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reduction in prices that follows from the subsidized entry of wind power in the

Nordic electricity market. A relatively small-scale entry of renewables leads to

a large-scale transfer of surplus from the incumbent producers to the consumers:

10 % market share for wind generation eliminates one-half of the total electricity

market expenditures. The subsidies generate net gains to consumers. We develop

an approach to analyzing storage and renewable energy in equilibrium, and provide

an anatomy of a market dominated by such technologies.
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1 Introduction

“For example, on wind energy, we get a tax credit if we build a lot of wind
farms. That’s the only reason to build them. They don’t make sense without
the tax credit.”
—Warren Buffett, The Wall Street Journal, May 4, 2014

This paper estimates the reduction in consumer prices attributable to the entry of
wind power in an electricity market where the transition away from fossil-fuels has pro-
gressed exceptionally far — the Nordic market. With 5 % share of annual consumption,
we estimate that the entry of wind power eliminates 25 % of the consumers’ electricity
market expenditures. With 10 % market share for wind, consumers’ expenditures de-
cline by one-half. Expenditures decline but the other side of coin is that consumers must
cover part of the investment costs of the new entrants through subsidies. We find that
the consumers’ estimated willingness to pay for subsidies to entry, defined through their
impact on expenditures, exceeds the actual paid subsidies in this market.

The world is investing a quarter of trillion euros annually in renewable energy tech-
nologies (IEA, 2015). Subsidies to renewables are not only transfers to investors such as
Warren Buffett. They lead to losses to old technologies and changes in the final cost of
electricity to consumers. But the cost incidence of policies is far from obvious. In our
empirical setting, consumers achieve a net gain: through equilibrium impacts, the cost
of subsidies falls entirely on the incumbents in the market. Bringing attention to this
extreme cost incidence allows drawing conclusions for climate policies more generally.

Fabra and Reguant (2014) show that the pass-through of emissions prices to the
consumer side can be close to 100%. In contrast, phasing out fossil fuels with subsidies,
as we show, implies a reversed cost incidence. In our empirical case, the (quasi-) rents
of incumbents are sufficiently large to self-finance the transition away from fossil fuels,
without resources needed from the consumers. Subsidizing the entry of technologies with
zero marginal costs can thus have dramatic consequences for incumbents’ rents. Such
rents are common in markets with a portfolio of technologies that have differing marginal
costs.1

The incidence of costs is an efficiency issue if industries can avoid the costs by relocat-
ing to other regions. The optimal policy in response to such a leakage should differentiate

1One hypothesis is that the prevalence of rents, instead of efficiency improvements, explains the
restructuring waves in electricity markets; see Borenstein and Bushnell (2015) for this argument, based
on the US experience.
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the cost burden across sectors that are differently exposed to competition from countries
without climate policies (Hoel, 1996; see also e.g. Martin et al., 2014). The electricity
sector produces the bulk of the carbon emissions, close to 30% of the total both in the
EU and US,2 and is thus important in transmitting the impacts of policies to the ex-
posed sectors. However, the electricity sector itself is not exposed to competition from
other regions, justifying a relatively high cost share of policies on electricity generators.
According to our results, the rent shifting from generators to the exposed industries is
quantitatively too important to be ignored in the transition towards cleaner technologies.

The Nordic electricity market with 25 million consumers offers a case for looking at
what might be the future of electricity markets — intermittently available technologies
combined with storable sources of energy. The market effectively pools together the avail-
able sources of hydroelectricity which, on average, covers 50% of annual consumption and
provides a counterbalance for intermittent sources of supply. Without such a pre-existing
counterbalance, scaling up the share of intermittent technologies can present a serious
challenge to the current ways of organizing transmission, distribution, and production of
electricity (Gowrisankaran, Reynolds and Samano, 2015).3 It may be necessary to invest
trillions of dollars in energy storage in the US alone (Heal, 2016). Yet, empirical stud-
ies provide little guidance on the functioning of storage-dominated electricity markets.4

Much of the focus has been on the performance of the deregulated markets with tradi-
tional “static” technologies (for example, Borenstein, Bushnell, and Wolak, 2002; Fabra
and Toro, 2005; Hortaçsu and Puller, 2009; Puller, 2007; Reguant, 2014). Markets domi-
nated by storage and renewable energy technologies are fundamentally different since the
storage creates dynamic linkages between hours, days, and even seasons of the year.

We develop an empirical identification strategy exploiting a basic property of re-
newables: their availability, after investment, is exogenous. With sufficient storage, the
equilibrium division of labor between technologies depends merely on natural funda-
mentals such as temperature, wind, and rainfall. Because of the rich natural variation,
the dynamic storage policies can be estimated directly from the observed actions.5 The

2US EPA (2015) and Eurostat (2015).
3Gowrisankaran et al. (2015) evaluate quantitatively the intermittency cost for southeastern Arizona.

Ambec and Crampes (2012) study the optimal energy mix with reliable and intermittent energy sources.
4The existing studies build on simulation methods to evaluate the supply policies of hydroelectric-

ity (for example, Bushnell, 2003). See also Kauppi, 2009; Kopsakangas-Savolainen and Svento, 2014.
Fridolfsson and Tangerås (2008) review the simulation models used by the industry.

5We also verify the robustness of the estimates by quantification based on a model description of the
market.
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equilibrium outcomes are then generated by distributions that depend merely on the
idiosyncrasies of the renewables. Some general results arise from this analysis.

First, replacing fossil-fuel technologies by renewables leads to more predictable mar-
ket outcomes, not more uncertain, in a well-defined sense: preconditions for generation
depend on idiosyncratic uncertainties rather than on the persistent uncertainties of fossil-
fuel inputs.6 We explicitly quantify how the increased wind generation disconnects the
market outcomes from the fossil-fuel inputs. For example, the pass-through of the EU
Emissions Trading Scheme (EU-ETS) allowance costs to the final consumer price, as in
Fabra and Reguant (2014), declines by one-half when the market share for wind reaches
10%. A deeper structural implication is that, all else equal, market price risks that
are idiosyncratic, instead of persistent, lead to reduced investment frictions (Dixit and
Pindyck, 1994).

Second, the market for storage in the electricity sector differs from that for standard
storable commodities. Electricity storage is socially valuable because of both idiosyn-
cratic and systematic variation of the natural fundamentals. Smoothing the impacts of
the latter adds to the usual return from storage. We estimate a considerable trend re-
turn on holding the storable asset from low to high demand seasons. Such a return does
not exist for standard storable goods (Williams and Wright, 1991, p. 46), turning the
electricity storage partly into a natural resource, in the spirit of Hotelling (1931). Based
on our results, the smoothing of predictable demand changes can be an important driver
of investments in storage.7

Third, the setting provides methodological advantages for studying equilibrium stor-
age decisions. The residual demand left for storage depends on the costs of the alternative
supply sources that, in the electricity context, can be sharply characterized. In addition,
the storage levels are precisely measured, not typical in the literature on storable-good
markets.8 These properties allow us to use a dynamic-optimization approach to evaluate

6Generation based on wind, sun and rainfall follow distributions that are the same in this year and in
the future. In contrast, generation depending on fossil-fuel inputs is fundamentally uncertain since, for
example, “[...] changes in the real price of oil have historically tended to be (1) permanent, (2) difficult
to predict, and (3) governed by very different regimes at different points in time” (Hamilton, 2009).

7Similar source of demand for storage arises, for example, in California where the high penetration
of solar PV systems has led to a systematic mismatch between the daily peak demand and production,
often illustrated by the so-called duck chart (Borenstein and Bushnell, 2015).

8The competitive storage model (Deaton and Laroque, 1992) has been designed to produce implica-
tions for price dynamics, without data on the underlying quantities. See Williams and Wright (1991)
for an extensive treatment.
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the robustness of the estimated results, including issues related to market power and
capacity constraints in storage. With observed storage levels, we can generate long-run
distributions relevant for the equilibrium analysis from the estimation results.9

The roadmap is the following. In Section 2, we shortly overview the policy incidence
problem, with analysis in the Appendix. In Section 3, we describe the institutional
setting. In the empirical analysis, Section 4, we first explicate the identification strategy
used in the paper. Then, in Section 4.1, we state the theory arguments for the policies that
are estimated in Section 4.2. The prices, in Section 4.3, are estimated for the historical
market where the installed capacities have remained relatively stable. In Section 5, the
capacities change as part of the counterfactual analysis. The rent transfer results follow
from the estimated surplus generating process. Section 6 concludes and discusses the
wider policy implications. The data used in the analysis and the code for replicating the
results are available in a public folder.10

2 The policy cost incidence: a brief look

Ideally, clean technologies should not be subsidized if dirty technologies face the true
social cost of their use; see, for example, Borenstein (2012). But subsidies, together with
a price on emissions, may be needed in the transition to clean technologies if there are
spillovers in technical change (for example, Acemoğlu, Akcigit, Hanley, and Kerr, 2015).
Acknowledging these reasons for subsidies, we focus solely on the incidence of subsidy
costs. This is an efficiency issue if climate policies do not have a global coverage so
that policies may lead to relocation of industries (Hoel, 1996); it can also be a political-
economy issue if consumer-voters care about the incidence, or a distributional issue if the
set of distributional tools is limited.

Our results are consistent with the previous literature but, we believe, the gist of
the cost incidence in our setting is dynamic and not present in this literature.11 Fig. 1

9As in Roberts and Schlenkler (2013), we could use instruments that are correlated with the storage
levels but, without observing the stocks, the equilibrium analysis would not be implementable.

10https://www.dropbox.com/sh/bel0c8pe14wq5fq/AABWSG-pjj_iMDd5EmaXdGIca?dl=0
11The pass-through of a carbon price to the final consumer price can be close to 100%, as Fabra and

Reguant (2014) demonstrate empirically. In contrast, Fischer (2010) notes that policies encouraging
the adoption of new technologies through subsidies can lower the final consumer price; Böhringer and
Rosendahl (2010) address the full set of resulting distortions. Newbery (2016) considers the optimal
long-run market structure and the fraction of the subsidies that could be recovered from the consumers,
taking in the account that consumers gain from “subsidized price reductions”. Green and Léautier (2015)

5

https://www.dropbox.com/sh/bel0c8pe14wq5fq/AABWSG-pjj_iMDd5EmaXdGIca?dl=0


shows why carbon taxes and subsidies have a different immediate impact on incumbents’
rents. For illustration, there are two steps in the incumbents’ marginal costs; fossil
fuels are used by the high-cost supply only. A tax on fossil fuels is passed on to the
consumer price, evident from the Figure. In contrast, a subsidy to entry decreases the
consumer price: entrants with zero marginal costs merely shift supply to the right or, as
equivalently depicted, the residual demand for the incumbents’ supply moves to the left.
The consumer price falls, reversing the impact on the incumbents’ rent. The final impact
on the consumers depends on if the extracted rent is enough to cover the subsidy costs.

D ' D

S

S '

Q

€

Figure 1: A schematic illustration of the policy cost incidence, with
low and high cost of portions in supply. A tax on fuels increases the
incumbent rents. Subsidies to new entrants shift the overall demand
for the incumbent capacity to the left, and extract the rent.

But a sufficient penalty on fossil fuels will encourage entry too. It is not obvious
why the incidence of costs is different in the two cases, if entry takes place in the end.
The answer lies in the timing of incidence that is different under the two policies. We
develop a simple model in Appendix H for the following mechanism. Assume that the
investment cost for the new technology declines over time but is initially high enough to
prevent entry to the market. A tax reflecting the true social cost of fossil-fuels will pass
through to the consumer price because entry is not immediate; it is socially optimal to
postpone investments and wait for lower investment costs. This waiting time protects
the incumbents’ rents.12

develop a rich model for similar issues with a detailed description of possible subsidy policies. Ritz (2016)
looks at the total welfare implications from the entry of renewable energy in the presence of distortions
such as incumbent market power.

12In the general equilibrium context, Nordhaus (e.g., 2008) has made the argument that climate policies
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Subsidies bring new technologies to the market too early: the society pays too much
for the investments and the consumption path becomes inefficiently front-loaded. But,
as we show, the distortions vanish altogether if the consumer demand is inelastic enough.
Then, subsidies become a pure distributional tool. Intuitively, subsidies merely eliminate
the temporary rent protection for the incumbents, with a marginal distortion in the
investment and consumption paths.

In the empirical case, we find that a relatively small subsidized entry of renewables
leads to a large extraction of rents from the incumbents — to the extent that the con-
sumers achieve a net gain. This is exactly what the theory model predicts.

3 The Nordic market

The Nordic market is a spot market for wholesale power, the Nord Pool Spot (NPS),
owned jointly by the national transmission system operators in the Nordic region (Fig.
2).13 The NPS runs a day-ahead hourly market where supply and demand bids lead to a
regional hourly price, the system price. This price becomes the actual transaction price
if all trades are physically implementable; if this is not feasible, regional (zonal) prices
are established. For example, Finland has at most one price zone, and Sweden has at
most four zones.

