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Abstract

We present an adjoint-based method for the calculation of eigenvalue perturba-
tions in nonlinear, degenerate and non self-adjoint eigenproblems. This method
is applied to a thermo-acoustic annular combustor network, the stability of
which is governed by a nonlinear eigenproblem. We calculate the first- and
second-order sensitivities of the growth rate and frequency to geometric, flow
and flame parameters. Three different configurations are analysed. The bench-
mark sensitivities are obtained by finite difference, which involves solving the
nonlinear eigenproblem at least as many times as the number of parameters.
By solving only one adjoint eigenproblem, we obtain the sensitivities to any
thermo-acoustic parameter, which match the finite-difference solutions at much
lower computational cost.
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Nomenclature

Abbreviations:

AD Adjoint

FD Finite difference

Greek:

ε Perturbation parameter

ω Complex eigenvalue, ωr + iωi

ωi Growth rate

ωr Angular frequency
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Mathematical:

〈·, ·〉 Inner product

N Operator representing the nonlinear eigenvalue problem

O Big-O (Landau symbol)

o Little-o (Landau symbol)

Roman:

p Vector of thermo-acoustic parameters

i Imaginary unit, i2 + 1 = 0

q State vector

N Eigenvalue geometric degeneracy

Subscripts:

0 Unperturbed

1 First-order perturbation

2 Second-order perturbation

Superscripts:

∗ Complex conjugate

+ Adjoint

ˆ Eigenfunction

H Hermitian

1. Introduction

Thermo-acoustic oscillations involve the interaction of heat release and sound.
In rocket and aircraft engines, heat release fluctuations can synchronize with the
natural acoustic modes in the combustion chamber. This can cause loud vibra-
tions that sometimes lead to catastrophic failure. It is one of the biggest and
most persistent problems facing rocket and aircraft engine manufacturers [1].

Many studies have demonstrated the ability of Large-Eddy Simulation (LES)
to represent the flame dynamics [2]. However, even when LES simulations con-
firm that a combustor is unstable, they do not suggest how to control the insta-
bility. Moreover, LES is computationally expensive. Simpler frequency-based
models are therefore often used in academia and industry for pre-design, opti-
mization, control and uncertainty quantification.

There exist two main different classes of frequency-based low-order methods
in thermo-acoustics.
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cylindrical polar coordinates x, r and ⇥ and write the pressure,
density, temperature and velocity as p, ⇤ , T and (u,v,w), respec-
tively. We will assume a perfect gas, p = Rgas⇤T . The flow
is taken to be composed of a steady axial mean flow (denoted by
bars) and a small perturbation (denoted by dashes). We make one
of two assumptions about the combustor geometry: either we as-
sume it is axially long (typical of industrial gas turbines) or that it
has a narrow annular gap compared to its circumference (typical
of aeroengines). The mean flow for either cases can be assumed
to be one-dimensional. For the former case, the perturbations
will also be one-dimensional (at least at frequencies of practical
interest). In the latter case, circumferential and axial variations
of the perturbation could be important but radial variation can be
neglected. We consider perturbations with complex frequency
⌅ , i.e. we have p = p̄(x)+ p⇥(x,⇥ , t) with p⇥ = Re [p̂(x,⇥)ei⌅t ],
(and similarly for the other flow variables). We may consider
the perturbations as a sum of circumferential modes by writing
p̂(x,⇥) = "Nn=�N p̂nein⇥ and so on (where N is sufficiently large
that the higher-order modes can be neglected). If the geometry
is axisymmetric throughout then the circumferential modes can
be considered independently. However if the symmetry is bro-
ken (for instance by a Helmholtz resonator being present [17])
the modes can become coupled and must be calculated together.
Note that for the case of a one-dimensional geometry, only the
plane waves are present and we simply have N = 0.

The geometry is composed of a network of modules describ-
ing its features, such as straight ducts, area changes and combus-
tion zones. For the straight duct modules, wave propagation is
used to relate the perturbations at one end of the duct to those
at the other. The rest of the modules are assumed to be acous-
tically compact. Here quasi-steady conservation laws for mass,
momentum and energy are used to relate the flow at the inlet
and exit of the module, accounting for any force or heat input
applied within the module. At a combustion zone, the unsteady
heat release is related to the flow disturbances by a (linear) flame
transfer function. Acoustic boundary conditions are assumed to
be known at the inlet and outlet of the geometry. The proce-
dure to find the resonant modes is to guess an initial value for ⌅
and calculate the perturbations, starting at the inlet and stepping
through the modules to the outlet. In general this solution will
not match the outlet boundary condition. ⌅ is then iterated to
satisfy this constraint. (For coupled circumferential modes, the
relative phase and magnitude of the modes at the inlet must also
be calculated.) The frequency of the mode is then Re(⌅)/(2�),
and we define the growth rate as � Im(⌅). If the growth rate is
negative the mode is linearly stable and would not be expected
to be seen in practice, whereas if the growth rate is positive the
mode is unstable and would grow in amplitude until nonlinear
effects become important and a limit cycle is achieved. More de-
tails on this linear model are given in [18], with the procedure for
coupled circumferential modes described in [17].

