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Due to their low-temperature processing properties and inherent 

mechanical flexibility, conjugated polymer field-effect transistors (FETs) are 

promising candidates for enabling flexible electronic circuits and displays. Much 

progress has been made on materials performance; however, there remain 

significant concerns about operational and environmental stability, particularly in 

the context of applications that require a very high level of threshold voltage 
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stability, such as active-matrix addressing of organic light-emitting diode (OLED) 

displays. Here, we investigate the physical mechanisms behind operational and 

environmental degradation of high mobility, p-type polymer FETs and demonstrate 

an effective route to improve device stability. We show that water incorporated in 

nanometer sized voids within the polymer microstructure is the key factor in 

charge trapping and device degradation. By inserting molecular additives that 

displace water from these voids, it is possible to increase the stability as well as 

uniformity to a high level sufficient for demanding industrial applications. 

 

The longstanding research efforts to discover high-mobility organic 

semiconductors have resulted in several families of materials that exceed the 

mobility performance of common thin-film inorganic semiconductors, such as 

amorphous silicon1,2,3. With polycrystalline molecular semiconductors the key 

challenge is now to achieve the required device uniformity for large-area 

applications, such as displays. With conjugated polymers that show high field-effect 

mobilities > 1cm2/Vs in nearly amorphous microstructures4,2,5, device uniformity 

over large-areas can be excellent but the reduced crystallinity and the associated 

faster diffusion of extrinsic species such as oxygen or water makes these materials 

prone to environmental and operational degradation6. The presence of water has 

been shown to cause strong electron trapping in n-type organic FETs7 and diodes8. 

Water at the interface has also been identified as a cause of threshold voltage shifts 

in p-type organic FETs during long-term bias stress9; however a full analysis of how 

the presence of water affects the performance and environmental and operational 

stability of high-mobility polymer FETs has not been reported yet. 

 

The use of small, molecular additives mixed into conjugated polymer films 

has been explored in several previous studies. Molecular additives have been used 

to improve the microstructural order of solution processed polymer films10,11 or 

more specifically as nucleation agents12 to accelerate crystallization kinetics. Some 

groups have investigated p-type or n-type electrical doping of conjugated polymers 

through the addition of charge-transfer dopant molecules. For p-type doping a 

molecule is required with a lowest unoccupied molecular orbital (LUMO) level 



deeper than the highest occupied molecular orbital (HOMO) level of the host 

polymer13. Weak-channel doping leads to better contact injection and allows tuning 

of the transistor threshold voltage14 and may even improve device stability by pre-

emptying electrons from filled trap states in the tail of the density of states15. 

However, it commonly leads to an undesirable increase in FET OFF current, 

particularly with polymer FETs where dopants cannot be confined to particular 

sections of the device, because they diffuse at room temperature. Here we 

investigate the influence of molecular additives on the environmental and 

operational stability as well as uniformity of high-mobility polymer FETs.  Surprisingly, 

we have found that a wide range of molecular additives that do not act as charge 

transfer dopants for the polymer can dramatically improve the device stability, 

contact resistance and device uniformity without leading to undesirable increase in 

OFF current. We present a detailed study of the mechanism by which this stability 

improvement occurs.  

 

We fabricated top-gate polymer FETs with a range of high-mobility conjugated 

donor-acceptor co-polymers and exposed them to various environments (See 

Methods). One of the systems we studied extensively is an indacenodithiophene-

co-benzothiadiazole copolymer (IDTBT), a near amorphous polymer with a low 

degree of energetic disorder4,16. Neat IDTBT FETs without additive exhibit significant 

environmental instabilities and the device characteristics depend strongly on the 

operational environment. The as-prepared devices fabricated in a N2 glove box had 

poor performance exhibiting shallow onsets and low ON currents (black curve in Fig. 