The focus of our analysis is on how the regional price level is affected by persistent
changes in wind generation. Although not all trades take place with the system price, it is
yet a consistent measure of the price level and thus used for this purpose in our analysis.
Historically, the system price has been the relevant longer-run reference price in the
Nordic region (Juselius and Stenbacka, 2011). The price zones are indicative of difficulties
in implementing all desired transactions but, historically, considerable part of the pressure
on transmission links has been idiosyncratic. The degree of market integration varies
across years depending on the availability of hydropower. Norway’s capacity is close to
100 per cent hydropower; Sweden has more equal shares of hydro and nuclear power;
Finland has diversified between nuclear, thermal, and hydro power; Denmark has no
hydropower but the largest share of wind (see Table A.1). In years of abundant hydro

should be gradually tightening for reasons related to income growth and consumption smoothing. Our
model captures a different reason for gradualism, exogenous technical change, but the implications for
the existing capital structure are similar: it should be phased out gradually. With endogenous technical
change, a crash start could be optimal (Gerlagh, Kverndokk and Rosendahl 2009; and Acemoğlu, Aghion,
Bursztyn, and Hémous, 2012).

13Denmark, Finland, Norway and Sweden have been NPS members since 1999.
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availability, the direction of exports is from the hydro-abundant regions (Norway and
Sweden) to the rest of the market; the reverse holds in dry years.14

Market power concerns have not been as pressing as in many other early deregulated
markets (for example, Wolfram 1999; Borenstein et al. 2002; Green and Newbery 1992).
Rather, the question has been, as in the title of Amundsen and Bergman (2006), “Why
Has the Nordic Electricity Market Worked So Well?” (see also Fehr, 2009).15 16

Figure 2: The Nordic market area. The development of the inter-
connection capacity is in Fig. A.4.

14The stability of the trading institution may be explained by the fact the division of labor between
capacities changes from one year to another. In addition to the internal links, the Nordic market is
also interconnected with the surrounding market areas. The main links are towards Germany, the
Netherlands, the Baltic States and Russia which all are dominated by thermal power generation. The
net supply from the neighboring regions is included in the analysis.

15Yet, it must be noted that the market performance of the Nordic market has not been as systemically
evaluated as in other major electricity markets. One complication is the dynamic nature of hydro supply;
another is that the NPS does not release the firm-level bid curves.

16According to NPS, there are 380 market participants, and over 90% of all electricity consumed is
circulated through the NPS.
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4 Empirical analysis

Our data covers years 2001-2014.17 The data is aggregated over regions to monthly
observations. The aggregation over regions means that, for example, thermal power
generation units form one fleet in the analysis of supply. The aggregation over the hourly
market data to a monthly level produces rich seasonal variation that is essential for the
empirical strategy in this paper.18 Appendix A provides the sources of data, with details
on its construction.

Equation 1 shows the breakdown of supply.19 We will show that the monthly total
demand dependens on Nordic climatic conditions and thus is exogenous. The supply from
WIND, combined heat and power (CHP), and NUCLEAR are also exogenous.20 Then,
by equation (1), the total residual demand left for HYDRO and THERMAL, denoted by
dt, can be taken as exogenous as well.21

TOTAL.DEMAND︸ ︷︷ ︸
=Dt

= HYDRO + THERMAL︸ ︷︷ ︸
=dt

+WIND + CHP +NUCLEAR︸ ︷︷ ︸
price insensitive

(1)

Our empirical strategy is to estimate the price-sensitive supply using exogenous de-
mand shifters. Yet, we face a challenge since the decision to supply hydroelectricity is
dynamic. With the danger of being overly pedantic, we use linear demand (qd) and
supply (qs) to illustrate the empirical strategy:

qd = α0 + α1p+ u

qs = β0 + β1p+ v

qd = qs

17In this period, the definition of the market and the available capacity have been stable (Appendix
A.10). Extending to 1990’s would change the regional coverage of the market. We include the net trade
with the neighboring regions in the analysis; the total supply is an aggregate that includes the supply
coming from the other regions.

18In Section 4.3 we address the potential challenges follow from the use of monthly averages in the
analysis.

19Term “load” is often used, instead of demand, to indicate that the quantity is given and needs to be
procured from the suppliers in the market. We use the concepts interchangeably.

20NUCLEAR is a must-run capacity. CHP units sell power to the market but the main obligation is
to produce heat. WIND power output depends on climatic conditions.

21THERMAL includes traditional coal, gas, and oil fired power generation but also the price sensitive
trade with other than Nordic countries is added to THERMAL.
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with constants (α0, α1, β0, β1), shocks (u, v), and price p. If we can argue that demand qd

is exogenous (α1 = 0), we can use qd as an instrument to identify the supply curve.22 Typ-
ically such exogenous variation can be thought of as arising from temperature-dependent
final consumer demand. But it can also arise from renewable power determining the
residual demand left for technologies with supply depending on out-of-pocket costs of
production; thermal power is such a technology. Our setting is different. The current
demand left for thermal power depends also on the forward-looking technology, hydro-
electricity, with the opportunity of saving the hydro resource for some future demand
situation. As in any dynamic market, the current equilibrium decisions must be solved
jointly with the future equilibrium decisions; technically, through a fixed-point argument,
the outcomes in the present and in the future are solved simultaneously. Then, the cur-
rent decision, while dynamic, depends only on the current observables which can be taken
as exogenous at time t.

Denoting the hydro output by function a(st), where st is a state vector collecting the
current exogenous observables relevant for the dynamic hydro use decision, the demand
left for thermal power becomes dt− a(st). If there is enough variation in the observables
st, independent of the thermal power costs, the state can be used to identify the thermal
supply curve. We establish the theory arguments for the dependence of the hydro output
only on the current observables in Section 4.1. This theory serves two purposes. First,
it gives the formal basis for using of the estimated policy function in the second-stage
regression for recovering the equilibrium prices (Section 4.3). Second, the theory pro-
vides also a tool for direct quantification, and, as explained in Section 4.1, we use this
quantification tool for addressing robustness challenges to the analysis.

In the empirical strategy just outlined, total demand Dt in eq. (1) is not responsive
to prices. This assumption would not be true at the hourly level where within-the-day
price differences lead to some demand responsiveness.23 This arbitrage rests on the idea
that, for example, the energy saved in an hour is bought back in a near-future hour. Such
an arbitrage is inconceivable for the demand loads over the seasons of the year. These
loads are driven by exogenously changing Nordic climatic conditions, demonstrated in
Table 1.

Table 1 shows the results from regressing the total monthly demand on: seasons
22This is the approach sometimes used in electricity market analysis. See Bushnell et al. (2008).
23The NPS aggregate demand and supply curves show that the short-run demand can to some ex-

tent response to price differentials across hours. For example, industrial demands and pumped-hydro
technologies are two possible sources of responsiveness.
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Table 1

(1) (2)

Temperature 0.50 (0.03)∗∗∗

Jan 38.89 (0.36)∗∗∗ 28.98 (0.60)∗∗∗

Feb 38.68 (0.38)∗∗∗ 28.72 (0.63)∗∗∗

Mar 35.62 (0.41)∗∗∗ 27.36 (0.55)∗∗∗

Apr 31.00 (0.33)∗∗∗ 25.96 (0.39)∗∗∗

May 27.46 (0.19)∗∗∗ 25.92 (0.21)∗∗∗

Jun 25.58 (0.21)∗∗∗ 25.45 (0.22)∗∗∗

Jul 23.99 (0.21)∗∗∗ 23.99 (0.20)∗∗∗

Aug 25.55 (0.16)∗∗∗ 25.46 (0.15)∗∗∗

Sep 27.56 (0.21)∗∗∗ 26.13 (0.18)∗∗∗

Oct 31.12 (0.25)∗∗∗ 26.23 (0.31)∗∗∗

Nov 34.74 (0.34)∗∗∗ 27.58 (0.46)∗∗∗

Dec 37.32 (0.55)∗∗∗ 28.15 (0.54)∗∗∗

R2 0.95 0.98
Adjusted R2 0.95 0.98
Observations 168 168

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The table reports total demand Dt (measured in TWh) regressed on: seasons (column 1);
seasons and temperatures (column 2). The temperature measured in Nordic heating degree
days (HDD, Appendix A). Robust standard errors in parentheses.

(column 1); seasons and temperature (column 2). The season fixed effects give the mean
aggregate demand per month in TWh. The temperature measure is in heating degree
days (HDD) in the Nordic region.24 If the temperature decreases by one degree Celsius,
the demand increases by .50 TWh/month. With R2 = .98, the Nordic climatic conditions
explain almost all of the variation in the seasonal demand (see also Fig. A.3).

4.1 Allocation policies: theory

We now formalize the dynamic planning problem. Under standard assumptions, the
planning outcome can be decentralized to represent the market outcome.25

24Temperature affects demand mainly through electric heating. Cooling needs in the Nordic summer
are much more sporadic and coincide with the summer holiday season. Including an estimate for cooling
degree days does not change the results.

25To extend the argument to the case of imperfect competition, we could introduce a Markov structure
for the strategic interactions as, for example, in Bajari et al. (2007). An explicit model of imperfect
competition allows studying if the observed allocations deviate from the first best allocations. The
market power analysis is beyond the scope of the current paper, but we address the issue in two ways.
First, in the robustness analysis of Appendix F, we solve the dynamic program for the efficient allocation
and provide a quantitative assessment. The analysis is suggestive that the estimated policies come close
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Time t = 0, 1, 2, ... is discrete and extends to infinity. State is vector

st = (st, rt, dt, ωt, θt),

where st is the amount water in the storage, rt is inflow, dt is the residual demand
realization as defined in eq. (1) above, ωt is the recurring season of the year, and θt is a
process capturing exogenous changes in the environment. State transition is a stationary
and bounded Markov process, with “action” denoted by at:

P (st+1|st, at).

Action at ∈ A(st) is the use from the stock, and the choice is constrained by set A(st),
capturing, for example, storage and other capacity constraints. The payoff in period t

from action at is

π(st, at) = −C(dt − at, ωt, θt),

where C(dt−at, ωt, θt) is the cost of meeting the demand with the alternative technology.
The cost is increasing in the first argument, bounded, and positive. Under relatively mild
assumptions, it follows that there exists a stationary policy function to the planning
problem.26 With discount factor δ < 1, the optimal policy maximizes the expected
discounted sum of gains:

V (st) = max
{aτ}

E[
∞∑
τ=t

δτ−tπ(sτ , aτ )|st],

where the value of the program satisfies the Bellman equation

V (st) = max
at∈A(st)

{π(st, at) + δE[V (st+1)|st, at]}.

Properties:

1. The optimal policy is a function of the state: at = a(st)

2. The policy generates invariant distributions for state elements through P (st+1|st, a(st)) =

P (st+1|st).

to the competitive outcome. Second, in Appendix G, we develop an indirect measure of market power
in storage based on seasonal price differences. We discuss the results of this analysis in Section 4.4.

26 In particular, the following assumptions are sufficient: (i) stationary rewards and transitions, (ii)
bounded rewards, (iii) discounting, and (iv) discrete state space. See Puterman (1994), Chapter 6. Of
course, item (iv) can be relaxed (Stokey and Lucas, 1993).
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The optimal policy thus minimizes the cost of meeting the expected demands. Im-
portantly, if we observe the policy, at = a(st, rt, dt, ωt, θt), it already contains information
about the cost of the alternative technology. The policy captures the general funda-
mentals of the alternative such as its availability in different seasons ωt and potential
technical change or input price changes that can enter through θt.

The elements of the state are observable so we can estimate the policy directly. Before
proceeding to this estimation in Section 4.2 just below, note that the dynamic program
is presented not only for conceptual clarity. We also solve the policy implied by this pro-
gram quantitatively, after estimating the function for gains π(st, at) and other primitives
(see Appendix F). The dynamic policy is thus obtained in two ways, by direct esti-
mation and dynamic programming. This allows us to quantitatively address two basic
robustness challenges. First, we can compare the estimated and optimized policies. For
the comparison, we consider invariant seasonal mean outputs from the long-run output
distributions generated by the policies. Such seasonal means can be obtained from the
estimated or optimized policies (Appendix F). The approaches produce very similar sea-
sonal outcomes. Also, since the dynamic program identifies the efficient allocation, this
robustness analysis provides indirect evidence for concluding that the estimated policy
is not necessarily in conflict with competitive behavior.27

Second, solving the dynamic program allows analyzing if the use of the estimated poli-
cies in the counterfactual analysis is justified. The counterfactual wind generation pat-
terns change the primitives of the dynamic allocation task: state transition P (st+1|st, at)
will be altered because a persistent increase in wind generation leads to new season-
specific demand distributions. The policy is thus estimated for an environment that
differs from the one in the counterfactual analysis. To address this challenge to the anal-
ysis, we solve the dynamic program under different wind counterfactuals (Appendix F).
We find that the seasonal growth of the wind generation has minor quantitative impacts
on the optimized seasonal hydro allocations; the economic reasoning for this result is
elaborated in Section 4.4 where we discuss the seasonal dynamics of this market. This
gives grounds for using the estimated policies in the counterfactual analysis.28

27The potential exercise of market power is further elaborated in Section 4.4.
28For transparency and tractability, we prefer to use the estimated policies in the analysis presented

in the main text, and use the dynamic program in supporting robustness analysis.
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4.2 Allocation policies: estimation

To estimate a(st, rt, dt, ωt, θt), we regress the monthly output of hydroelectricity on:
monthly storage level, inflow, residual demand dt, seasonal month fixed effects ωt, and
distinct month time trend θt. To emphasize the exogenous nature of demand, we define
variable “residual demand dt” as follows. For each month, we construct the temperature
deviation from the mean per month (both measured as HDD), which we transform to
TWhs using the regression results from Table 1. From this temperature dependent total
demand, we subtract the wind and nuclear power mean deviations. The resulting quan-
tity is our measure of demand dt in the regressions below (the descriptives of the data
are in Figs. A.1-A.2; the mean deviations and variable dt are in Figs. A.11).29

Table 2

(1) (2) (3) (4)

Inflow −0.001 0.05∗∗∗ 0.04∗∗

Reservoir 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗

Demand dt 0.57∗∗∗ 0.57∗∗∗

Trend 0.10∗∗∗

Month FE YES YES YES YES
R2 0.63 0.86 0.91 0.92
Adjusted R2 0.60 0.84 0.90 0.91
F Statistic 1109.4 2441.7 3507.4 3940.3
Observations 168 168 168 168

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Linear regression of the hydro output on the following variables. Column (1): sea-
sonal dummies. Column (2): seasonal dummies + inflow + reservoir. Column (3): seasonal
dummies + inflow + reservoir + residual demand. Column (4): seasonal dummies + inflow
+ reservoir+residual demand+trend. Units: inflow, reservoir, demand, and production are
measured TWhs. Variables "inflow", "reservoir" and "demand" are expressed as deviations
from seasonal mean values. Robust standard errors for estimates in column 4: inflow 0.02,
reservoir 0.01, demand 0.05, and trend 0.01. See Table B.3 for the values of the month fixed
effects.