The above references only consider geometries with a sin-
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Figure 1. Schematic diagrams of possible application of
thermoacoustic network model (top) and modelling approach (bottom).

gle flow-pathway from the inlet to the outlet, however it is pos-
sible to extend the model to have multiple pathways. These ad-
ditional ‘secondary paths’ may originate by splitting of the flow
or from secondary inlets to the geometry. The paths can later
terminate as dead ends, or by joining into other paths. Flow
from one path to another through holes can also be incorpo-
rated. This means that cooling flows and staged combustion
can be modelled. Schematic diagrams of a possible applica-
tion and modelling approach are shown in Fig. 1. At the start
of each secondary path there is an unknown parameter for the
perturbation (such as the ratio of the mass-flux perturbations
at a flow split), and at the end of each path there is a bound-
ary condition (such as û = 0 at a dead end). However, due
to the linearity of the model, calculation of these simply in-
volves the solution of a (P+ 1)-dimensional complex matrix
equation (or (P+ 1)(2N + 1)-dimensional for coupled circum-
ferential modes), where P is the number of secondary paths.

A general review of linear methods for combustion instabil-
ity in LPP gas turbines in given [7, 8].

3 NONLINEAR FLAME MODEL
We assume that combustion takes place at a single combus-

tion zone, i.e. there is no radial or axial staging (however, this
constraint can be relaxed; see Section 5.3). This combustion zone
is assumed to be acoustically compact in the axial direction (i.e.
short compared to the wavelength of flow perturbations). We as-
sume that a ring of D premix ducts or burners is present. For
simplicity, we take these to be identical and uniformly spaced
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Figure 1: (a) Generic thermo-acoustic network of an aero-engine. (Adapted from Stow and
Dowling [9] with permission of the original publisher ASME.) (b) If the system has some eigen-
values with positive growth rate (red/filled circles), the system is linearly unstable. Adjoint
methods are able to quantify the effect that a change in any network parameter has on the
eigenavalues of interest (arrows). This figure is for illustration and does not contain results
from calculations.

1. Network-based methods model the geometry of the combustor as a net-
work of acoustic elements where the acoustic problem can be solved an-
alytically [3, 4, 5, 6]. Jump relations connect these elements, enforcing
pressure continuity and mass or volume conservation [7, 8] while account-
ing for the dilatation caused by flames. The acoustic quantities in each
segment are related to the amplitudes of the forward and backward acous-
tic waves, which are determined such that all the jump relations and the
boundary conditions are satisfied. This can only be achieved for discrete
values of the complex eigenvalue. A generic thermo-acoustic network is
shown in Fig. 1a (adapted from Stow and Dowling [9]).

2. Assuming a steady mean flow, which can be obtained by time-averaging
experiments or numerical simulations, an equation for acoustic pressure
perturbations in reacting flows can be derived from the Navier–Stokes
equations [10, 11]. This is the (non-homogeneous) Helmholtz equation,
where the source term stems from the heat released by the flame. Helmholtz
solvers can calculate eigenvalues of complex three-dimensional configura-
tions.

Using the modal transformation q(x, t) = q̂(x) exp(−iωt), both network-based
models and Helmholtz approaches lead to an eigenvalue problem that is nonlin-
ear in the eigenvalue

N {ω,p} q̂ = 0, (1)
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where N{} is an operator acting linearly on the thermo-acoustic eigenfunction,
q̂, but depending nonlinearly on the complex eigenvalue, ω. N{} depends on
the system’s parameters1 (e.g., geometry, gain and phase of the flame response,
area expansions), which are encapsulated in the vector p. The real part of the
eigenvalue, ωr, is the angular frequency and the imaginary part, ωi, is the growth
rate, which governs the stability. The size of the operator matrix is either equal
to a few tens, in the case of a factorized network-based model, or proportional
to the number of nodes in the numerical grid in the case of the Helmholtz
approach, typically of order ten/hundred thousand for industrial geometries. If
N represents the Helmholtz problem, then the eigenfunction consists only of
the discretized acoustic pressure.

