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Abstract

Background: Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse
complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have
either used parameter sampling, been focused on a restricted set of model observables of interest, studied
optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where
the changes can be permanent or temporary.

Results: Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for
Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory
and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a
comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis
of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the
perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a
system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how
long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different
types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of
mathematical models including free-running and forced oscillators and signalling systems.
To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple
variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new
experiments. It is especially useful in the analysis of large and complex models involving many variables and
parameters.

Conclusions: PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and signalling
systems. It allows for simulation and analysis of models under a variety of environmental conditions and for
experimental optimisation of complex combined experiments. With its unique set of tools it makes a valuable
addition to the current library of sensitivity analysis toolboxes. We believe that this software will be of great use to the
wider biological, systems biology and modelling communities.
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Background
There is a rapidly increasing number of complex, high
dimensional deterministic models in Systems Biology and
these play a crucial role in gaining an understanding of
important biological systems that would be impossible to
achieve using lab-based approaches alone. Tools that can
be used in a systems biology iterative cycle to enable the
development and analysis of models and their fitting to
data are becoming increasingly important.
Sensitivity analysis is an important approach that has

been successfully employed to do the above, but it is just
one part of dynamical systems perturbation theory [1, 2].
This extensive theory enables one to probe the behaviour
of dynamical systems locally in parameter space. In gen-
eral the systems of interest are nonlinear and, unfortu-
nately, a general global nonlinear theory is not possible
because our current understanding of dynamical systems,
though extensive, is not adequate for this. However, we
can develop a relatively powerful and useful theory based
on local analysis about a particular set of parameter val-
ues using the extensive and powerful perturbation theory
for differential equations. PeTTSy does the most impor-
tant calculations that underlie such perturbation theory.
It provides tools to enable this perturbation theory to be
used for the analysis, adjustment, optimisation and design
of models including complex models with large numbers
of parameters and variables. It allows one to probe the
model dynamics and to understand their behaviour under
parameter changes. These changes can mimic perturba-
tions to some rates, pulse experiments, or can even mimic
the creation of specific mutations such as gene knock-outs
or knock-downs.
Moreover, the design of purpose-built add-ons by users

or detailed user-designed analysis is enabled by the facil-
ity to export all the basic calculation results. For flexibility,
results can be exported into theMATLAB workspace, and
then further analysis can be done by the user. PeTTSy
also provides an interface to XPPAUT [3]. PeTTSy input
parameter and initial condition files, or output time
series files can be used to generate an input .ode file for
XPPAUT. In this way further parameter exploration via
simulation within XPP or bifurcation analysis in AUTO
can be performed. Moreover, almost all the internal struc-
tures of PeTTSy can be exported. This is particularly
useful when one is using or designing custom analysis
algorithms.
Currently available sensitivity analysis tools [4–7] cater

to some of the above needs: however they only deal with
a very restrictive set of observables that can be measured
(in the case of [4–6]) or only offer insight into systems
with steady state dynamics (as in the case of [7]). More
importantly, aside from [6] none of the software tools give
insight into how temporary changes to parameters can
affect the dynamics: hence they cannot describe the effect

of pulse experiments or any temporary changes to the sys-
tems dynamics. In the case of [6], the output is limited to
only changes to the model solution.
PeTTSy has been designed to run simulations and to

perform a global form of sensitivity analysis (in the sense
of [8, 9]) on the simulated time series. This shows how the
model observables (such as the model solution, the period
of oscillations, the phase timing or the amplitude) will
change as parameters are perturbed either permanently or
temporarily.
The methodology we use is system global in that the

user can study the impact on the whole time-series (i.e. all
model variables simultaneously) or a set of observables of
interest rather than being limited to one output at a time.
The versatility of the software is illustrated by the way

it has been used in a number of recent papers to engi-
neer systems to have specific complex properties and so
aid understanding. For example, it was used in [10] to
design a temperature dependent version of the plant cir-
cadian clock. It was used to simplify the model so only
the most important temperature inputs had to be consid-
ered and it was used to understand how the behaviour
of the model could be reconciled with the experimentally
observed behavior. Another, different application was the
use in [11] to understand how to design clocks that are
insensitive to external perturbation due to daily fluctua-
tions in light and temperature. In this paper we refer to
several of our publications where the software has been
essential to give significant biological insight that could
later be verified by further experiments.
Another very significant aspect is the ability to imple-

ment experimental design or multiple experiments on
complex systems via the derivative matrix of the mapping
from parameters to the solution of interest and its link to
the Fisher Information Matrix. For example, one can use
this to design different perturbations of an experiment in
order to optimise the amount of information coming from
each of these experiments.
We illustrate the use of PeTTSy by analysis of several

complex and high dimensional biological models. We will
focus on the the clock plant model, counting 28 vari-
ables and over a hundred parameters and on the NF-κB
model counting 29 parameters and 14 variables. Our aim
is to provide an overview of the software, to illustrate
its use by considering the analysis of several biological
models and to demonstrate PeTTSy’s broad capabilities.
Specific technical details of the software are described in
the user manual that is available with the software, and the
references within.
Toolboxes for sensitivity analysis of ODE models and

related areas generally use one of two methodologi-
cal approaches, deterministic derivative-based methods
using mathematical analysis and methods based on sam-
pling of the parameter space. The former is generally



Domijan et al. BMC Bioinformatics  (2016) 17:124 Page 3 of 19

considered to be local in parameter space although
dynamical systems methods such as bifurcation theory
allow one to deduce more global results. Potentially the
sampling methods are more global in that they allow
exploration of a larger area of parameter space but they are
subject to the curse of dimensionality because you need
O(ε−d) points in an ε-grid to cover the unit disk in Rd. An
advantage of the derivative-based methods is that they are
more directly connected to rigorous results in the mathe-
matical theory, particularly those coming from dynamical
systems theory and this is the approach that this paper
follows.
Toolboxes employing parameter sampling include

SensSB [5], SBToolbox2 (http://www.sbtoolbox2.
org/) [12] and DyGloSA [13] and those involving deter-
ministic derivative-based methods include pathPSA [6],
AMIGO [14] and Data2Dynamics [15].
Derivative-based toolboxes such as AMIGO and