Quantities are measured in TWhs per month. In Table 2, we report the estimation
results of a linear regression adding four sets of covariates successively. Column (1) shows

29There is a positive trend for wind and a negative trend for nuclear, so the mean deviations are
constructed from the respective trends. The net effect of the trends implies a downward drift for the
absolute level of the residual demand. In the robustness analysis that is discussed shortly, we find no
support for changes in the hydro policy over time: the systematic demand change has not affected the
hydro usage policies in the data period. The results are also robust to using demand variable as defined
by dt = Dt −WIND − CHP −NUCLEAR.
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the strong seasonality of the hydroelectricity output: 60 % of the variation in the policies
can be explained by seasons only. The sum of the monthly dummies is the total mean
annual availability of the resource, close to 200 TWh, about 50 per cent of the total mean
annual demand in this market (see the expanded Table B.3).

Column (2) adds the most important natural variation for the policies, inflows and
reservoirs: R2 increases to .84. Changes in availability is a source of large deviations
from the seasonal mean hydro outputs (see Figs. B.6-B.7 for visualization).

In column (3), we add the residual demand realization as explained above. Finally, in
Column (4), we include the trend which is precisely estimated but quantitatively small:
over 168 months, hydroelectricity production has increased about 1.4 TWh (.4 % of the
market size).30

One standard deviation of variable “reservoir” is approximately 10 TWh per month.
Monthly production increases only by 1.6 TWh per one standard deviation increase
in availability, indicating a strong propensity to store. For comparison, one standard
deviation of demand dt is approximately 1.3 TWh per month; 57% of such a demand
increase is covered by hydroelectricity, according to the point estimate. Fig. 3 (upper
panel) depicts the actual and estimated hydro outputs over the sample years.

The simple linear relationship between the hydro output and natural covariates is
compelling but the robustness of this particular form is still open. First, we have left
out the cost measures of the alternative technology. Intuitively, the more costly is the
alternative, the greater is the incentive to use hydroelectricity as a substitute. Yet, the
marginal cost measures of thermal power turn out to have no impact on the estimated
hydro usage patterns (see Table B.3). To understand this finding, note that the total
amount of hydro output is exogenously given by the natural fundamentals and thus
cannot be affected by the cost of the alternatives. But when the inputs for thermal
power become more costly, the same endowment could be reallocated across seasons; for
example, there could be more storage from Summer to Winter seasons. In Section 4.4,
we discuss storage constraints that can explain why the input prices do not significantly
influence the seasonal hydro usage pattern.

Second, interaction terms such as reservoir×month seem economically meaningful,
as they reveal whether the propensity to store additional availability changes over the
seasons of the year. The seasonal dynamics is such that the scarcity is expected to
disappear in the Spring with a new endowment of water. The propensity to use an

30The capacity of the hydroelectricity has increased (see Appendix A.10), as a result of upgrades in
the turbine technology.
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extra unit of water in the reservoir for consumption should be become larger as we move
towards the end of Winter. The estimated interactions in Table E.5 confirm this economic
intuition. Yet, the interactions are statistically and economically insignificant.31

Third, we redefined monthly fixed effects as quarterly. The point estimates presented
remain unaffected by the granularity of the seasons. With quarterly seasons, there are
more degrees of freedom to add all remaining interactions to the model (Table E.6). We
find that the simple linear model remains robust. In particular, the interactions between
the overall time trends and seasons show that the seasonal pattern of hydro use has
remained stable over the time period considered.32

Finally, we want to address if the estimated policy is dynamically consistent. We take
the initial reservoir level (in Jan 2001) as data and generate the subsequent reservoir levels
from the estimated policy. There is a striking consistency between the actual monthly
reservoir in the data and the fictitious reservoir that unfolds from the policy (see Fig.
E.9).

Table 3

(1) (2) (3) (4)

Inflow −0.09∗∗∗ −0.06∗∗∗ −0.05∗∗∗

Reservoir −0.10∗∗∗ −0.10∗∗∗ −0.10∗∗∗

Demand dt 0.21∗∗∗ 0.20∗∗∗

Trend −0.13∗∗∗

Month FE YES YES YES YES
R2 0.11 0.67 0.69 0.8
Adjusted R2 0.04 0.64 0.67 0.78
F Statistic 34.5 97.7 98.9 143.5
Observations 168 168 168 168

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Linear regression of the thermal output on the following variables. Column (1): sea-
sonal dummies. Column (2): seasonal dummies + inflow + reservoir. Column (3): seasonal
dummies + inflow + reservoir + trend. Column (4): seasonal dummies + inflow + reser-
voir+trend+temperature. Units: inflow, reservoir, demand, and production are measured
TWhs. Variables "inflow", "reservoir", and "demand" are expressed as deviations from sea-
sonal mean values. Robust standard errors for estimates in column 4: inflow 0.02, reservoir
0.01, demand 0.04, and trend 0.01.

After estimating the hydro policy (Table 2), we obtain an estimate for the monthly
thermal power simply as residual dt−a(st). However, it is more straightforward to regress

31According to F-test, the interactions should not be included in the model. We conducted the full
analysis of this paper with the interactions. They do not impact the results; see Table E.8.

32The stability of the policy addresses the concern discussed in footnote 29.
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the monthly thermal output directly on the same covariates. We report in Table 3 the
estimation results of a linear regression of thermal power output on the set of covariates
just discussed above. The point estimates for “inflow”, “reservoir”, and “demand” are
mirror images of those obtained for hydro policies, as expected.33

To visualize the actual and estimated thermal outputs over the sample years, see
Fig. 3 (lower panel).34 The variation of the thermal power output can be explained to
a remarkable extent by natural covariates, without any monetary measures.35 We turn
next to prices.

4.3 Recovering prices

The estimation above captures the dependence of thermal power on exogenously changing
climatic and hydrological conditions but it is yet silent about prices that support the
division of labor between the technologies: the output price must cover the running costs
of the active thermal units. We estimate next a price-supply relationship for thermal
power.

Denote the estimated dependence of thermal on the state by qTH(st) = qTH(st, rt, dt, ωt, θt).
As, for example in Bushnell et al. (2008), we can regress (the log of) the spot price on
(log of) of the index of marginal costs, denoted by mct, and on qTH(st):36

ln pt = α0 + α1 lnmct + α2q
TH(st) + εt. (2)

The marginal cost index depends on input prices, average rates for efficiency in using
33Yet, note that the two estimates for “demand” in Tables 2 and 3 do not sum to unity; the theory

assumption that the two technologies (thermal and hydro) share the residual demand does not seem to
hold. This is due to our definition of the variable “demand”, which does not exactly correspond to the
theory definition of the residual demand.

34Recall that we include the trade with other than Nordic countries in the thermal output. Thus,
exports explain the observations with negative thermal output.

35Note the deviation of the fitted thermal from the observations in years 2007–2008 (and the corre-
sponding deviation on the hydro side). This can be explained by the temporal incentives to save the
European Emission Trading System (ETS) allowances through hydro storage: the ETS allowances were
not storable between the ETS Phase I (2005–2007) and Phase II (2008–2012). Temporarily, the ther-
mal output expanded above the level predicted in Fall 2007 to exhaust the Phase I surplus allowances.
Effectively, the emissions allowances were saved through hydro storage.

36Some may find it more natural to regress the output on the price. In particular, if one uses in a
2SLS regression demand shifters correlated with the price but not with the production costs, this order
of presenting variables is natural. Obviously, reversing the order does not affect the results. Given that
we first estimate the stand-alone policy rules, it is convenient to work with equation (2).
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Figure 3: Actual (dotted lines) and the estimated (solid lines) hydro and thermal power polices
(TWh/month) in years 2001–2014.

the inputs, and emissions rates.37 We may regress the price on the fitted thermal policy
directly as in (2) but, more appropriately, we use the state vector as instrument for the
endogenous thermal output (to obtain almost identical point estimates).38 We use the IV
estimates in the analysis, reported in Table 4. For this specification, 1 TWh increase in
output per month, that is, a change corresponding to a nuclear power unit, is associated
with a 19 per cent increase in the output price. The actual historical and fitted prices
from the estimation are depicted in Fig. 4.

The linear regression has conceptual advantages but it faces a number of practical
challenges. Electricity supply is characterized by sharp short-run capacity constrains,
and also must-run units with willingness to supply even with negative prices. The lin-

37See Appendix A.5 for the detailed numbers and sources of data. A measurement error in marginal
cost can lead to biased estimates. The problem is arguably less severe in electricity markets than in
many other markets because there is relatively good expert knowledge of the technology (see, for example,
Wolfram, 1999). The problem is also alleviated by the stability of the technologies and capacities during
the time period considered (see Appendix A.10).

38The IV just adds marginal cost information to the first stage regression. Note that estimated policy
qTH(st) already captures the systematic variation in the thermal power costs, arising from the availability
of different types of capacity units during the seasons of the year.
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Table 4

log(mc) 0.52 (0.03)∗∗∗

Thermal 0.19 (0.01)∗∗∗

Constant 1.25 (0.11)∗∗∗

Observations 168
R2 0.79
Adjusted R2 0.79

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The table reports the IV estimates of the coefficients of the thermal
supply. Standard errors are reported in parentheses. Marginal cost
measure mc is a function of the input prices (Appendix A.5). The
coefficient on Thermal reported per TWh of output. All data: monthly
observations in years 2001–2014.

ear supply (the semi-log specification) ignores such nonlinearities but still captures the
monthly price-quantity relationship quite well. We can see two explanations. First, a
cross-border market is not a strictly closed system and, thereby, steeply rising or falling
prices tend to lead to trade with the neighboring regions, which can take the edge off
the capacity constraints. Second, strict capacity commitments at the hourly level are
stipulated by the vagaries of the short-term market clearing but, at the monthly level,
the capacities are more flexible.39

Additionally, the monthly averages can in principle be driven by extreme events that
might have become more frequent with increased wind power generation, potentially due
to exercise of market power. We analyze the volatility of monthly prices constructed
from the hourly observations in Appendix C. We find no systematic change in volatility
over time, and, perhaps surprisingly, we also find that the increased wind generation has
not at all contributed to the volatility.40

Finally, although the volatility analysis is not indicative of systematic changes in
the spot price distribution, the estimated supply may still not represent competitive
bidding. Note that the empirical analysis as such does not require the assumption of
competitive behavior; the same variation could also identify a non-competitive supply.

39We have experimented with semi-parametric supply functions and flexible parametric forms to evalu-
ate if allowing for nonlinearities changes the results. They do not. Linearity arises from these regressions
as well, excluding the extremes ends of the supply where the departures from the linear shape are driven
by a few observations.

40In fact, the analysis suggests that prices have become more stable over time. One explanation is
that after the forced entry of the subsidized wind generation, demand and supply meet more frequently
on the flat rather than on the increasing part the supply curve.
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But the counterfactual analysis can change, if the policies are highly sensitive to the
market structure assumption. We return to this question after introducing the expected
seasonal prices in the next Section.
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Figure 4: The historical (dotted lines) and fitted prices (solid lines)
from the second-stage regression in equation (2), measured in 2010

e/MWh.

4.4 Invariant prices

The entry of wind power leads to changes in the output produced by the incumbents and
prices in the market. To quantify the persistent changes, we consider how the expected
seasonal outputs and prices are impacted. The expectations can be in principle obtained
as follows: the policies estimated in the first stage generate invariant distributions for
the state elements through P (st+1|st, a(st)) = P (st+1|st) (see Section 4.1). The outputs
(first stage regression) and prices (second stage regression) follow from this invariant
distribution. They are the key inputs to the quantitative assessment in the next Section;
they also provide interesting insights to the dynamics of this market.

In Fig. 5, we depict the seasonal mean prices from the invariant distribution together
with two confidence intervals, representing the parameter uncertainty (tighter interval)
and also the state variation (wider interval).41 The trend in expected prices reflects the
increase in scarcity as we move from Summer to Winter. Interestingly, as in Hotelling

41The practical evaluation of the seasonal mean prices can be done in three ways. (i) Taking the
historical mean values for the elements in the state and computing the expected monthly price from the
second-stage price equation gives the expected price conditional on the mean state. See Appendix D for
the formal procedure for dealing with the error term distribution that impacts the conditional mean price.
(ii) Specifying distributions for the elements in the state, such as inflows and demands, allows computing
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(1931), there is a recurring trend return on holding the asset (inflow accumulated to
the storage) from Summer to the end of the year; the price increase gives the return
from holding the asset rather than using it. The positive expected return differentiates a
natural resource from a storable good, illustrating empirically the observation in Williams
andWright (1991, p. 46). Hydroelectricity in this market is thus a natural resource within
a year but a storable good over the years: storage to the next hydrological cycle can take
place if the availability relative to the demand is good in the end of Winter. In other
words, the prices are not expected to systematically increase over the Summer-Summer
cycle; otherwise, there would be expected increase in scarcity over the years.

