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S U M M A R Y
We derive scaling relationships for planetary dynamos based on a balance between energy
production and Joule dissipation, and between the curl of the buoyancy and Coriolis forces.
These scaling relationships are deduced for the particular case of dynamos driven by helical
waves, but are shown to have a much broader applicability. They are consistent with the
evidence of the numerical dynamos, yielding predictions consistent with published empirical
scaling laws and also with the observed transition from dipolar to multipolar dynamos. A
direct comparison with the observational evidence for the planets is hampered by the fact that
we do not know what sets the smallest scale of the motion in the planets. Nevertheless, we
use our scaling relationships to show that the traditional assumption that the Elsasser number
is of order unity is inconsistent with the observation that the gas-giant dynamos are dipolar
dynamos, as is the more recent suggestion that the strength of the dipole is independent of
rotation rate and controlled by the buoyancy flux alone. On the other hand, we show that the
observational data is consistent with the hypothesis that a dipolar dynamo saturates at the
lowest permissible magnetic energy compatible with a given buoyancy flux.

Key words: Electromagnetic theory; Dynamo: theories and simulations; Geomagnetic
induction.

1 I N T RO D U C T I O N

One of the notable successes in planetary dynamo theory over the
last two decades has been the ability of the numerical simulations to
reproduce plausible looking magnetic fields, that is dipoles aligned
with the planetary rotation axis (Glatzmaier & Roberts 1995). Some
of the geodynamo simulations even manage to reproduce more in-
tricate details, such as the observed westward drift (Aubert et al.
2013). This is all the more surprising since the numerical dynamos
operate in a parameter regime quite unlike the planets, being too
viscous by a factor of 109, as measured by the Ekman number,
and underpowered by a factor of 103, relative to the onset of con-
vection. So, given that many of their features must be distinctly
unlike a planet, perhaps the most pertinent questions to ask of the
current geodynamo simulations, are: (i) what are the simulations
getting right that allows them to produce such plausible looking
fields? and (ii) what are the key differences in behaviour between
the simulations and the planets?

Given the success of the simulations, many authors have tried to
establish dynamo scaling laws based on the results of the numerical
dynamos. These laws attempt to relate the rate of working of the
buoyancy forces, which powers such dynamos, to the strength of
the induced dipole field and the intensity of the convective motion.
Typically the scaling laws are established empirically using a suite
of numerical dynamos which span a range of parameter values,

though they are usually guided by simple proposed force balances
or kinematic constraints. (See, for example, Christensen & Aubert
2006; Christensen 2010; Schrinner et al. 2012; Yadav et al. 2012;
Stelzer & Jackson 2013; Davidson 2014; Oruba & Dormy 2014.)
Many such scalings have now been proposed, and the hope of some
authors is that this may allow the results of the numerical dynamos
to be extrapolated to the planets. However, given that the numerical
and planetary dynamos inhabit such different dynamical regimes,
any simple interpolation between the two must be regarded with
some caution.

Table 1 shows the properties of the planets, and in particular their
magnetic field strengths. The observed magnetic fields of Mercury,
the Earth, Jupiter and Saturn are all rather similar, being strongly
dipolar with the magnetic axis more or less aligned with the rota-
tion axis. On the other hand, the fields of the ice giants are not at all
dipolar, which probably reflects a very different dynamo regime op-
erating within their cores. In Table 1 the magnitude of the averaged
axial magnetic field in the conducting core, Bz , is obtained from
the observed dipole moment, m, using (1), a well-known expression
relating the dipole moment associated with currents, J, confined to
a sphere of volume VC, to the integral of the magnetic field over VC:

m = 1

2

∫
VC

x × JdV = 3

2μ

∫
VC

BdV . (1)
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Dynamos driven by helical waves 681

Table 1. Properties of the planets. Note the relatively uniform value of the normalised magnetic field, B̄z/�RC
√

ρμ, but the large variation in the
Elsasser number, �. We use the estimates of λ ∼ 0.7 m2 s−1, ρ ∼ 104 kg m−3 for the terrestrial planets, λ ∼ 3 m2 s−1, ρ ∼ 103 kg m−3 for the gas
giants, and λ ∼ 300 m2 s−1, ρ ∼ 4 × 103 kg m−3 for the ice giants. The values of m are from Davidson (2013) and references therein.

Rotation Radius of planet Radius of core, m, Dipole moment Mean Bz, B̄z .

Planet period (d) (103 km) RC (103 km) (1022 Am2) (Gauss) Inclination
B̄z/

√
ρμ

�RC
× 106 � = σ B̄2

z
ρ�

Mercury 58.6 2.44 1.8 0.004 0.014 5o 5.5 2 × 10−4

Venus 243 6.05 3.2 0 – – – –
Earth 1 6.37 3.48 7.9 3.7 11o 13 0.2
Mars 1.03 3.39 1.8 0 – – – –
Jupiter 0.413 69.9 55 150 000 18 9.6o 5.2 5
Saturn 0.440 58.2 29 4600 3.8 <0.1o 2.3 0.2
Uranus 0.718 25.3 ∼18 390 ∼1.3 59o ∼1.0 ∼10−4

Neptune 0.671 24.6 ∼20 200 ∼0.5 47o ∼0.3 ∼10−5

One of the most striking features of Table 1 is the surprising uni-
formity of the normalised magnetic field strengths in the planetary
cores,

�B = B̄z

/√
ρμ

�RC
,

this despite the very different rotation rates, sizes and chemical
makeup of the planets. (In Table 1, � and RC are the rotation rate
and core radius of the planets, ρ and σ the mean core density
and electrical conductivity, μ the permeability of free space, and
λ = 1/σμ.) For example, Mercury is usually regarded as having
an anomalously small field, and Jupiter a relatively large field, yet
when scaled in this way these two planetary dipoles look remarkably
similar. This relative uniformity of �B across the planets has never
been adequately explained by the existing scaling laws, most of
which have been extrapolated from the numerical dynamos. (Note
that, by way of contrast, the Elsasser number, �, varies by a factor
of 106 across the planets.)

One of the purposes of this study is to try and explain the uni-
formity of �B (sometimes called the Lorentz number); another is
to explore the extent to which the planets and numerical dynamos
obey different scaling laws as a result of their different dynamical
regimes. To that end we start from first principles, deriving scaling
relationships directly from the governing dynamo equations. The
dynamo cartoon which guides the process of extracting scaling re-
lationships is a model based on helical waves, first put forward in
Davidson (2014) and then in more detail in Davidson & Ranjan
(2015), although we shall show that the resulting scaling equations
have much greater generality and would be expected to apply under
a broad range of circumstances. These scaling relationships are then
applied separately to the numerical dynamos and to the planets, a
procedure that highlights both the similarities and the differences
between simulations and planets. We show that our proposed scal-
ing relationships explain both the results of the numerical dynamos
and the observations of those planets for which we have testable
data. In the process we confirm that the scaling laws extracted from
the numerical dynamos cannot, in general, be extrapolated to the
planets, primarily because viscosity plays a key role in the former,
and no role in the latter.