Data2Dynamics analyse systems and fit parameters using
a likelihood function that measures the distance between
the solution at certain times and corresponding data using
a sum of squares of the differences. PeTTSy uses a differ-
ent approach in that it calculates the linearisation M of
the mapping from parameters to the solution of interest
(i.e. the sensitivity of the model solution to parameters)
and then analyses M using a number of tools including
calculating its principal components and singular values.
Though M can be calculated in these other toolboxes,
most of the PeTTSy analysis depends upon the decom-
position of the solution change given in Eq. (1) below
and this distinguishes our paper from others. In particu-
lar, the sensitivity matrix S = (Sij) (defined in Subsection
Systems global sensitivity analysis via SVD) is not used
in any of those cited above. The detailed justification for
using this definition of sensitivity is given in [8, 9]. The
graphical plots that then summarise this analysis are spe-
cific to this toolbox and include plots for the Singular
Spectrum, the Parameter Sensitivity Spectrum, the Sen-
sitivity Heat Map, Time Series Plots with Sensitivity, the
Amplitude/Phase Derivatives Scatter Plot and composite
plots. Another distinguishing feature from other tool-
boxes is that the calculation of M and the analytical tools
mentioned above are developed for periodic orbits.
A key advantage of PeTTSy is that one can export all

of PeTTSy’s internal structures for use in the design of
purpose-built add-ons by users and for detailed user-
designed analysis and design of systems and their prop-
erties. For example, PeTTSy routinely calculates the
variational matrices C(s, t) along trajectories between all
relevant times s < t and stores this in a convenient way.
Having these matrices at hand enables a large amount of
perturbation theory to be practically implemented very
efficiently. Finally, we note that PeTTSy fully implements
the perturbation theory for periodic orbits.

Implementation
Overview
PeTTSy is a MATLAB package, requiring MATLAB
R2012a or later to run, the Symbolic Math toolbox, and
optionally, the Parallel Computing Toolbox. As such
it will run on any platform that MATLAB supports
(Windows, Mac OSX and popular Linux distributions).
PeTTSy can be freely downloaded from the website:
http://go.warwick.ac.uk/systemsbiology/
software. Detailed manual documentation is provided
with the software. Some of the analysis calculations
can be greatly speeded up using MATLAB’s Parallel
Computing Toolbox.
The user can also opt to use the CVODES solver [16]

(here implemented via sundialsTB MATLAB interface) to
speed up the ODE calculations. Solvers can be optimised
for stiff or non-stiff problems so the user can determine
the best options for their particular model.
The package consists of command line modules that can

be runmost easily using the graphical interface that is pro-
vided. An overview of the PeTTSy workflows is shown in
Fig. 1. The user begins with a model template defining
its equations. There are a number of these pre-installed
and the manual describes how to create new templates by
entering the model equations, or by importing a model
from SBML format. The first step is to compile the model
using either themake command or the graphical interface.
Model derivative matrices are then generated in order
to make the model available for analysis. This process
employs Matlab’s Symbolic Math Toolbox to create var-
ious files that contain symbolic representations of these
matrices. Then one defines the solution of interest. For
example, for an oscillator this is likely to be an attract-
ing periodic orbit while for a signalling system it may be a
solution with a given initial condition.
Note that PeTTSy also allows the export of models

to SBML Level 2 format. Model ODEs are converted to
SBML rate rules. The requiredMathML is generated using
SnuggleTex, available freely from the School of Physics
and Astronomy, University of Edinburgh (http://www2.
ph.ed.ac.uk/snuggletex). The required modules are, how-
ever, distributed as part of the PeTTSy package so the user
need not install SnuggleTex separately.
As well as the differential equation one can define a

number of temporal force profiles that can be used to force
the system. These are similar to the external factors func-
tion of AMIGO and the experimental treatment function
of Data2Dynamics. A typical use of these would be when
modelling a forced oscillator such as a circadian oscilla-
tor entrained by light or temperature, but they can also
be used to model experiments where the system is per-
turbed artificially such as when external signals are used
to synchronise a system or induce expression of specific
genes.

http://www.sbtoolbox2.org/
http://www.sbtoolbox2.org/
http://go.warwick.ac.uk/systemsbiology/software
http://go.warwick.ac.uk/systemsbiology/software
http://www2.ph.ed.ac.uk/snuggletex
http://www2.ph.ed.ac.uk/snuggletex
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Fig. 1 PeTTSy flow chart. This shows the main details of the possible pipelines for the use of PeTTSy

The software then finds this solution of interest. The
second step is to accurately compute it. For example, if
this is a periodic solution the software first runs the model
with the specified parameters and initial conditions to find
it approximately and then uses a boundary value solver to
increase the precision.
The third step is to solve the variational equation along

this solution and to use this to calculate the derivatives of
the solution of interest with respect to all the parameters.
These steps are needed for all the subsequent analysis.
At this stage one already has several classical (e.g. period,
phase and amplitude derivatives) and new (e.g. infinites-
imal response curves (IRCs) and phase IRCs) analysis
tools available. These outputs can be selected using the
graphical interface. This process involves significant com-
putation and therefore using the graphical interface one
can configure what aspects need to be computed and see
how accurate the computation is likely to be. For the lat-
ter, after being presented with an informative analysis,
the user can opt to re-calculate the fundamental matri-
ces (the building blocks of the analysis, described in more
detail in the manual) by increasing the time resolution
at which the computations are done. More details about
the time resolution required are outlined in the accom-
panying manual. If the user has a copy of the MATLAB
Parallel Computing Toolbox installed, then they will be
given the option of running the analysis using one of the
user defined parallel configurations. The computation of
the fundamental matrices is ideal for parallelisation and a
substantial speed-up can be achieved.
The fourth step is to use the global sensitivity analysis

tools as described below. This gives a systems global pic-
ture of all changes that occur as parameters are changed
and presents this in a way that grades the effects so that
one can gain better understanding. This uses a version of
Singular Value Decomposition (SVD). An optional fifth
step is to use the software for experimental optimisation.

All of these operations can be carried out via command
line operation or via the extensive graphical interface
(Fig. 2). This enables the user to define and manipulate
all models choices, inputs (e.g. parameter values and ini-
tial conditions), definitions and computations and present
the outputs graphically or numerically. PeTTSy allows the
automated plotting of the results of all analyses, includ-
ing the ability to select the parameters and variables of
interest. Results are saved to file in MATLAB format, but
in addition can be exported to the MATLAB workspace.
This allows the user to save them in any format they wish
for post-processing.

Time series analysis
After calculating the solution derivatives the user can
choose to display the following plots:

Solution derivatives
Suppose we are studying an ODE model

dx
dt

= f (t, x, k).

