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Abstract

Motion capture is frequently used for studies in biomechanics, and has proved

particularly useful in understanding human motion. Unfortunately, motion cap-

ture approaches often fail when markers are occluded or missing and a mech-

anism by which the position of missing markers can be estimated is highly

desirable. Of particular interest is the problem of estimating missing marker

positions when no prior knowledge of marker placement is known. Existing

approaches to marker completion in this scenario can be broadly divided into

tracking approaches using dynamical modelling, and low rank matrix comple-

tion. This paper shows that these approaches can be combined to provide a

marker completion algorithm that not only outperforms its respective compo-

nents, but also solves the problem of incremental position error typically asso-

ciated with tracking approaches.
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1. Introduction

Motion capture is a frequently used tool in biomechanics, typically relying

on multiple cameras to track markers placed on joints or limbs of interest. Un-

fortunately, occlusions and marker detection failures often result in a number of

missing markers. Missing markers are common in motion capture applications,

∗Corresponding author

Preprint submitted to Elsevier

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83938173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and typically result in a large amount of time being spent manually correcting

marker trajectories before any in-depth analysis can occur.

The traditional approach to solving this problem uses manual marker cor-

rection (sometimes using spline or linear interpolation) or relies on skeleton

fitting (Herda et al., 2000). The former is typically inaccurate and only suitable

for short occlusion durations, while the latter usually requires specific marker

placement and limits researchers to standard skeleton rigs. More recently, a

number of studies (Xiao et al., 2011; Lai et al., 2011; Tan et al., 2013) have

shown how missing marker positions can be estimated by using matrix factori-

sation techniques. While these can be effective, they are sometimes slow, and

implementations often inaccessible to many biomechanics practitioners.

Tracking approaches that use dynamical motion models and temporal infor-

mation to fill in missing trajectories have also been proposed previously, but

these are often disregarded due to potential difficulties in designing dynamical

models and concerns about efficacy. Wu and Boulanger (2011) use a Kalman

filter together with a constant velocity motion model to estimate marker posi-

tions, but this approach is extremely susceptible to drift. Unfortunately, this

latter behaviour has led a number of works (Feng et al., 2014; Federolf, 2013;

Xiao et al., 2011; Baumann et al., 2011) to disregard Kalman filtering, under

the misconception that this behaviour applies regardless of the dynamical model

used.

Various approaches that attempt to learn a dynamical model while estimat-

ing marker positions have been proposed (Li et al., 2009), but are typically too

slow to be of practical use.

Liu and McMillan (2006) use a family of low dimensional local linear mod-

els trained using multiple prior recordings. When a new sequence is provided,

this approach selects an appropriate model for each frame using a random for-

est classifier, before predicting missing marker positions using the appropriate

model. Unfortunately, this approach requires a priori training data, and is only

applicable if the markers are placed in fixed, predefined positions that match

those used in training.
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Aristidou et al. (2008) utilise the fact that the distance between markers on a

given limb should remain constant to estimate centres of rotation for limbs, and

use centres of rotation tracked using a Kalman filter to infer marker position.

Unfortunately, this approach requires that multiple markers are present for each

limb, assumes limbs are rigid bodies, and is vulnerable to increasing error as the

duration for which markers are missing increases. Tracking using an improved

variable turn model and an unscented Kalman filter (Aristidou and Lasenby,

2013) lessens this effect, but still assumes the presence of rigid limbs with at

least 3 markers placed on each limb.

Dorfmüller-Ulhaas (2003) track the rotation and translation of rigid bodies

using an extended Kalman filter (a linear approximation to a non-linear motion

model is used for state predictions and update), assuming a constant angular

velocity rotation model and a constant acceleration translation model. Unfor-

tunately, this approach requires specific marker placement for the rigid bodies

to be detected, and is also liable to drift. This approach is similar to that de-

scribed by Cerveri et al. (2003), who used an extended Kalman filter and second

order motion model to track joints using 2D image measurements obtained from

multiple cameras.