An important source of nonlinearity lies in the flame model, which intro-
duces a time delay appearing as an exponential function in the frequency space
[12]. Other nonlinearities in the eigenvalue may appear because of the bound-
ary impedances [11]. The solution of these nonlinear eigenproblems and the
calculation of the thermo-acoustic growth rates and frequency is the objective
of stability analysis. For design purposes, it is also important to predict how
the thermo-acoustic stability changes due to variations of the system. This is
the objective of sensitivity analysis.

1.1. Sensitivity analysis of eigenproblems

In situations that are susceptible to thermo-acoustic oscillations, often only
a handful of oscillation modes are unstable. Existing techniques examine how
a change in one parameter affects all oscillation modes, whether unstable or
not. Adjoint techniques turn this around. In a single calculation, they examine
how each oscillation mode is affected by changes in all parameters. In other
words, they provide gradient information about the variation of an eigenvalue
with respect to all the parameters in the model. For example, in a system with
a thousand parameters, they calculate gradients a thousand times faster than
finite-difference methods.

Figure 1b is an illustration of the eigenvalues of a thermo-acoustic system.
Two eigenmodes are unstable (they have positive growth rate and lie in the
grey region). There are two approaches to determine how these two eigenvalues
are affected by each system parameter. On the one hand, we could change
each parameter independently and recalculate all the eigenvalues, retaining only
the information about the eigenvalues of interest. This is called the finite-
difference approach in this paper and requires as many calculations as there are
parameters. On the other hand, we could use adjoint methods to calculate how
each eigenvalue is affected by every parameter, in a single calculation. This
requires as many calculations as there are eigenvalues of interest, which is many
times smaller than the number of parameters.

1The thermo-acoustic parameters are also called ‘design’ or ‘input’ parameters in this
paper.
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Eigenvalue sensitivity methods originate from spectral perturbation the-
ory [13] and quantum mechanics [14]. In structural mechanics, the calcula-
tion of first- and second-order derivatives of non-degenerate eigensolutions of
self-adjoint nonlinear eigenproblems was proposed in aeroelasticity by Man-
tegazza and Bindolino [15] and only theoretically by Liu and Chen [16]. Later,
[17, 18] found the analytical expressions for the sensitivities up to n-th order
of a general self-adjoint non-degenerate eigenproblem with application to vibra-
tional mechanics. More recently, Li et al. [19] derived eigensolution sensitivities
for self-adjoint problems with relevance both to degenerate and non-degenerate
simplified structural mechanical problems. Eigenvalue sensitivity is also com-
monly used in hydrodynamic stability [20, 21, 22, 23, 24, 25, 26], where the
eigenvalue problems are typically linear, or with quadratic nonlinearities, and
non-degenerate. The review by Luchini and Bottaro [27] provides a thorough
overview of the state-of-the-art of adjoint methods in hydrodynamic stability.

Adjoint eigenvalue sensitivity analysis of thermo-acoustic systems was pro-
posed by Magri and Juniper [28]. The analysis was applied to simplified models
of combustors to find optimal passive mechanisms and sensitivity to base-state
changes in a Rijke tube [28, 29, 30, 31], a ducted diffusion flame [32] and, more
recently, to a ducted premixed-flame [33]. However, these studies dealt with
linear eigenvalue problems in which the eigenvalue appears under a linear term.

The extension of the adjoint analysis to nonlinear thermo-acoustic eigen-
problems was proposed by Magri [34] and Juniper et al. [35] based on ideas
of spectral perturbation theory of nonlinear eigenproblems [36]. They proposed
two different adjoint methods for the prediction of eigenvalue sensitivities to
perturbations to generic system’s parameters. The first method was based on
the Discrete Adjoint approach, in which the eigenvalue drift is obtained by re-
cursive application of the linear adjoint formula at each iteration step of the
nonlinear solver. The second approach was based on the linearization of the
nonlinear operator around the unperturbed eigenvalue, which needs fewer op-
erations than the first approach. In this paper we use the second approach
of Juniper et al. [35] and apply it to an elaborate annular combustor. Such
first-order adjoint analysis was applied recently to predict symmetry breaking
in annular combustors [37].

1.2. Objective and Structure of the paper

The aim of this paper is to provide a method for the calculation of first- and
second-order eigenvalue sensitivities of non-self-adjoint nonlinear eigenproblems
with degeneracy. This framework is applied to the elaborate annular combustor
of [38] to calculate design-parameter sensitivities.