Here t is time, the vector x = (x1, . . . , xn) represents the
model variables and the vector k = (k1, . . . , ks) represents
the model parameters. We denote by x = g(t, k) the solu-
tion of interest which is taken to be determined over a
specific time range 0 ≤ t ≤ T . For oscillator models,
the time T will be the period of the limit cycle oscillation,
while for signalling systemsT will be the length of the time
the model is simulated. For the i-th variable of the solu-
tion g(t, k) the solution derivative with respect to the jth
parameter evaluated at time t is (∂gi/∂kj)(t).
Given a differential equation of the above form there

is a unique solution ξ(t, t0, x0, k) defined by the initial
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Fig. 2 First GUI (’PeTTSy’). The graphic user interface provides an easy way for the user to run the simulation and perform sensitivity analysis for the
models. Once the user has run at least one simulation, the results are saved and the user can access the time series (in this case labeled
“DiurnalExperiment” for 12 hour light and 12 hour dark series and “CtsLightExperiment” for a model with lights permanently on). Plot of the time
series is provided below, and the user can also plot variables separately, or as a 3D plot (by specifying the desired plot specifications in the Plotting
subsection)

condition ξ(t0, t0, x0, k) = x0. In signalling systems such
as the oft-studied NF-κB system, the solution of interest is
a solution of the form ξ(t, t0, x0, k) where k is the parame-
ter vector relevant to the stimulated situation and x0 is the
equilibrium solution found when the parameters take the
value relevant to unstimulated conditions. Thus the solu-
tion of interest is defined by the fixed initial condition. If,
on the other hand, we are interested in a periodic solution
g(t, k) then g(t, k) = ξ(t, t0, g(t0, k), k). Thus, the initial
condition depends upon the parameters k and is implicitly
defined.
For signal models, the derivatives will always be non-

periodic, and for forced oscillators they will always be
periodic. For unforced oscillators, the derivatives will gen-
erally be non-periodic because the period changes with
parameters. However, if instead of considering g(t, k),
one replaces it with ḡ(t, k) = g(λt, k) with λ = λ(k)
chosen so that the period is locally independent of param-
eters, then the derivative (∂ ḡi/∂kj)(t) is periodic and tells
one how the shape of g(t, k) changes with parameters.
The user can plot non-periodic or periodic derivatives.
Further details of the above scaling are outlined in the
manual. Details about the theory behind all this are
given in [9].

Period derivatives
This plot is only relevant for unforced oscillators. In the
software this derivative is obtained from the IRC curves
described below in section Infinitesimal response curves
(IRCs) integrated over the full time interval i.e. φ1 = 0 and
φ2 = τ ( with the full description given in the SI). Theory
behind this calculation is explained in [17].
The user can select different scaling of the period

derivative, for example looking at relative change rather
than absolute change, as well as which values to plot, and
these can be sorted by value or parameter name.

Phase derivatives
This plot type applies to entrained forced oscillators only.
For such systems the period is invariant provided the
system stays entrained but the phase of the periodic solu-
tions can change as parameters are varied. The phases
φ measured are the times of the peak and troughs. The
phase derivatives with respect to model parameters (i.e.
∂φ/∂kj) are plotted as a bar chart. There are options to
plot derivatives with respect to log parameter, and to rep-
resent the resulting derivative on a logarithmic scale and
there are several other plotting options. A description of
the derivatives is given in the SI.
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Infinitesimal response curves (IRCs)
This plot type applies only to unforced oscillators. It plots
the period change produced by an infinitesimally small
perturbation of the parameter at a single time point during
the free running limit cycle.More specifically, for a oscilla-
tor with a stable limit cycle with period τ , changes to some
output of interest Q (such as period or phase φ), given by
δQ, can be described as a linear combination of changes
to each parameter ki (described by δki) of the form,

δQ =
s∑

i=1
δki

(∫ φ2

φ1
fki,Qj(φ)dφ

)
.

Here the function fki,Qj is the infinitesimal response curve
(IRC) for parameter ki on the output Qj, and the changes
to the parameters have only between applied over the time
window t ∈ [φ1,φ2]. Namely, k is changed to k+δk where
δk = (δk1, . . . , δks) only during the time [φ1,φ2]. For more
details the user is referred to [8, 17]. A different but related
IRC is also calculated by the toolbox pathPSA [6].
The user can sort parameters by maximum phase

advance, maximum phase delay or by the areas under the
IRC curve. The integral of the IRC is equal to the deriva-
tive of the period of the limit cycle with respect to that
parameter. A value of zero indicates that a permanent
change to that parameter would cause no overall change
to the phase or period of the limit cycle. A positive value
means an overall phase advance (and period shortening),
and a negative value an overall phase delay (and period
lengthening). IRCS can be plotted as heat maps or as line
plots.
A practical example of the use of these IRCs is given

in [8, 17] where they are used to study temperature com-
pensation and show that the imposition of temperature
compensation (invariance of period under sustained tem-
perature changes) does not conflict with the need for
entrainment by daily temperature oscillations (suscepti-
bility of a clock to such variations).

Phase infinitesimal response curves (phase IRCs)
This plot type applies only to forced oscillators. The phase
infinitesimal response curves represent changes to phases
(usually defined as peak or trough times) of the model
variables in response to parameter perturbations. Note
that period of forced oscillators is fixed by the external
force when they are entrained and so it will remain con-
stant under parameter perturbations. Each phase IRC has
a discontinuity at the time of the peak in question. Change
of phase is represented by summing the integral of the
phase IRC and a partial derivative, for details refer to the
Appendix, that is represented on the plots as a single point
drawn at time of phase. The rest of the interpretation of
how phase changes as parameter is perturbed follows sim-
ilar lines to the interpretation of the IRCs. Namely, if the
selected parameter is perturbed over the whole limit cycle

then change in phase is indicated by the area under the
whole phase IRC and the single time point value. If the
parameter is perturbed over the time interval that does
not include the time of the phase, then the phase change
is given only by the corresponding area under the phase
IRCs curve. For a permanent perturbation of the param-
eter, if the area under the phase IRC is positive and the
aforementioned single point value is positive, then there
will be a phase advance. Likewise, if both are negative, this
will result in a phase delay. However, if they are found to
be of opposite sign, then determining whether the per-
turbation will result in a phase advance or delay requires
examination of their actual values. Phase IRCs apply to a
particular variable, and so the user must specify the vari-
able of interest, and in the case of multiphasic variables,
specify the peak of interest too. As for the IRCs, the user
can sort parameters by maximum phase advance or max-
imum phase delay in response to a parameter change at
a single time point. However, rather than area under the
IRC curve, instead total phase change values are displayed
for when the parameter is perturbed permanently, i.e for
the whole of the limit cycle.