20

30

40

50

60

7 8 9 10 11 12 1 2 3 4 5 6
Month

E
U

R
/M

W
h

Figure 5: The monthly expected prices (in 2010 Euros/MWh), 95 % confidence interval
(darker band) and 95 % prediction interval.

The seasonal price dynamics is important for the analysis. First, any given wind
capacity generates relatively more power during the Fall and Winter than in other seasons
(see Fig. 6, discussed below). This impacts the returns from saving the hydro resource
for these seasons; thus, the storage policies could change if more wind power enters
the market. The robustness analysis does not support this conclusion: the quantification
using the dynamic program shows that the relative values of using the resource in different

the state-contingent prices from the second-stage price equation and thus the price expectation. (iii)
Historical realizations for the state lead to a sample of state-contingent prices, again from the second-
stage price equation, with mean prices as estimates for the expected prices. Approach (ii), because
of the imposed structure on the distributions, is less transparent than the other two approaches. We
use approach (i) in the analysis, although the principle of certainty equivalence does not hold in our
model. Approach (iii) produces almost equivalent results, suggesting that the practical evaluation of the
expected price at the mean state comes close to evaluating the expected price over the sampled state
space.
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months do not change much (Appendix F). The explanation for this result follows from
the next observation.

Second, in Fig. 5, we observe that the return from holding the resource in some
months is greater than in others; the Hotelling model says that the return should be
the same, equal to the earning from comparable assets.42 What explains the differential
returns over the months? According to one hypothesis, capacity constraints in storage
and potentially also other operational constraints prevent the equalization of returns over
the seasons. Under suitably specified constraints, the observed returns can be reconciled
with efficiency. Storage constraints mean that, in expectations, some fraction of the
inflow that would be stored if the capacity allowed must be dumped on the market. This
tends to depress the prices during the heavy inflow (Spring and Summer), relative to the
unconstrained situation. The constraints cannot be directly observed but, in the analysis
of Appendix F, we let the observed historical the minimum and maximum storage levels
to define the capacities for storage.43 The constraints can resolve the puzzle. They
are indeed necessary for the efficient dynamic program to produce a seasonal pattern
similar to the one estimated. Moreover, the constraints provide one explanation for why
the policies are insensitive to wind generation: as a response to wind generation, the
producers would have to allocate more output to months where the inflow of water is
already forcing outputs to systematically exceed the levels prevailing in the absence of
constraints.

According to another hypothesis, the seasonal price differences can be exacerbated
by the exercise of market power by the storage holders. Crampes and Moreaux (2001)
show that differential demand elasticities in the seasons lead to an overuse of the resource
in some periods, increasing the scarcity and prices in other periods. In the quantitive
assessment of Appendix F, we find that the planner would save somewhat more of the
resource to the high demand season (Winter) than the estimated policies imply. Yet,
this argument alone cannot identify market power since the same observational outcome
results if we slightly modify the storage constraints.44

42This argument does not apply in the Spring since the scarcity gradually disappears by the arrival of
the new endowment.

43A detailed structural approach would need to capture the microstructure of constraints and reservoirs
since the effective aggregate bite of the constraints depends on how the resource is distributed among
the hundreds of reservoirs in the system.

44One potential route to detecting market power is to consider empirically if the entry of wind power
has affected the observed pricing pattern. All else equal, the entry of wind power changes the residual
demand for the hydroelectricity. This has a different implication for the annual price increase depending
on if competition is perfect or, alternatively, if there is a dominant resource holder who can influence the
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Figure 6: The figure shows the historical mean monthly wind output
(dotted line) and the fitted wind output (solid line) from a regression
of wind generation on monthly dummies and time trend. Units are in
TWh/month. Data from years 2001–2014.

5 Analysis of the rent transfer

We turn now to quantify the impacts of wind power entry on the consumers’ and incum-
bents’ surpluses. To capture the persistent incidence of impacts, the quantification looks
at changes in the invariant prices and outputs, that is, in the seasonal means discussed
above. The analysis builds on the following premises:

I. To measure the pressure on the incumbent assets, we assume that the installed in-
framarginal capacity, other than wind, remains fixed.45 Thus, the analysis assumes
that there is no exit from or entry to the fleet of inframarginal units.46

price. Under competition, the price difference between any two months should not change because of the
demand change since, in equilibrium, this gap is fixed by the return achievable elsewhere. In contrast,
under marker power, the price gap is sensitive to the change in the demand. We develop this argument
formally in Appendix G. The above reasoning suggest an approach for detecting market power: has the
entry of wind power observed so far impacted the seasonal price differences in the market? We look at
the months in the end of year where the storage constraints are less likely to dominate. We take the
observed spot prices at a given state and then produce the expected price for the next month using the
observed state transitions in our price estimate. The few observations that we have are not suggestive
of market power in storage (see Fig. G.13 in Appendix G).

45The installed capacity has remained stable during the period 2001–2014 (see Appendix A.10). Wind
generation has a historical rate of increase equal to one per cent per month (Fig. 6).

46Hydro is a fixed factor and can evade the policy only if there is a political decision to restructure the
market area. Nuclear can respond to policies by the timing of phasedowns. That nuclear is not strictly
a fixed factor shapes the long-term interpretations of the estimates but it is not a problem for the gist
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II. It is assumed that the marginal generation (i.e., thermal) responds, on average, one-
to-one to permanent increases in the wind generation: 10% increase in the annual
wind generation must reduce the long-run thermal output by the same amount.
Notice that temporary, short-run, changes in the wind output contribute to the
residual demand variation, with a supply response captured by the estimates (Sec-
tion 4.2). However, the long-run response of the incumbent supply cannot be ob-
tained from the estimates. The annual hydro output cannot adjust by permanently
saving inflows, so thermal power must be the adjusting margin.47

III. We increase the annual wind generation and allocate any given annual increase
according to the estimated wind power monthly profile (see Fig. 6). Note that
the entry profile of wind generation over the year is important for the evaluation
because of the strong seasonality of the prices; see Section 4.4.

IV. We consider wind scenarios ranging between 0–50 TWh of annual generation. The
benchmark is 20 TWh of annual generation, about 5% of the market size and coming
close to the mean generation over the past few years. Scenarios reflect the change
of capacity underway. We take 50 TWh as the upper bound for the increase.48 The
current 20 TWh is the main case; 0 TWh provides a benchmark for evaluating the
change in the market that has already taken place. Scenarios 30-50 TWh are for
the forthcoming projects in the pipeline. 49

V. The input prices are fixed and set equal to the historical averages in the data period.

of the analysis: we quantify the immediate pressure on the assets.
47The total availability of hydro over time can be reduced only by spilling of water. However, spilling

is regulated. We provide some description of the regulations regarding spilling in Appendix F; see also
Kauppi (2009).

48The actual wind power generation in 2015 was about 36 TWh. TEM (2012) has compiled, from
various sources, the estimated increase for the total wind generation in the Nordic countries: 48 TWh
in 2020.

49 The results beyond 50 TWh are from terra incognita. The supply curve that we have estimated
identifies a price-quantity relationship for generating units that have been active in the historical data.
Since the entry of wind displaces exactly these marginal price-setting units, a sufficient entry implies
that the price-setting units will be different from those observed in the past. Thus, the estimation does
not identify a price-quantity relationship when the price-setting margin sufficiently evolves. 50 TWh of
annual wind generation comes close to this limit. Because the reservation price for production is likely
to drop faster than implied by the estimates if wind generation exceeds 50 TWh, the results close to
this limit represent a conservative lower bound of the price reduction attributable to the wind power
expansion.
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Following steps I–V, we can obtain the seasonal mean prices (as in Section 4.4) and
the associated annual mean prices for any given level of annual wind generation. This
price is depicted in the Fig. 7. Only 2.5% market share for wind (10 TWh of 400 TWh)
leads to a permanent mean price reduction of ca. 15%. A market share of 5% reduces
the prices by 28%; the price level is cut by half when the share of the total generation
for wind reaches 10%.
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Figure 7: Annual mean prices (EUR/MWh) for varied annual wind
generation levels (TWh/year). Confidence band is defined by 95%

prediction interval for any given level of wind.

5.1 Consumer surplus

For the benchmark of 20 TWh of annual wind generation, we estimate that the consumers
in the Nordic countries spend 12.61 billion euros annually on the wholesale electricity
(Table 5). This estimate is obtained from the seasonal consumption profile and the
invariant seasonal price profile for 20 TWh of annual wind generation.50

The invariant mean expenditures have declined by 5 billion euros per year, attributable
to new wind generation: without the wind generation already in place, the estimated ex-
penditure would be 17.59 billion euros annually. This relatively small increase in new
generation cuts the consumer expenditure by prodigious 28 %, almost equivalent to the
price decline quantified in the previous Section. With 10 % market share for wind of the
total, the expenditure declines by about one-half. The impact is economically significant

50The confidence interval [9.37, 16.96] reflects to a large extent the variation in the monthly price
distribution; the annual consumption profile are relatively stable and thus contributes relatively little to
the variation in expenditures.
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Table 5

TWh WIND low estimate mean high estimate

0 13, 059 17, 586 23, 685

10 11, 059 14, 880 20, 022

20 9, 369 12, 606 16, 962

30 7, 940 10, 693 14, 397

40 6, 734 9, 079 12, 244

50 5, 712 7, 719 10, 433

The table reports the total annual invariant electricity market expen-
ditures in the Nordic countries in millions of 2010 euros for TWh wind
power generated. Low and high estimates from the 95 per cent confi-
dence interval (invariant distribution).

— the Nordic region spends ca. one per cent of the regional GDP on procuring wholesale
electricity.

The breakdown of expenditures across countries is in Table 6. The savings in ex-
penditures are shared between the countries in proportion to consumptions. Majority of
the new wind power locates in Sweden which, as the largest economy, is also the biggest
consumer.

Table 6

TWh Wind 0 10 20 30 40 50

DEN 1, 630 1, 379 1, 169 991 842 716

FIN 3, 529 2, 986 2, 529 2, 145 1, 822 1, 549

NOR 5, 744 4, 861 4, 118 3, 493 2, 966 2, 521

SWE 6, 683 5, 654 4, 790 4, 063 3, 450 2, 933

Total 17, 586 14, 880 12, 606 10, 692 9, 080 7, 719

The table reports the annual invariant electricity market expenditures by coun-
try in millions of 2010 euros for TWh wind power generated. Mean values
reported.

The reduction in the expenditures defines the consumer side willingness to pay for the
new wind generation units: how much consumers could subsidize every MWh generated
by the new technologies without consumer-side budgetary implications? To obtain a
measure for the consumers’ willingness to pay, we take the expenditure reduction and
divide it by the cumulative addition of wind generation. The results are reported in Table
7. Looking at the last row of the table, the Nordic consumers are willing to pay 271 euros
per MWh of new generation for the first 10 TWh increment. This number exceeds by a
large margin the subsidies seen in this region and elsewhere. In Finland, the feed-in tariff
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sets a minimum price for the wind generators; it is currently at 83 e/MWh.51 Sweden
together with Norway implement a subsidy scheme based on “green certificates”; each
MWh renewable energy generated produces a certificate that can be sold to non-green
producers. The subsidy payment is thus not collected directly from consumers. In 2003–
2013, the certificate price has fluctuated between 20 and 30 e/MWh (Fridolfsson and
Tangerås, 2013). It seems safe to conclude that consumers gain from subsidizing the new
output up to 20 TWh per year; the willingness to pay is likely to exceed the actual paid
subsidies up to 30-40 TWh of annual generation.

Table 7

TWh 10 20 30 40 50

DEN 25 10 6 4 3

FIN 54 23 13 8 5

NOR 88 37 21 13 9

SWE 103 43 24 15 10

Total 271 114 64 40 27

Consumer-side willingness to pay for MWh of wind generation: an-
nual expenditure reduction (in 2010 euros) divided by the cumulative
addition of wind generation (MWh), start from zero. Mean values
reported.

5.2 Producer surplus by technology

Losses on the producer side present a mirror image of the consumer side gains.52 The
hydro output presents about 50 per cent of total output on average, with around 7
billion annual invariant revenue in the 20 TWh wind scenario. The current wind power
in the market has lowered prices by close to 30 per cent, leading to a loss of the same
magnitude for the hydroelectricity producers (Table 8). Since this technology has low or
non-existing out-of-pocket marginal costs, the estimated loss gives the loss of rents. The
near-term wind projects in the pipeline (30-50 TWh of annual wind generation) imply
another almost 3 billion annual loss of hydro rents. Recall that wind output increases
most during Winter, which tends to compress the price differences between the seasons.
Hydro operators lose both because of lower prices throughout the year and also because
of lower returns from storage within the year. Nuclear power is a must-run capacity; it
loses revenue in the same proportions as the hydro technology. Thermal power revenue

51The subsidy is scheduled to decline (TEM, 2012).
52The difference in the producer and consumer side numbers is due to trade links.
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is eliminated after 50 TWh of annual wind power generation.