In Section 2 we present the theory for adjoint sensitivity analysis of non-
linear eigenproblems. We derive first- and second-order eigenvalue sensitivity
relations both for non-degenerate and degenerate eigenproblems. In Section 3
the mathematical model of the annular combustor thermo-acoustic network is
briefly described. For further background in annular combustors, the reader
may refer to the review by O’Connor et al. [39]. In Section 4.1 we validate
the adjoint formulae against finite differences, the latter of which provide the
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benchmark solution because they do not rely on any assumption on the pertur-
bation size. Three configurations are considered: a weakly coupled rotationally
symmetric combustor (Case A), a strongly coupled rotationally symmetric com-
bustor (Case B) and a strongly coupled non-rotationally symmetric combustor
(Case C). The eigenvalue sensitivities to perturbations to both geometric, flow
and flames parameters are calculated in Section 4.2. A concluding discussion
ends the paper.

All of these studies are based on deterministic analysis, which assumes per-
fect knowledge of the thermo-acoustic parameters. Including uncertainties in
the flame parameters in the stability calculations is the objective of the second
part of this paper [40].

2. Eigenvalue sensitivity of nonlinear eigenproblems

We show how to compute the eigenvalue sensitivity via equations involv-
ing the adjoint eigenfunctions. This approach combines a derivation with the
Continuous Adjoint (CA) formulation, in which the problems are governed by
continuous operators, without explicitly deriving the CA equations. The final
sensitivity equations can be applied by using a Discrete Adjoint (DA) philoso-
phy, which is more accurate and easier to implement [e.g., for thermo-acoustic
problems, 28, 30, 32].

First, we solve for the nonlinear direct eigenproblem (1), in which the eigen-
value appears under exponential, polynomial and rational terms. Starting from
an initial guess for the eigenvalue, we assume that the converged eigenvalue ω0

is a numerical root of the dispersion relation

|det (N {ω0,p0}) |< tol, (2)

where ‘det’ is the determinant and ‘tol’ is a desired tolerance. In large systems
we ensure condition (2) through relaxation methods [11] instead of solving for
the characteristic equation. Equation (2) defines an implicit function between
ω and p, i.e., ω = ω(p). The corresponding eigenfunction q̂0 is calculated from
the linear system

N {ω0,p0} q̂0 = 0. (3)

The operator N depends only on the final converged eigenvalue, ω0. The kernel
of equation (3) can be found by computing the singular vector(s) associated
with the trivial singular value(s).

Second, by defining the adjoint eigenfunction, q̂+
0 , and operator through a

Hermitian inner product in an appropriate Hilbert space〈
q̂+
0 ,N {ω0,p0} q̂0

〉
=
〈
N {ω0,p0}+ q̂+

0 , q̂0

〉
, (4)

we solve for the adjoint eigenfunction associated with the converged eigenvalue
ω0

N {ω0,p0}H q̂+
0 = 0. (5)
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If we followed a purely Continuous Adjoint (CA) approach [28, 30, 29], we
would need to derive explicitly the Hermitian operator NH and the continuous
adjoint equations. However, we do not derive these equations explicitly and we
proceed on only with the abstract expression of the Hermitian operator, in order
to apply the Discrete Adjoint (DA) method directly to the final sensitivity rela-
tions, as explained subsequently. In equation (5), the adjoint eigenfunction can
be found with the same procedure as (3). Third, we perturb a system’s parame-
ter and calculate the perturbation operator, which we can evaluate numerically
by finite difference

p = p0 + εp1 =⇒ δpN{ω0, εp1} = N{ω0,p} − N{ω0,p0}, (6)

where ε� 1. This perturbation operator is the input of the problem and, there-
fore, is constant, i.e., it does not depend on ω. Hence, δpN{ω0, εp1} represents
exactly all the orders of its Taylor series (providing that εp1 is sufficiently small)

δpN{ω0, εp1} =
∂N
∂p

εp1 +
1

2

∂2N
∂p2

(εp1)2 + o(ε2). (7)

We assume that the eigenvalues and eigenfunctions are analytical in the complex
plane around ε = 0 and

ω = ω0 + (εp1)ω1 +
1

2
(εp1)2ω2 and q̂ = q̂0 + (εp1)q̂1 +

1

2
(εp1)2q̂2, (8)

where

ω1 =
dω

dp
, ω2 =

d2ω

dp2
and q̂1 =

dq̂

dp
, q̂2 =

d2q̂

dp2
. (9)

The perturbed eigenproblem must satisfy equation (1) and is Taylor-expanded
up to the second-order total derivative of p around the unperturbed eigenvalue
ω0, yielding

N
{
ω0 + (εp1)ω1 +

1

2
(εp1)2ω2,p0 + εp1

}(
q̂0 + (εp1)q̂1 +

1

2
(εp1)2q̂2

)
= 0,

=⇒ N {ω0,p0} q̂0 +
dN {ω,p} q̂

dp
(εp1) +

1

2

d2N {ω,p} q̂

dp2
(εp1)2 + o(ε2) = 0.

