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ABSTRACT 

3’-Deoxy-3’-[18F]fluorothymidine positron emission tomography ([18F]FLT PET) and 

diffusion weighted magnetic resonance imaging (DW-MRI) are promising approaches 

to monitor tumor therapy response. Here, we employed these two imaging modalities 

to evaluate the response of lung carcinoma xenografts in mice after gemcitabine 

therapy. Caliper measurements revealed that H1975 xenografts responded to 

gemcitabine treatment, whereas A549 growth was not affected. In both tumor models 

uptake of [18F]FLT was significantly reduced 6 h after drug administration. Based on 

the gemcitabine concentration and [18F]FLT excretion measured, this was 

presumably related to a direct competition of gemcitabine with the radiotracer for 

cellular uptake. On d1 after therapy [18F]FLT uptake was increased in both models, 

which was correlated with thymidine kinase 1 (TK1) expression. 2 d and 3 d after 

drug administration [18F]FLT uptake as well as TK1 and Ki67 expression were 

unchanged. A reduction in [18F]FLT in the responsive H1975 xenografts could only be 

noted on d5 of therapy. Changes in ADCmean in A549 xenografts 1 d or 2 d after 

gemcitabine did not seem to be of therapy-related biological relevance since they 

were not related to cell death (assessed by caspase-3 immunohistochemistry and 

cellular density) or tumor therapy response. 

Taken together, in these models, early changes of [18F]FLT uptake in tumors 

reflected mechanisms such as competing gemcitabine uptake or gemcitabine-

induced TS inhibition and only reflected growth inhibitory effects at a later time point. 

Hence, the time point for [18F]FLT PET imaging of tumor response to gemcitabine is 

of crucial importance. 
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INTRODUCTION 

In anti-cancer therapy many efforts are made to detect response or resistance to 

treatment at an early time point. This enables an early shift of the therapy regimen, 

which allows for reduction of side effects, an optimized therapy for the patient, and a 

reduction of costs for the health care system. Molecular imaging is a valuable tool to 

non-invasively and longitudinally follow biological and molecular processes within the 

body. In tumors, these processes may shed light on therapy response. Consequently, 

use of appropriate imaging biomarkers might help to evaluate anti-cancer therapies in 

clinical trials. 3’-Deoxy-3’-[18F]fluorothymidine ([18F]FLT) is a radiotracer that is an 

analog of thymidine, an essential building block of DNA. It is transported into cells in 

an analogous way to thymidine and is then phosphorylated by thymidine kinase 1 

(TK1). The phosphorylated form of [18F]FLT is not incorporated into DNA and the 

tracer is retained within the cell. Hence, [18F]FLT accumulation is a readout of 

thymidine salvage pathway activity (1). Positron emission tomography (PET) with 

[18F]FLT is frequently correlated with cellular markers of proliferation (2) and thus can 

elucidate the proliferative status of rapidly growing tissue. [18F]FLT PET is beginning 

to be recognized in the clinic for monitoring response to anti-cancer agents (3) since 

reductions in proliferation occur prior to reductions in tumor volume, which can be 

assessed by anatomical imaging modalities like computed tomography (CT) or 

magnetic resonance imaging (MRI). MRI is also capable of detecting changes of the 

tissue composition within tumors. Diffusion weighted (DW)-MRI sensitively depicts 

micro-structural reorganizations due to cell swelling and shrinkage. An increase of 

the apparent diffusion coefficient (ADC) reflects cell death induced loss of membrane 

integrity and a relative increase of the extracellular space (4,5).  

Gemcitabine (2′,2′-difluorodeoxycytidine, dFdC) is a chemotherapeutic agent 

employed in e.g. lung (6) or pancreatic cancer (7). It exerts an anti-cancer effect 
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mostly by interfering with DNA synthesis. Its metabolites can be incorporated into 

DNA, thereby abrogating effective DNA synthesis. Furthermore, it inhibits thymidylate 

synthase (TS), the key enzyme of the thymidine de novo synthesis pathway (8,9). 

This pathway is the alternative pathway to the thymidine salvage pathway which is 

the basis for [18F]FLT uptake in tissues. It has been shown for other TS-inhibiting 

agents, that a counter-mechanistic upregulation of the salvage pathway results in 

increased uptake of [18F]FLT (10,11). 

Here, we investigate whether [18F]FLT PET and DW-MRI are suitable methods to 

detect gemcitabine-induced therapy response in experimental lung cancer xenograft 

models by employing a gemcitabine-sensitive and an -insensitive lung cancer model.  
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MATERIALS AND METHODS 

Cell culture experiments 

A549 (DSMZ) and H1975 (LGC standards, both obtained in 12/2011) non-small cell 

lung cancer cells were cultured at 37 °C in 5 % CO2 with DMEM or RPMI, 

respectively, containing 10 % fetal calf serum, 100 U/mL penicillin and 100 µg/mL 

streptomycin. Cell line identity was confirmed by the supplier by short tandem repeat 

analysis and cells were used at early passage. An MTT assay (Sigma, M5655) was 

performed according to the manufacturer’s protocol to determine cell viability after 

gemcitabine administration. Cells were incubated for 48 h with different 

concentrations of gemcitabine (0.01 µM – 10 µM, Gemzar, Eli Lilly, obtained from the 

pharmacy of the University Hospital Münster). 

For in vitro [18F]FLT uptake assays 1.5 x 105 cells/well were seeded in 6-well plates 

72 h prior to the experiment. 0.5 µM, 1 µM or 10 µM gemcitabine were added 4 h, 

24 h or 48 h before medium was exchanged for 1 h for medium containing 

0.142 MBq/mL [18F]FLT. After three washing steps, cells were detached, and tracer 

uptake was determined in a 2480 automatic Gamma Counter “Wallac Wizzard2 3’’ 

(Perkin Elmer). Cell number was assessed in a Z2 coulter particle count and size 

analyser (Beckman Coulter). To measure competition between [18F]FLT and 

gemcitabine in vitro, 5 x 105 cells were seeded the day before the experiment. Cells 

were incubated with the indicated concentrations of the drug for 1 h or 4 h and then 

incubated with [18F]FLT either in the presence (+) or absence (-) of gemcitabine. 

Tracer uptake was determined as described above. 

 

Western blot 
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Cells were lysed in RIPA and subjected to polyacrylamide gel electrophoresis. After 

transfer to a PVDF membrane, proteins were probed with antibodies targeting TK1 

(Abcam, EPR3193, 1:1000) or actin (MP Biomedicals, clone C4, 69100, 1:1000). 