Our scaling analysis is restricted to dipolar fields of the α2 type,
and so our discussion of the planets is limited to the terrestrial plan-
ets and the gas giants, whose magnetic fields are strongly dipolar and
roughly aligned with the rotation axis. The ice giants, by contrast,
have multipolar fields whose magnetic axes are more equatorially
aligned and whose dynamos are likely to be quite different to those
of the Earth and Jupiter (Stanley & Glatzmaier 2010). It is unlikely

Figure 1. The radial velocity near the mantle in a numerical simulation of
the geodynamo (from Christensen & Wicht 2007).

that our scaling laws apply to the idiosyncratic fields of the ice
giants, and so we offer no such comparison.

Before embarking on this scaling analysis, however, we need to
summarise how planetary dynamos are thought to operate, at least
in some zero-order sense.

2 P L A N E TA RY DY NA M O C A RT O O N S

2.1 The dynamo cartoon that emerges from the numerical
simulations

The numerical simulations of the geodynamo show that, for the
regimes which they can probe, the dynamo is of the α2 type and
located outside the tangent cylinder, an imaginary cylinder that is
concentric with the rotation axis and circumscribes the solid inner
core (Olson et al. 1999; Christensen & Wicht 2007). While there is
some evidence of an �-effect, this is largely restricted to within the
tangent cylinder, driven by local largescale upwellings, and plays no
essential role in the dynamo. The dominant flow pattern outside the
tangent cylinder consists of long, thin, columnar structures aligned
with the rotation axis and within which the flow is highly helical
(Fig. 1). This helicity, which is so essential for planetary dynamos, is
observed to be negative in the north and positive in the south (Olson
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682 P.A. Davidson

Figure 2. Cartoon of an α2-dynamo based on the helicity distribution ob-
served outside the tangent cylinder in most numerical simulations. (From
Davidson 2014.)

et al. 1999). Just such an antisymmetric distribution of helicity is,
according to traditional mean-field theory, ideal for an α2 dynamo,
in which the e.m.f. induced by the helical α-effect is aligned with
the local mean field, B, being parallel to B if the helicity is negative
and anti-parallel to B if the helicity is positive.

This kind of α2 dynamo is most readily described using cylin-
drical polar coordinates, (r, θ, z), and it operates, at least in some
zero-order sense, in the following way. The columnar vortices in-
teract primarily with the transverse (i.e. radial and azimuthal) com-
ponents of the magnetic field, spiralling up the transverse field-lines
as the helical flow propagates up and down the rotation axis. So,
if the dipole points to the north, and the helicity is negative in the
north and positive in the south, then the helical convection interacts
with the radial component of the dipole magnetic field to produce a
radial e.m.f. which is positive in both the north and the south. (Note
that, as Br changes sign, so does the helicity.) This then drives a
poloidal current density which has a quadruple structure as shown in
Fig. 2, being outward in regions of a strong radial e.m.f. and return-
ing at low latitudes where the radial e.m.f. is weaker. The resulting
azimuthal magnetic field follows from Ampère’s law, and is positive
in the north and negative in the south, as seen outside the tangent
cylinder in most numerical simulations. (Note that Bθ is often ob-
served to adopt the opposite signs within the tangent cylinder due to
a local �-effect, but this plays no real part in the dynamo process.)
Returning to Fig. 2, the α-effect now operates on the east-west field
and, given the skew-symmetric helicity distribution, this drives an
azimuthal current which is positive in both the north and the south,
as required to support the original dipole field.

Of course, the simulations are not planets, and so the geodynamo
may be quite different in structure. However, the numerical dynamos
are able to reproduce some of the observed features of the Earth’s
magnetic field (Christensen 2011), and so it seems plausible that
the geodynamo is, at least in some zero-order sense, similar to the
cartoon in Fig. 2.

2.2 The search for the source of spatially segregated
helicity in planetary dynamos

One of the key features of this kind of dynamo is the need for large
amounts of helicity in the columnar vortices, and for this helicity

to be spatially segregated either side of the equatorial plane, say
negative in the north and positive in the south, as seen in the simula-
tions. The origin of this helicity, and more crucially the mechanism
of its spatial segregation, remains a matter of debate. While Ek-
man pumping can produce the required asymmetry in helicity, and
probably does so in the more viscous and weakly forced of the nu-
merical dynamos, it is extremely unlikely that viscous effects are
significant in planets, and in any event there is no mantle on which
Ekman layers can form in the gas giants. The fact that, in the more
strongly forced numerical dynamos, much of the helicity appears
to be internally generated was documented as early as 1999 by
Olson et al., and has since been confirmed by other authors (for
example, by applying slip boundary conditions). Crucially, how-
ever, the physical mechanism by which that helicity is spatially
segregated, of one sign in the north and another in the south, has
remained largely unexplained. Of course, this spatial segregation
is essential to the mean-field dynamo shown in Fig. 2, and so if
dynamo action in the planets is be robust, as appears to be the case,
then the mechanism by which helicity is spatially segregated must
also be robust.

There is, however, one proposed mechanism for the spatial seg-
regation of helicity which is reasonably robust, and this rests on
the observation by Olson et al. (1999) and Sakuraba & Roberts
(2009) that the buoyancy flux outside the tangent cylinder tends to
be concentrated in and around the equatorial plane. (This equato-
rial bias in the radial buoyancy flux is thought to be driven by the
Lorentz force associated with the zonally averaged poloidal mag-
netic field and current density, the Lorentz force being azimuthal on
the equator and balanced by the mean Coriolis force 2�〈ur 〉. See
Sakuraba & Roberts 2009.) The idea, developed in Davidson (2014)
and Davidson & Ranjan (2015), is that the buoyant anomalies in
and around the equatorial regions excite helical wave packets, either
inertial waves or magnetostrophic waves, and these then propagate
up and down the rotation axis towards the mantle. Crucially, up-
ward propagating helical wave packets of this type carry with them
negative helicity, while downward propagating wave packets carry
positive helicity. Hence this provides a natural way of maintaining
negative helicity in the north and positive helicity in the south. This
simple idea has been developed into a self-consistent dynamo car-
toon in Davidson & Ranjan (2015), and provides the starting point
for this paper.

3 K I N E M AT I C P R E L I M I NA R I E S

As a prelude to deriving scaling laws for planetary dynamos we
need to estimate the e.m.f. induced by a sea of columnar heli-
cal wave-packets, as well as the associated Joule dissipation. In
this section, we generalize the analysis of Davidson (2013, 2014)
and Davidson & Ranjan (2015) to estimate the Joule dissipation
associated with the helical wave motion. This will enable us to es-
tablish a relationship between the Joule dissipation and the mean
field in the core, a relationship that provides one of the corner-
stones of our scaling analysis. The theoretical ideas summarised
below in Section 3.2 are essentially those of Davidson & Ran-
jan (2015). These are repeated here partly on the grounds of
completeness, but mostly because many of the results detailed in
Section 3.2 are subsequently needed in Section 3.3. We use cylindri-
cal polar coordinates (r, θ, z) throughout and denote the position
vector by x.
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Dynamos driven by helical waves 683

3.1 Integral relationships relating the mean
and fluctuating fields

Our starting point is the integral relationship

d

dt

∫
VC

(
R2

C − x2
)