This paper addresses the drift problem in tracking approaches through the

introduction of a fast and accurate marker completion algorithm that combines

temporal smoothing and matrix factorisation, and which is accessible to the

biomechanics community1. The primary contributions of this paper are as fol-

lows.

• We show that two previously separate families of approaches to marker

completion are in fact complimentary and can be combined.

• We show how the most commonly listed flaw in tracking approaches (in-

cremental error when markers are missing for extended periods of time)

can be avoided.

1Matlab and Python implementations are available at https://github.com/mgb45/

MoGapFill, together with a Python plugin for Vicon Nexus.
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• We provide an approach to marker completion that is completely data

driven, requiring no prior knowledge of marker placement or number and

making no assumptions about the presence of rigid bodies.

2. Missing marker position estimation

We briefly describe the two primary families of approaches to missing marker

completion, before introducing our approach, which combines elements of both.

2.1. Marker smoothing

Knowledge of the expected motion of markers in the form of a dynamical

model can be used together with detected markers to estimate marker positions.

Let xt denote the position vector of markers at time t, and zt the set of measured

marker positions. Assuming N markers, the state vector is constructed as xt =

[x1, y1, z1 . . . xN , yN , zN ]T . Our goal is to estimate xt using measurements zt.

The Kalman filter (Kalman, 1960) is frequently used for problems like these,

as it provides an optimal solution to tracking problems when states are governed

by linear Gaussian motion and observation models. Let us assume that a state

xt evolves as

xt = Ftxt−1 + wt, (1)

with process noise wt drawn from a zero-mean Gaussian distribution with pro-

cess covariance Q, and Ft a linear transition matrix that describes how states

are likely to evolve over consecutive time steps. Further, let us assume that we

can obtain measurements zt, which are related to the state at time t by the

equation

zt = Htxt + vt, (2)

with measurement or observation noise vt drawn from a zero-mean Gaussian

distribution with measurement covariance R, and Ht a linear measurement ma-

trix that maps measurements to states. The Kalman filter provides an optimal

estimate of the state xt given a history of measurements up to time t for models

of this form. In post-processing applications, the Kalman filter can be extended
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to the Rauch-Tung-Striebel (RTS) smoother (Rauch et al., 1965), which pro-

vides an optimal estimate of the state xt given all measurements in the sequence

(see Appendix A for the smoothing recursions).

Unfortunately, it can be hard to design the dynamical model Ft, particularly

without prior knowledge of marker placement, expected motion and the rela-

tionship between markers. A naive approach would be to model each marker’s

motion independently, but this failure to account for marker correlations limits

the achievable accuracy and results in large errors if markers are missing for

prolonged periods of time.

2.2. Low rank matrix completion

Motion capture sequences are typically recorded at an extremely high frame-

rate, and there is often little change in motion over consecutive frames. As a

result, the sequences can usually be described in a low dimensional space. This

property has led to a number of approaches that try and find missing marker

positions by using a low dimensional representation of motion capture sequences

to reconstruct the original data.

We briefly illustrate these techniques using a representative approach termed

mSVD (Srebro et al., 2003), but there are multiple decompositions that could be

used. Let X denote a T ×d training set, formed by stacking all marker position

vectors in a motion capture sequence horizontally. Here, T is the length of the

motion capture sequence, while d denotes the dimensionality of the state vector

xt, typically 3N , where N is the number of markers.

A low dimensional representation of this matrix can be obtained by per-

forming singular value decomposition (SVD), a factorisation of a matrix into

the form

X = UΣV*, (3)

where U and V are unitary matrices, * denotes a conjugate transpose, and Σ

is a diagonal matrix containing the singular values of X, all positive and listed

in decreasing order (Stewart, 1993). The magnitude of the singular values can

be viewed as a measure of a mode’s (columns of U) contribution to the matrix
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X. A low rank approximation of the matrix X can be obtained by discarding

the modes and basis functions (rows of V) of X, which correspond to singular

values of smaller magnitude.

mSVD is an iterative approach that decomposes motion capture data, dis-

cards a portion of the basis functions, reconstructs the original data, replaces

missing values in the sequence with reconstructed ones, and repeats until con-

vergence. Essentially, this approach uses the low dimensional representation

of sequences to find correlations between markers, and uses markers that are

present to provide information about those that are missing. Unfortunately,

this can be slow and memory intensive, as it relies on multiple decompositions.