Secondary antibodies were coupled with peroxidase, and signals were visualized 

with Pierce ECL Plus Western Blotting Substrate (Pierce Biotechnology). 

Densitometry analysis of bands was performed with ImageJ and plotted relative to 

actin loading control. TK1 expression levels were normalized to the expression of 

NaCl treated control cells on the same blot.  

 

Animal Model 

Animal procedures were performed within the multi-center QuIC-ConCePT study in 

accordance with the German Laws for Animal Protection and were approved by the 

animal care committee of the local government (North Rhine-Westphalia State 

Agency for Nature, Environment and Consumer Protection). During the experiments 

general health and body weight of the mice were monitored. 6-8 week old female 

NMRI nude mice (Janvier Labs) were used for the experiments. Three tumors per 

mouse were inoculated subcutaneously in the shoulder region by injection of 2 x 106 

cells in 50 µL medium. Tumor volumes were calculated from digital caliper 

measurements (volume = π/6 x (L x W2); L: longer diameter, W: shorter diameter). 

Mice were treated by intraperitoneal injection of 100 mg/kg gemcitabine in 100 µL 

0.9 % NaCl at 3 d intervals or 0.9 % NaCl as control. Imaging was performed 

according to the experimental schedule depicted in Supplementary Fig. S1.  

 

PET imaging 
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[18F]FLT was produced with purity of >99 % as reported previously (12). Mice were 

anesthetized with isoflurane inhalation (2 % in oxygen), and temperature was 

maintained at 37 °C by using a heating pad. 10 MBq of radiotracer were injected 

intravenously and image acquisition was performed for 20 min after a 70 min tracer 

uptake period using a quadHIDAC small animal PET scanner (Oxford Positron 

Systems (13)). A multimodal bed was used to enable co-registration of PET images 

with anatomical images from CT (Inveon, Siemens Medical Solutions) or T2w MRI. 

Images were analyzed with the software Inveon Research Workplace 3.0 (Siemens 

Medical Solutions). Three-dimensional volumes-of-interest (VOIs) were defined on 

CT or MR images over the entire tumor. Radiotracer uptake was calculated as 

maximal percentage injected dose per mL (%IDmax/mL). In addition, we also 

determined %IDmean/mL, standardized uptake value (SUVmax, SUVmean), and maximal 

tumor-to-musclemean and tumor-to-livermean-ratio. Results of the mean tumor uptake 

were substantially influenced by necrosis within the tumors. We also assessed the 

25%ile, representing the mean of the 25% highest intensity voxels. All additional 

evaluations are listed in Supplementary Table S1, and were used to demonstrate 

that findings were independent of the mode of data analysis To evaluate relative 

excretion, the radioactivity within the bladder VOI (%IDmean/mL) was multiplied by the 

volume of the VOI and divided by the total radioactivity within the mouse.  

 

MR imaging 

T2 weighted (T2w) MR images were obtained with a 9.4 T Bruker Biospec (2D rapid 

acquisition with relaxation enhancement, repetition / echo time (TR/TE) 3600/40 ms, 

Rare factor 8, field of view (FOV) 35 mm, 256 matrix, slice thickness 1 mm) to obtain 

anatomical information for the definition of VOIs. ADC was determined by DW-MRI 

(EPI-DTI, TR/TE 1000/19 ms, 12 segments, effective b-values = 2, 54, 109, 204, 309, 
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413, 620, 702 s/mm², FOV 35 mm, 128 matrix, NEX 6, respiration-triggered, slice 

thickness 1 mm, 4 slices in the tumor center). ADC maps were calculated with the 

software ParaVision 5.1 (monoexponential fit of all b-values). ImageJ (National 

Institutes of Health) was employed to manually segment the tumors in ADC maps 

and determine the ADCmean of up to 4 slices per tumor. 

 

Immunohistochemistry 

Tumors were fixed in 4 % paraformaldehyde and embedded in paraffin. Transverse 

5 µm sections were incubated overnight at 4 °C with primary antibodies (Ki67: 

Abcam, ab 16667, 1:100; TK1: Abcam, EPR3193, 1:200) and for 1 h at room 

temperature with respective biotin or fluorescently labeled secondary antibodies. 

Staining was evaluated using a Nikon Eclipse 90i fluorescent microscope and the 

NIS-Elements software package (Nikon). For quantification five images at 20x 

resolution were acquired in regions with the highest fraction of specifically stained 

cells to compare the labeling to radiotracer uptake expressed as %IDmax/mL. For 

Ki67 stained nuclei relative to the total number of DAPI stained nuclei were 

determined. For TK1 the staining positive area was evaluated after color 

deconvolution with ImageJ. 

 

Thymidine and gemcitabine quantification 

Thymidine was analyzed with a modified liquid-chromatography-mass spectrometry 

(LC-MS/MS) method as described previously (14). Gemcitabine LC-MS/MS was 

performed according to Bapiro et al. (15). 

 

Statistics 

Data are displayed as box plots showing median values with 25 % and 75 % 
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percentiles, with whiskers from minimum to maximum. Means ± standard deviation 

are listed in the Supplementary Table S2. The numbers in brackets indicate the 

number of samples analyzed. SigmaPlot 13.0 was used for statistical analyses. Since 

not all data followed a normal distribution the Mann-Whitney Rank Sum Test was 

applied for comparisons. IC50 values were determined using the standard curve 

macro. Correlations were calculated with the Pearson method. P values < 0.05 were 

considered statistically significant. 
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RESULTS 

Incubation of H1975 or A549 tumor cells with gemcitabine results in cell death 

and induction of increased [18F]FLT uptake in vitro 

We previously determined that H1975 and A549 lung cancer xenografts accumulate 

[18F]FLT and therefore should be suitable to monitor treatment efficacy (16). MTT 

assays revealed similar half maximum inhibitory concentrations of these two cell lines 

in vitro (IC50[H1975] = 0.33 µM ± 0.19 µM, n = 6, IC50[A549] = 0.79 µM ± 0.26 µM, 

n = 4, P < 0.05). Thus, both cell lines were responsive to gemcitabine therapy. We 

performed [18F]FLT uptake assays in vitro to assess whether gemcitabine induces 

changes in tracer uptake under such conditions (Fig. 1A). No differences in [18F]FLT 

accumulation were apparent after 4 h incubation with the drug. After 24 h and 48 h, 

[18F]FLT accumulation was significantly increased in H1975 cells. A similar pattern 

was observed in gemcitabine treated A549 cells. However, longer exposure times 

induced a higher rate of cell death in A549 cells (Fig. 1B), which was accompanied 

by reduced tracer uptake in this experimental setup. Gemcitabine incubation was 

accompanied by increased TK1 expression as determined by western blot (Fig. 1C). 