BdV = 2
∫
VC

x × (u × B) dV − 6λ

∫
VC

BdV , (2)

which is obtained by combining the induction equation with (1).
(See, for example, the derivation in Davidson 2013.) Of particular
interest is the axial component of this equation, which reduces to
an evolution equation for the axial field,

d

dt

∫
VC

(
R2

C − x2
)

BzdV = 2
∫
VC

r (u × B)θ dV − 6λ

∫
VC

BzdV . (3)

Evidently, the mean axial field is maintained by the volume
integral of r (u × B)θ . However, Cowling’s theorem tells us that
the first integral on the right of (3) is necessarily zero when the
velocity and magnetic fields are axisymmetric. So, if we write
B = 〈B〉(r, z, t) + b and u = 〈u〉(r, z, t) + v, where 〈B〉 and 〈u〉
are azimuthal averages of B and u, then (3) becomes

d

dt

∫
VC

(
R2

C − x2
) 〈Bz〉 dV = 2

∫
VC

r〈v × b〉θ dV − 6λ

∫
VC

〈Bz〉 dV .

(4)

This tells us that, in a statistically steady dynamo,

〈v × b〉θ ∼ λ

|u| RC
|u| 〈Bz〉 � |u| 〈Bz〉 . (5)

Here we may think of b and v as being the local fields associ-
ated with the columnar eddies, or columnar wave packets, and of
〈v × b〉θ as the mean azimuthal e.m.f. associated with these he-
lical structures via the α-effect. Evidently, the perturbation field
b is much weaker than the mean dipole field 〈Bz〉. In Davidson &
Ranjan (2015) a similar integral relationship is derived for the mean
east–west field integrated over a hemisphere, say the northern hemi-
sphere, VN, and the conclusion for an α2-dynamo with negligible
�-effect is that∫
VN

z

r
〈v × b〉r dV ∼ λ

∫
VN

(〈Bθ 〉
/

r
)

dV . (6)

The same integral expression applies in the southern hemisphere
and we conclude that the mean azimuthal field is supported by the
radial e.m.f., 〈v × b〉r , as shown in Fig. 2. Moreover we have

〈v × b〉r ∼ λ

|u| RC
|u| 〈Bθ 〉 � |u| 〈Bθ 〉 . (7)

The primary significance of (5) and (7) for the present study
is that |b| � 〈|B|〉, a situation known as first-order smoothing in
mean-field theory.

3.2 The α-effect driven by helical, columnar vortices or
wave packets

We now take advantage of the fact that |b| � 〈|B|〉 to evaluate the
induced e.m.f. and Joule dissipation associated with the α-effect.
We start with the induced e.m.f., leaving the Joule dissipation until
Section 3.3. Following Davidson & Ranjan (2015), it is assumed
that the small-scale motion outside the tangent cylinder is columnar

and helical, perhaps a collection of convection rolls, or else a sea of
inertial or magnetostrophic wave packets. Such wave packets would
be generated primarily in regions where the buoyancy field is strong,
such as near the equatorial plane, and then carry negative helicity to
the north and positive helicity to the south as they propagate up and
down the rotation axis. It is also assumed that a typical transverse
dimension of the columnar eddies, δ, is much less than the core
radius, RC, so that a local mean field, 〈B〉, varies slowly on the scale
of δ and may be treated as locally uniform.

Since the analysis is essentially local, we may now think of 〈B〉 as
representing a local volume average of B, rather than an azimuthal
average. It is also convenient to adopt local Cartesian coordinates
with z aligned with the rotation axis and 〈B〉 with the x-axis. We
then make the following additional approximations:

(i) axial gradients in v are small, so that v ≈ v(x, y);
(ii) the fluctuations in velocity have maximal helicity, as would

be the case for monochromatic inertial or magnetostrophic waves,
with v = δω = δ∇ × v, where δ is a positive or negative constant
having the dimensions of length;

(iii) the fluctuations can be treated as statistically homogeneous,
as well as statistically symmetric about the component of the local
mean field normal to the rotation axis, 〈B⊥〉 = 〈B〉 − 〈Bz〉.

In Davidson & Ranjan (2015) the validity of these various as-
sumptions are tested for the particular case of a sea of inertial wave
packets generated by random buoyant anomalies located near the
equator. It turns out that they are a reasonable approximation.

Given these assumptions, the starting point for the analysis is
Ohm’s law written as

∂A

∂t
= u × B − ∇� − λ∇ × B, (8)

where A is the (solenoidal) vector potential for B and we have
substituted for E using Faraday’s law. We now decompose all quan-
tities into a local spatial mean and the perturbation about that mean:
B = 〈B〉 + b, u = 〈u〉 + v, A = 〈A〉 + a and � = 〈�〉 + ϕ. Apply-
ing first-order smoothing to the fluctuating part of (8) then yields

∂a

∂t
= v × 〈B〉 − ∇ϕ − λ∇ × b. (9)

It is convenient at this point to introduce a vector potential
for the velocity field, v, defined by v = ∇ × c, ∇ · c = 0. The
scalar potential ϕ is then governed by the divergence of (9) in the
form ∇2ϕ = −∇2(〈B〉 · c). It follows that ϕ = −〈B〉 · c + ϕ̂, where
∇2ϕ̂ = 0.

Next we invoke assumption (ii) in the form c = δv = δ2ω. It
follows immediately that (9) may be rewritten as[
∂
/
∂t − λ∇2

]
(a − δ b) = 0, (10)

and so, as noted in Davidson & Ranjan (2015), if v has maxi-
mal helicity, then so eventually does b. That is, irrespective of the
initial conditions, b will become progressively more helical with
time. Thus we shall take a = δ b, which in any event holds for
both inertial and magnetostrophic waves. In this case our governing
eq. (9) becomes

∂b

∂t
+ λ

δ2
b = 1

δ
[v × 〈B〉 − ∇ϕ] , (11)

from which

v × b + δ2

λ
v × ∂b

∂t
= δ

λ
[v × (v × 〈B〉) + ∇ × (ϕv) − ϕ∇ × v] .

(12)
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684 P.A. Davidson

If we now assume statistical homogeneity we have

〈ϕω〉 = − 〈(〈B〉 · c) ω〉 = − 〈(〈B〉 · v) v〉 , (13)

and so (12) averages to give

〈v × b〉 + δ2

λ

〈
v × ∂b

∂t

〉
= − δ

λ

〈
v2 〈B〉 − 2(v · 〈B〉)v〉

, (14)

(Davidson & Ranjan 2015).
Finally we deploy assumption (i) in the form v = v(x, y) = δω,

and again invoke statistical homogeneity. This yields

〈υxυz〉 = 〈
υyυz

〉 = 0,
〈
υ2

z

〉 = 〈
υ2

x + υ2
y

〉
, (15)

while statistical symmetry about the local mean field 〈B⊥〉 demands
〈υxυy〉 = 0. Eq. (14) now simplifies to

〈v × b〉 + δ2

λ

〈
v × ∂b

∂t

〉
= −2δ

λ

〈
υ2

y

〉 〈B⊥〉 , (16)

which is the key result of this section.
Perhaps some comments are in order at this point. First, there is

no mean e.m.f. in the axial direction. Second, so far the analysis
applies equally to strongly helical columnar vortices and columnar
wave packets, as we have not had to assume any wave-like proper-
ties. Third, we have made no assumption about the size of the mag-
netic Reynolds number, uδ/λ. Fourth, the columnar structures could
be either tube like, with only one characteristic transverse dimen-
sion, or (more likely) sheet-like, with two characteristic transverse
dimensions (Davidson & Ranjan 2015). In the latter case, δ will be
the smaller of those two transverse dimensions.