Systems global sensitivity analysis via SVD
After calculating the solution derivatives, SVD analysis
can then be performed in order to investigate global sen-
sitivity. This is done in order to analyse the linearisation
of the mapping from parameter perturbations δk ∈ Rs to
changes δg in the solution of interest. This is a map into an
infinite dimensional space of smooth functions. PeTTSy
approximates these functions by the high-dimensional
vectors given by evaluating the function on a very fine grid
of times. This is a good approximation as the functions
are generally very smooth and the grid is chosen appropri-
ately. If there are N of these times, then M is represented
by a nN×smatrix (n state space dimension and s the num-
ber of parameters). We denote this matrix byM = ∂g/∂k.
To understand why analysis of this is likely to be use-
ful for experimental optimisation note that F = M∗M
is the Fisher Information Matrix for a natural stochastic
extension of the model being considered.
SVD decomposesM as

M = U
VT

where U is an orthogonal matrix whose columns are
the principal components (PCs), the matrix σ is diago-
nal with the singular values, σi, along the diagonal, and
the columns Vj of the matrix V form an orthonormal
basis for parameter space that provides information for
the construction of the Sensitivity Heat Maps (SHMs),
detailed later on. They are the eigendirections for the
Fisher Information Matrix F introduced above.
The principal global sensitivities are the numbers Sij =

σiWij where W is the inverse V−1 = Vt of V. Note that
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∑
j S2ij = σ 2

i
∑

j W 2
ij = σ 2

i . In [8, 9] it is shown that for
the change δg of the solution g(t, x) due to a change δk =
(δk1, . . . , δks) in the parameters, can be written as

δg =
∑
i,j

WijδkjσiUi + O
(∥∥δk2

∥∥)
(1)

=
∑
i,j

SijδkjUi + O
(∥∥δk2

∥∥)
(2)

where σ1 ≥ σ2 ≥ . . . ≥ σs ≥ 0 are the singular values,
the Ui are the principal components and the Wij are the
entries ofW. A key relation that follows from this is

‖δg‖2 = ‖S · δk‖2,

see [9]. Note also that the above mentioned Fisher Infor-
mation Matrix equals StS.
The analysis workflow in this section of PeTTSy uses

the basic module of an Experiment. Let us try and make
this notion clear and explain why we use this terminol-
ogy. For a given system such as the circadian clock we
may have a single model but in related experiments we
may modify this in various ways. For example, we may
knock out genes, alter the forcing by light or temperature,
and biochemically alter rate constants. Tomodel each case
we would modify the model somewhat. For example, to

model a gene knockout we might set the transcription
or translation rate of that gene to zero. To work out the
value that one of these experiments adds to the others we
would need to construct a big model that combines all the
individual ones. PeTTSy effectively does this. Although a
single experiment is a single parameterised model in the
usual sense, as explained below, when they are combined
one can ask interesting questions. PeTTSy calculates all of
the above quantities for the combined system and there-
fore enables a quantitation of the value mentioned above.
An advantage of the way that PeTTSy does this comes
from the fact that to add an extra experiment to a set of
them that have been previously calculated, one only has
to calculate the derivative matrix for the new experiment
and then concatenate it to the previously calculatedmatri-
ces and then calculate the SVD of the combined matrix (a
fast operation).
This approach which is implemented in PeTSSy could

be used in other toolboxes such as AMIGO and
Data2Dynamics that implement the calculation of the
linearisation matrixM.
There are many output options for this analysis, so it has

its own GUI, see Fig. 3. As in the main PeTTSy GUI, the
desired model can be selected via the menu system. Anal-
ysis is then performed on the experiments both separately
and combined.

Fig. 3 Second GUI (’Sensitivity Analysis’). The graphic user interface provides an easy way for the user to select an ’Experiment’. In this case, the
’Experiment’ generated is called ’CtsLightExpt’. The user can select which parameters to include in the SVD analysis and once SVD is done, can select
a plot type (details of the plot types and plot specifications are outlined here as well as in the manual)
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There are a number of variations included in the pack-
age that allow one to focus on different aspects. Firstly,
because in many models the actual parameter values kj
can differ by orders of magnitude it includes an option
where all calculations use the logged parameters so that
one is studying relative rather than absolute changes. It
also offers an option of using the relative change for
the solutions of the system. In addition, for solutions of
unforced oscillators one can opt to decompose the change
in the solution into a change in period and a change in
shape of the solution. One can also choose selected time
points to include, which can be done graphically by click-
ing on a time series plot. Then one is just looking at the
variation of g at these timepoints. This enables one to opti-
mise the choice of timepoints when doing experimental
optimisation. Similarly, one might want to only include
certain variables or form composite variables by form-
ing linear combinations of two or more. This allows the
user to replicate experimental conditions. For example, a
modelmay include a particular protein in both the nucleus
and cytoplasm but the experimental datamay only include
the overall levels in the cell and so the user would then
want to sum the two model variables. All of these aspects
are built into PeTTSy.

Classical sensitivity coefficients

Classical sensitivity coefficients CQ
j for some output of

interestQ (e.g. period or amplitude of unforced oscillator)
can be written in terms of Sij and Ui components because

CQ
j · δk = L · δg

where L is the linear operator that associates to a change
δg in the solution the corresponding linearised change
in Q. This is calculated for all the obvious Q within
PeTTSy. A detailed derivation and list of all of them is
provided in [8].

Experimental optimisation
Before performing the SVD analysis the user chooses
which experiments will be included, which variables or
combintions of variables and which time points. These
actions will change the matrix M that will be analysed,
namely it uses row operations on the matrix (in the case
of creating new variables) or removal of relevant rows of
the M matrix (when one wants to remove eliminate some
variables from the experiment because, e.g. they cannot
be measured).
In particular, one can compute the Fisher Information

Matrix F for each combination of the various experiments.
Usually, one is interested in seeing the extent to which a
new experiment or set of experiments increases the eigen-
values of F or decreases their decay. These are given by
σ 2
i where the σi are the singular values introduced above.

PeTTSy displays the relevant information to enable this.

Displaying the outputs
The Plotting panel allows the user to select a variety of
ways to view the input to and output from the SVD anal-
ysis. The first two, Time Series and Solution Derivatives,
are similar to the corresponding plots in the main PeTTSy
GUI, except that they relate to the selected experiment(s)
rather than the raw time series file, and so show the effect
of combining and omitting variables and selecting time
points.
The other main graphical outputs from the global anal-

ysis include the following:

Singular spectrum plot. This plots the largest singular
values so that the user can assess how fast they decay. The
user can choose how many are plotted.