Thus, a TK1-associated increase in [18F]FLT uptake was noted in both cell lines 

within 24 h, followed by a drug-dose dependent decrease in A549 cells. 

 

In vivo growth of H1975 is affected by gemcitabine therapy whereas A549 

growth is unaltered 

We gave four doses of 100 mg/kg gemcitabine to nude mice bearing subcutaneous 

H1975 or A549 xenografts of a size of about 100 mm3. A549 xenografts grew 

substantially more slowly. There was no evidence of gemcitabine-induced toxicity. A 

growth inhibitory effect was observed from d5 onwards for H1975 xenografts 

(Fig. 2A), whereas growth of A549 was unaffected (Fig. 2B). Thus, a gemcitabine-
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responsive and a non-responsive model were available to evaluate the ability of 

[18F]FLT PET and DW-MRI to detect any effects of gemcitabine treatment on the  

tumors. 

 

Gemcitabine affects [18F]FLT uptake in both models in vivo 

We performed [18F]FLT PET imaging at various time points after administration of 

gemcitabine (Fig. 3). In both tumor types tracer uptake was significantly reduced 

within hours after drug application and significantly increased on d1 (%IDmax/mL of 

H1975: baseline: 18.6 ± 3.3, 6 h: 9.8 ± 2.0, P < 0.001; d1: 21.5 ± 3.2, P < 0.01; A549: 

baseline: 6.39 ± 1.57, 6 h: 3.68 ± 0.68, P < 0.001; d1: 8.95 ± 2.75, P < 0.001, 

significances relative to baseline, see Supplementary Table S2 for all numbers). On 

d2 and d3 [18F]FLT uptake was equal to baseline and to respective NaCl controls. A 

significant reduction in [18F]FLT uptake could be noted in H1975 xenografts on d5 of 

gemcitabine therapy (15.0 ± 3.4, P < 0.01 relative to baseline). In contrast to all other 

observations, the slight increase of [18F]FLT uptake in H1975 tumors on d2 and in 

A549 xenografts on d5 could not be confirmed with most other [18F]FLT uptake 

parameters (see Supplementary Table S1). 

We analyzed Ki67 immunohistochemistry to assess whether [18F]FLT accumulation 

reflects cellular proliferation. In both tumor models, Ki67 was unchanged after 

gemcitabine therapy (Fig. 4 and Supplementary Fig.S2). Unaltered [18F]FLT on d2 

and d3 was in accordance with unchanged cellular proliferation as determined by 

Ki67 immunohistochemistry. The cause for the above described changes in [18F]FLT 

uptake (i.e. decrease after 6 h, increase after 1 d, and decrease after 5 d in H1975 

xenografts) appeared to be unrelated to this proliferation marker. 
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Immunohistochemical analysis revealed an increased TK1 expression on d1 after 

gemcitabine (% positive area of H1975: NaCl: 21.5 ± 5.0, d1: 45.1 ± 8.8; A549: NaCl: 

19.9 ± 5.8, d1: 36.8 ± 4.3; both P < 0.01 relative to NaCl control). A significant 

positive correlation of TK1 expression and [18F]FLT uptake was measured in both 

models (Fig. 5). Of note, for the H1975 tumors, PET imaging after 6 h was only 

performed in longitudinal studies. Hence, immunohistochemistry at this time point 

was conducted in a different cohort of mice, not allowing direct correlation analysis of 

this time point. For consistency, we did not plot this time point for A549 either; 

however, inclusion of these 6 h data also results in a significant correlation of 

[18F]FLT uptake and TK1 expression (r = 0.539, P < 0.01). 

 [18F]FLT uptake after 6 h in tumors was low although TK1 expression was elevated. 

Also TS or human equilibrative nucleoside transporter 1 (hENT1) expression analysis 

did not explain reduced [18F]FLT (Supplementary Fig. S3). Interestingly, not only 

tumor uptake was reduced at this time point but [18F]FLT retention in a range of other 

organs was also diminished (e.g. spleen, muscle or lymph nodes, see 

Supplementary Table S3), indicating a potential systemic rather than a tumor-

specific effect. Gemcitabine, being a nucleoside analog, employs cellular transport 

mechanisms similar to the ones used by [18F]FLT and thymidine. Hence, we 

hypothesized that high gemcitabine concentrations in the plasma compete with 

[18F]FLT for cellular uptake. 

We showed that less [18F]FLT is taken up by cells in the presence of gemcitabine in 

vitro (Fig. 6A), confirming the competitive nature of these two molecules. In vivo, LC-

MS/MS analysis revealed gemcitabine (dFdC) tumor concentrations of 3.38 µM ± 

2.34 µM in H1975 (n = 4) and ~1.2 µM in A549 (n = 2) and plasma concentrations in 

the range of 0.16 µM ± 0.08 µM (n = 5) 6 h after drug administration. The latter is well 
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above concentrations estimated for [18F]FLT (~ 0.01 µM) and could effectively reduce 

the amount of [18F]FLT taken up by cells. Consequently, since less [18F]FLT was 

taken up and retained in cells throughout the body, more tracer should be excreted. 

By quantifying the amount of tracer within the bladder, we showed that more [18F]FLT 

was excreted 6 h after gemcitabine administration (% [18F]FLT in bladder: baseline: 

13.7 ± 5.8, 6 h: 24.8 ± 6.5, P < 0.05, Fig. 6B). Thymidine also employs the cellular 

uptake mechanism for nucleosides. Plasma concentration of thymidine was 

significantly higher at 6 h (Fig. 6C). Based on its short half-life (~30 min (17,18)), 

plasma gemcitabine concentrations should be in the range of ~500 µM immediately 

after drug administration. This ~500-fold excess of gemcitabine over plasma 

thymidine suggests that increased thymidine concentrations after 6 h result from 

competition with gemcitabine. At later time points, plasma thymidine levels were 

significantly reduced relative to NaCl control whereas thymidine concentrations within 

H1975 tumors were increased (Fig. 6D).  