1(a), left panel). When operating the devices after 24-h storage in air (blue curve), 

we observed much better performance with lower threshold voltage, steeper onset, 

and higher ON current. However, when the devices were returned to a N2 

atmosphere, performance started to degrade again (red curve); this degradation 

accelerated by annealing the devices in N2 at low temperatures of 70°C (green 

curve). Such dependence of characteristics on the operating atmosphere constitutes 

a fundamental limitation for the applicability of these polymers. For example, in an 

OLED display package, the transistor backplane needs to operate reliably in a strictly 

inert, oxygen-free atmosphere to avoid OLED degradation. Surprisingly, we found 



that adding 2 wt.% of the small molecule tetracyanoquinodimethane (TCNQ) to the 

polymer solution results in near perfect environmental stability (Fig. 1(a), right 

panel). Even after annealing at 70˚C for 12 hours in N2, the characteristics retain 

their ideal behavior, indistinguishable from the characteristics measured after 

fabrication or in air. This invariance to environments can also be seen in the output 

characteristics, which are textbook-like and show no evidence for contact resistance 

(Fig. 1(b)); on the other hand, the output characteristics of devices without TCNQ  

depend strongly on operating environment and exhibit contact resistance limitations 

in the linear regime, particularly for devices operated in N2 (Supplementary Fig. S1). 

We observed similar improvements for other additives, such as tetrafluoro-

tetracyanoquinodimethane (F4TCNQ) and 4-aminobenzonitrile (ABN, Supplementary 

Fig. S2, S3). In the case of F4TCNQ the additive’s electron affinity is large enough to 

induce some ground-state electron transfer leading to charge transfer doping, this 

manifests itself as an increased FET OFF current. However, for TCNQ and ABN, which 

have too low an electron affinity to dope IDTBT with an ionization potential of 5.3 eV 

(Fig. 1(c)), no increase in OFF current is observed compared to neat films.  

 

A further benefit of additive incorporation is a significant reduction in contact 

resistance which we extracted from Transmission Line Method (TLM) measurements. 

The contact resistance of neat IDTBT transistors measured after fabrication in N2 is 

high (27.1 kΩcm) and reduces to 7.1 kΩcm upon prolonged exposure to ambient air 

(blue to black in Fig. 1(d)). With all the molecular additives the contact resistance is 

below 5 kΩcm independent of environment. With TCNQ or ABN we do not see any 

evidence for increased bulk conductivity or OFF current suggesting that the 

improved contact resistance may reflect a reduction in the polymer’s bulk trap 

density. The TLM measurements also reveal that devices with same channel lengths 

exhibit a significantly increased uniformity for films with additives over those 

without. Most notably, the spread in resistance values measured by the standard 

deviation (n=11 FETs on 3 substrates) is reduced by a factor of 20-30 upon 

incorporating 2 wt.% of F4TCNQ, TCNQ or ABN into the polymer film. 

 



Of most critical importance for OFET applications is the operational stability over 

prolonged time periods. This was tested using constant-current stress measurements 

performed under N2, mimicking the mode of operation in an active matrix addressed 

OLED display (see Supplementary Section 1 for details and measurements in air)17. 

We observed a pronounced improvement in the threshold voltage shift (ΔVT) 

stability by up to a factor 12 through incorporating 2 wt.% of the molecular additives 

into the semiconducting film (Fig. 1(e)). In the case of F4TCNQ and ABN, ΔVT was 

reduced to below 1V after a day of constant current stress under conditions 

representative for OLED applications. During a subsequent rest period almost 

complete recovery occurs, with half of the threshold voltage recovering within the 

first hour. This is comparable to the threshold voltage stability of established 

inorganic thin film transistor technologies, such as amorphous silicon18,19 or 

amorphous metal oxides20, and meets the requirements for OLED applications.   