Table 8

0 10 20 30 40 50

HYDRO 9, 588 8, 119 6, 883 5, 843 4, 966 4, 226

NUCLEAR 3, 943 3, 343 2, 839 2, 413 2, 051 1, 751

CHP 2, 323 1, 958 1, 649 1, 391 1, 176 992

THERMAL 1, 927 1, 229 708 314 26 0

WIND 0 395 672 852 961 1, 021

Total 17, 781 15, 044 12, 751 10, 813 9, 180 7, 990

Annual invariant electricity market revenue losses by technology in millions of 2010 euros
for Terawatt-hours WIND generated. Mean values reported.

5.3 Pass-through of emission allowance costs

The EU Emissions Trading Scheme (EU-ETS) sets a price on emissions that is factored
into the supply reservation price for those units that use fossil fuels. As shown in Reguant
and Fabra (2014), the pass-through of the emission cost can be close to 100%. We
quantify next how the pass-through changes when the subsidized wind generation enters
the market.

The EU ETS price affects the marginal cost through the amount of emissions from coal
generation, 0.341 kgCO2/MWh, and the asssumed average efficiency of 36 %. Assuming
no wind output, and increasing EU ETS from 0 EUR/tCO2 to 50 EUR/tCO2 leads to
an estimated price increase of 24.18 EUR/MWh (Table 9). Given annual wind output
of 50 TWh, the corresponding price increase is reduced to 10.94 EUR/MWh. Loosely,
the result illustrates the disconnection between output prices and fossil-fuel input costs
that will take place by year 2020. Historical prices (until year 2016) have been below 30
EUR/tCO2.

The result is another side of the same coin that is the central theme of the paper:
the incidence of subsidy costs following from subsidies is opposite to that under a market
mechanism that sets a price on emissions. Moreover, as a result of subsidized entry to the
market, the EU ETS may become redundant as an instrument for investments in clean
technologies; the reward for investmenting in emissions-free technologies arises because
of the pass-through. The development is consistent with the experience from the U.S.
SO2 trading program where overlapping regulations led to a similar demand destruction
and to a final collapse of emissions allowance prices. (Stavins and Schmalensee, 2013).
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Table 9

Wind EU ETS price (EUR/tCO2) Change
TWh 0 5 10 20 50 0 → 50

0 39.76 42.80 45.64 50.84 63.93 24.18

10 33.84 36.43 38.84 43.27 54.41 20.58

20 28.83 31.04 33.10 36.87 46.37 17.54

30 24.60 26.49 28.25 31.46 39.57 14.96

40 21.02 22.63 24.13 26.88 33.80 12.78

50 17.98 19.36 20.64 22.99 28.91 10.94

Invariant electricity prices (EUR/MWh) for varied annual wind gen-
eration (TWh/year) and prices of emission rights (EUR/tCO2) in the
EU Emissions Trading Scheme (EU ETS).

6 Conclusions

Who bears the costs of climate policies in the end? If industries have to pay a lion’s
share of the costs, businesses may relocate, potentially undermining the acceptability of
climate policies. The electricity sector produces the bulk of the carbon emissions and
is among the first sectors facing policy-determined penalties on using fossil fuels. By
familiar tax incidence arguments, these costs are further passed on to the consumer side
if the consumer demand is inelastic which is typically the case in electricity markets.

We show that the cost incidence is reversed if, instead of pricing emissions, policies
provide support for clean technologies: the electricity producers, rather than the con-
sumers, end up paying a major part of the final cost of the new technologies. Subsidies
to technologies that, once installed, operate with zero marginal costs —such as wind and
solar power— lead to reduced final prices for outputs. If incumbent technologies earn
scarcity rents and, in addition, cannot evade the policies that lower the output prices,
part of the rents are transferred to the consumers. The rent transfer can be so complete
that the climate policy cost falls entirely on the incumbents.

The argument in this paper is unorthodox. To what extent can it be expected to hold
in other contexts as well? In general, subsidizing market entry implies changes (i) in the
division of a given surplus from trading but also (ii) in the total surplus achievable. The
Nordic setting is clean since it allows us to focus on the first item: the efficient dispatch
of technologies is not distorted by subsidies. This is because the most expensive units
to run are also the ones with the highest emissions intensity. The entrant technologies
thus replace those incumbent technologies that should be replaced. The same conclusion
does not apply, for example, in Germany, the leading nation supporting renewable energy.
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More generally, policies have had significant adverse impacts also for relatively low-carbon
assets in the EU. According to Caldecott and McDaniels (2014), the total low-carbon
asset write-down of major EU utilities in 2010-2012, amounts to e22 billion. Similarly,
The Economists writes (Oct. 12th 2013), in an article titled How to lose half a trillion
euros, “Renewable, low-carbon energy accounts for an ever-greater share of production.
It is helping push wholesale electricity prices down. For established utilities, though, this
is a disaster. Their gas plants are being shouldered aside by renewable-energy sources.”

The problem with the asset destruction statements, as just above, is that the distribu-
tional and efficiency ramifications of climate policies remain indistinct. We have provided
a clean quantification of the distributional effect that, we believe, is strongly present in
other contexts as well. We see that out results present a challenge to future impact
quantifications in other markets: the pure wealth transfer part of the policies should be
isolated from the part of the asset destruction that is inefficient. Otherwise, the quantita-
tive basis for evaluating the costs of policies implementing the energy transition remains
unclear.

Finally, the results provide some insights on technology complementarities that are
likely to shape future electricity markets — storage technologies combined with inter-
mittently available sources of supply. Our case is special in that the storage precedes
the entry of renewable power to the market. More commonly, the increased intermit-
tency creates demand for the services of storage technologies. While the dynamics of
entry of the two complementary technologies is not the focus of the current paper, such
analysis cannot be performed before understanding how the technologies interact, once
they coexist. We want to underscore that different storage technologies serve different
purposes, and that a significant part of the social value in energy storage may arise from
the ability to turn predictable but temporally available energy into a natural resource.
This differentiates energy storage from standard commodity storage.
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A Appendix: data

Data used together with the code for replicating the results can be uploaded from: https:
//www.dropbox.com/sh/bel0c8pe14wq5fq/AABWSG-pjj_iMDd5EmaXdGIca?dl=0

A.1 Data sources

We have used the following sources of data:

1. DENMARK: Energinet.dk, the Danish Transmission System Operator (TSO)
http://www.energinet.dk/en/el/engrosmarked/udtraek-af-markedsdata/Sider/

default.aspx

2. FINLAND: The Finnish Energy Industries
http://energia.fi/tilastot/sahkon-kuukausitilastot-2014-2015

3. NORWAY: Statistics Norway
https://www.ssb.no/en/energi-og-industri/statistikker/elektrisitet/maaned/

4. SWEDEN: Statistics Sweden
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Energi/Tillforsel-och-anvandning-av-energi/

Manatlig-elstatistik/

5. NORD POOL: Nord Pool Spot AS, the Power Exchange
https://www.nordpoolspot.com/globalassets/download-center/power-data-services/

outline-nord-pool-spot-ftp-server.pdf

6. EUROPEAN CLIMATE ASSESSMENT & DATASET (ECA&D)
file created on 13-01-2015. Klein Tank, A.M.G. and Coauthors, 2002. Daily dataset
of 20th-century surface air temperature and precipitation series for the European
Climate Assessment. Int. J. of Climatol., 22, 1441-1453. Data and metadata is
available at: http://www.ecad.eu

7. THE FINNISH METEOROLOGICAL INSTITUTE
http://ilmatieteenlaitos.fi/c/document_library/get_file?uuid=827685fa-942d-4727-abb3-ae2877e55a99&

groupId=30106

8. EUROPEAN ENERGY EXCHANGE AG
Emission allowance prices
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9. ENTSO-E (European Network of Transmission System Operators for Electricity )
Interconnection information
https://www.entsoe.eu/publications/order-maps-and-publications/electronic-grid-maps/

Pages/default.aspx

10. THOMSON REUTERS
Input price data

DATA PERIOD: 2001–2014
The maximum time period for which the full data is available at the time of writing.

A.2 Data quality

The generation data in the analysis is at the monthly level, and all data has been corrected
to 30 day months to remove the variations caused by shorter (e.g. February) and longer
months. We also correct for the number of working days within a month. Electricity
demand is higher during the working days (Mon-Fri) than during weekends and public
holidays.

A.3 Supply

Equation 1 in the text provides the breakdown of output by technology, reproduced here

TOTAL.DEMAND = HYDRO + THERMAL+WIND + CHP +NUCLEAR.

HYDRO, WIND, and NUCLEAR is complied from data sources 1-4. Combined Heat
and Power (CHP) reported in data sources 2-4 is taken as traditional CHP that is run
against heat or industrial load. In data source 1, CHP and THERMAL requires manual
separation due to ambiguities in statistics. We have carefully implemented this separation
through a breakdown of the Danish data reporting system (details available on request).
We have also compared our CHP-THERMAL division to the one used by the industry
analysts. Note that CHP can to some extent respond to prices in the hourly market. At
the monthly level the CHP is driven by heat and industrial loads.

THERMAL includes trade with the neighboring regions (from data source 5). We
add traded quantities as net supply (can be negative) to the thermal output in the Nordic
region.
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A.4 Demand

We use Heating Degree Days (HDD) as a measure of temperature in demand regressions.
We construct “Nordic HDD” by using a weighted average of the HDD in the Nordic cap-
itals, with weights defined by average consumptions. Source 6 provides the temperature
data and source 7 the construction guidelines for the HDD.

A.5 Marginal costs

Short-run marginal cost (SRMC) is calculated as follows:

SRMC =
COAL.PRICE + EUETS × .341

.36

where EUETS is the emissions trading price (European Energy Exchange AG). Coal
emission rate is 0.341 gCO2/kWh (Statistics Finland), and the average power efficiency
of condensing power plants is assumed to be 36 % (Statistics Finland). COAL.PRICE is
from HWWI Coal Eurozone price index at Thompson Reuters Datastream.
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A.6 Generation by technology

Table A.1

HYDRO THERMAL CHP WIND NUCLEAR

DEN 0 20 7 8.1 0

FIN 13.4 12.1 25.6 0.5 22.2

NOR 127.5 0 2.5 1 0

SWE 66.6 0.8 13.2 4.3 62.7

Total 207.5 32.9 48.3 13.9 84.9

Annual generation in TWh/year by technology in the Nordic region. Av-
erage value in period 2001–2014. Thermal includes generation from con-
densing power plants and trade to thermal dominant regions.

Table A.2

HYDRO THERMAL CHP WIND NUCLEAR

2001 213.3 31.4 45.0 4.9 91.2

2002 207.0 34.3 47.0 5.6 87.1

2003 169.2 57.9 49.5 6.5 87.3

2004 183.6 41.1 50.2 7.8 96.6

2005 222.8 12.9 47.5 8.2 91.9

2006 193.1 47.3 49.3 7.9 87.1

2007 215.7 30.5 48.7 9.7 86.7

2008 225.9 17.9 48.1 10.1 83.1

2009 205.6 27.2 51.4 10.5 72.8

2010 197.6 44.8 59.6 12.5 77.5

2011 200.8 22.6 52.8 17.7 80.3

2012 237.6 5.0 46.7 19.4 83.2

2013 203.3 28.1 46.2 23.6 86.4

2014 214.6 10.1 42.1 27.9 84.9

Annual generation in TWh/year by technology and year in the Nordic
market. Thermal includes generation from condensing power plants
and trade to thermal dominant regions.
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A.7 Supply by source in the Nordic market
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Figure A.1: Mean monthly supplies by source in TWh and +/- st. dev. bands in 2001–2014 in
the Nordic market area. Thermal includes generation from condensing power plants and trade to
thermal dominant regions.
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A.8 Total and residual demands in the Nordic market
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Figure A.2: Mean monthly total (Dt) and residual demands (dt) in TWhs, and +/- st. dev.
bands in 2001–2014 in the Nordic region. The residual demand is defined by equation (1): dt =

Dt −WIND − CHP −NUCLEAR.
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A.9 Total demand: regression fitted
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Figure A.3: Actual (dotted lines) and the estimated TOTAL DEMAND (solid lines)
(TWh/month) in years 2001–2014. Upper panel: actual and fitted values from TOTAL DE-
MAND regressed on seasons (column 1 of Table 1). Lower panel: actual and fitted values from
TOTAL DEMAND regressed on seasons and temperature (column 2 of Table 1).
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A.10 Installed capacity

In this Appendix we report the total quantity of the installed capacity in Gigawatts for
different technologies in Denmark, Finland, Norway, and Sweden, and the interconnection
capacities from and to Nord Pool area. The reported numbers are based on the authors’
own calculations, using data obtained from the national system operators.
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Figure A.4: The Figure depicts the development of the installed capacity in the
Nordic countries in period 2001–2014 (measured at the beginning of the year). Trans-
mission interconnections are for import capacity to the region. Authors’ own calcula-
tions from variety sources, including the sources listed in Appendix A.
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A.11 Mean deviations: data used in the first stage regression
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Figure A.5: Overview of the data used in the first stage regression. Top row shows the deviations
of inflow from monthly mean values (left) and deviations of reservoir from mean values (right).
Deviations in residual demand (bottom right) are constructed from temperature (middle left),
wind (middle right), and nuclear (bottom left) deviations from their respective monthly means.
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B Appendix: Hydro policy regression expanded