 

ADC is slightly altered early after gemcitabine administration  

We also determined whether gemcitabine application causes changes in the 

apparent diffusion coefficient (ADC), the measure for water diffusivity as determined 

by DW-MRI. Fig. 7A shows that ADCmean did not vary substantially on d1 or d2 after 

treatment in H1975 xenografts. In A549 tumors a small increase in ADC relative to 

baseline was detected, which was independent of treatment. This increase was more 

pronounced 1 d after gemcitabine. However, in both models, cellular density 

(Fig. 7B) and cell death (cleaved caspase-3 immunohistochemistry, Supplementary 

Fig. S4) were not altered at these time points.  



 
 

15 

DISCUSSION 

We employed two lung cancer models to investigate the effect of gemcitabine on 

[18F]FLT PET and DW-MRI. The two models differed with respect to gemcitabine 

sensitivity in vivo. We observed a growth inhibition-related decrease of [18F]FLT 

uptake on d5 of treatment in the sensitive H1975 xenografts. Early changes in tracer 

uptake (within hours and on d1), as well as ADC, were not related to treatment 

response. These results indicate that a detailed understanding of the various 

mechanisms determining changes in imaging biomarkers is important when 

interpreting such changes for the analysis of therapy response, especially at early 

time points. With regards to gemcitabine, the mechanisms influencing [18F]FLT 

uptake are rather complex, as elucidated here. 

 

There is a range of studies describing the successful use of [18F]FLT PET for 

predicting response to anti-cancer agents (19,20). When employing agents interfering 

with TS activity, like 5-FU, an increase in [18F]FLT uptake early after drug 

administration was frequently reported. This effect has been attributed either to 

upregulation of TK1 activity (10,11) or to redistribution of hENT1 to the cellular 

surface (21). 

Gemcitabine also inhibits TS activity (8). Consequentially, we also observed an 

[18F]FLT increase both in vitro (Fig. 1) and in vivo (Fig. 3). This is in accordance with 

an in vitro study that reported a 5-fold increase of [18F]FLT 24 h after treatment with 

gemcitabine in oesophageal squamous cell carcinoma cells (22). In our models, we 

showed that increased [18F]FLT was related to TK1 expression (Fig. 1C and Fig. 5).  

We noted a substantial decrease of tumor [18F]FLT accumulation 6 h after 

gemcitabine administration (Fig. 3). This reduction was not related to expression of 

Ki67, TK1, TS or hENT1. Our in vivo data indicate that competition of gemcitabine 
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uptake with [18F]FLT is most likely the cause for the reduced [18F]FLT uptake, as also 

demonstrated by in vitro [18F]FLT uptake experiments (Fig. 6A). Both molecules 

share cellular uptake mechanisms, and the major transporter is presumably hENT1. 

Expression of hENT1 predicts gemcitabine response in patients with biliary tract 

cancer (23), cholangiocarcinoma (24) or pancreatic cancer (25). Furthermore, 

Paproski et al. demonstrated that [3H]FLT uptake predicts transport and toxicity of 

gemcitabine in a range of pancreatic cancer cell lines in vitro (26). 

We determined gemcitabine plasma concentrations to be ~160 nM about 6 h after 

drug application. This is in good agreement with previously published gemcitabine 

concentrations (15,27). According to Zhang et al., the estimated dose level of 

[18F]FLT used in preclinical imaging is 2 µg/kg (8.2 nM) (28), resulting in competition 

of [18F]FLT and gemcitabine for cellular transport mechanisms which could be 

measured by PET and gamma counter measurements in our study. 

We showed that less [18F]FLT accumulated in a range of organs 6 h after 

gemcitabine administration because less tracer was taken up by the cells. Hence, 

more [18F]FLT would be excreted and indeed the amount of [18F]FLT in the bladder 

increased by about 70 % (Fig. 6B). One might speculate that such a systemic effect 

on tracer uptake calls for correction of [18F]FLT uptake to an internal reference tissue. 

But after also correcting for muscle or liver uptake, the relative decrease in tumor 

[18F]FLT accumulation remained significant (Supplementary Table S1). This implies 

that gemcitabine is preferentially taken up in tumors, in agreement with a study 

demonstrating a 3.5-fold increased accumulation of gemcitabine relative to liver (18). 

Hence, there are multiple pieces of evidence that support the hypothesis that 6 h 

after administration gemcitabine competes with [18F]FLT for cellular uptake. 

We also observed competition of gemcitabine with plasma thymidine 6 h after drug 

administration (Fig. 6C). d1, d2 and d3 after gemcitabine, plasma thymidine 
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concentrations were reduced relative to the NaCl control. This is in line with other 

studies employing TS-inhibiting agents which showed reduced thymidine levels in 

plasma in mice (29) and men (30), presumably originating from the drug induced 

blockade of the de novo pathway and increased use of the salvage pathway and 

hence extracellular thymidine. A significant increase in thymidine concentration was 

noted in H1975 xenografts. This could possibly be caused by an accumulation of 

phosphorylated thymidine within the cells, which cannot be incorporated into the DNA 

since gemcitabine inhibits DNA synthesis. The fact that this increase in thymidine 

cannot be detected in A549 xenografts, whose growth is not impaired after 

gemcitabine treatment, supports this hypothesis. 

 

Of note, changes in [18F]FLT uptake and TK1 expression within the first days were 

observed in both tumor models investigated, even though they substantially differed 

with respect to sensitivity to gemcitabine (Fig. 2). Gemcitabine concentrations within 

A549 tumors were in a similar range to those in H1975 tumors, demonstrating that 

gemcitabine is capable of entering these cells. A double dose of gemcitabine did 

cause a reduction in tumor volume in a small cohort of mice (Supplementary Fig. 

S5). Hence, as previously reported (31,32), A549 xenografts were not intrinsically 

resistant to this drug, but in our study the dose used was sub-therapeutic. 

Consequently, the observed early changes in [18F]FLT uptake (reduction after 6 h 

and increase after 1 d) were not related to treatment response. This is in accordance 

with studies showing that sub-therapeutic doses of TS inhibiting agents induce an 

[18F]FLT increase in vitro (33) and in vivo (34).  