 

We first establish that molecular charge transfer doping is not responsible for this 

surprising, additive-induced stability improvement. This distinguishes our work from 

previous studies that reported doping to improve stability at the expense of an 

undesirable increase in OFF current15. Using ultraviolet photoelectron spectroscopy 

(UPS), we confirm that IDTBT and TCNQ undergo no charge transfer (Fig. 2(a)), as 

indeed expected from the energy level diagram. The onset of secondary electron 

emission, the edge of the HOMO band and hence, the position of the Fermi energy 

are not changing with increasing concentration of TCNQ from 0 to 20 wt.% 

(Supplementary Fig. S7). This is in line with the FET data (Fig. 1), where addition of 

TCNQ does not lead to an elevation of the OFF current that would be expected if 

charge transfer took place. In contrast, for the F4TCNQ additive, a small level of 

charge transfer does take place (Supplementary Fig. S8). This results in a small shift 

of the Fermi-level, which is consistent with the observed increase in OFF current and 

the fact that, in contrast to TCNQ, the LUMO level of F4TCNQ is slightly larger than 

the ionization potential of IDTBT. However, since similar enhancements in stability 

are observed for ABN, TCNQ, and F4TCNQ, which have a large range of electron 

affinities (Fig. 1(c)), this suggests that even in the case of F4TCNQ the additive-

induced stability improvement is not in fact a consequence of shallow doping 



observed in previous studies.21 The UPS results are confirmed by photothermal 

deflection spectroscopy (PDS), a high-resolution absorption spectroscopy technique 

to detect sub-band gap states in organic molecules (see Methods)22. We find that 

weak charge transfer in IDTBT films with 5 wt.% of F4TCNQ leads to a clear signature 

of F4TCNQ anions at 1.1 eV23 and an associated IDTBT polaron-induced absorption 

band between 1.2-1.6eV4.  However, for pure IDTBT films, air exposed IDTBT films 

and, in particular, IDTBT films with 5 wt.% of TCNQ, additive-induced absorption 

features lack entirely (Fig. 2(b)).  This is further evidence that charge transfer 

between the additive and the polymer cannot be responsible for the observed 

improvements in FET stability and performance. Alternatively, one could hypothesize 

that the additive may improve stability by undergoing charge transfer with some 

environmental species that would otherwise cause traps in the film; we excluded this 

using infrared (IR) absorption spectroscopy (Supplementary Section 4). 

 

Inspired by these results, we investigated a wider range of molecular additives. In 

fact, the simplest method to incorporate a molecular additive is to leave residual 

solvent in the film.  Residual solvents are even less likely to electronically interact 

with the polymer. Whilst in all previous preparations the films were annealed at 

100°C for 1 hour to remove residual solvent, for these experiments neat IDTBT films 

were intentionally annealed for less than 2 minutes at 100°C to leave some residual 

solvent that can act as additive (central panel of Fig. 3(a)). Surprisingly, a similar 

improvement in performance and stability was observed. For IDTBT films with 

residual dichlorobenzene (DCB) solvent, the transfer characteristics are significantly 

steeper and reach higher ON-current (Fig. 3(a)) and the threshold voltage stability is 

significantly improved over films in which the residual solvent has been removed by 

annealing. Also the current-stress induced threshold voltage shift is significantly 

lower than in films without residual solvent (Fig. 3(b)). Solvent additives improve 

performance and stability similarly to solid additives; however, in contrast to TCNQ 

or F4-TCNQ they do not impart long-term stability as they evaporate from the films 

on the timescale of a month (Supplementary Fig. S15/S16).  

 



We have observed the beneficial effect of residual solvents not only in IDTBT, but 

also for a wide range of high-mobility polymers. For instance, in diketopyrrolo-

pyrrole (DPP) polymers, such as diketopyrrolo-pyrrole-dithienylthieno[3,2-

b]thiophene (DPP-DTT)24,25  or in polyfluorene polymers, such as poly(9,9-

dioctylfluorene-alt-benzothiadiazole) (F8BT),  we have observed similar 

improvements in performance (Fig. 3(a)) and stability (Fig. 3(b)) upon leaving 

residual solvents as additives in the film.  In fact, with our novel preparation method, 

we were able to extract a gate voltage independent hole mobility of 1x10-2 cm2/Vs 

for F8BT which is among the highest values reported for this material.  