3. Low dimensional Kalman smoothing

In previous sections, we introduced smoothing and low rank matrix comple-

tion approaches to missing marker problems. The former requires the design

of a complex motion model typically utilising knowledge of marker placement,

while the latter can be slow and memory intensive due to its iterative nature.

Our approach combines the two by projecting markers into a lower dimensional

space learned from the sequence, performing Kalman smoothing in this space

using a random walk motion model and then returning to the original space,

using correlated markers to reduce the average error in each marker position

estimate.

In our formulation we let X denote anM×d training set, formed by takingM

position vectors in a motion capture sequence for which all markers were present

and stacking them horizontally. Let m̄ be a vector containing the means of

columns of the motion capture matrix X. If V̂ is a linear, d×d̂ projection learned

by applying the SVD to mean-shifted data and retaining d̂ basis functions using

an appropriate energy measure (for example, use a scree plot to choose d̂ such

that γ = 99% of the energy in the original data is retained upon reconstruction),

a full dimensional state sample, xt, can be projected into a low dimensional

subspace to give x̃t via

x̃t = V̂T (xt − m̄) . (4)
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Assuming a simple random walk motion model is used in this low dimensional

space, the only change required to apply Kalman smoothing is the replacement

of the measurement matrix Ht in Section 2.1 with

Ĥt = HtV̂. (5)

This approach has the benefit of performing both temporal smoothing and

taking marker correlations into account, while requiring only a single SVD com-

putation, thereby providing a large speed improvement over mSVD. Algorithm

1 describes our approach in more detail, providing the full Kalman smoothing

recursions.

Algorithm 1 Low dimensional Kalman smoothing

Decompose X − m̄ = UΣV*

d̂ = find(cumsum(diag(S))) ≥ γ)
V̂ = first d columns of V
m̂0 = randn(d,1)

P̂0 = randn(d,d)
for t = 1 to T do

m̂t = m̂t−1

P̂t = P̂t−1 + Q
Kt = P̂tĤ

T
t (ĤtP̂tĤ

T
t + R)−1

mt = m̂t + Kt(zt − (Ĥtm̂t + Htm̄))

Pt = (I − KtĤt)P̂t

end for
m̃T = mT

P̃T = PT

for t = T − 1 to 1 do
m̃t = mt + PtP̂

−1
t (m̃t+1 − m̂t+1)

P̃t = Pt + PtP̂
−1
t (P̃t+1 − P̂t+1)(P̂−1

t )TPT
t

yt = V̂m̃t + m̄
end for
return Y = [y1 . . .yT ]T

Kalman smoothing recursions are applied in the low dimensional space, us-

ing a matrix Ht at each time step to map measurements zt (detected markers at

time t) to states. The measurement matrix Ht varies depending on the number

of measurements obtained at each time step, and is constructed by removing

the rows corresponding to missing markers from an d×d identity matrix. Noise
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covariance matrix R is diagonal, with elements selected empirically, while Q is

obtained by determining the standard deviation of the rate of change of marker

positions and projecting this into the low rank space. Note that in our appli-

cation, the use of a random walk motion model means that Ft = I. The state

is also tracked in a lower dimensional subspace, which results in the modified

recursions of Algorithm 1.

4. Results

We tested our approach on a challenging marker tracking sequence of an ac-

tor performing a fighting sequence, which was obtained from Aristidou (2013).

This sequence comprises 25000 frames of 47 markers captured at 480 fps, with

existing missing marker positions manually corrected by assuming smooth mo-

tion. Figure 1 shows the gaps that were present in the sequence prior to manual

correction.