A growth inhibition-related decrease in [18F]FLT uptake was only seen on d5 of 

gemcitabine therapy. Presumably, this was related to increased apoptosis as 

determined by immunohistochemistry of cleaved caspase-3 (Supplementary Fig. 
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S4). In our study, H1975 tumor volumes between the treated and the untreated 

groups were already significantly different on d5. Hence, molecular imaging with 

[18F]FLT PET would not provide additional (earlier) information over volume 

measurements. However, findings on timing from preclinical studies cannot be 

directly transferred to the clinical situation. In general, clinical tumors grow more 

slowly than preclinical xenografts. This could result in reductions in [18F]FLT 

occurring prior to reductions in tumor volume. Consequently, [18F]FLT PET could 

potentially be used for the assessment of treatment response in cancer patients 

treated with gemcitabine, if imaging is not performed within the first days of therapy. 

Moreover, a detailed kinetic analysis deciphering [18F]FLT delivery and transport (K1) 

from the rate of phosphorylation (k3) could be envisioned to especially shed light into 

gemcitabine action on [18F]FLT metabolism in clinical applications. 

In our study, results were obtained from mice bearing several tumors. The advantage 

of this model system is, that according to the principles of the 3Rs (replacement, 

reduction, refinement) the number of animals can be reduced. Most importantly, the 

tracer input function is the same for tumors growing in the same animal. Therefore, 

differences in [18F]FLT uptake can be attributed to differences in tumor growth 

(location, vascularization, biologic activity) and not to potential differences in the 

imaging protocol. However, one has to bear in mind, that analyses of mice bearing 

single xenografts could potentially better reflect the clinical situation with its 

interindividual biological heterogeneities.  

 

DW-MRI is an alternative imaging approach to monitor cancer therapy, as has been 

shown e.g. for experimental Ewing sarcoma (35). We were unable to detect any 

substantial differences in tumor ADCmean 1 d or 2 d after a single dose of gemcitabine 

in either of the lung tumor models investigated here (Fig. 7A). This was in 
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accordance with unchanged cellular density and cell death. The slight increase in 

ADC in A549 xenografts most likely resulted from other structural changes such as a 

growth-related increase in necrosis, which was irrespective of treatment. These 

observations emphasize that ADC is a versatile measure that is influenced by a 

complex combination of parameters related to tissue micro-structure. Transient 

effects such as cell swelling or shrinkage possibly overshadow changes of 

parameters that can be related to therapy with our current knowledge. Hence, in our 

model ADC had no predictive value. 

 

In conclusion, our data demonstrate that plasma levels of gemcitabine alter 

nucleoside transporter availability and hence [18F]FLT uptake early after gemcitabine 

administration. Moreover, molecular factors like TK1 activity might hamper the 

straightforward non-invasive detection of early treatment effects by [18F]FLT PET 

when employing agents inhibiting TS. Hence, understanding the mechanism of action 

of a therapeutic approach as well as the mechanisms of [18F]FLT uptake are crucial 

for interpreting respective PET imaging findings.  
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FIGURE LEGENDS 

Figure 1. Gemcitabine induced an increase in uptake of [18F]FLT in H1975 and A549 

tumor cells in vitro. (A) [18F]FLT uptake assays revealed elevated radiotracer 

retention after prolonged treatment with gemcitabine in both cell lines. Tracer 

accumulation is expressed as counts per minute (cpm) per cell. (B) Cell number is 

displayed as an indicator of cell viability after gemcitabine therapy. Boxplots depict 

medians of six values obtained in three individual experiments. (C) Western blot 

analysis of cell lysates revealed increased expression of TK1 after gemcitabine 

treatment. n = 4 samples were analyzed per condition. *: P < 0.05; **: P < 0.01 

relative to NaCl control. 

 

Figure 2. Gemcitabine therapy induced growth inhibition in H1975 but not in A549 

xenografts. Tumor volumes were determined by caliper measurements and showed a 

growth inhibitory effect of gemcitabine (given on d0, d3, d6, and d9) in H1975 but not 

in A549 tumors. White: NaCl; grey: gemcitabine; *: P < 0.05, **: P < 0.01, ***: 

P < 0.001 relative to NaCl. 

 

Figure 3. PET showed reduced uptake of [18F]FLT 6 h after gemcitabine 

administration, and increased uptake after 1 d, whereas a growth inhibition related 

reduction in H1975 tumors could only be noted on d5. Static [18F]FLT PET was 

performed at the indicated time points after gemcitabine treatment. Notably, for the 

6 h time point, the tracer was injected about 4 h after drug administration. The PET 

image was acquired 70 - 90 min after tracer injection, during the 6th hour after drug 

application. Images show transverse slices at the biggest tumor diameter of one 

representative H1975 or A549 tumor over time. This longitudinal study did not include 
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the d5 time point. Hence, the images from d5 depict different tumors. Scale bar = 

5 mm; white: NaCl; grey: gemcitabine; *: P < 0.05, **: P < 0.01, ***: P < 0.001 relative 

to NaCl; †: P < 0.05, ††: P < 0.01; †††: P < 0.001 relative to baseline.  

 

Figure 4. Ki67 is unaltered after gemcitabine treatment. H1975 and A549 tumor 

sections were stained for Ki67 as described in materials and methods.. Scale 

bar = 100 µm; green: Ki67; blue: DAPI. 

 

Figure 5. TK1 expression was correlated with [18F]FLT uptake. Immunohistochemical 

analysis revealed a significant upregulation of TK1 1 d after administration of a single 

dose of gemcitabine in H1975 and A549 xenografts. Sections were stained in 

different batches, explaining the variations in color. Scale bar = 100 µM. There is a 

significant positive correlation of TK1 staining and [18F]FLT uptake in both xenograft 

models (6 h values were omitted). **: P < 0.01 relative to NaCl. 

 

Figure 6. Gemcitabine competed with [18F]FLT in vitro and increased [18F]FLT 

excretion and plasma thymidine levels after 6 h in vivo. (A) A549 cells were incubated 

with different concentrations of gemcitabine for 1 h or 4 h. Subsequently, [18F]FLT 

uptake was determined either in the presence (+) or absence (-) of gemcitabine. 

Median values of n = 6 values, obtained in three different experiments, are displayed 

here. (B) Excretion of [18F]FLT was assessed by calculating the tracer amount within 

the bladder relative to the radioactivity within the mouse. Data from mice bearing 

different tumor types were pooled. (C) Plasma and (D) tumor thymidine were 

quantified with an LC-MS/MS method. The plasma results from mice bearing different 

tumor types were pooled since the tumor appeared not to affect plasma thymidine 
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concentration. *: P < 0.05, **: P < 0.01, ***: P < 0.001 relative to NaCl; †: P < 0.05 

relative to baseline.  