 

To better understand the molecular requirements for an additive to enhance device 

stability, we investigated different solvent molecules. This is possible because IDTBT, 

in particular, is highly soluble in a wide range of solvents. We find that many 

chlorinated and non-chlorinated aromatic solvents, but also non-aromatic solvents, 

such as chlorocyclohexane, are capable of providing this effect (Supplementary Fig. 

S13); a summary list is provided in Fig. 3(c). However, interestingly, some solvents, 

such as tetralin and 2-methylnaphthalene, only produce a limited effect or no 

improvement. We attribute this lack of effect to the larger size of these molecules 

and/or less favorable interactions of these solvents with the polymer, which 

manifests itself as an observed lower solubility of the polymer in these two solvents 

(Supplementary Section 5). 

 

We have attempted to quantify the amount of residual solvent that remains in the 

film using two independent techniques, variable angle spectroscopic ellipsometry 

(VASE) and quartz crystal microbalance measurements. VASE measurements were 

performed on IDTBT films with the DCB solvent deliberately left in the film and after 

annealing the same films at 100°C for an additional hour (Supplementary Section 6). 

By fitting the data with an effective medium approximation (EMA) model that 

assumes a certain fraction of voids in the polymer network that are filled with a 

medium of refractive index n, we could significantly optimize the fits to the 

experimental data (Supplementary Tab. S4, Fig. S19). Optimized fits for a range of 

values for n, resulted in void fractions of around 1%. Interestingly, QCM 



measurements on identical IDTBT films gave a consistent value of 0.9% for the 

amount of residual solvent (Supplementary Section 7). Assuming a void fraction of 

1%, we therefore fitted the refractive index n of the void before and after removal of 

the residual solvent. Here, films with residual solvent could be fitted best with the 

void’s refractive index of n=1.55 (Fig. 4(a), middle panel). This is consistent with the 

voids being filled by DCB which has a refractive index of 1.55. In contrast, after 

annealing the fitting of the experimental data resulted in a lower refractive index of 

n=1.2 for the voids (Fig. 4(a), bottom panel). The VASE and QCM results therefore 

suggest that there is a void fraction on the order of 1% in the polymer films that is 

largely filled with solvent after film deposition. After prolonged annealing the solvent 

molecules are removed from the voids which then become filled with a medium of 

lower refractive index, possibly a mixture of air/N2 and water.  Interestingly, the 

minimum concentration of TCNQ, F4TCNQ and ABN that needs to be added to the 

films was also on the order of 1-2 wt.%; for lower concentrations, the observed 

improvement in performance dropped off rapidly. We were also able to correlate 

the void fraction to the degree of device instability when comparing the device 

performance of IDTBT polymers with different side chains that exhibit different void 

fractions (Supplementary Fig. S21). This suggests a direct correlation between the 

filling of voids and device stability:  As long as the voids are filled with a small 

molecular additive, FET performance and stability are high.  

 

The question then arises as to the nature of the species and the physical mechanism 

that causes device degradation, once the voids are not filled by a molecular additive. 

Under such conditions significant hole trapping clearly occurs in the device: Both 

shallow traps that manifest themselves in reducing the sub-threshold slope and 

steepness of the transfer characteristics as well as deep traps that cause the current-

stress induced threshold voltage shift, somehow become active. To understand the 

underlying mechanism, we investigated the role of water in the films9. Water is 

omnipresent in organic semiconductor films, even when devices are fabricated 

under inert atmospheric conditions. By exposing an IDTBT FET to humid nitrogen and 

dry air in an isolated cryostat, we confirmed that intentional water exposure can 

indeed cause similarly poor device characteristics as observed in neat IDTBT films 



while exposure to O2 is able to alleviate the adverse effect of water (Supplementary 