Test data was generated by inserting gaps of various lengths at randomly

selected locations for randomly selected markers, with gaps following the dis-

tribution shown in Figure 1. This process was repeated 100 times, to generate

100 different test sequences. The test data generation process selected ensures

that test sequences contain the error types likely to be seen in real data, while

providing a wide variety of test conditions.

Figure 2 shows a box plot of the root mean square error for marker posi-

tions when the proposed low dimensional smoothing was applied to the 100 test

sequences using a random walk motion model. The results obtained by RTS

smoothing using random walk and constant velocity motion models (Wu and

Boulanger, 2011), cubic spline fitting, applying mSVD (Srebro et al., 2003) and

by unscented Kalman filtering using a variable turn model (VTM) (Aristidou

and Lasenby, 2013) are also provided for comparison. The latter assumes that

limbs are rigid bodies and requires that at least 3 markers are present per limb.

The low dimensional smoothing took place in a 77 dimensional subspace,

while the random walk smoother used a state space of dimension 141 and the
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Figure 1: A plot of the gap durations extracted from a real motion capture sequence shows
that markers are primarily missing for short periods of time, but that longer gaps are also
present. The gaps shown here were inserted into the test sequence at random locations for
randomly selected markers. This process was repeated to produce 100 different test sequences,
each containing over 1900 gaps.
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Figure 2: A boxplot shows that the distribution of the marker error at each time instant
in the tracking sequences is significantly more compact for the low dimensional smoothing
approach, with significantly smaller outlier errors. (Outlier errors larger than 350 mm have
been suppressed to aid visualisation)
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Table 1: Summary statistics (mm) for the tested approaches

Statistic Proposed RW Cubic spline mSVD CV VTM
Median 4.93 20.91 1.18 4.69 9.32 2.50
Mean 8.36 87.17 25.029 23.81 106.10 10.21
SD 11.42 158.72 83.50 81.58 272.59 23.75
Q3 9.91 95.60 13.24 10.77 75.93 10.13
Max 441.23 3671.01 10240.21 10240.02 6736.50 1664.70

constant velocity smoother required a state space of 282 dimensions.

A Kruskal-Wallis H test showed that there was a statistically significant

difference in errors obtained using the different approaches, χ2(2)=2.5033e6,

p=0, with mean ranks 1.0408e7, 1.3755e7, 7.6475e6, 1.0926e7, 1.2270e7 and

8.3967e6. The latter are ordered as in Figure 2. A post-hoc test shows that

the mean ranks for each group are significantly different to those of others at

a 95 % confidence level. As expected, tracking using the VTM model, which

requires knowledge of the marker placement and at least 3 markers placed on

each limb, performs extremely well, but surprisingly a cubic spline fit exhibits

the lowest mean rank of all the approaches tested. This can be attributed to the

gap distribution used for testing, which contains significantly more small gaps.

The cubic spline performs well over short durations and as a result exhibits good

overall results. However, for longer gaps, the cubic spline performs extremely

poorly. Table 1 provides summary results that emphasise this.

It is clear that the proposed low dimensional Kalman smoothing approach

significantly reduces the magnitude of outlier errors and results in lower error

variability. The more compact marker error distribution is obtained because the

filtering action in the low dimensional subspace serves to constrain the error in

individual markers, and automatically allows for knowledge of the behaviour of

other markers to be leveraged to provide insight into the expected position of

missing markers. Smoothing using the constant velocity motion model performs

well when markers are missing for only short periods of time, but fails dismally

when markers are missing for extended periods of time.

This behaviour can be observed when the marker position error is viewed as
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a function of the duration of time the marker was missing for (Figure 3). As

expected, random walk and constant velocity smoothing are highly susceptible

to drift, undergoing incremental position error, and a cubic spline fit is unable

to handle large gaps, but the matrix factorisation approaches are more robust

to the missing marker duration, as they take the positions of other markers into

account when estimating position, thereby limiting the drift in error. The VTM

filter performs well as it also takes the position of other markers into account,

but requires prior knowledge of marker placement. mSVD and the cubic spline

perform similarly because mSVD applies a cubic spline initialisation stage.
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Figure 3: Marker position error as a function of missing marker duration shows that low di-
mensional smoothing and the VTM filter are less susceptible to drift than the other approaches
compared against.