Table B.3

(1) (2) (3) (4) (5)

Inflow −0.001 0.05∗∗∗ 0.04∗∗ 0.04∗∗

Reservoir 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗

Demand dt 0.57∗∗∗ 0.57∗∗∗ 0.56∗∗∗

Trend 0.10∗∗∗ 0.08∗∗∗

log(mc) 0.25
Jan 21.01∗∗∗ 21.02∗∗∗ 21.02∗∗∗ 20.38∗∗∗ 19.60∗∗∗

Feb 20.91∗∗∗ 20.93∗∗∗ 20.93∗∗∗ 20.28∗∗∗ 19.50∗∗∗

Mar 18.42∗∗∗ 18.46∗∗∗ 18.48∗∗∗ 17.82∗∗∗ 17.04∗∗∗

Apr 15.90∗∗∗ 15.91∗∗∗ 15.92∗∗∗ 15.25∗∗∗ 14.47∗∗∗

May 15.61∗∗∗ 15.55∗∗∗ 15.52∗∗∗ 14.85∗∗∗ 14.08∗∗∗

Jun 14.95∗∗∗ 14.86∗∗∗ 14.85∗∗∗ 14.17∗∗∗ 13.38∗∗∗

Jul 13.72∗∗∗ 13.75∗∗∗ 13.82∗∗∗ 13.11∗∗∗ 12.33∗∗∗

Aug 14.61∗∗∗ 14.72∗∗∗ 14.78∗∗∗ 14.07∗∗∗ 13.29∗∗∗

Sep 15.50∗∗∗ 15.63∗∗∗ 15.66∗∗∗ 14.95∗∗∗ 14.18∗∗∗

Oct 17.07∗∗∗ 17.19∗∗∗ 17.21∗∗∗ 16.50∗∗∗ 15.73∗∗∗

Nov 18.77∗∗∗ 18.88∗∗∗ 18.89∗∗∗ 18.17∗∗∗ 17.41∗∗∗

Dec 19.97∗∗∗ 20.08∗∗∗ 20.15∗∗∗ 19.42∗∗∗ 18.65∗∗∗

R2 0.63 0.86 0.91 0.92 0.92
Adjusted R2 0.6 0.84 0.9 0.91 0.91
F Statistic 1109.4 2441.7 3507.3 3940.3 3718.6
Observations 168 168 168 168 168

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Hydro policy regressed on different sets of parameters. Column (1): seasonal dummies.
Column (2): seasonal dummies + inflow + reservoir. Column (3): seasonal dummies +
inflow + reservoir + trend. Column (4): seasonal dummies + inflow + reservoir + trend +
temperature. Column (5): seasonal dummies + inflow+ reservoir + trend + temperature +
marginal cost. Units: inflow, reservoir, demand, and production is measured Terawatt hours.
Variables "demand" and "reservoir" expressed as deviations from seasonal mean values.
Robust standard errors for estimates in column 4: inflow 0.02, reservoir 0.01, demand 0.05,
trend 0.01, and the month dummies in range 0.18 - 0.33. Note that inclusion of marginal
cost in (5) does not affect point estimates in comparison to other columns, the estimate of
log-valued marginal cost is relatively small, and the F Statistic decreases compared to model
(4).
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Figure B.6: Estimation results from Table 2. Solid lines = fitted values, dotted lines=actual.
Hydro policies estimated on four sets of explanatory variables (TWh/month) in years 2001–2014.
I: seasons. II: seasons+inflow+reservoir. Continues in Fig. B.7.
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Figure B.7: Estimation results from Table 2. Solid lines = fitted values, dotted lines=actual.
Hydro policies estimated on four sets of explanatory variables (TWh/month) in years 2001–2014.
III: seasons+inflow+reservoir+demand. IV: seasons+inflow+reservoir+demand+trend.

47



C Appendix: Spot market volatility

If capacity concerns or market power become more important when there is more wind
power generation, there should be changes in the hourly spot price volatility. We analyze
next the determinants of the spot price volatility. Fig. C.8 plots the standard volatility
measure constructed from the hourly observations for each month. The left panel shows
the volatility over the data period: we do not observe a systematic increase or decrease in
the volatility. The right panel ranks the months in the order of wind generation in each
month and shows the volatility for each level of wind: we do not observe a relationship
between wind generation and volatility.
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Figure C.8: Monthly spot price volatility in 2001–2014 (left panel) and monthly spot price
volatility against WIND output during the same time period. Monthly spot price volatility is
measured from the hourly spot price data, σ2 = 1

n−2

∑
i∈2,...,n(ri − r̄)2, where ri = pi/pi−1, r̄

is the mean of returns of the month, pi spot price for the hour i, and n the number of hours in a
month.

We then look more systematically at the determinants of volatility in Table C.4. Wind
generation does not correlate with volatility, given the six sets of covariates presented
in the Table. The variables are defined as in the main text. High inflows and cold
temperatures seem to correlate with volatility. The wind and trend coefficients are small
and not significant.
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Table C.4: Regression of monthly volatility.

(1) (2) (3) (4) (5) (6)

Wind 0.10 0.02 0.06 −0.02 0.0002
Inflow 0.04∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

Reservoir 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

HDD 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗

Trend 0.01 0.01
MC 0.001
Jan 1.62∗∗∗ 1.49∗∗∗ 1.60∗∗∗ −0.74∗ −0.66 −0.69
Feb 1.60∗∗∗ 1.48∗∗∗ 1.59∗∗∗ −0.76∗ −0.68 −0.72
Mar 1.31∗∗∗ 1.19∗∗∗ 1.30∗∗∗ −0.66∗ −0.60 −0.63
Apr 1.39∗∗∗ 1.30∗∗∗ 1.37∗∗∗ 0.17 0.18 0.15
May 2.02∗∗∗ 1.94∗∗∗ 1.99∗∗∗ 1.59∗∗∗ 1.57∗∗∗ 1.54∗∗∗

Jun 2.01∗∗∗ 1.93∗∗∗ 2.00∗∗∗ 1.95∗∗∗ 1.92∗∗∗ 1.89∗∗∗

Jul 1.99∗∗∗ 1.92∗∗∗ 2.03∗∗∗ 2.03∗∗∗ 1.98∗∗∗ 1.95∗∗∗

Aug 1.54∗∗∗ 1.47∗∗∗ 1.57∗∗∗ 1.54∗∗∗ 1.50∗∗∗ 1.47∗∗∗

Sep 1.51∗∗∗ 1.41∗∗∗ 1.51∗∗∗ 1.15∗∗∗ 1.14∗∗∗ 1.10∗∗∗

Oct 1.50∗∗∗ 1.38∗∗∗ 1.49∗∗∗ 0.31 0.34 0.30
Nov 1.33∗∗∗ 1.21∗∗∗ 1.33∗∗∗ −0.37 −0.32 −0.35
Dec 1.41∗∗∗ 1.27∗∗∗ 1.42∗∗∗ −0.74∗ −0.66 −0.70

R2 0.17 0.18 0.37 0.46 0.46 0.46
Adjusted R2 0.11 0.11 0.31 0.4 0.4 0.4
F Statistic 109.2 101.6 115.7 127.1 119.4 112.2
Observations 168 168 168 168 168 168

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D Appendix: Expected seasonal price

Using equation (2) and taking the expectations of log-price for given state st yields

E[ln pt] = E[α0 + α1 lnmct + α2q
TH(st) + εt]

= α0 + α1E[lnmct] + α2E[qTH(st)]

The expectations of price is

E[pt] = E[eα0mcα1
t e

α2qTH(st)eεt ].

If we assume normal error term, then this becomes a standard log-normal to normal
transformation with σ2/2. But if not, then the expectations of price for given a state,
say the mean state s̄t, needs to be corrected with E[eεt ] (for each month separately). This
follows Duan, N., 1983. Smearing estimate: A nonparametric retransformation method.
Journal of the American Statistical Association, 78, 605-610. We obtain

E[pt|s̄t] = E[eα0mcα1
t e

α2qTH(s̄t)eεt|s̄t]

= eα0mcα1
t e

α2qTH(s̄t)E[eεt|s̄t]

= eα0mcα1
t e

α2qTH(s̄t)E[eεt ]

We implement this in the analysis by obtaining E[eεt ] from the residuals for each month.
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E Appendix: Robustness analysis

Table E.5

(1) (2) (3) (4) (5)

Inflow −0.001 0.05∗∗∗ 0.04∗∗ 0.05∗∗∗

Reservoir 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.12∗∗∗

Demand dt 0.57∗∗∗ 0.57∗∗∗ 0.57∗∗∗

Trend 0.10∗∗∗ 0.10∗∗∗

Jan 0.05∗

Feb 0.07∗∗

Mar 0.10∗∗∗

Apr 0.12∗∗∗

May 0.03
Jun 0.03
Jul 0.02
Aug 0.03
Sep 0.02
Oct 0.004
Nov −0.02
Dec

Month FE YES YES YES YES YES
R2 0.63 0.86 0.91 0.92 0.94
Adjusted R2 0.6 0.84 0.9 0.91 0.93
F Statistic 1109.4 2441.7 3507.3 3940.3 2696.8
Observations 168 168 168 168 168

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Linear regression of the hydro output on the same sets of covariates
as in Table 2 but the interactions between the reservoir and month added
in column (5). The interactions for March and April confirm the economic
reasoning explained in the main text. However, according to F-test, these
interactions should not be included in the model.
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Table E.6

(1) (2) (3) (4) (5) (6) (7) (8)

Inflow 0.001 0.06∗∗ 0.05∗ −0.03 −0.003 0.01 0.01
Reservoir 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.12∗∗∗ 0.12∗∗∗ 0.12∗∗∗

Demand dt 0.57∗∗∗ 0.57∗∗∗ 0.54∗∗∗ 0.50∗∗∗ 0.55∗∗∗ 0.56∗∗∗

Trend 0.10∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.09∗

Q1 20.11∗∗∗ 20.14∗∗∗ 20.14∗∗∗ 19.49∗∗∗ 19.48∗∗∗ 19.44∗∗∗ 19.45∗∗∗ 19.78∗∗∗

Q2 15.49∗∗∗ 15.44∗∗∗ 15.43∗∗∗ 14.76∗∗∗ 14.74∗∗∗ 14.70∗∗∗ 14.72∗∗∗ 14.44∗∗∗

Q3 14.61∗∗∗ 14.70∗∗∗ 14.75∗∗∗ 14.05∗∗∗ 14.04∗∗∗ 14.01∗∗∗ 14.03∗∗∗ 13.85∗∗∗

Q4 18.61∗∗∗ 18.72∗∗∗ 18.75∗∗∗ 18.02∗∗∗ 17.99∗∗∗ 17.94∗∗∗ 17.97∗∗∗ 18.08∗∗∗

inflow:Q1 0.12 −0.07 −0.15 −0.14
inflow:Q2 0.10 0.05 0.05 0.04
inflow:Q3 0.10 0.09 0.07 0.07
inflow:Q4
reservoir:Q1 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

reservoir:Q2 0.06∗ 0.06∗ 0.06∗

reservoir:Q3 0.01 0.01 0.01
reservoir:Q4
residual:Q1 −0.15 −0.14
residual:Q2 0.30 0.29
residual:Q3 −0.30 −0.27
residual:Q4
trend:Q1 −0.03
trend:Q2 0.06
trend:Q3 0.04
trend:Q4

Quarterly FE YES YES YES YES YES YES YES YES
R2 0.53 0.76 0.81 0.83 0.83 0.84 0.84 0.84
Adjusted R2 0.52 0.75 0.8 0.82 0.82 0.83 0.83 0.82
F Statistic 2790.9 3601.6 3908.3 3716.7 2702.1 2201.3 1811.1 1528.8
Observations 168 168 168 168 168 168 168 168

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Linear regression of the hydro output on the same sets of covariates as in Table 2 of the main text but (i) monthly
fixed effects replaced by quarterly fixed effects and (ii) full set of interactions added. Columns (1)-(4) reproduce the results
from the main specification, Table 2. The point estimates remain robust to changes in the definition of the seasonal fixed
effects. Columns (5)-(8) add the remaining interactions. According to F-test, the interactions should not be included in
the model.



Table E.7

Monthly 2001–2014 Quarterly 2001–2014

log(mc) 0.52 (0.03)∗∗∗ 0.53 (0.03)∗∗∗

Thermal 0.19 (0.01)∗∗∗ 0.19 (0.01)∗∗∗

Constant 1.25 (0.11)∗∗∗ 1.23 (0.11)∗∗∗

Observations 168 168
R2 0.79 0.79
Adjusted R2 0.79 0.79

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The table reports IV estimates of the coefficients of the thermal sup-
ply, with seasonal fixed effects specified as months (left) and quarters
(right). Standard errors are reported in parentheses. Marginal cost
measure mc is a function of the input prices. The coefficient on Ther-
mal reported per TWh of output. All data: monthly observations in
years 2001–2014.