Fig. S22). To study the performance of neat IDTBT films without additive in strict 

absence of water, we stored the devices inside an inert glovebox with only ppm 

levels of H2O, but placed the device near a powder of the strong desiccant cobalt(II) 

chloride (Fig. 4(b), Supplementary Section 8). Importantly, FETs exposed to CoCl2 

performed significantly better than reference FETs prepared in identical conditions 

but kept in the same glovebox away from CoCl2 (Fig. 4(c)). The performance of the 

CoCl2 exposed devices is as good as that of devices comprising an additive; also their 

stress stability is significantly improved over devices that were not exposed to CoCl2 

(Supplementary Figs. S23, S24). These experiments show that even in the absence of 

additives, good device performance can be obtained if water is carefully removed 

from the films. Under normal processing conditions, however, even if all device 

processing steps are carefully performed in an inert atmosphere glovebox, trace 

amounts of water become incorporated into the small, nanometer-sized voids within 

the film, when these are not filled with an additive. These water molecules are 

nearly impossible to remove completely by low-temperature annealing and are 

responsible for the poor device performance and stability of devices without 

molecular additive.   

 

The formation of water-induced deep traps involved in long-term operational stress 

and threshold voltage shifts has been investigated previously9; the formation of 

shallow traps has mainly been studied for small molecules26,27 , but not yet for high-

mobility polymer systems. To understand the molecular mechanism by which water 

may create shallow hole traps in polymers, we performed electronic-structure 

calculations (at the optimally tuned ωB97X-D/6-31G(d,p) level of theory28,29) of the 

interactions between water molecules and the polymer backbone (See Methods and 

Supplementary Section 9). We present here results on IDTBT; results on DPPDTT and 

F8BT are shown in the Supplementary Information. The calculations involve an 

oligomer containing two donor-acceptor polymer repeat units; we consider its 

interaction with a single water molecule in two hydrogen-bonding configurations, 

one in which the water molecule acts as an electron acceptor / H-donor (Fig. 5(a) top 

panel) and the other as electron donor / H-acceptor (Fig. 5(a) bottom panel). The 



results show that the presence of water strongly affects the torsional potential 

energy profile of the bond connecting the IDT and BT subunits. In the absence of 

water (black curve in Fig. 5(b)), the torsion potential is steeper than in the presence 

of the water molecule, particularly for the case of water acting as H-donor (red 

curve). The decreased potential energy barrier induced by water causes a marked 

decrease in the system order, a much wider distribution of torsion angles and a 

broader distribution of HOMO energies over ca. 200 meV (Supplementary Tab. S6). 

As a result, shallow trap states appear for the positively charged hole carriers. This is 

consistent with our previously reported finding that in poorly crystalline but high-

mobility polymers a narrow, well-defined distribution of torsion angles is the origin 

of high performance4. We expect the electrical performance of this type of polymers 

to be highly sensitive to any mechanism that widens the distribution of torsion 

angles and thus creates a distribution of shallow trap states, which is in line with the 

poor performance of devices without additive.  

 

There are other potential mechanisms by which water molecules can cause charge 

trapping: We have considered the solvation of positive polarons by polar water 

molecules (Fig. 5(c)) and have found that the polarization interaction energy of the 

polaron per water molecule is comparable, though of slightly smaller magnitude, 

than the interaction energy between the neutral chain and a water molecule that we 

discussed above (supplementary Section 9). Therefore, solvation effects are unlikely 

to dominate, but could contribute to shallow trap formation. For deep trap 

formation the production of protons H+ by the electrochemical reaction of holes (h+) 

on the polymer with water molecules 2H2O + 4h+ → 4H+ +O2 has been suggested as 

the main mechanism for bias-stress induced degradation in OFETs9.  In our 

calculation there is no indication that water (or an H2O-O2 complex) can transfer an 

electron to a hole (positive polaron) on the polymer chains (the ionization potential 