Parameter sensitivity spectrum (PSS). The PSS plots
the matrix of the principal global sensitivities Sij = σiWij.
This spectrum can be plotted as either a 3-dimensional
surface plot or bar chart (parameter, kj, vs PC index i, vs
Sij, or as a series of 2-dimensional charts (plotting param-
eter against the Sij) one for each PC. The user is able
to sort by parameter and select the most important to
plot, and also to choose whether to plot the raw spec-
trum, absolute values or log10 absolute values. When
performing experimental optimisation, a separate plot is
produced for each experiment, plus an additional plot for
the combined matrix. One is able to view how combining
experiments changes the spectrum. This is a particularly
useful plot as from it one can immediately see which are
the most sensitive parameters and how they affect the
global solution.

Sensitivity heat map. Sensitivity heat maps (SHMs) are
used to identify what variables gm are most sensitive to
parameter variation and the temporal profile of how this
sensitivity manifests itself. This information can be used
to determine which outputs Q have high coefficients and
for which parameters, kj. Instead of inspecting the vari-
ation in the solution one can also do the same for the
principal components Ui. In the former case one plots

fi,m =
(
max

j
|Sij|

)
|Ui,m(t)| (3)

and

f di,m =
(
max

j
|Sij|

)
|U̇i,m(t)|. (4)

We choose these because the sensitivities CQ
j discussed

above can be written as linear combinations of terms
of the form SijUi,m(t) and SijU̇i,m(t) for all the usual
choices of the observableQ. For the latter case instead one
plots the variables from the scaled principal components,
σi|Ui,m(t)|.
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These time series fi,m and σi|Ui,m(t)| are plotted as a heat
map with colour representing value and distance along the
heat map representing time. There is an option to select
the most important variables, defined as those with a
maximum sensitivity value (σi|Ui,m(t)|, fi,m or f di,m) exceed-
ing a specified proportion of the global maximum. It is
also possible to mark the most important regions on each
heat map, again defined as those exceeding a specified
proportion of the global maximum.
When performing experimental optimisation, two

figures are produced for each experiment, one represent-
ing the experiment analysed on its own, and one rep-
resenting this experiment’s component of the combined
matrix.

Time series with sensitivity plot. This plots the selected
time series showing which parts are sensitive and to what
parameters.

Composite plot. The composite plot combines several
of the above plot types. These are: the sensitivity values
(σiUi(t) or fi,m(t)) for the selected variable and PC, plot-
ted as a heat map and line plot; derivatives (σiU̇i(t) or
f di,m(t), respectively) plotted as a heat map; time series of
the selected variable; and the PSS for the chosen princi-
pal component, σiWij (for all kj). This allows the user to
view the sensitivities in a compact form. When perform-
ing experimental optimisation two figures are produced,
one representing the selected variable/PC combination
for the experiment that the variable was taken from, and a
second plot representing this experiment’s component of
the combined matrix.

Amplitude/phase derivatives scatter plot. This plot
visualises the extend to which the change produced by a
parameter variation is a simple phase change or an ampli-
tude change. Effectively it takes the change δgm in themth
variable and decomposes it as αmRm + βmAm + Sm where
Rm is the unit vector that represents an infinitesimal trans-
lation by time, Am is an infinitesimal amplitude change of
gm and Sm is a vector orthogonal to Rm and Am. It then
plots the pair (αm,βm) for any user-defined subset of the
variable indices m. A detailed derivation of Rm and Am is
given in the Additional file 1. Instead of doing this for the
variable changes δgm one can do it for the principal com-
ponent Ui and thus determine to what extent they are a
simple translation or an amplitude change.

Results and discussion
Model time series and solution derivatives
PeTTSy has been applied to a broad range of examples
(with specific details further on in the relevant sections),
but for purposes of illustrating the software we will be

applying it to two exemplar systems: the plant circadian
clock model of [18] and the model of NF-κB oscillations
from [19].
The plant clock model consists of 28 variables repre-

senting the mRNA and protein levels of the genes LHY,
CCA1, TOC1, PRR9, PRR7, NI, LUX and ELF4; ZTL
protein, LHY modified protein; mRNA of ELF3 and GI,
cytoplasmic proteins of ELF3, GI, COP1; nuclear proteins
of ELF3; GI and COP1 in day and night forms; and the
cytoplasmic protein complexes ELF3-GI, GI-ZTL (ZG)
and nuclear protein complexes ElF3-GI, ELF3-ELF4, and
EC. The model has a complex structure that consists of
multiple positive and negative feedback loops and con-
tains 104 parameters (see Fig. 4(a)). Note that 6 of the
parameters are Hill function coefficients so we will keep
them at a fixed value (given in [18]) and we will not vary
them, thus reducing the parameter dimension to 98. We
will simulate the model subject to two different experi-
mental perturbations: constant light (Fig. 4(c) and (d)) and
12 h light and 12 dark conditions (Fig. 4(e)).
For an exemplar signalling system we use the NF-κB

model of [19]. It describes the oscillations in the level of
cytoplasmic and nuclear NF-κB concentration resulting
from an incoming signal of tumor-necrosis factor-α, TNF-
α. We consider both the effect of constant stimulation by
TNF-α and of pulsatile TNF-α stimulation using a 5 min
pulse every 60 min. The model has 14 variables describing
cytoplasmic and nuclear NF-κB, IκBα, their complexes,
A20 mRNA and protein and the kinase IKK in its acti-
vated and inactivated states. The IKK system is activated
by TNF-α and goes on to cause phosphorylation and sub-
sequent degradation of IκBα freeing NF-κB to move into
the nucleus. In the nucleus NF-κB activates IκBα tran-
scription subsequently producing IκBα protein that bind
the nuclear NF-κB and exports it back into the cytoplasm,
causing the process to repeat (Fig. 4(b)).
Figure 4(c-f) illustrates the different plotting options dis-

cussed in Section Time series analysis applied to the two
models and the time series generated for both.
For both models we are interested in changes to the

solutions that are brought about by changes to model
parameters. Suppose that we are interested in understand-
ing the behaviour of LHY mRNA levels of the plant clock
model (Fig. 5(a)) under various parameter perturbations.
In Fig. 5(a) (lower panel) we show the periodic solution
derivatives of LHY mRNA with respect to six parame-
ters: p1, p8, p9, p4, p11 describing the translation of LHY,
PRR9, PRR7, TOC1 and GI protein, respectively, and m1,
the degradation rate of LHY mRNA.
The results show that increasing the LHYmRNA degra-

dation (m1) will lower the peak levels of mRNA (around
times close to t = 0 and t = 24). Increasing the transla-
tion of repressors of LHYmRNA, namely TOC1 and LHY
protein, represented respectively by parameters p4 and
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(a)