3.3 Estimating the Joule dissipation associated
with helical wave packets

Let us now calculate the Joule dissipation caused by the passage of
the columnar vortices or wave packets through the mean field. We
start by rewriting (11) in the form

j + δ2

λ

∂j

∂t
= σ [v × 〈B〉 − ∇ϕ] , (17)

from which we find,

j2 + δ2

λ

∂

∂t

(
j2

/
2
) = σ

δμ
[b · (v × 〈B〉) − ∇ · (ϕb)] , (18)

and(
δ2

λ

∂j

∂t

)2

+ δ2

λ

∂

∂t

(
j2

/
2
)

= σ

δμ

δ2

λ

[
∂b

∂t
· (v × 〈B〉) − ∇ ·

(
ϕ

∂b

∂t

)]
. (19)

Adding and averaging (18) and (19) yields

δμ

σ

〈(
j + δ2

λ

∂j

∂t

)2
〉

= δ2

λ

〈
∂b

∂t
· (v × 〈B〉)

〉
+ 〈b · (v × 〈B〉)〉 ,

or equivalently,

δμ

σ

〈(
j + δ2

λ

∂j

∂t

)2
〉

= −
[
〈v × b〉 + δ2

λ

〈
v × ∂b

∂t

〉]
· 〈B〉 . (20)

Finally, comparing (16) and (20) gives the remarkably simple
result

μ

σ

〈(
j + δ2

λ

∂j

∂t

)2
〉

= 2

λ

〈
υ2

y

〉 〈
B2

⊥
〉
. (21)

Let us now restrict the analysis to helical waves (inertial or mag-
netostrophic waves), so that that we can fix the relative phases of b
and ∂b/∂t in (16), and of j and ∂j/∂t in (21). In particular we take
v and b to have the circularly polarized form characteristic of an
inertial or magnetostrophic wave:

v(x, y, t) = υ0

(
iδky,−iδkx , 1

)
exp [i (k · x − � t)] ,

b(x, y, t) = b0

(
iδky,−iδkx , 1

)
exp [i (k · x − � t)] ,

with k2
x + k2

y = δ−2 and the real part is understood. The curl of (11)
then requires that υ0 and b0 are related according to[

1 + iλ

δ2�

]
�b0 = −〈B⊥〉 · kυ0. (22)

After a little algebra our expressions for the induced e.m.f. and
Joule dissipation, (16) and (21), then simplify to

〈v × b〉 = −2δ

λ

〈
υ2

y

〉 〈B⊥〉
1 + (

�δ2
/
λ
)2

, (23)

μ

σ

〈
j2

〉 = −δ−1 〈v × b〉 · 〈
B⊥

〉 = 2

λ

〈
υ2

y

〉 〈
B2

⊥
〉

1 + (
�δ2

/
λ
)2

. (24)

Expression (24) is the primary result of our kinematic analysis.
Note that if the columnar wave packets are sheet-like, elongated in
the direction of B⊥, then 〈υ2

y 〉 � 〈v2〉.

4 R E L AT I N G T H E J O U L E D I S S I PAT I O N
A N D B U OYA N C Y T O T H E M E A N
B - F I E L D

We are finally in a position to relate the Joule dissipation to the
mean field strength in the core, a relationship which forms one of
the cornerstones of our scaling analysis. From (24) we see that the
average Joule dissipation per unit mass is related to the induced
e.m.f. by〈
j2

〉
σρ

= −〈v × b〉 · 〈
B⊥

〉
δμρ

. (25)

For a statically steady dynamo this dissipation must equal the
mean rate of working of the buoyancy forces per unit mass
(Christensen et al. 2009), which we label as P. Moreover, for a
steady dynamo the integral relationship (4) yields,∫
VC

r〈v × b〉θ dV = 3λ

∫
VC

〈Bz〉 dV , (26)

and combining these various expressions we obtain

P ∼
〈
j2

〉
σρ

∼ λ

δRC

〈
B2

〉
ρμ

.

Introducing the notation

υa ∼
〈
B2

〉1/2

√
ρμ

∼ Brms√
ρμ

, υP ∼ (P RC )1/3, (27)
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Dynamos driven by helical waves 685

for the characteristic Alfvén speed in the core and for a velocity
scale associated with the rate of working of the buoyancy force, our
kinematic analysis reduces to the remarkably simple estimate

υ2
a λ

δ
∼ υ3

P . (28)

This is all we need take away from Sections 3 and 4. Note that this
relationship is independent of the value of the magnetic Reynolds
number at the scale of δ. Note also that if the columnar wave-packets
are sheet-like, with two characteristic dimensions in the transverse
plane, δ will correspond to the smaller of those two dimensions.

Finally we observe that (28) has a generality well beyond that of
helical-wave dynamos, and may apply to a broad range of dipolar,
α2 dynamos. The point is that (28) rests simply on the assumption
that the dynamo is of the α2 type and on (25) and (26), the latter of
which is valid quite generally. However (25) holds, at least approxi-
mately, whenever the small-scale current is of order j ∼ σv × 〈B⊥〉,
a situation which is likely to arise even in dynamos driven by, say,
Ekman pumping.

5 S C A L I N G L AW S F O R P L A N E TA RY
DY NA M O S

We now supplement (28) by an order-of-magnitude force balance,
which then provides the governing scaling equations for planetary
dynamos. We shall see that this leads to two distinct sets of scaling
laws, one for the numerical dynamos and one for the planets.

5.1 General scaling equations for both the numerical
dynamos and the planets

Suppose that, for simplicity, we take the fluid in the conducting core
to be Boussinesq, governed by

∂u

∂t
= 2u × � − ∇ (

p
/
ρ
) + ϑg + ρ−1J × B, (29)

where g is the gravitational acceleration (which is anti-parallel to x),
ϑ = ρ ′/ρ, ρ ′ is the perturbation in density, and ρ the mean density.
Note that the viscous and non-linear inertial terms are omitted in
(29), since they are irrelevant in the core of the Earth, where the
Rossby number based on RC is around 10−6 and the Ekman number
is of order 10−15. The equivalent vorticity equation is, of course.