of water or water-O2 being much larger than the electron affinity of a positive 

polaron on the backbone). However, the situation changes in the case of hydroxyl 

anion formation (leaving behind a proton or hydronium cation). The calculations 

show that a hydroxyl anion has a sufficiently low ionization potential that it can 

readily transfer an electron to a positive polaron, as illustrated in Fig. 5(d), leading to 



the loss of the polaron. The resulting OH radical can be expected to be amenable to 

further reactions to eventually generate oxygen and additional protons. Thus, this 

electrochemical mechanism is likely to play a role as well provided that some 

hydroxyl anions from the water dissociation reaction are present within the 

polymer’s voids. Though our calculations do not allow us to identify a single 

dominant mechanism they make it very clear that water can be expected to degrade 

device performance and stability through several potential mechanisms.    

 

In terms of the mechanism for the additive-induced improvements in stability we 

propose two hypotheses: (i) the additives interact with the polymer in a way that 

they restore the steepness of the torsion potential; and/or (ii) they simply displace 

water molecules from direct contact with the polymer and thus, prevent any of the 

discussed trap formation pathways or render them less effective. To investigate 

these mechanisms we also performed electronic-structure calculations in which both 

a water molecule and an additive molecule interact with the polymer; however, the 

conformational space that needs to be considered at the electronic-structure level 

becomes so vast that it would be difficult to identify the relevant, low-energy 

configurations (Supplementary Section 9). The fact that oxygen has a beneficial, 

“water-passivating” effect as well, can be related to the formation of hydrogen-

bonded water-oxygen complexes (such as (H2O-O2) or ([H2O]2-O2))8 that could 

similarly prevent water from interacting directly with the polymer chains. 

Experimentally, the molecular configurations within the small voids are very difficult 

to probe, as the relevant concentrations of water involved are low while 

simultaneously water is omnipresent in most experiments. In any case, our work has 

clearly demonstrated the significant benefit that molecular additives exert on the 

performance and stability of state-of-the-art polymer FETs. It provides a practical 

and manufacturable technique to resolve a long-standing challenge in polymer 

electronics; the operational and environmental stability achieved through the 

addition of molecular additives will enable a wider range of applications for polymer 

electronics, including advanced OLED and liquid crystal displays, as well as FET 

sensors that should be sensitive only to the analyte but not to changes in the 



operational conditions. Our simple additive-induced trap removal technique is also 

likely to benefit other applications of organic semiconductors such as charge 

transport in light-emitting diodes or solar cells.  

 

Methods:  

Device fabrication  

Top-gate bottom contact field effect transistors were fabricated on glass substrates 

with photo-lithographically defined electrodes of Ti/Au (10 nm/ 30 nm). Polymers 

were then deposited by spin coating, followed by an annealing step at 100 ºC for 60 

minutes to drive out residual solvent from the film. To leave residual solvent in the 

film intentionally, annealing was done for 2 minutes only. For devices comprising a 

solid additive (TCNQ, F4TCNQ or ABN), the material was added to the polymer 

solution in the range from 1-20wt. %. For a dielectric layer, a 500 nm layer of Cytop 

(Asahi Glass) was spin coated (Cytop was annealed at 80 °C for 15 minutes) and 

devices were finished off by evaporating a 20nm thick aluminium top gate through a 

shadow mask. Transistor transfer characteristics were measured with an Agilent 

4155B Semiconductor Parameter Analyser. To guarantee reproducibility, all 

fabrication steps as well as all electrical measurements were performed in a N2 glove 

box.  

 

The environmental stability of OFETs was investigated on devices fabricated in a 

nitrogen environment. For all devices the same measurement protocol was applied:  

 

(i) OFETs were characterized in a N2 glove box directly after fabrication 

by recording linear and saturation transfer characteristics as well as 

output characteristics.  