 

Figure 7. ADC was not altered after gemcitabine therapy in H1975, which was in line 

with unchanged cellular density. (A) The ADCmean of up to four transverse tumor 

sections was determined and averaged. (B) Cellular density was determined by 

counting DAPI positive nuclei in 20x fields of view (FOV: 580 µm x 460 μm) on Ki67 

histology sections. White: NaCl; light grey: 1 d after gemcitabine; dark grey: 2 d after 

gemcitabine; Gem = gemcitabine; *: P < 0.05 relative to NaCl; †: P < 0.05, †††: 

P < 0.005 relative to baseline. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. Outline of the experimental schedule pursued. This 

graphical demonstration depicts the number of animals imaged by [18F]FLT PET and / 

or DW-MRI at the indicated time points. Seven imaging series were conducted per 

tumor model. Most animals were only imaged at a single time point after gemcitabine 

therapy, whereas subgroups were imaged repetitively. The cross indicates cervical 

dislocation of the animal and generation of samples for ex vivo analyses. The arrows 

indicate administration of NaCl / gemcitabine. n indicates the number of animals. Each 

animal was bearing up to three tumors in the shoulder region. Of note, not all samples 

available were analyzed. Number of samples included in analyses can be found in 

Supplementary Table S2. 

 

Supplementary Fig S2. Ki67 immunohistochemical staining. The merged microscopic 

images of Figure 4 are displayed as single channel images in grayscale. In the merged 

images, contrast and brightness of the single channels were adjusted (ImageJ) to show 

comparable staining intensities. This adjustment does not affect the quantification, 

since it does not affect the number of stained nuclei. Quantification was done on 

unprocessed images. The brightness of the single channel images was increased by 

20 % (Power Point) to increase visibility of stained nuclei. Gem = gemcitabine; scale 

bar = 100 µm. 

 

Supplementary Figure S3. TS and hENT1 expression are not altered 6 h after 

gemcitabine. Immunohistochemistry of hENT1 and TS was performed on n = 3 tumor 

samples per treatment condition. Immunohistochemistry was performed as described 



in Materials and Methods, using antibodies targeting TS (Abcam, ab108995, 1:50) or 

hENT1 (Acris, 11337-1-AP, 1:100). Brightness was increased by 20 % (PowerPoint) 

to increase visibility. scale bar = 100 µm. 

 

Supplementary Figure S4. Gemcitabine induces increased apoptosis in H1975 

tumors on d5. Immunohistochemistry was assessed from at least n = 2 tumors per 

condition, using an antibody targeting active caspase-3 (BD Pharmingen, CPP-32, 

Clone C92-605, 1:100). The stained area was significantly increased in H1975 on d5 

(2.77 % ± 0.85 %) relative to NaCl treated tumors (0.72 % ± 0.33 %, P < 0.001, n = 6 

each). scale bar = 100 µm. 

 

Supplementary Figure S5. 200 mg/kg gemcitabine affect growth of A549 xenografts. 

Mice bearing subcutaneous A549 xenografts were treated by intraperitoneal injections 

of 200 mg/kg gemcitabine in 3 d intervals (on d0, d3, d6 and d9). Caliper 

measurements revealed that this therapeutic regime is capable of inhibiting tumor 

growth relative to NaCl treated controls. See Supplementary Table S2 for absolute 

numbers and number of tumors. White: NaCl control; dark grey: 200 mg/kg 

gemcitabine; *: P < 0.05 relative to NaCl. 
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Supplementary Table S1. Mean and standard deviation, as well as number of samples analyzed (in brackets), of other PET image
quantification approaches. *: P < 0.05, **: P < 0.01, ***: P < 0.001 relative to NaCl; †: P < 0.05, ††: P < 0.01, †††: P < 0.001 relative to
baseline (Mann-Whitney Rank Sum Test). T-M: tumor-to-muscle ratio, T-L: tumor-to-liver ratio.

A549 baseline 6 h d1 d2 d3 d5
%IDmean/mL NaCl 3.58 ± 0.64 (27) 3.33 ± 0.30 (11) 3.81 ± 0.91 (16) 3.14 ± 0.35 (10) 3.67 ± 0.57 (5) 2.70 ± 0.17 (6)

Gem 3.41 ± 0.50 (46) 2.12 ± 0.36 (18) ††† *** 4.06 ± 0.78 (18) †† 3.10 ± 0.40 (12) 2.99 ± 0.44 (11) †† * 3.36 ± 0.50 (11) *
SUVmax NaCl 1.98 ± 0.56 (27) 1.95 ± 0.27 (11) 2.02 ± 0.74 (16) 1.66 ± 0.18 (10) 2.06 ± 0.27 (5) 1.77 ± 0.28 (6)

Gem 1.97 ± 0.44 (46) 1.13 ± 0.23 (18) ††† *** 2.61 ± 0.72 (18) ††† * 1.99 ± 0.41 (12) * 1.96 ± 0.42 (11) 2.14 ± 0.26 (11) *
SUVmean NaCl 1.05 ± 0.19 (27) 1.00 ± 0.10 (11) 1.08 ± 0.21 (16) 0.95 ± 0.08 (10) 1.07 ± 0.12 (5) 0.80 ± 0.03 (6)

Gem 1.05 ± 0.12 (46) 0.65 ± 0.13 (18) ††† *** 1.19 ± 0.19 (18) †† 1.01 ± 0.18 (12) 0.92 ± 0.11 (11) ††† * 0.95 ± 0.15 (11)
T-M NaCl 2.50 ± 0.63 (27) 2.74 ± 0.44 (11) 2.52 ± 1.03 (16) 2.31 ± 0.20 (10) 2.78 ± 0.26 (5) 2.67 ± 0.42 (6)

Gem 2.58 ± 0.70 (46) 1.95 ± 0.22 (18) ††† *** 3.66 ± 1.09 (18) ††† ** 3.01 ± 0.49 (12) † ** 3.05 ± 0.63 (11) † 3.59 ± 0.42 (11) ††† **
T-L NaCl 2.18 ± 0.63 (27) 2.33 ± 0.37 (11) 2.18 ± 0.92 (16) 1.95 ± 0.18 (10) 2.31 ± 0.18 (5) 2.26 ± 0.35 (6)

