper has explored the complexities involved in as-

sessing network throughput and the difference from simple
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point-to-point links. We have assessed throughput as a function

of the length scale as a way to more fully assess network

throughput and obtain a handle on the variations of throughput

with network perturbations. We have described an adaptation

of the minimum network cut technique to estimate an upper

bound on the maximum network throughput while taking a

traffic profile, transmission impairments and rate adaptation

into consideration. This proved a useful tool to upper bound

the ILP based multicommodity flow optimization used to

calculate the maximum network throughput.

For the two simple network topologies considered we have

shown that the expected gain in network throughput due to

some transceiver adaptation or improvement is the same as the

gain in throughput for a point-to-point link with length equal

to the mean path across the minimum network cut. Introducing

the integer constraint of channel allocation and quantization of

the transceiver adaptation leads to a deviation of the gain in

throughput from the expectation. The upper and lower bounds

for the gain in throughput were also estimated. The expectation

and upper and lower bounds allow an understanding of the

variation of a single network result and allows such results to

be placed into context. The variation suggests that to robustly

estimate the gains of a particular transceiver adaptation for a

particular network topology requires a study that also includes

any expected perturbations and uncertainty of the physical

properties.

The use of single channel digital nonlinear mitigation leads

to a small improvement in SNR and thus network throughput.

Better gains in SNR are achieved with multichannel digital

nonlinear mitigation. However the multiple channels must be

co-propagated as a superchannel taking the same route. This

reduced number of larger superchannels leads to a loss of

throughput where the RWA can no longer optimally divide

the bandwidth resource. We have shown for the network

topologies studied that this loss of throughput due to RWA is

often more significant than the gains due to the better nonlinear

mitigation.

It is observed for the topologies studied that the use of

smaller quantization steps in the transceiver adaptation appears

to improve the throughput more significantly than using digital

nonlinear mitigation or making a small reduction to the coding

gap. However if sufficient computation resources are available

all three techniques can be combined to increase the network

throughput.
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