(ii) Devices were exposed in the dark (to exclude effects of light) to air for 

24 hours, transferred to nitrogen and characterized immediately 

afterwards. Here, the samples were characterized on the same setup 

as in (i).  



 

(iii) Devices were stored in a N2 glove box for 24 hours and characterized 

subsequently  

(iv) Samples were heated for 12 hours in nitrogen at 80C (to accelerate 

degradation) and were characterized thereafter.  

 

More details on operational current-stress measurements are furthermore given in 

Supplementary Section 1.  

 

Ultraviolet photoelectron spectroscopy (UPS)  

UPS was used to determine the position of the Fermi level EF of IDTBT with various 

additives. The system operates by emitting photons of a fixed energy of 21.2eV (58.4 

nm) via a helium gas-discharge lamp. Based on Einstein's photoelectric law, 

photoelectrons are able to escape from the surface of a sample if their kinetic 

energy is sufficient to overcome the sum of the binding energy of their initial level 

(taken with reference to EF) and the material's workfunction Φ = EVAC – EF. Here, the 

secondary electron cut-off represents electrons without any kinetic energy. 

Consequently, a material’s Fermi level position with respect to the vacuum level (its 

workfunction) can be computed by determining the secondary electron cut off from 

a UPS spectrum and subtracting it from the incident photon energy  adjusted for any 

external potential applied during the measurement (-5V for all results presented 

herein). 

 

Photothermal deflection spectroscopy  (PDS)  

A PDS set-up was used to measure sub-band gap absorptions. This technique is 

based on the heat energy that is released from the surface of the sample when 

monochromatic light is absorbed. An inert liquid surrounding the sample dissipates 

this thermal energy, changes its refractive index and consequently deflects a laser 

beam which is sent at grazing incidence along the surface of the substrate. Using a 

quadrant detector connected to a lock-in amplifier, the deflection of the laser beam 



is recorded as a function of the monochromatic pump wavelength, resulting in a 

reading of absorbance.  

 

Variable angle spectroscopic ellipsometry (VASE) measurements 

The VASE measurements were performed in reflection geometry using a variable 

angle M-2000 spectroscopic ellipsometer with rotating compensator (J. Woollam 

Co.) in the wavelength range from 400nm to 900nm and angles of incidence from 50 

- 70 degrees relative to the substrate normal on samples prepared on Si (100) with a 

native oxide layer of 2nm thickness. More details on the analysis of the ellipsometric 

raw data are given in Supplementary Section 6.  

 

Computational Information 

All calculations were carried out at the Density Functional Theory (DFT) level with 

the Gaussian09 code.30 We used the long-range corrected ωB97X-D functional, with 

the long-range separation parameter ω optimized for each system based on the 

ionization-potential tuning method.28,29 Effects related to the surrounding medium 

were approximated by the integral equation formalism - polarizable continuum 

model (IEFPCM) model, which accounts for polarity of the surrounding medium in an 

isotropic way. The dielectric constant was chosen as 3.5, which is a representative 

value for organic materials.31 The procedure followed was: (i) to optimize the 

oligomer geometry using the ωB97X-D/6-31G(d,p) method; (ii) to tune the ω-value 

for the isolated system (“in the gas phase”); and (iii) to re-optimize the geometry 

with the gas-phase tuned-ωB97X-D functional while now including IEFPCM. The ω-

value found in the aforementioned procedure was used in all further calculations 

since the perturbations to this value by adding to the system a small molecule, in this 

case water, are minimal.  
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Figure 1 Improving polymer FET performance and the environmental and 

operational stability through the use of molecular additives (a) Linear (VDS = -5V, 

dashed lines) and saturation (VDS = -50V, solid lines) transfer characteristics of IDTBT 

OFETs with (right panel) and without (left panel) 2 wt.% of TCNQ additive. 