∂ω

∂t
= 2� · ∇u + ∇ϑ × g + ρ−1∇ × (J × B) , (30)

while the rate of working of the buoyancy force per unit mass is

P = ϑg · u. (31)

Traditional scaling analyses for planetary dynamos tend to start
with the assumption that the Elsasser number is of order unity,
� = σ B2/ρ� ∼ 1, which is based on the idea that the Lorentz
force, which is taken to be of order |j × B| ∼ σu B2, is of the same
order of magnitude as the Coriolis force, 2ρu × �. However, as
noted by several authors (e.g. Davidson 2014), this is too simplistic
for rapid rotators like the Earth and the gas giants, where the flow is
anisotropic with typical flow structures highly elongated along the
rotation axis. In such cases the curl and divergence of the Coriolis
force are

∇ × (u × �) = (� · ∇)u ∼ �u

RC
, (32)

∇ · (u × �) = � · ∇ × u ∼ �u

δ
, (33)

so that the curl of the Coriolis force is much smaller than its di-
vergence. Consequently, if we perform a Helmholtz decomposition
on the Coriolis force, dividing it into irrotational and solenoidal-
rotational parts, the dominant term is the former. Moreover, the
irrotational part of the Coriolis force is simply balanced by pressure
gradients (the quasi-geostrophic force balance) and so the Lorentz
force, if order one, should be balanced against the much weaker
rotational component.

A second problem is that (24) yields |j × B| ∼ σ 〈υ2
y 〉1/2 B2 which,

for sheet-like vortices, is much smaller than the usual estimate of
|j × B| ∼ σ 〈v2〉1/2 B2 ∼ σu B2. When a more careful force balance
is performed, balancing the curl of |j × B| ∼ σ 〈υ2

y 〉1/2 B2 against
�u/RC , we find no reason to suppose that � ∼ 1, and indeed we
have the possibility that � � 1, or even � � 1. So the suggestion
that � ∼ 1 lacks theoretical support.

An alternative approach is to assume that the curl of the buoyancy
force is in approximate balance with the curl of the Coriolis force.
In such a case (30) and (31) yield

�u

RC
∼ ϑg

δ
∼ P

δu
(34)

or equivalently

�δu2 ∼ P RC ∼ υ3
P . (35)

Since (28) is, in some sense, equivalent to equating the curl of
the Lorentz force to the curl of the buoyancy force, we conclude
that our scaling equations for planetary dynamos driven by helical
waves (either inertial or magnetostrophic waves) are simply

υ3
P ∼ υ2

a λ

δ
∼ �δu2. (36)

Moreover, since (28) has a generality beyond that of helical-wave
dynamos, then so does (36). (Actually (36) was derived in Davidson
2014, although the line of reasoning used here is somewhat different
and subject to less restrictions.)

Note that P and RC do not appear explicitly in (36), but rather
indirectly through the characteristic velocity υP . Note also that
the fluid viscosity does not appear in (36), as must be the case
because viscous stresses are irrelevant in the core a planet (though
not in the numerical dynamos). Finally recall that, in the case of
a helical-wave dynamo, (36) is independent of the value of the
magnetic Reynolds number at the scale of δ, and of the characteristic
cross-sectional shape of the columnar wave-packets, which may be
sheet-like or tube-like.

In cases where the buoyancy flux is dominated by thermal buoy-
ancy, we may estimate P, and hence υP , from the convective heat
flux through the core. In particular, if β is the expansion coefficient,
and T ′ the temperature perturbation, then the rate of working of the
thermal buoyancy force per unit mass is P = −βT ′u · g. In such
cases P can be expressed in terms of the time-averaged convective
heat flux per unit area, q̇ = ρcpT ′u, according to P = (gβ/ρcp)q̇ .
(See, for example, Christensen et al. 2009). Reasonable estimates
of q̇ are available for the Earth, Jupiter and Saturn. For example, for
Jupiter and Saturn we have q̇ ≈ 5.7 and 2.0 W m−2, respectively
(Read et al. 2015), and using estimates of β/cp from Christensen
& Aubert (2006), we find P ≈ 1.2 × 10−10 m2 s−3 for Jupiter and
P ≈ 0.43 × 10−10 m2 s−3 for Saturn.
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686 P.A. Davidson

In situations where the compositional buoyancy makes a signif-
icant contribution to the buoyancy flux, as in the Earth, a common
strategy is to estimate P based on P = (gβ/ρcp)q̇ and to then in-
flate P according to the expected ratio of compositional to ther-
mal buoyancy. In the case of the Earth, for example, the thermal
and compositional buoyancy are thought to be of similar strengths
(Roberts & King 2013), so it seems plausible to double the value
P = (gβ/ρcp)q̇ to get an estimate of the total rate of working of
the buoyancy force. Taking the characteristic convective heat flux
to be around 3TW (q̇ ≈ 0.02 W m−2), and doubling this to accom-
modate compositional buoyancy, yields P ≈ 5.1 × 10−13 m2 s−3 for
the Earth.

So we may regard P, and hence υP , as prescribed. The velocities
υa and u, on the other hand, are dependent quantities, to be derived
from (36) once δ has been determined. One complication here is
that it turns out that the way in which δ is set in the numerical
dynamos is very different to the way it is fixed in the planets, and
so quite distinct scaling laws emerge for the numerical simulations
and real planetary dynamos, though as we shall see, both probably
satisfy (36).

Note that (36) estimates the net energy density (magnetic plus
kinetic) to be of order

e ∼ υ2
a + u2 ∼ υ3

P

[
δ

λ
+ 1

�δ

]
. (37)

For a given value of P, or core heat flux, this has a minimum
at δmin ∼ √

λ/�, which corresponds to an equipartition between
magnetic and kinetic energy. More generally, the ratio of magnetic
to kinetic energy is, according to (36),

υ2
a

u2
∼ �δ2

λ
. (38)

Since the magnetic energy is thought to be dominant in planetary
dynamos, this tells us that δ must exceed δmin, δ >

√
λ/�.

Notice also that dipolar dynamos of the type observed in the
Earth and gas giants require that the small-scale Rossby number,
Roδ = u/�δ, is smaller than order one. This was first observed
empirically in the numerical simulations of Christensen & Aubert
(2006). However, it almost certainly has its origins in the fact that
inertial waves cannot propagate when Roδ exceeds a value of around
0.4 (see, for example, Bin Baqui & Davidson 2015, where δ is de-
fined as the transverse integral scale), yet translating columnar vor-
tices rely on inertial wave packets to maintain their quasi-geostrophy
(Davidson & Ranjan 2015). This interpretation is given weight by
the observation that the loss of the dipolar field more or less coin-
cides with the loss of columnar flow structures. In any event, dipolar
dynamos cannot be maintained when Roδ exceeds u/�δ ∼ 0.4, and
from (36) this corresponds to

Roδ ∼ (
u
/
υP

)3 ∼ 0.4. (39)

Evidently, if our scaling laws are to be consistent with the dipolar
fields observed in the Earth and the gas giants, we are restricted
to the range Roδ ≤ O(1) and u ≤ O(υP ). More generally, we may
rewrite (36) in terms of Roδ = u/�δ as

u

υP
∼ (Roδ)1/3,

υa

υP

∼ υP√
λ�

(Roδ)−1/3, (40)

which places an upper bound on the convective velocity of u ≤
O(υP ), and a lower bound on the rms magnetic field of υa ≥
O(υ2

P/
√

λ�). These are the key scaling relationships to emerge

from our analysis. They apply equally to the dipolar numerical dy-
namos and dipolar α2 planetary dynamos, provided that the estimate
j ∼ σv × 〈B⊥〉 holds true in both cases.