Gem 2.19 ± 0.55 (46) 1.58 ± 0.18 (18) ††† *** 3.01 ± 0.81 (18) ††† ** 2.55 ± 0.47 (12) † ** 2.79 ± 0.68 (11) †† 3.11 ± 0.37 (11) ††† **
25%ile NaCl 5.01 ± 1.10 (27) 4.80 ± 0.42 (11) 5.32 ± 1.69 (16) 4.30 ± 0.45 (10) 5.16 ± 0.83 (5) 3.99 ± 0.35 (6)

Gem 4.73 ± 0.80 (46) 2.82 ± 0.45 (18) ††† *** 6.16 ± 1.37 (18) ††† 4.43 ± 0.56 (12) 4.28 ± 0.65 (11) 4.83 ± 0.69 (11) *

H1975 baseline 6 h d1 d2 d3 d5
%IDmean/mL NaCl 7.48 ± 1.52 (20) 6.18 ± 1.36 (5) 5.87 ± 1.24 (11) 6.94 ± 1.81 (14) 8.05 ± 1.26 (5)

Gem 7.56 ± 2.04 (38) 3.78 ± 0.64 (15) ††† ** 7.83 ± 1.49 (17) ** 8.79 ± 2.08 (16) † * 8.05 ± 1.60 (13) 4.85 ± 0.95 (10) †††

SUVmax NaCl 5.25 ± 0.81 (20) 5.65 ± 1.51 (5) 4.99 ± 1.17 (14) 5.63 ± 1.30 (14) 6.70 ± 0.82 (5)
Gem 5.59 ± 0.98 (38) 2.88 ± 0.51 (15) ††† ** 6.42 ± 0.91 (17) †† ** 6.21 ± 1.13 (16) 5.90 ± 0.90 (13) 4.08 ± 1.05 (10) ††

SUVmean NaCl 2.27 ± 0.46 (20) 1.95 ± 0.42 (5) 1.84 ± 0.43 (12) 2.03 ± 0.53 (14) 2.44 ± 0.38 (5)
Gem 2.28 ± 0.62 (38) 1.12 ± 0.23 (15) ††† ** 2.34 ± 0.45 (17) ** 2.55 ± 0.58 (16) * 2.45 ± 0.50 (13) 1.32 ± 0.32 (10) †††

T-M NaCl 6.59 ± 1.51 (20) 7.23 ± 1.83 (5) 5.66 ± 1.87 (14) 8.32 ± 1.88 (14) 10.15 ± 0.87 (5)
Gem 7.13 ± 1.61 (38) 4.73 ± 1.01 (15) ††† * 8.18 ± 1.92 (17) ** 9.29 ± 1.46 (16) ††† 9.96 ± 1.94 (13) ††† 7.01 ± 1.76 (10)

T-L NaCl 5.86 ± 1.30 (20) 6.73 ± 2.02 (5) 5.18 ± 1.83 (14) 7.47 ± 1.90 (14) 9.27 ± 0.78 (5)
Gem 6.26 ± 1.62 (38) 4.32 ± 0.99 (15) ††† * 7.28 ± 1.59 (17) † ** 8.65 ± 1.99 (16) ††† 8.67 ± 1.78 (13) ††† 5.97 ± 1.78 (10)

25%ile NaCl 12.3 ± 2.1 (20) 11.3 ± 2.6 (5) 9.2 ± 2.8 (14) 11.6 ± 3.1 (14) 14.1 ± 1.1 (5)
Gem 12.8 ± 2.9 (38) 6.2 ± 0.9 (15) ††† ** 13.6 ± 2.1 (17) *** 14.8 ± 3.1 (16) † * 13.5 ± 2.2 (13) 8.5 ± 1.7 (10) †††



Supplementary Table S2. Mean and standard deviation, as well as number of samples analyzed (in brackets), of the data
presented in this article. *: P < 0.05, **: P < 0.01, ***: P < 0.001 relative to NaCl; †: P < 0.05, ††: P < 0.01, †††: P < 0.001 relative to
baseline; #: P < 0.05, ##: P < 0.01 relative to respective “+ Gem” sample (Mann-Whitney Rank Sum Test). Gem = gemcitabine.

Fig. 7A. ADCmean (10-3/mm2)
NaCl d1 Gem d2 Gem
pre post pre post pre post

H1975 1.029 ± 0.260 (23) 1.186 ± 0.203 (20) 1.096 ± 0.192 (20) 1.133 ± 0.152 (20) 1.147 ± 0.252 (8) 1.058 ± 0.196 (10)
A549 1.044 ± 0.163 (16) 1.196 ± 0.198 (14) † 1.096 ± 0.127 (13) 1.400 ± 0.227 (18) ††† * 0.900 ± 0.121 (5) 1.229 ± 0.204 (5) †

Fig. 7B. Nuclei per field of view
NaCl d1 Gem d2 Gem

H1975 858 ± 93 (9) 810 ± 106 (5) 839 ± 49 (3)
A549 1031 ± 211 (11) 1018 ± 163 (6) 1014 ± 160 (4)

Fig. 6B. [18F]FLT uptake in bladder

NaCl 6 h Gem d1 Gem d2 Gem d3 Gem

% of total 13.7 ± 5.8 (6) 24.8 ± 6.5 (6) † 19.3 ± 6.2 (4) 17.6 ± 5.2 (4) 16.3 ± 4.9 (4) 

Fig. 6C-D. Thymidine concentrations  (µM)

NaCl 6 h Gem d1 Gem d2 Gem d3 Gem

B) plasma 1.64 ± 0.45 (10) 5.76 ± 1.24 (7) *** 0.99 ± 0.10 (6) ** 0.81 ± 0.12 (4) ** 1.13 ± 0.33 (5) *

C) H1975 2.90 ± 0.77 (6) 6.39 ± 3.41 (10) * 5.91 ± 0.28 (5) ** 4.18 ± 1.82 (5) 4.47 ± 1.17 (6) *

D) A549 1.39 ± 0.66 (10) 2.06 ± 1.25 (9) 2.86 ± 1.94 (12) 0.92 ± 0.27 (6) 1.09 ± 0.64 (6) 

Fig. 5. TK1 staining (% positive area)
NaCl 6 h Gem d1 Gem d2 Gem d3 Gem d5 Gem

H1975 22.1 ± 4.9 (13) 33.3 ± 3.8 (4) ** 45.1 ± 8.8 (6) *** 25.8 ± 4.1 (6) 23.1 ± 7.6 (3) 24.2 ± 3.0 (6) 
A549 19.9 ± 5.8 (5) 23.6 ± 3.6 (7) 36.8 ± 4.3 (8) ** 22.3 ± 5.6 (8) 20.5 ± 1.6 (7) 20.7 ± 3.1 (6) 