Table 2 shows the processing times for a single test sequence. While not as
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Table 2: Comparison of processing times

Algorithm Duration (25000 frames)
Cubic spline 0.6 s
Proposed 238.0 s
Random walk 376.0 s
mSVD 402.5 s
Constant velocity 626.2 s
VTM 1382.8 s

fast as a simple cubic spline fit, the proposed approach is still suitable for practi-

cal use. In terms of computational complexity, Kalman smoothing is dominated

by the number of markers visible at each time step (worst case O(d3)), so the

processing rate is unlikely to fall below 100 frames per second in most biome-

chanics applications. It should be noted that while the cubic spline provides

low median error and is extremely fast, the large number of outliers (marker

position estimates with unusually large errors) produced by this approach make

it infeasible for practical use.

5. Conclusion

Missing markers are a frequently encountered problem in studies relying on

motion capture. This paper has described a simple and effective approach to

missing marker position estimation that combines temporal smoothing and low

rank matrix completion to remedy drift related problems typically associated

with tracking approaches to marker completion. While we have provided results

for the pairing of singular value decomposition and a random walk Kalman

smoother, the unified marker estimation approach proposed here can also be

applied in alternative linear subspaces, or with modified motion models.

It should be noted that low dimensional smoothing requires a representative

set of frames in which all markers were present to learn an appropriate subspace

in which to filter, so is unable to track the position of markers that fall off early

on in a motion capture sequence. This can be remedied by ensuring that all

markers are present for an initial training phase, but is not ideal.The proposed

approach is independent of marker placement and motions and does not require
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a specific skeleton rig. An implementation of our approach is available at https:

//github.com/mgb45/MoGapFill and we hope that this will prove useful within

the greater biomechanics community.

Over 75% of the errors obtained using the proposed approach were below

1 cm, a suitable level for many biomechanics applications, but an error of this

magnitude can affect gait kinematic estimates significantly (Szczerbik and Kali-

nowska, 2011). Errors are dependent on the nature of the test sequence and the

lengths of gaps in a given test sequence influences the choice of marker comple-

tion algorithm. As a result, biomechanics researchers still need to be cognisant

of the accuracy required for their studies, and the type of gaps present in their

dataset when selecting marker completion algorithms.
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Appendix A. RTS smoothing

This section provides the Rauch-Tung-Striebel smoothing (Rauch et al.,

1965) recursions used in this work. Here, a forward prediction of a state mean

and uncertainty at time t is made using

m̂t = Ftm̂t−1, (A.1)

P̂t = FtP̂t−1F
T
t + Qt, (A.2)
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under the assumption of a linear motion model Ft and Gaussian process noise

with covariance Qt. When a measurement zt is made the state mean and

covariance is updated using

mt = m̂t + Kt(zt − Htm̂t), (A.3)

Pt = (I − Kt(zt − HtP̂t), (A.4)

with Ht denoting the mapping between measurements and state, and

Kt = P̂tH
T
t (HtP̂tH

T
t + R)−1 (A.5)

the optimal Kalman gain. R denotes the uncertainty in measurements. The

forward pass Kalman filter estimate mt only considers the effect of measure-

ments obtained prior to time t, so the RTS smoother applies a second backward

pass through the data to take future measurements into account. The backward

recursions

Ct = PtF
T
t P̂−1

t , (A.6)

m̃t = mt + Ct(m̃t+1 − m̂t+1), (A.7)

P̃t = Pt + Ct(P̃t+1 − P̂t+1)CT
t , (A.8)

are used to accomplish this.

Note that in our application, the use of a random walk motion model means

that Ft = I. The state is also tracked in a lower dimensional subspace, which

results in the modified recursions of Algorithm 1.
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