Table E.8

(1) (2)

log(mc) 0.52(0.03)∗∗∗ 0.52 (0.03)∗∗∗

Thermal 0.19(0.01)∗∗∗ 0.19 (0.01)∗∗∗

Constant 1.25(0.11)∗∗∗ 1.26 (0.11)∗∗∗

Observations 168 168
R2 0.79 0.79
Adjusted R2 0.79 0.79

The table reports IV estimates of the coefficients of the thermal sup-
ply, without (1) and with (2) interactions in the first stage regression.
Standard errors are reported in parentheses. Marginal cost measure
mc is a function of the input prices. The coefficient on Thermal re-
ported per TWh of output. All data: monthly observations in years
2001–2014.
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Figure E.9: The panel reports a consistency of check of the estimated policies. Here we do not
take the observed hydro reservoir as data but we let the estimated hydro policy to generate the
reservoir level for all months, except for the first month in the data (Jan 2001). The upper panel
reports the actual and policy-generated change (Delta reservoir) in the storage level measured
in TWh/month in 2001–2014. Both data series assume the same inflow data. The middle panel
reports the thermal policy when we estimate the thermal policy using not the actual reservoir data
but the data generated by the hydro policy. The lower panel reports the fitted spot price based
on the thermal output from the middle panel and actual spot price.
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F Appendix: Stochastic programming solution for the allocation

problem

Solution strategy

To recap, we consider time t = 0, 1, 2, ... that is discrete and extends to infinity. State is
vector

st = (st, rt, dt, ωt, θt),

where st is the amount of the water in storage, rt is inflow, dt is the residual demand, ωt
is the recurring season of the year, and θt exogenous state such as the input price. The
value of the planner’s program satisfies the Bellman equation,

V (st) = max
at∈A(st)

{π(st, at) + δE[V (st+1)|st, at]},

where π(st, at) = −C(dt − at, ωt, θt) is the cost of meeting demand with the alternative
technology. On a yearly level, the standard interpretation of the Bellman equation is that
the marginal value of water in storage this year is the same as the discounted value next
year (formulated early on in Little, 1955; and Lindqvist, 1962).53 Within the year, the
allocation takes into account the value of saving within the year, expectations for demand
and inflows during the year, and the operational constraints for use of hydropower. Our
implementation strategy breaks the problem precisely this way, to the year-to-year (outer
problem ) and the within-the-year problem (inner problem).

Formally, we optimize the actions in each state of the inner problem, taking as given
the state-dependent value of water in the end of the year, coming from the outer problem.
Value function iteration is applied to the outer problem to match the beginning and end
of the year values.

First, we explain the detailed approach to the inner problem; the outer problem
values are strongly dependent on these details. We face a trade-off between (i) the
detailed inclusion of stochasticity and operational constraints, and (ii) the increase in
dimensionality. We discretize the set of possible events (but not state space), and solve the
resulting stochastic optimization problem. Second, we explain the quantitative choices
regarding the primitives such as the transition probabilities, cost function, discounting,
and the constraint sets. Finally, we report the quantitative results.

53Lindqvist, J. 1962. "Operation of a Hydrothermal Electric System: A Multistage Decision Process."
Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems,
81(3): 1-6. Little, John D. C. 1955. "The Use of Storage Water in a Hydroelectric System." Journal of
the Operations Research Society of America, 3(2): 187-197.
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Within-the-year allocation: the inner problem

We discretize the set of events. Formally, the uncertainty is modeled by a non-recombining
discrete time scenario tree, K, whose states, or nodes, are denoted by k ∈ K. Expecta-
tion are calculated using probability measure P that defines for each node in the tree
probability pk. With these probabilities, the planner can obtain the probability of each
contingency defined by the tree. The year is divided to months, ω ∈ T . Kω denotes the
set of nodes k ∈ K at time ω and τ(k) gives the time step of the node k. Let τ(k) = t̄

denote the last time step in the year; Kt̄ is the set of nodes at the last step. Node k0 is
the root node. Each node k, except the root node, has an unique ancestor node given by
h(k). In the numerical implementation we define the tree structure such that the initial
node is in the past so that the tree has a structure rich enough for the calibration of
events in all months.

The decisions at each node are non-anticipatory. That is, given the resource inherited
from the previous node, decisions are made before the information about inflow and
demand has become known. The set of feasible hydropower generation strategies A(k)

consists of those actions that fulfil the storage dynamics and operational boundaries, for
i = 1, .., N reservoirs:

sik = sih(k) + rik − aik − qik, ∀k

siτ(k) ≤ sik ≤ s̄iτ(k), ∀k

aiτ(k) ≤ aik ≤ āiτ(k), ∀k,

where rik indicates the inflow to the storage i in node k, aik the energy used, and qik the
spillage. Variable qik must be included since, in some states, there is a minimum flow
of water through the system, due to environmental regulations, for example. Note that
the operational constraints are depend on the time step, rather than on the state; the
constraint is the same for all nodes in that time step.54

The gains are defined by the cost function of the alternative technology. In addition,
the part of the water that is not allocated for the year at hand is valued at the end of
the year. Given the stochastic structure, the optimal allocation solves:

min
a1
k,...,a

N
k ∈A

∑
k∈K

pkδ
τ(k)C(dk − ak, τ(k), θ)−

∑
k∈Kt̄

δτ(k)pkσk, (3)

where ak is the sum of usage in node k, pk is the probability of a node and σk is the
value of water at the final stage. The cash flows are discounted to time t = 0 with factor

54This is due to our calibration where we let the historical minimum and maximum values determine
the seasonal constraints.
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δ. The value of this program defines the value function at the beginning of the year; the
outer-problem value iteration matches the final and initial values of the program.

To obtain a sufficient description of the stochasticity, the number of scenarios in the
stochastic tree needs to be large enough. We solve the stochastic problem directly by
using a binary tree with up to 21 time-periods or over 2 million scenarios55. The al-
location problem is solved within R by using AMPL stochastic programming language
and MOSEK solver. Thus, we solve the inner problem as a nonlinear convex stochas-
tic optimization problem (see, e.g., Birge and Louveaux, 1997) since we find it easier
to handle the dimensions of the problem this way than using dynamic programming.56

Conceptually, there is no difference to the dynamic programming outcome in our set-
ting; straightforwardly, the methods in Stokey and Lucas (1993) apply in a discrete tree
structure.

Quantitative choices

Operational constraints for hydropower are set by the physical size of a storage and in-
stalled generation capacity. In addition, hydropower generation possibilities are limited
by operational and environmental regulations57. The regulatory boundaries for the hy-
dropower are often time-dependent. On a detailed level, hydropower river systems can be
very complex, e.g. generation from one power plant can be dependent on another further
upstream. In our aggregated framework, constraints are set on the basis of observed
aggregate history for usage and storage in period 2001–2014 (data sources: Appendix
A). The Nordic market area is modelled on a high level aggregation with one reservoir
system for each country (Denmark, Finland, Norway, and Sweden). Thus, there are four
reservoirs, i = 1, ..., 4. In practice the outcome is determined only by the Norwegian
and Swedish reservoirs, as Denmark’s hydro resource are almost non-existent and the
optimization of Finnish hydropower is very limited.

We assume that both demand and hydrological inflows distributions have seasonality
within the year but over the years the distributions remain the same. We obtain these dis-

55The scenarios are constructed by setting the start month earlier than the start of the year, so that
there is enough variation at the start of the value iteration.

56Birge, J.R., and F. Louveaux. 1997. Introduction to Stochastic Programming. Springer-Verlag,
New York.

57Hydropower changes the natural fluctuations in river flows and water reservoir levels. These changes
cause external effects to the environment and the society, including erosion of river banks, changes in
flooding, degraded juvenile and spawning habitats for fish and nesting habitats for birds, and decreased
possibilities for recreational uses of rivers and lakes.
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Figure F.10: An illustration of inflow and demand frequencies in one
month (May), obtained from data for years 2001–2014.

tributions from the data for years 2001–2014. For demand, we consider residual demand
for the hydro directly and work with monthly distributions, assumed to be Gaussian
with first and second moments matched to the data. Similarly, we match monthly inflow
distributions, assumed to be log-normal. Fig. F.10 illustrate the inflow and demand
frequencies in one region (Norway) for in one month (May).

Cost function C(dt − at, ωt, θt) is obtained from our empirical analysis. That is,
the second-stage regression analysis identifies a relationship between prices and thermal
quantities,

ln pt = α0 + α1 lnmct + α2q
TH(st) + εt.

We evaluate the supply curve using the estimated parameters, and, through integration,
obtain the cost function to be used in computations.

Discount factor corresponds to 4 % discount rate for annual returns. The results
are not very sensitive to the choice of the discount rate, as long as we remain below 10

%. Intuitively, the stochasticity and operational constraints within the year are strongly
shaping the storage dynamics; the savings for the longer term are less important.

To clarify a potential source of confusion, it should be noted that the first-stage
estimate hydro policy does not enter the simulation exercise set up here but the only the
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estimated supply curve for thermal power. In the computational exercise, we only use
the estimated parameters and let the optimal solution to determine how much thermal
and hydro power should be used in each month.

Quantitative results

The quantification seeks to answer two questions.

1. Does the estimated policy function and optimal policy from the dynamic program
resemble each other? This question addresses the robustness of the estimation.

2. Does the policy from the dynamic program change when we add more wind power
to the system. This second question addresses the robustness of the counterfactual
analysis: adding more wind to the market changes the seasonal distributions for the
residual demand left for hydro and thermal power. If the optimized policy is not
quantitatively sensitive to such changes, more trust can be placed on the analysis
building on the estimated policy.

Considering the first question, recall that the policies estimated in the first stage gen-
erate invariant distributions for the state elements through P (st+1|st, a(st)) = P (st+1|st).
We proceed now as in Section 5 (counterfactual analysis), except that we fix the monthly
wind generation patterns so that the annual generation is 20 TWh/year. Then, we use
the estimated hydro policy to produce invariant hydro outputs per month. The result is
depicted in see Fig. F.11 that shows the monthly output (together with the 95% con-
fidence bounds from the estimation). The optimized policy generates predictions that
are within the confidence bounds for the estimated policy, excluding a deviation in the
Summer months.58

Considering the second question, we produce the expected seasonal outputs from the
optimization model for different levels of annual wind generation. We scale up the wind
generation as in the main text (Section 5), and report the seasonal hydro generation
patterns in Table F.9. The seasonal pattern remains stable. This stability is explained
by the operational constraints of the hydro technology, as discussed in the main text.

58The deviation can be explained by constraints that may in reality be more complex than those
assumed. The optimized storage level is higher (hydro generation lower) than in the estimated policy
because of minimum flow constraints for outputs: there is a chance of very low inflows during the winter
that would lead to a breach of the minimum constraints. The constraint forces the optimization model
to store more water prior to the Winter months.
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Figure F.11: The invariant thermal output obtained from the esti-
mated thermal policy (solid line and 95 % prediction interval) com-
pared to the mean seasonal output generated by the optimization
model (dashed line).

TWh/year

mo 0 10 20 30 40 50

1 21.6 21.4 21.2 21 20.8 20.6

2 21.6 21.5 21.5 21.4 21.4 21.4

3 19.0 18.9 18.8 18.7 18.6 18.5

4 16.4 16.5 16.5 16.6 16.7 16.9

5 15.0 15.2 15.2 15.3 15.3 15.3

6 14.2 14.4 14.4 14.5 14.6 14.7

7 12.3 12.5 12.5 13.0 13.2 13.3

8 14.5 14.6 14.8 15.0 15.1 15.3

9 15.7 15.8 15.8 15.8 15.9 15.9

10 17.1 17.0 17.0 16.9 16.9 16.8

11 19.2 19.1 19.0 18.9 18.9 18.8

12 20.9 20.5 20.5 20.4 20.3 20.1

Tot. 207.4 207.4 207.4 207.6 207.7 207.6

Table F.9: In the table we scale up the annual wind generation
following the steps outlined in the main text (Section 5), and report
the mean monthly output generated by the optimization model.
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G Appendix: analysis of demand changes on storage and market

power

The allocation problem: efficient solution

Consider a simplistic setting for allocating a given output capacity over two periods,
t = 1, 2. We intent to model a storage decision where a given remaining capacity is to
be allocated between the current period (Fall) with known demand and the end of year
(Winter) with uncertain demand. We want to understand how a change in the riskiness of
demand at t = 2 impacts the allocation; this is a thought experiment where the expected
(residual) demand for the hydro resource becomes more volatile due to the entry of wind
power.

Let y denote the quantity of output from the perfectly storable good (hydro), allocated
to t = 2. Price at t = 2, for given demand x, is

p2 =

{
0 if x 6y
c if x > y

(4)

where 0 arises because the storage available exceeds the demand; c > 0 is the marginal
cost of reproducible output to be used in case of demand exceeding storage.59 Let F (x)

denote the cumulative distribution function for x, defined on R+, and satisfying the
monotone hazard rate assumption: h(x) = f(x)

1−F (x)
is monotonically increasing.

Let p1 > 0 be a given fixed output price at t = 1. Price p1 is taken as given since,
implicitly, there is abundant capacity to meet the demand at t = 1. The idea is that just
before the winter (t = 1) there is typically plenty of capacity relative to the demand, and
the supply price of this capacity fixes price p1. But the availability cannot be taken for
granted in the winter, and this motivates storage to t = 2.60

With this setting in mind, consider the expected price from allocation y committed
to t = 2

Ep2 = (1− F (y))c (5)

so that efficient allocation must satisfy, in the absence of discounting,

p1 = Ep2 ⇒ p1 = (1− F (y))c. (6)

59In reality, the potential excess storage is not wasted but kept in reservoirs over the Winter to the
Spring where the endowment for the next year arrives. Thus, 0 is a normalization, capturing the idea
that scarcity may disappear in the Winter, instead of the Spring.

60The overall price level for t = 1, 2 is endogenous in the full model; here, only the price at t = 2 is
endogenous. This simplification is not relevant for the analysis in this Appendix.
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Figure G.12: The result in Proposition 1 illustrated.