The weakness of (40) is that δ remains undetermined, and it is
only once we know how δ scales that true scaling laws can emerge
for u and υa . As we shall see, the way in which δ is set in the
numerical dynamos is different to the way it is determined in the
planets, so these two sets of dynamos obey distinct scaling laws.
Moreover, it is entirely possible that the process of setting δ in, say,
the gas giants, is quite different to that in the terrestrial planets, in
which case the hypothesis that there exists universal scaling laws
for α2 planetary dynamos fails. Never-the-less, many authors have
proposed such universal scaling laws, so we shall test these against
(36), or equivalently (40), and against the observational data.

5.2 Scaling laws for the numerical dynamos

It is still unclear what fixes the unknown length-scale δ in planetary
cores, though we shall discuss a variety of possibilities in the next
section. However, the numerical dynamos are more viscous than
the planets by a factor of ∼109, as measured by the Ekman number,
Ek = ν/�R2

C . So in the simulations it is likely that δ is set by viscous
forces, which demands δ/RC∼ Ek1/3 (King & Buffett 2013). In such
cases, the scaling laws corresponding to (36) become

�B ∼ �P
1/2Prm

1/2 Ek−1/3, Ro ∼ �P
1/2Ek−1/6, (41a,b)

where

�p = P

�3 R2
C

=
(

υP

�RC

)3

, �B = Brms

/√
ρμ

�RC
,

Ro = u

�RC
, Prm = ν

λ
. (42)

Scaling (41b) for Ro has been proposed by several authors (see,
for example, King & Buffett 2013 or Davidson 2014) and found
to be a good match to data sets for the numerical dynamos. On
the other hand, (41a) for �B was first proposed in Davidson (2014),
though in that paper the scaling analysis was limited to helical-wave
dynamos with a low magnetic Reynolds number on the scale of δ,
whereas here we suggest that (41a) has much greater generality.
Note that ν and RC both appear explicitly in these viscous scalings,
despite their absence in (36).

Let us turn now to the assertion that Roδ = u/�δ ≈ 0.4 rep-
resents the transition from dipolar to multipolar dynamos. Com-
bining Ro ∼ �P

1/2Ek−1/6 with δ/RC∼ Ek1/3, our scaling analy-
sis predicts Roδ ∼ �P

1/2Ek−1/2. To fix thoughts let us take the
pre-factor in this estimate to be unity: Roδ = �P

1/2Ek−1/2. When
discussing the numerical dynamos it has become conventional to
replace �P and Ek by the related parameters RaQ = �P/r (1 − r )2

and E = Ek/(1 − r )2, where r is the ratio of the radii of the inner
and outer cores. For the Earth RaQ = 6.76�P . Combining Roδ =
�P

1/2Ek−1/2 with the transition criterion Roδ = u/�δ ≈ 0.4, and
replacing �P and Ek by RaQ and E with an Earth-like value of r,
we conclude that the transition from dipolar to multipolar dynamos
in the numerical simulations should occur at RaQ/E ≈ 0.5.

Fig. 3 shows the results of the suite of numerical dynamos tabu-
lated in Christensen & Aubert (2006). In particular, fdip is plotted as
a function of 2RaQ/E , where fdip is the field strength of the dipole at
the outer boundary of the simulation, divided by the field contained
in the harmonics of degree 1 to 12. It is conventional to regard multi-
polar and dipolar cases as corresponding to fdip < 0.35 and fdip > 0.5,
respectively. Evidently the transition criterion 2RaQ/E ≈ 1 does a

 at U
niversity of C

am
bridge on O

ctober 5, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Dynamos driven by helical waves 687

Figure 3. fdip plotted as a function of 2RaQ/E . (The data is from
Christensen & Aubert 2006.)

reasonable job of distinguishing between dipolar and non-dipolar
cases.

Scaling laws (41a,b) are compared with the same data set in
Fig. 4. (The comparison for Ro is already given in King & Buffett
2013, and we present it here simply for reference. The more impor-
tant comparison is that for �B .) In order to allow for the viscous
dissipation in the numerical dynamos, which has been ignored in
our scaling analysis, we follow Christensen & Aubert (2006) and
replace �B by �B/

√
fohm, where fohm is the ratio of the Joule dissi-

pation to the total dissipation. The comparison looks favourable and
so it seems that the numerical dynamos offer considerable support
for the scaling laws given by (41), and by implication, support for
(36).

Finally we note that (41) may rewritten in the form

�B ∼ �P
7/18Prm

1/6
(
υP RC

/
λ
)1/3

, (43)

Ro ∼ �P
4/9Prm

−1/6
(
υP RC

/
λ
)1/6

. (44)

As noted in Davidson (2014), the quantity ( υP RC/λ)1/3 is usually
of order 10 in the numerical dynamos, invariably lying in the range
5→15. For such limited data sets, these viscous scaling laws re-
duce to the deceptively simple expressions �B ∼ �P

7/18Prm
1/6 and

Ro ∼ �P
4/9Prm

−1/6. These, in turn, are rather close to the empirical
scalings �B ∼ �P

0.31Prm
0.16 and Ro ∼ �P

0.44Prm
−0.13, proposed

by Stelzer & Jackson (2013), and also �B ∼ �P
0.32Prm

0.11 and
Ro ∼ �P

0.43Prm
−0.13, suggested earlier by Christensen & Aubert

(2006). (Both sets of empirical scaling laws were derived from
more or less the same suite of numerical dynamos.)

5.3 Scaling laws for the planets

Let us now turn to our primary interest: the planets. The first hint
that planetary dynamos scale very differently from the numerical
dynamos comes from Fig. 3. For the Earth we have E ∼ 10−15 and
RaQ ∼ 10−12, giving RaQ/E ∼ 103, which lies completely outside
of the dipolar regime indicated in Fig. 3. Also δ/RC ∼ Ek1/3 requires
δ ∼ 30 m, which is much too small. Of course, this is because the
numerical dynamics are strongly influenced by the viscous forces,
which set the scale for δ, whereas the viscous stresses play no
significant role in planetary cores. So perhaps the key question for
the planets is: what dictates the scale δ? In this section we shall
focus particularly on the Earth, Jupiter and Saturn, partly because
these all have dipolar fields, but also because we have plausible
estimates of the rate of working of the buoyancy force, P, for these
three cases. By way of contrast, there are no reliable estimates of
the convective heat flux in Mercury, and the fields of the ice giants
are distinctly non-dipolar and so likely to be very different in origin
from the gas giants and terrestrial planets.

Let us start with the observational evidence. Table 2 shows
some of the dynamo properties of Mercury, Earth, Jupiter and

Figure 4. Comparison of scaling laws (41a,b) with the data of Christensen & Aubert (2006).
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Table 2. Estimates of the Elsasser number, �, and B̄z/�RC
√

ρμ based on
the mean axial field in the planetary cores. We use the estimates of λ ∼
0.7 m2 s−1, ρ ∼ 104 kg m−3 for the terrestrial planets, and λ ∼ 3 m2 s−1,
ρ ∼ 103 kg m−3 for the gas giants. Included for comparison is a fully con-
vective, low-mass, M-dwarf star, which has an 800 Gauss dipole field of the
α2 type.