Measurements were taken successively for the as-prepared device, after 24 hours 

exposure to first air and then nitrogen environments and after a 12 h anneal in 

nitrogen. The device structure is shown as an inset (channel length L = 20 µm, 

channel width W = 1 mm); (b) Output characteristics of an OFET with 2 wt.% of TCNQ 

additive; (c) Electron affinity of the F4TCNQ (top), TCNQ (middle) and ABN (bottom) 

additives used;  (d) Transmission line measurements of the normalized channel 

resistance as a function of channel length for FETs comprising IDTBT (blue squares), 

IDTBT after air exposure (black diamonds) and IDTBT with 2 wt.% of TCNQ (green 

triangles), ABN (magenta triangles) or F4TCNQ (red circles). The contact resistance 

can be extracted from an extrapolation to zero channel length; (e) Constant current-

stress measurements at 2.5A and room temperature comparing the threshold 

voltage shift of neat IDTBT OFETs with and without additives, in nitrogen.  The 

recovery kinetics after removing the current stress are also shown.  
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Figure 2 Investigation of potential electronic interactions between additives and 

the polymer (a) UPS measurements near the cut-off for secondary electron emission 

(left) and near the HOMO edge (right) for IDTBT films with 0,1,2,5,10,20 wt.% of 

TCNQ; (b) PDS spectra of IDTBT with and without 5 wt.% of F4TCNQ and TCNQ. The 

spectrum of a neat IDTBT film after exposure to air is also shown. 
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Figure 3 Effect of residual solvents on polymer FET performance and stability (a) 

Improvement of the saturation transfer characteristics (VDS = -50V) for DPP-D-TT 

(left, structure shown), IDTBT (center, structure shown) and F8BT (right, structure 

shown) FETs by leaving residual solvent (DCB) in the polymer film as an additive. 

Films were annealed for < 2min at 100°C leaving residual solvent in the film (green 

lines) or for 1 hour to remove residual solvent (black lines); (b) Comparison of 

current-stress stability of IDTBT (top) and DPPDTT FETs with and without residual 

solvent in the polymer films; to confirm that increased stress-stabilities are unrelated 

to the lower voltages that need to be applied to devices with residual solvent to 

maintain a constant current of 2.5 A, we also stressed the device at a much higher 

current (100 A for IDTBT and 50 A for DPPDTT), and even under these aggressive 

conditions the threshold voltage shift is smaller than that of a device without 

residual solvent stressed at 2.5 A; (c) List of solvents that lead to performance and 

stability improvement if left in films of IDTBT (top) as well as solvents that do not 

show a beneficial effect on device stability and performance (bottom).  
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Figure 4 Interaction of water with polymer semiconductors (a) Experimental VASE 

data for an IDTBT film after 2 and 60 minutes of annealing (top). Experimental 

data after 2min (middle) and 60min (bottom) of annealing fitted with an 

effective medium approximation (EMA) model fitting the refractive index of voids in 

the polymer assuming a void fraction of 1% consistent with QCM measurements. (b) 

Schematic diagram of the experiment used for strictly removing water from an 

IDTBT transistor with cobalt(II) chloride powder (c) IDTBT bottom-gate OFET 

treated with Cobalt(II) Chloride powder as compared to a reference device.  

 

 

 

 

 

 

 



a) b)

c)

d)

 

Figure 5 Computational evaluation of the interaction between a water molecule 

and the polymer backbone (a) Chemical structures of (IDTBT)2–H2O complexes with 

water acting as H-donor or H-acceptor; (b) torsional potential of the bond bridging 

the central IDT and BT units in the absence and presence of water; (c) illustration of 

the interaction between a positive polaron and water molecules for a dimer model 

system (red oval, the calculated average interaction energy per water molecule is 

given in the SI); (d) illustration of the electron transfer between an hydroxyl anion 

and a positive polaron, which leads to an hydroxyl radical (whose spin density is 

represented) and the loss of the polaron (see SI for full details). All calculations 

incorporate the effect of the surrounding medium (IEF-PCM model with ε=3.5) and 

were performed at the tuned B97X-D level of theory. 

 