(b)

(c) (d)

(e) (f)

Fig. 4 Plant clock [18] and NF-κB [19] network diagrams and different plot options for their model times series. a Plant circadian clock network of
[18]. b NF-κB signalling network from [19]. c-d Simulated time series of different models in PeTTSy. Several mRNA time series of the plant circadian
clock under constant light in (c) 2D and (d) 3D. e Several mRNA time series of the plant circadian clock under 12 h light and 12 h dark cycles
(photoperiodic forcing). f Several time series of NF-κB signalling system [19] under four 5 min pulses administered every 60 min and then no pulse
for the remaining 400 min (24000 sec)

p1, also lowers the amplitude of LHY mRNA oscillations
(note that period solution derivatives are all negative close
to t = 0 and t = 24).
On the other hand, small increases in translation of

repressor PRR9 (parameter p8 ) has almost no effect on

the LHY, while increasing the translation of GI protein
(parameter p11) will counteract the effect of the repressor
PRR7 (parameter p9) and raise the level of LHY mRNA
amplitude. Extracting this information from the network
scheme itself is difficult: GI plays a dual role of an implicit
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(a) (b)

(c)

Fig. 5 Time series, IRC and Period derivative plots. a Top panel, the time series for LHY mRNA from the plant circadian clock model plotted for one
cycle of the oscillation. Bottom panel, the solution derivatives of LHY mRNA with respect to different parameters. b Infinitesimal response curves for
top seven parameters and an inset (below) of the time series of the first variable of the model, LHY mRNA. c Period derivatives for 21 parameters
with the largest period derivative values

activator of LHY, via TOC1, and its repressor, via EC
and PRR9 (refer back to Fig. 4). Our results show that
in this case GI will acts as an overall activator, and this
could be down to the fact that activation goes via fewer
intermediaries. Furthermore, though PRR9 and PRR7 are
repressors, changes to their translation rates appear to be
less striking than changes to translation of TOC1 and GI
repressors of LHY. This insight cannot be gained from the
network diagram alone.
The real power of this approach is that in fact, in

order to explore the effects of a simultaneous change
to several parameters, one just has to combine the
effects of each solution derivative for each parame-
ter of interest [17]. The combination is just a lin-
ear sum of the solution derivatives where the weights

of the sum describe the desired percentage change of
each parameter. So, in Fig. 5(a), any increases in the
translation of GI protein (parameter p11) will counter-
act any effect of increases to the other five parame-
ters. Whether the actual LHY mRNA peak increases or
decreases will be subject to how much each parameter
is changed.
The solution derivatives can be used as a predictive

tool to show how combined parameter changes will affect
the model dynamics (without performing tedious man-
ual changes by hand first) and what sort of experimental
data features the model will be able to match under these
parameter changes. For a further example of this type pre-
dictive analysis, we point the reader to our paper [10] (c.f.
Table 2 and Additional file 1).
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Response curves and derivatives for the plant circadian
clock
Oscillatory behaviour and any changes to this behaviour
are of interest when probing the plant circadian clock. The
infinitesimal response curves (IRCs) are a useful tool from
which two types of information can be extracted: (i) the
effect of a permanent or temporary change to a parameter
value on the period of oscillations,τ , and (ii) the effect of
such a change to a parameter value on the phase advance
or delay of oscillations.
Figure 5(b) top panel shows the IRCs for the follow-

ing parameters of the plant clock model: namely, GI
transcription and translation (n12, p11), ELF3 mRNA
degradation (m26) and formation of ELF3-GI complex
(p17), GI mRNA degradation (m18) and ELF3 transcrip-
tion and translation of cytoplasmic protein (n3 and p16,
respectively). Period derivative ∂τ/∂kj takes the value
of the signed area under the IRC curve for parameter
kj [8]. From Fig. 5(b) the signed area under the IRC
for parameter p11, representing the translation of GI, is
positive, hence a permanent increase of this parameter
will lead to an increase in the period of oscillations, as
observed in Fig. 5(c). On the other hand, a permanent
increase in GI degradation will have the opposite effect on
the period.
From Fig. 5(b), the IRCs for all the parameters shown

reach their maxima or minima around the time of the
trough of LHY mRNA levels (shown in lower panel on
Fig. 5(b) and likewise are close to zero around the times
when LHY mRNA levels are high (i.e. around phase φ =
0 and φ = 24). This means that an introduction of
an infinitesimal (short term) perturbation of parameters
when LHY mRNA levels are low will elicit a greater phase
shift of the oscillations than a perturbation introduced
when levels of LHY mRNA are high. This information
can be used to check the model response to pulse experi-
ments and to create phase response curves (the reader is
referred to [17] (c.f. Figure 2) where the authors show how
approximations of the PRC obtained from the IRC closely
match the measured PRCs of a Drosophila circadian clock
model of [20]). In general terms, a change to phase can be
obtained by taking the negative of the value of the signed
area under the relevant IRC for the relevant length of the
perturbation. In Fig. 5(b), a short increase of GI translation
for a short period administered approximately 10 hours
after the peak of LHYmRNA will elicit a phase advance of
the clock, while a short increase in GI mRNA degradation
will have the opposite effect.
Period derivatives summarise the information provided

by IRCs on the question of the effect of a perma-
nent change to a parameter value on the period of
oscillations,τ . As explained above, IRCs are used to calcu-
late the period derivatives. The plot of period derivatives
for the plant clock model for the top 20-odd parameters

with greatest effect on period is shown in Fig. 5(c). The
period is most sensitive to dynamics of genes GI and ELF3,
with parameters having greatest effect being those related
to GI transcription and translation (n12, p11), ELF3mRNA
degradation (m26) and formation of the ELF3-GI complex
(p17), as well as GI mRNA degradation (m18), ELF3 tran-
scription and translation of cytoplasmic protein (n3 and
p16, respectively). While increasing the value of the first
four aforementioned parameters will increase the period,
doing the same to the last three will decrease the period
of oscillations. This is comparable to the information
provided by the IRCs.
For the plant clock models, period information is very