Planet Rotation period Elsasser number

(or star) (days) � = σ B̄2
z /ρ�

B̄z/
√

ρμ

�RC

υ2
P

�λ

Mercury 58.6 2 × 10−4 5.5 × 10−6 –
Earth 1 0.2 13 × 10−6 2.9
Jupiter 0.413 5 5.2 × 10−6 66
Saturn 0.440 0.2 2.3 × 10−6 23
V374 Pegasi 0.44 ∼104 17 × 10−6 –

Saturn. In order to provide a comparison, we also show data for
a fully convective, low-mass, M-dwarf star, V374 Pegasi, which
is thought to have an 800 Gauss dipole field of the α2 type (Do-
nati et al. 2006). Estimates of the magnetic diffusivities for the
planets are constantly changing, but here we take the nominal val-
ues of λ ∼ 3 m2 s−1, ρ ∼ 103 kg m−3 for the gas giants (French
et al. 2012), and λ ∼ 0.7 m2 s−1, ρ ∼ 104 kg m−3 for terrestrial
planets. The mean axial field strengths in the cores, B̄z , are ob-
tained from the observed dipole moments using (1), and we use the
estimates P ≈ 1.2 × 10−10 m2 s−3, P ≈ 0.43 × 10−10 m2 s−3 and
P ≈ 5.1 × 10−13 m2 s−3 for Jupiter, Saturn and the Earth, respec-
tively, as discussed in Section 5.1.

It is striking that the Elsasser number varies considerably across
the various dynamos shown in Table 2, consistent with the discus-
sion in Section 5.1. By way of contrast, (B̄z/

√
ρμ)/�RC is relatively

uniform across these dynamos, an observation that clearly needs
some sort of explanation and holds out hope that universal dynamo
scaling laws may indeed exist. Note also that υ2

P/�λ ≥ 1 for the
Earth, and υ2

P/�λ � 1 for Jupiter and Saturn, which shall turn out
to be of some importance in the discussion below.

Perhaps the key question now is whether or not the observational
data is consistent with our prediction,

υ3
P ∼ υ2

a λ

δ
∼ �δu2, (45)

where υa ∼ Brms/
√

ρμ. It seems likely that the rms field, Brms , is
substantially larger than the mean axial field, B̄z , in the planetary
cores, and indeed measurements of torsional oscillations in the
Earth’s core suggest Brms ∼ 30 Gauss (Roberts & King 2013), which
is an order of magnitude larger than B̄z = 3.7 Gauss. Consequently,
we shall make the crude estimate Brms = 10B̄z in what follows.

The primary unknown in (45) is δ, the smallest of the two trans-
verse length-scales associated with the columnar structures lying
outside the tangent cylinder. So we now consider two different uni-
versal scaling laws that have been suggested for planetary dynamos,
each of which implies a different estimate of δ. We shall also ten-
tatively propose an alternative universal scaling law based on the
energy estimate (37). To distinguish between these various options
we shall insist that Roδ ∼ (u/υP )3 ≤ 1, which is a prerequisite for
a dipolar field. Moreover, since (45) yields

υ2
a

u2
∼ υ2

P

�λ
Ro−4/3

δ , (46)

and we observe that υ2
P/�λ > 1, the requirement that Roδ ≤ 1 au-

tomatically ensures that υ2
a /u2 > 1, so that the magnetic energy

dominates over the kinetic energy. Note also that Roδ ≤ 1 com-
bined with (45) rules out the possibility of equipartition, υ2

a ∼ u2,
which is a common assumption in stellar dynamo modelling.

Table 3. Comparison of observed and predicted values of �B =
Brms/�RC

√
ρμ. We use the estimates of λ ∼ 0.7 m2 s−1, ρ ∼ 104 kg m−3

for the Earth, and λ ∼ 3 m2 s−1, ρ ∼ 103 kg m−3 for the gas giants.

�B = Brms/
√

ρμ

�RC

Brms/
√

ρμ

�RC
∼ υP

�RC

υP√
�λ

Predicted convective

Planet Observed Prediction (50) velocity, u (m s−1)

Mercury 5.5 × 10−5 – –
Earth 13 × 10−5 8 × 10−5 0.01
Jupiter 5.2 × 10−5 15 × 10−5 0.19
Saturn 2.3 × 10−5 11 × 10−5 0.11

Consider first the traditional assumption of � = σ B2
rms/ρ� ∼ 1.

When combined with (45) this yields uδ/λ ∼ 1 and

Roδ ∼
(

υ2
P

�λ

)3

> 1,
υ2

a

u2
∼

(
υ2

P

�λ

)−3

< 1. (47)

For Jupiter and Saturn this is well into the multipolar regime,
and so clearly � ∼ 1 is incompatible with (45). Next consider the
proposal of Christensen et al. (2009), which is the hypothesis that υa

is independent of rotation rate and controlled only by the buoyancy
flux: υa ∼ υP . When combined with (45) this yields υaδ/λ ∼ 1 and

Roδ ∼
(

υ2
P

�λ

)3/2

> 1,
υ2

a

u2
∼

(
υ2

P

�λ

)−1

< 1. (48)

This also lies in the multipolar regime for Jupiter and Saturn. We
conclude that, given the observation that υ2

P/�λ � 1 for the gas
giants, both of these scaling proposals are inconsistent with (45).

Cleary we need an alternative criterion for setting the scale δ.
Let us, for the moment, retain the hope that a universal scaling law
exists and consider the hypothesis that, for a given P, the dynamo
minimises its net energy (or equivalently its magnetic energy) while
remaining in the dipolar regime. From (37) we see that this requires
u/�δ ∼ 1, and combined with (45) this yields

u ∼ υP ,
υa

υP

∼ υP√
�λ

. (49)

Eq. (40) tells us that this represents the minimum magnetic field
strength and minimum length scale, δ, consistent with (45) and
with Roδ ≤ 1. It also ensures the magnetic energy is greater than
the kinetic energy. The rather tentative idea behind this hypothesis
is that, in the absence of other constraints, a kinematic dynamo
growing from a state of weak or zero field will tend to saturate at
the minimum field strength consistent with a specified value of the
buoyancy flux.

In Table 3 we compare prediction (49) with the observational
data for the Earth, Jupiter and Saturn, taking the pre-factors in (45)
equal to unity. It is customary to use the dimensionless group

�B = Brms

/√
ρμ

�RC
= υa

�RC

when comparing theory or computation with observation for plane-
tary dynamos, and so we shall conform to this convention. In terms
of �B , (49) becomes

Brms

/√
ρμ

�RC
∼ υP

�RC

υP√
�λ

. (50)

Given the uncertainties in the values of the magnetic diffusivities,
especially for gas giants, and in the estimates of the convective
heat flux, the comparison in Table 3 seems not unreasonable. In
particular, note that the observed relative uniformity of �B across
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the planets is reflected in prediction (50). Of course, little credence
should be given to the precise numerical values of the predictions
in the table, as the pre-factors in (49) may differ significantly from
unity. Perhaps the most we should conclude from Table 3 is that the
hypothesis of a minimum magnetic energy in the saturated state (for
a given P) is not inconsistent with (45) and with the observations.