Denote the solution to (6) by y∗. We now construct a mean-preserving spread around y∗

by monotonic transformation α(x), satisfying

G(x) = F (α(x)) (7)∫
xdG(x) =

∫
xdF (x), (8)

and G(x) 6= F (x) for all x but x = y∗. Thus, distribution G is more risky with more
mass on the tails: both very low and very high realizations of demand are more likely
than under F .

We are interested in the implications of changes in risk, as captured by G, on the
efficient storage. To this end, we vary period t = 1 base price from p1. This is important
since the risk has a different impact depending on whether the overall availability of
capacity is poor or good. Call the market tight when the availability is poor and the first
period price is high: pH1 > p1. The market is slack if pL1 < p1.

Proposition 1 Consider efficient market allocation for the two distributions, G and F .
For a tight market (pH1 > p1),

pH1 = (1−G(yHg ))c = (1− F (yLf ))c⇒ yHg < yHf (9)

For a slack market (pL1 < p1),

pL1 = (1−G(yLg ))c = (1− F (yLf ))c⇒ yLg > yLf . (10)
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The proof is illustrated in Fig G.12. Thus, quantities respond to the increase in
the riskiness in the opposite directions in the two cases, and there are no observational
implications for the prices: an outside observer could not infer from the prices alone the
perception of risk that the market is holding. Moreover, if we think that p1 represents ex
ante expectation of the market tightness, the deviations are expected to occur in both
directions – whether the increased risk systematically increases the overall savings does
not follow from the first principles but requires a quantitative assessment.

Market power

We continue with the same setting but assume now that the storage decision is made by
a monopolist. We are interested if the exercise of market power is detectable from the
market prices when the distribution changes from F to G.

Let us denote the quantity saved by the monopoly to period t = 2 by q. The monopoly
evaluates the expected marginal revenue from saving q:

∂E[p2q]

∂q
= (1− F (q))c− F ′(q)cq = (1− F (q))c[1− h(q)q]. (11)

For given p1, the monopoly allocation is given by

p1 =
∂E[p2q]

∂q
⇒ p1 = (1− F (q))c[1− h(q)q] (12)

Let G(q) = Ep2 − p1 denote the gap between the current price and the expected next
period price. Clearly, for the efficient allocation, we have G(q∗) = 0. The next result
shows that the price gap is positive for the monopoly, and also that the gap varies with
the perception of risk, captured by the two distributions F,G (the allocations are denoted
with qf , qg, respectively).

Proposition 2 For the monopoly, there is shortage of savings, q < y∗, leading to a price
gap, G(q) > 0. The price gap varies with risk: G(qf ) 6= G(qg).

For the proof, note that hazard rate h(q) is increasing so q is well defined. That q < y∗

follows from comparing the optimality conditions. Using definitions, the price gap can
be written as G(qg) = f(qf )qfc, and G(qg) = g(qg)qgc for distributions F,G, respectively.
Thus, the gap reflects directly the slope of the marginal revenue curve which is different
in the two cases.

The result is nothing more than the standard observation that market power is de-
tectable if pricing outcomes are responsive to demand changes. The competitive outcome
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always equalizes the expected price with cost that in our context is the opportunity cost
of selling with price p1. The monopoly deviates from this principle by optimally allowing
the expected price to respond to changes in demand (i.e., changes in riskiness).

Forecast for the first quarter of the year, Q1 in Fig. G.13, is the expected value
for the spot price based on the estimated policy and price functions. We calculate the
expected value with Monte Carlo simulation. The starting point is fixed as state st in
November, after which we sample random deviates for inflow and residual demand. We
then use estimated functions to calculate the HYDRO and THERMAL policies and
price. HYDRO policy is used to update the reservoir state in st. The limited data is
not suggestive of changes in the gap between the current and Q1 expected prices over
the years depicted.
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Figure G.13: Comparison of actual spot in November (black trian-
gel) to forecast for Q1 the following year (mean and 95 % confidence
interval).

H Appendix: A model of the policy cost incidence

Section 2 lays out a distributional argument for subsidies, relying on a dynamic model
of renewable energy. We develop such a model in this Appendix. Time t ∈ [0,∞) is
a continuous variable. It is first suppressed in the description of demand and supply
(Section H.1).

H.1 Demand and supply before entry

Quantity demanded is given by a strictly downward sloping and continuously differen-
tiable demand function D(p), with p denoting the price. Let S(Q) denote the inverse
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supply, with two distinct segments:

S(Q) =

{
c, Q 6 K

c+ x, Q > K.

Parameter c > 0 denotes the supply reservation price (marginal cost) for the low cost
capacity of size K. Parameter x > 0 measures the cost disadvantage of the higher cost
capacity. Capacity K is carbon free while any production Q − K releases one unit of
carbon per output. We denote F = Q−K (where F stands for ’fossil’). Also, we assume

D(c+ x) > K

which implies that the market price satisfies p = x+ c = D−1(Q) = S(Q), with positive
carbon output F > 0. Further, x includes not only the private cost of the carbon
technology but also the social cost of carbon: x is the carbon price. To emphasize, x
includes all social costs of the input use. Rent to the carbon free capacity is (p− c)K =

xK, if F > 0. This rent attracts new entry to the market.

H.2 Entry of non-carbon technologies

We assume unlimited mass of potential entrants. Each marginal entrant faces an entry
cost It at time t, per unit of installed capacity. We denote the installed capacity at
time t by Rt (where ’R’ stands for renewables). Specifically, the investment cost evolves
according to

It = I∞ + ∆ exp(−θt)

where I∞ > 0 is the final long-run entry cost and ∆ is the cost mark-up over the long-run
cost. The cost mark-up declines at rate θ > 0. Once installed the new unit can produce
energy for free for unlimited time interval of time.61 Time discount rate is δ > 0. We
assume further assume that

δI∞ > c (13)

The equality ensures that the new technology cannot replace capacity K in the long-run:
the price needed to cover the lowest possible investment cost, p∞ = I∞/δ, assuming that
this price prevails forever, exceeds the reservation price of production K. Below, we make
further assumptions for the entry to take place.

61Intermittency could be easily added explicitly as availability shock. Intermittency is important for
reasons discussed in the main text but it is not central to the incidence argument here, and is therefore
left out for simplicity.
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H.3 Equilibrium: the first-best allocation

The equilibrium is a path (pt, Rt)t>0 such that for all t:

(i) It > Vt ≡
∫∞
t
pτ exp(−δ(τ − t))dτ

(ii) D(pt) = K +Rt + Ft.

With entry dRt/dt > 0, and condition (i) must hold as equality; otherwise, the value
of entering unit would exceed the investment cost. We first assume a continuous entry
path so that dRt/dt > 0 over some interval [0, T ) with possibly T = +∞, and then we
show that the assumption is correct. From (i), It = Vt which, when differentiating both
sides w.r.t. time, gives

−θ∆ exp(−θt) = −pt + δVt.

Differentiating for the second time gives, after substitutions and rearranging,

dpt/dt = γ exp(−θt)

where γ ≡ −∆θ(δ + θ) < 0. We obtain the price path, conditional on dRt/dt > 0, as

pt = p0 +
γ

θ
(1− exp(−θt)). (14)

We assumed dRt/dt > 0 for [0, T ) and derived the above price equation from the
equilibrium zero-profit condition for entrants. Finite T cannot arise in equilibrium: the
last entrant would gain by waiting for further cost reductions if the price froze at pT .
Considering the limit T → ∞, it must be the case that limT→∞ pT = δI∞: the last
entrant must cover its costs. This boundary condition pins down the initial price,

p0 = ∆(δ + θ) + δI∞

and the full price path,

pt = δI∞ + ∆(δ + θ) exp(−θt). (15)

It proves useful to define carbon price x as high, moderate, or low relative to the
investment costs, respectively:

δI∞ − c+ ∆(δ + θ) < x (16)

δI∞ − c < x < δI∞ − c+ ∆(δ + θ) (17)

x < δI∞ − c. (18)
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Proposition 3 Let τ measure the time passed since the first entry. For all τ > 0, the
equilibrium entry path is continuous with dRτ/dτ > 0 and (pτ , Rτ )τ>0 given by

pτ = δI∞ + ∆(δ + θ) exp(−θτ) (19)

Rτ = D(pτ )−K. (20)

The entry is immediate for a high carbon price (16), follows after a waiting period if
carbon price is moderate (17), and never takes place for a low carbon price (18).

Proof.

Case (16): conditions (19)-(20) define (p0, R0) with p0 < c + x and R0 > 0. Thus, there
is mass entry at t = 0, and the price drops below the reservation price of F at t = 0. A
continuous path (pτ , Rτ ) for all τ > 0 is uniquely defined by (19)-(20).
Case (17): price (15) defines pt = c+x for some finite t > 0. At that moment, conditions
(19)-(20) define (p0, R0) with p0 = c + x, and R0 = F . After that point, the entry
continues as in the first case.
Case (18): no entry takes place since even the lowest investment cost remains above the
reservation price for fossil output.
By construction, the last investor at any given t who foresees the equilibrium price path
is indifferent between entering or staying out. Since all investors have the same constant
returns to scale investment technology, the same conclusion applies to all entrants that
make the quantity Rt. All entrants are indifferent at all times.

Remark 1 The equilibrium path (pt, Rt)t>0 in Proposition 3 is socially optimal.

The value Vt measures the marginal social surplus attributable to one marginal unit
of capital. Since all entrants receive this surplus as compensation, they invest resources
to marginally equate costs and the social value of the investments.

H.4 The rent-extraction path

From now on, we assume that entry starts at t = 0, so τ = t, without loss of general-
ity. Consider now subsidies to entry. Clearly, since the starting point is the first-best
path, they must introduce distortions. We can describe an interesting limit where the
distortions vanish but the redistributive impact remains large.

In the dynamic setting, subsidies can be designed in multiple payoff-equivalent ways
since it is the present value of the subsidies that matters, not the precise timing of the
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subsidy payments. For simplicity, we consider subsidies paid at the investment time:

St = s∆ exp(−θt)

with s ∈ [0, 1]. This subsidy can be thought of as compensating the investor for accepting
a less than mature technology. Thus, the investment cost, net of the subsidy payment,
evolves as

I(St) = I∞ + ∆(1− s) exp(−θt).

Proposition 4 The present-value rent extracted by subsidy policy St from the installed
carbon free capacity K at time t is

Ks∆ exp(−θt). (21)

Proof. Let p̂t denote the price path induced by the subsidy policy. By the equilibrium
condition It = Vt that must hold with and without subsidies, we have a closed form
expression for the price impact:∫ ∞

t

pτ exp(−δ(τ − t))dτ −
∫ ∞
t

p̂τ exp(−δ(τ − t))dτ (22)

= It − I(St) (23)

= s∆ exp(−θt). (24)

Multiplying by the size of the rent-earning capacity, remaining constant over time, gives
the total rent extracted.

What is then the effect on the consumer side, taking into account the subsidy costs?

Proposition 5 For demand elasticity sufficiently small, the consumer side net gain
(=consumption expenditure gain – subsidy costs) from unit subsidy s is approximately
equal to the rent loss (21).

Proof. Let εdp = D′(p)p
D(p)

denote the price elasticity of demand. It follows

dRt

dt
= D′(pt)

dpt
dt
⇒ dRt

dt
= εdp

dpt
dt

D(pt)

pt
. (25)

Note that path (pt)t>0 follows from Proposition 3; in particular, in equilibrium (pt)t>0

is independent of the demand, εdp. Therefore, we can consider variations in demand
without impacts on the price path. Since (D, p) are strictly positive and bounded, making
elasticity sufficiently small, εdp → 0, implies that the rate of entry induced by the price
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path becomes small, dRt
dt
→ 0. Keeping this result in mind, we look at the total consumer

expenditure in the market:

Wt =

∫ ∞
t

D(pτ )pτ exp(−δ(τ − t))dτ (26)

= K

∫ ∞
t

pτ exp(−δ(τ − t))dτ +

∫ ∞
t

Rτpτ exp(−δ(τ − t))dτ. (27)

Let W (St) denote the subsidy-induced consumer expenditures. Then, for εdp → 0,

Wt −W (St) (28)

≈ K

∫ ∞
t

pτ exp(−δ(τ − t))dτ −K
∫ ∞
t

p̂τ exp(−δ(τ − t))dτ (29)

= K[It − I(St)] (30)

= Ks∆ exp(−θt). (31)

Finally, we need to consider the the subsidy payment flow:

St
dRt

dt
= s∆ exp(−θt)D′(pt)

dpt
dt

= εdp
dpt
dt

D(pt)

pt
. (32)

Again, εdp → 0 implies that the subsidy costs vanish.

The result shows when the demand is inelastic, the subsidy merely redistributes rents.
Intuitively, after the initial entry, the subsequent entry rate is small but enough to induce
large price reductions. The result identifies a limit that, by continuity, shows that there
is room for rent extraction even with more reasonable descriptions of the demand: the
lower is the demand elasticity, the smaller is the quantitative change in Rt that is associ-
ated with the equilibrium price path pt. Off the limiting case, there will be inefficiencies.
First, the allocative inefficiency arises. The expedited investment path distorts cost min-
imization: the total producer surplus from producing a given demand is strictly larger
without subsidies. Second, the subsidies bring the entrants online too early. The expe-
dited investment path distorts consumption if demand is price responsive: consumption
path is too front-loaded from the social point of view.
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