Fig. 4. Ki67 staining (% positive nuclei)
NaCl 6 h Gem d1 Gem d2 Gem d3 Gem d5 Gem

H1975 39.4 ± 6.0 (9) 42.3 ± 11.8 (5) 42.9 ± 8.1 (6) 47.2 ± 5.1 (4) 42.6 ± 9.1 (4) 38.8 ± 4.4 (6) 
A549 30.2 ± 8.4 (11) 32.4 ± 6.2 (6) 35.8 ± 10.5 (6) 28.1 ± 5.9 (5) 30.0 ± 9.4 (4) 36.4 ± 7.7 (3) 

Fig. 2 / Supplementary Fig. S2. Growth of lung cancer xenografts upon gemcitabine therapy
d0 d3 d5 d7 d10 d12 d14

A) H1975 NaCl 138 ± 84 (7) 267 ± 133 (7) 343 ± 143 (7) 407 ± 201 (7) 594 ± 352 (7) 746 ± 385 (7) 944 ± 507 (7)
100 mg/kg 147 ± 79 (7) 163 ± 106 (7) 144 ± 106 (7) * 88 ± 56 (7) ** 91 ± 47 (7) ** 74 ± 47 (7) *** 87 ± 53 (7) ***

B) A549 NaCl 121 ± 77 (16) 139 ± 76 (16) 168 ± 96 (16) 207 ± 86 (16) 243 ± 120 (16) 283 ± 136 (16) 301 ± 196 (13)
100 mg/kg 118 ± 53 (17) 134 ± 67 (17) 169 ± 87 (17) 210 ± 131 (16) 235 ± 162 (17) 277 ± 180 (17) 312 ± 223 (17)
200 mg/kg 108 ± 107 (6) 95 ± 104 (6) 119 ± 129 (6) 118 ± 126 (6) * 146 ± 175 (6) * 172 ± 197 (6) * 225 ± 273 (6) 

Fig. 1. [18F]FLT uptake assay after incubation with NaCl / gemcitabine
H1975 A549
103 cpm 103cells cpm / cell 103 cpm 103cells cpm / cell

NaCl 75 ± 25 723 ± 25 0.11 ± 0.03 225 ± 28 1,166 ± 380 0.21 ± 0.06 
0.5  µM 4h 79 ± 37 774 ± 259 0.10 ± 0.03 264 ± 21 * 1,378 ± 419 0.20 ± 0.05

24h 122 ± 62 498 ± 148 0.24 ± 0.07 ** 293 ± 63 621 ± 145 ** 0.50 ± 0.17 **
48h 75 ± 48 244 ± 150 ** 0.31 ± 0.09 ** 117 ± 43 ** 308 ± 100 ** 0.38 ± 0.05 **

1  µM 4h 79 ± 30 910 ± 301 0.09 ± 0.02 265 ± 44 1,252 ± 353 0.22 ± 0.05
24h 84 ± 17 549 ± 223 0.18 ± 0.08 279 ± 58 647 ± 184 ** 0.46 ± 0.16 **
48h 78 ± 64 293 ± 193 * 0.27 ± 0.11 * 74 ± 36 ** 297 ± 173 ** 0.26 ± 0.04

10  µM 4h 80 ± 37 789 ± 264 0.10 ± 0.02 270 ± 19 ** 1,256 ± 268 0.22 ± 0.04
24h 97 ± 24 509 ± 149 0.20 ± 0.04 ** 202 ± 32 710 ± 100 ** 0.29 ± 0.06 *
48h 77 ± 85 208 ± 144 ** 0.30 ± 0.16 * 41 ± 16 ** 235 ± 163 ** 0.20 ± 0.05

Fig. 3. [18F]FLT uptake in gemcitabine treated xenografts (%IDmax/mL)
baseline 6 h d1 d2 d3 d5

H1975 NaCl 17.3 ± 2.6 (20) 17.9 ± 4.6 (5) 15.7 ± 3.6 (14) 19.3 ± 4.5 (14) 22.1 ± 2.7 (5) n.d.
Gem 18.6 ± 3.3 (38) 9.8 ± 2.0 (15) ††† ** 21.5 ± 3.2 (17) †† *** 21.4 ± 4.1 (16) † 19.4 ± 2.7 (13) 15.0 ± 3.4 (10) ††

A549 NaCl 6.73 ± 1.92 (27) 6.52 ± 0.88 (11) 7.15 ± 2.93 (16) 5.49 ± 0.74 (10) 7.07 ± 1.17 (5) 5.94 ± 1.04 (6)
Gem 6.39 ± 1.57 (46) 3.68 ± 0.68 (18) ††† *** 8.95 ± 2.75 (18) ††† * 6.12 ± 1.04 (12) 6.41 ± 1.59 (11) 7.55 ± 1.03 (11) † *

Fig. 6. In vitro competition assay (cpm / cell)
preincubation with 0.5 µM Gem 1 µM Gem 10 µM Gem
[18F]FLT uptake - Gem + Gem - Gem + Gem - Gem + Gem
NaCl 0.53 ± 0.22
4h preincubation 1.02 ± 0.81 0.28 ± 0.21 # * 0.99 ± 0.53 0.17 ± 0.07 ## * 0.94 ± 0.61 0.27 ± 0.18 # *
1h preincubation 0.77 ± 0.63 0.17 ± 0.12 # * 0.87 ± 0.66 0.15 ± 0.17 # ** 1.03 ± 0.79 0.28 ± 0.20 *



Supplementary Table S3. Mean and standard deviation, as well as number of samples analyzed 
(in brackets), of [18F]FLT uptake in organs other than the tumor 6 h after gemcitabine (%IDmax/mL). 
*: P < 0.05 relative to NaCl; ††: P < 0.01 relative to baseline.

baseline 6h Gem
liver 3.97 ± 0.56 (27) 3.25 ± 0.49 (6)
muscle 3.50 ± 0.46 (27) 2.79 ± 0.33 (6) †† *
sternum 3.61 ± 1.03 (27) 2.66 ± 0.46 (6) ††

femur 3.52 ± 0.59 (27) 3.22 ± 0.39 (6)
spleen 3.86 ± 0.56 (27) 2.73 ± 0.41 (6) †† *
axillary lymph node 3.05 ± 0.41 (25) 2.25 ± 0.60 (6) ††
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