Of course, demanding a minimum in magnetic energy is only one
of many possible ways in which the scale δ might, in practice, be
chosen. Indeed, the way that δ is set may vary from planet to planet,
being different, say, for the gas giants and terrestrial planets. For
example, in the Earth presumably δ is also the width of the plumes
which meander slowly from the solid inner core to the mantle, and
this in turn may be set by the thermal boundary-layer thickness
and/or solidification processes at the inner core where the plumes
form. So, given the scaling laws (40), and the requirement that
Roδ ≤ 1, perhaps the most that we can reliably conclude is that the
predictions of υa and u in Table 3 represent an approximate lower
bound on υa and upper bound on u, and that the case for universality
remains uncertain.

6 P O S S I B L E I M P L I C AT I O N S
F O R M E RC U RY A N D F U L LY
C O N V E C T I V E S TA R S

We close with some speculative comments about Mercury and pos-
sible links to dynamos in fully convective stars. We do not know
the convective heat flux in Mercury, nor the ratio of the compo-
sitional to thermal buoyancy in its core. However, we are free
to explore the tentative assumption that Mercury’s dynamo op-
erates in the same regime as that of the Earth and the gas giants,
governed by (40). If this is indeed the case we can infer from
(40) an approximate upper bound on P from the measured value
of �B . It is P ≈ 2 × 10−17 m2 s−3, with corresponding estimates
of the modified Rayleigh number and convective velocity being
RaQ ∼ 3 × 10−11 and u ∼ 0.3 mm s−1. This value of P is surpris-
ingly low, being a factor of 104 lower than that of the Earth and also
considerably lower than the estimate used by Christensen (2006) for
dynamo simulations based on the thermal history model of Hauck et
al. (2004). It is also, perhaps, only an order of magnitude larger than
the probable critical value of RaQ at which convection shuts down,
which is suggestive of extremely weak convection. It should be
noted, however, that some dynamo models (e.g. Christensen 2006)
suggest that the magnetic field deep within Mercury’s convective
core is substantially larger than the observable field at the core-
mantle-boundary, because the outer stratified regions of the core
filter out the non-axisymmetric components. If true, the effective
value of �B could be much larger, yielding a more supercritical
value of RaQ . In any event, in the absence of compositional buoy-
ancy, P is related to the convective heat flux by P = (gβ/ρcp)q̇, and
so the speculative estimate of P above places potential constraints
on the acceptable levels of convective heat flux in thermal evolu-
tion models of Mercury. Conversely, independent estimates of this
heat flux would help determine whether or not Mercury’s dynamo
is indeed operating in the same regime as that of the Earth, and so
governed by (40).

Turning to stellar dynamos, it is intriguing that the value of
(B̄z/

√
ρμ)/�RC for V374 Pegasi in Table 2 is reasonably con-

sistent with that of the planets. This raises the possibility, already
explored in Christensen et al. (2009), that a single scaling law may
extend all the way from the planets to fully convective stars with
α2 dynamos. (Christensen et al. for example, tentatively propose

υa ∼ υP across the full range.) However, perhaps some caution is
required here, as such stars are not as rotationally constrained as the
planets, having much higher convective velocities and hence larger
Rossby numbers. The point is that the convective heat flux in such
stars is very high, leading to large values of υP , and hence of u and
υa . If the Rossby number at the small scales exceeds unity, which
seems likely in the light of the large Elsasser number in Table 2,
the flow will cease to be dominated by columnar structures aligned
with the rotation axis, and scaling analyses of the type presented
here fail because buoyancy is then balanced by inertia. For example,
luminosity measurements of V374 Pegasi give q̇ ≈ 4 × 106 W m−2

and hence υP ∼ 30 m s−1, which is three orders of magnitude higher
than typical estimates of υP for the planets. If the resulting small-
scale Rossby number exceeds unity, then scaling (49) must fail, and
indeed (49) predicts a magnetic field strength greatly in excess of
the observed field of around 800 Gauss.

A common alternative suggestion for fully convective stars, based
on the assumption that the small-scale Rossby number is moderate-
to-large (and hence the Coriolis force weak), is the triple force
balance

∇ × (ρu · ∇u) ∼ ∇ × (
ρ ′g

) ∼ ∇ × (
B · ∇B

/
μ

)
. (51)

Assuming a single length-scale for all gradients, �, this yields

u2

�2
∼ P

u�
∼ B2

ρμ�2
, (52)

and hence the equipartition scaling u ∼ υa ∼ υ̂P , where υ̂P =
(P�)1/3. If we further assume � = RC , this takes us back to
�B ∼ �P

1/3, as suggested in Christensen et al. (2009). However,
the observed field strength for V374 Pegasi is around 800 Gauss, and
so a mean density of 15 × 103 kg m−3 results in υa ∼ 0.6 m s−1. Ev-
idently, for this particular star, the equipartition argument combined
with � = RC significantly overestimates the rms field strength. Re-
ducing the estimate of the characteristic scale � could, in principle,
resolve this discrepancy, although a reduction in � by a factor of
around 105 would be required to bring the observed and predicted
field strengths into line. So, one way or another, it seems that the
scaling laws for dynamos in fully convective stars remains elusive.

7 C O N C LU S I O N S

We have shown that, given the balance between energy production
and Joule dissipation, and between the curl of the buoyancy and
Coriolis forces, planetary dynamos should satisfy the scaling rela-
tionship υ3

P ∼ υ2
a λ/δ ∼ �δu2. To arrive at this scaling relationship

we have estimated the Joule dissipation using the helical-wave dy-
namo cartoon of Davidson & Ranjan (2015), but in fact this estimate
really only requires j ∼ σv × 〈B⊥〉, which is likely to hold in a wide
range of dynamos, including those driven by Ekman pumping. So
our scaling analysis should be valid across a broad range of dipo-
lar, α2 dynamos. Certainly it is consistent with the evidence of the
numerical dynamos, where δ is set by the viscous forces, yielding
predictions consistent with published empirical scaling laws and
also with the observed transition from dipolar to multipolar dy-
namos. A direct comparison with the observational evidence for
the planets is hampered by the fact that we do not know how the
scale δ is set in the planets. Nevertheless, we have shown that the
traditional assumption of � ∼ 1 is inconsistent with the observa-
tion that the gas-giant dynamos are dipolar, as is the suggestion of
Christensen et al. (2009) that υa is independent of rotation rate and
controlled only by the buoyancy flux: υa ∼ υP . On the other hand,
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we have shown that the hypothesis that δ is set by u/�δ ∼ 1 is con-
sistent with the observations, and in particular it is consistent with
the observation that �B is relatively uniform across the planets, of
order 10−4. The criterion u/�δ ∼ 1 corresponds to the assertion
that dipolar dynamos saturate at the lowest permissible magnetic
energy consistent with a given buoyancy flux. More generally, we
have established that: (i) scaling laws deduced from the numerical
dynamos cannot, in general, be extended to the planets (see Fig.
3); and (ii) there exists an approximate upper bound for u and a
lower bound for υa for the dynamos of the Earth, Jupiter and Saturn
(eq. 40).
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