important, since for the clocks, the ability to maintain
near-constant period across changing temperatures is a
key feature of the system. In circadian literature this fea-
ture is referred to as temperature compensation. Models
of temperature-compensated clocks can be designed by
ensuring that the model parameters change according to
specific balance equations of [21] that rely on the infor-
mation from period derivatives. In a recent paper [10] the
authors used period derivatives calculated by PeTTSy to
construct and parametrize a model of a plant clock that
can temperature compensate. Further information on this
can be found in [10].
In case of plant clocks subject to entrainment by some

sort of forcing, such as day-night cycles of light or temper-
ature cycles, the interest is not in the period of oscillations
(since these are predetermined by the force applied) but
in the changes to phase (i.e. the time of maximum of min-
imum of expression levels) that can occur. In Fig. 6(a)
we show the phase IRCs for LHY mRNA of the plant
clock model subject to 12 hour light: 12 hour dark cycles.
We plot the phase IRCs for several parameters whose
permanent perturbation was identified in the last subsec-
tion as having the greatest effect on the period of LHY
mRNA, Fig. 5. Note that a permanent perturbation to
parameters for LHY mRNA light-degradation and tran-
scription (m1 and g1, respectively) has a similar effect on
LHYmRNA phase, but any shorter temporal perturbation
of each one will elicit a different phase change in LHY,
Fig. 6(a). We can plot the zoomed figure of each phase
IRC separately (not shown). An infinitesimally perturba-
tion ofm1, administered after the peak of LHYmRNA and
during the time that the lights are on (from time 6 h up
to 18 h) will lead to an phase advance (negative �φ) of
LHY mRNA. A slightly longer duration pulse, say starting
4 h after lights are on (i.e. at time 10 h) will also lead to a
phase advance. On the other hand, a duration of pertur-
bation to g1 with the same timing will result instead in a
very small phase delay (though this delay is so small that
it is close to zero). This example shows us that though a
permanent perturbation of each parameter will have the
same effect, the shorter perturbations of each parameter
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(a)

(b)

Fig. 6 Phase IRC and phase derivative plots. a Phase IRCs for three parameters of the plant clock model under diurnal forcing with 12 h light and
12 h dark periods with an inset of the time series of the variable of interest, LHY mRNA. b Phase derivatives of the LHY mRNA with respect to all
model parameters
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over specific times in the oscillation cycle can in fact lead
to a very different response.
As in the case of period IRCs and period derivatives,

the phase IRCs information about the effect of a perma-
nent parameter change on model phase, is summarised in
the phase derivatives. We show the plot of phase deriva-
tives for the plant clock model subject to LD forcing in
Fig. 6(b) for all the model parameters. Here the phase
derivative graph shows that the phase of LHY mRNA is
most sensitive to rates describing LHY transcription and
mRNA light-dependent degradation, protein degradation
and translation (g1, q1, m1, m3 and m4, p1), as well as
degradation of light-active protein P (m11). It is not sur-
prising that parameters describing LHY dynamics feature
at the top of the list. Other parameters that the model is
sensitive to are related to dynamics of NI protein, a repres-
sor of LHY (parametersm16 andm24 describingNImRNA
and dark-dependent protein degradation) and LHY dark-
dependent translation (p2). What is surprising is that only
a dozen or so parameters have any significant effect on the
phase of LHY mRNA peaks, with only a handful have any
significant effect. As would be expected, increasing the
rate of mRNA light-degradation (m1) leads to an earlier
peak in LHY mRNA (seen as a negative phase deriva-
tive). Effect of changes to LHY protein dynamics on the
mRNA is harder to interpret using the network structure
alone, since LHY has a negative feedback on itself via other
morning loop genes (the PRRs) and many of the evening
loop genes, but appears to have an overall positive feed-
back via evening gene TOC1 (by repressing the TOC1
repressor). Information from the phase derivatives indi-
cates that increase in translation of LHY (p1, p2) will delay
the peak of LHY mRNA, while increasing the rates of the
LHY protein and LHY modified protein degradation (m3,
m1 andm4) will advance the phase.

SVD analysis of the plant clock model
We start by getting an overview of the sensitivity of the
plant clock and initially study the clock in constant light.
Plotting the log10 singular values with them normalised
by the maximum singular value shows that they decrease
rapidly (Fig. 7(a)). Already the third singular value is a
bit more than only 20% of the value of the first singular
value. This indicates that we only need to consider a hand-
ful of principal components in order to understand any
changes to behaviour of the model variables when subject
to parameter changes.
An easily generated plot associated with the PSS is

shown in Fig. 7(b). The plots generated for SHMs are
shown in Fig. 7(c). Part (c), top panel indicates that the
main changes are associated with the first three PCs.
We see that the biggest changes are to GI mRNA and
LUX protein and the main changes occur around t = 9.
By inspecting the PSS we see that the main parameters

causing a change in the direction corresponding to PC 1
(the red bars) are n12, m18 and p11. We also see that 11
most sensitive parameters mainly move the solution in the
direction of PC1 but that the 13th (g1) moves the systems
in the orthogonal direction given by PC2.
The top three principal components, U1, U2 and U3 are

shown in Fig. 8(a) and they indicate that main change to
the selected time series will happen to GI mRNA, LUX
and TOC1 mRNA, and this will be during the time of the
peaks of these time series or when the time series levels are
high. This indicates that parameter changes will change
the shape of the oscillations and will most likely change
the phase (i.e. peak times) of the oscillations.
The plot of Sensitivity Value Analysis in Fig. 8(b) shows

that removal of GI mRNA from the SVD analysis has the
largest effect on the singular spectrum. This is followed
by the removal of LUX protein. Note that the higher sig-
nal value is below 0.45, so even the removal of the GI
mRNA from the analysis has a relatively small effect on
the singular values.
In the previous section we explained that in order to

understand the changes to any sensitivity coefficients CQ
j

related to model observables, it is enough to identify all
principal components (indexed by i), all variables (indexed
by m) and all times (tl) such that either fi,m(tl) or f di,m(tl)
have significant values. The SHM fi,m for the plant clock
model are shown in Fig. 7(c). The thresholds are set at
appropriate values in order to make the SHM more com-
pact. The SHM shows that GImRNA variable plays a large
role in the value of the sensitivity coefficients and that
most important timing is 6 h after the peak of LHYmRNA
(the time series has been originally saved and plotted so
that the start of one oscillations coincides with the peak of
LHYmRNA).
The SHM of f di,m is shown in Fig. 7(c) in top panel. This

can be used to show how, the phase changes for all the
maxima and minima of the model under any parame-
ter perturbation. The maxima times can be identified by
white lines and minima ones by black lines. From Fig. 7(c)
bottom panel, it becomes clear that for all the higher val-
ued derivatives f di,m, the peaks of LUX protein and mRNA
and ELF4 mRNA happen at times of high f d2,m i.e. when
the SHM are red. This indicates that these maxima will
be sensitive to parameter changes (however, not neces-
sarily too significantly, since their SHM values are still
quite low). The PSS in 7(b) shows that the phases will
be most sensitive to just a handful of parameters (those
with highest spectrum values |σiWij| for parameters kj. In
this case, these are GI transcription and translation and
mRNA degradation, i.e. n12, p11 andm18, respectively.
The times of highest sensitivity are indicated on

Fig. 8(c). Only values of i (i.e. PC index) and m (vari-
able index) where fi,m are higher than 30% of the global
maximum of fi,m(t) are shown. This means that only two
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Fig. 7 Singular value spectrum plot, the PSS and the SHMs. a Singular value spectrum plot of the top 8 singular values ranked in order of decreasing
value. b The PSS with each group of bars corresponding to the value of |σiWij| for any parameter kj . Only those for which the values are significant
are plotted, i.e. for i = 1, 2, 3. The parameters kj are ordered by maxi=1,2,3 |σiWij| and only top 20 are plotted. c Sensitivity heat map showing fi,m (top
panel) and f di,m (bottom panel) . The threshold is set to be 10% of the global maximum of fi,m(t). The only values of principal components (indexed
by i) and variables (indexed bym) for which maxt fi,m(t) is greater than this threshold have i <= 3. These are ranked in order of decreasing size with
the ratio change also given. The plotted fi,m and f di,m are coloured on the scale where their amplitudes are scaled to 1
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Fig. 8 Principal Components, Singular Value Analysis plot and Time Series with Sensitivity plot. a Time series of several components of the plant
clock model with constant light forcing (top panel) and first three principal components U1, U2 and U3 plotted for the variables selected (bottom
panel). b Singular Value Analysis plot showing the effect on the singular values when removing one variable from the analysis in turn. Only 8
variables with the highest mean difference in the singular values from the original set of singular values are plotted. c Time Series with Sensitivity
plot where only trajectories with the times marked when fi,m(t) for all i,m is larger than 30% of the maximum value

variables are plotted and the any change to time series
of these will come about during the times indicated by
markers (with each marker indicating the influence of a
particular PC on the trajectory). We see that both GI
mRNA and LUX protein aremost affected during the time
of their peaks, indicating that any parameter changes will
likely bring about a phase advance or delay of the two
trajectories of these two variables.

Since it is clear that the first PC indicates the largest
change to the model trajectories, and all the current anal-
ysis has indicated that GI mRNA as a variable that will
be most affected by any parameter changes, we can also
plot the a composite plots just looking at this specific
variable and the first PC. Figure 9 shows the compos-
ite plot that combines the SHMs, as well as the plot
of the GI mRNA time series and the PSS for the first
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Fig. 9 Composite plot of the plant clock model. Top three panels show the heat map and line graph f1,m and the derivative heat map f d1,mwhere the
m is the index of the variable GIm standing for GI mRNA. Fourth panel shows the plot of GI mRNA time series and the bottom panel shows the PSS
where S = σ1W1j for all model parameters, kj , ranked in order of decreasing value
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principal component. The analyses show that the levels
when GI mRNA is rising and peaking it is most amenable
to change under parameter perturbations. Again, great-
est sensitivity will come from the parameter identified in
the earlier PSS plot, but what is striking is that no more
than 20-odd parameters out of 98 will have any bearing on
this sensitivity.
We can also combine different experiments together

and use this functionality to see the difference in the sin-
gular values and the flexibility of the model. Addition of
the the 12L:12D experiment to the continuous light exper-
iment has different consequences to the addition of the
experiment for toc1 mutation in constant light, Fig. 10.
Note that toc1mutant model is made by turning the trans-
lation of the TOC1 protein off (i.e. parameter p4 is set to
zero). Outputs of the combined experiments are the time
series of all mRNA and protein products of the combined
models. The singular values of the combined experiment
when the diurnal experiment is added result in a slower
decay of the singular values, indicating higher flexibility to
explore and optimise any of the potentially ’badly fitted’
model time series. In the case of the addition of the toc1
mutant experiment, the opposite is the case.

Conclusions
Here we have introduced PeTTSy (Perturbation Theory
Toolbox for Systems), a free MATLAB based toolbox for
analysis of large and complex biological models. PeTTSy
performs simulation and analysis of models subject to a
variety of conditions. It also allows experimental optimisa-
tion of complex combined experiments. PeTTSy examines
sensitivity analysis of themodels in a system-global setting
and provides a unique set of tools, making it a valuable
addition to the existing suite of sensitivity analysis tool-
boxes. As such PeTTSy will have broad applicability to
biologists, modellers and systems biologists.

Availability and requirements
PeTTSy can be downloaded free of charge under the terms
of the GNU public license (http://www.gnu.org/licenses/
gpl-3.0.en.html) from the Warwick Systems Biology
Centre Software downloads page at http://go.warwick.
ac.uk/systemsbiology/software. The only requirement
is MATLAB, and it will run on any platform sup-
ported by MATLAB. There are though two optional
dependencies. To import models from and export to
SBML format requires the SBML Toolbox for MAT-
LAB, available form http://sbml.org/Software. To use
CVode in addition to MATLABŠs built in ODE solvers
requires the Sundials MATLAB interface, SundialsTB,
available from http://computation.llnl.gov/casc/sundials/
main.html. PeTTSy uses two further pieces of third party
software that come as part of the package and do not
need to be installed by the user. These are SnuggleTex

from the School of Physics and Astronomy, University of
Edinburgh (http://www2.ph.ed.ac.uk/snuggletex), which
is used to generate MathML in the export of models to
SBML format, and the file findjobj.m, by Yair Altman
(http://undocumentedmatlab.com) which is used in the
construction of parts of the user interface. We thank all
the authors of these software packages for making them
available and acknowledge their contribution.

Additional file

Additional file 1: This PDF includes the derivation of period derivatives,
phase derivatives, phase infinitesimal response curves and describes the
projection of the solution derivative onto rotational and amplitude
variations (for the Amplitude/Phase Derivatives Scatterplot).
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