(10)

By taking the total derivatives and using definitions (7) and (9), we obtain the
order-by-order expansion

N {ω0,p0} q̂0+

+ (εp1)

[
N {ω0,p0} q̂1 +

∂N {ω,p0}
∂ω

∣∣∣
ω0

ω1q̂0 + δpN {ω0, εp1} q̂0

]
+

+ (εp1)2
[

1

2
N {ω0,p0} q̂2 +

∂N {ω,p0}
∂ω

∣∣∣
ω0

ω1q̂1 + δpN {ω0, εp1} q̂1

]
+

+ (εp1)2
[

1

2

∂2N {ω,p0}
∂ω2

∣∣∣
ω0

ω2
1 +

1

2

∂N {ω,p0}
∂ω

∣∣∣
ω0

ω2 +
∂δpN {ω0, εp1}

∂ω

∣∣∣
ω0

ω1

]
q̂0 + o(ε2) = 0.

(11)
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Importantly, the cross derivative ∂δpN {ω0, εp1} /∂ω is zero because the per-
turbation operator δpN {ω0, εp1} is constant. The unperturbed term ∼ O(1)
in equation (11) is trivially zero because of equation (3). Higher order terms
∼ o(ε2) are neglected.

2.1. First-order eigenvalue sensitivity

The equation for the first order ∼ O(ε) is recast as

N {ω0,p0} q̂1 = −
(
∂N {ω,p0}

∂ω

∣∣∣
ω0

ω1q̂0 + δpN {ω0, εp1} q̂0

)
. (12)

The objective is to find the eigenvalue drift ω1 due to the perturbation
δpN . The adjoint eigenfunction provides a solvability condition for the non-
homogeneous system (12) fulfilling the Fredholm alternative2 [41]. Mathemati-
cally, this is achieved by projecting equation (12) onto the adjoint eigenfunction,
q̂+
0〈

q̂+
0 ,N {ω0,p0} q̂1

〉
= −

〈
q̂+
0 ,

(
∂N {ω,p0}

∂ω

∣∣∣
ω0

ω1q̂0 + δpN {ω0, εp1} q̂0

)〉
.

(13)

Using equation (5), the definition of the inner product (4) and its linearity,
yields an equation for the first-order eigenvalue drift

ω1 =
−
〈
q̂+
0 , δpN {ω0, εp1} q̂0

〉〈
q̂+
0 ,

∂N{ω,p0}
∂ω

∣∣∣
ω0

q̂0

〉 , (14)

assuming that ∂N {ω,p0} /∂ω 6= 0. If the number of components of p is S, and
we are interested in the first-order sensitivity for each, equation (14) enables
us to reduce the number of nonlinear-eigenproblem computations by circa SP ,
where P is the average of the number of iterations needed to obtain ω1 by solv-
ing the nonlinear eigenproblem perturbed via finite difference.

If the unperturbed eigenvalue ω0 is N -fold degenerate3, the eigenfunction
expansion becomes q̂ =

∑N
i=1 αiê0,i + εq̂1 + ε2q̂2, where αi are complex num-

bers and ê0,i are the N independent eigenfunctions associated with ω0. By
requiring the right-hand side of equation (13) to have no components along the
independent directions ê0,i (Fredholm alternative), we obtain an eigenproblem
in αi and eigenvalue ω1 [36]〈

ê+
0,i,

∂N {ω,p0}
∂ω

∣∣∣
ω0

ê0,j

〉
ω1αj = −

〈
ê+
0,i, δpN {ω0, εp1} ê0,j

〉
αj , (15)

2The left-hand side operator range is equal to the kernel of the orthogonal complement of
its adjoint operator.

3N -fold degeneracy occurs when an eigenvalue has N independent associated eigenfunc-
tions, i.e., the eigenvalue has N geometric multiplicity.
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for i, j = 1, 2, ..., N . Einstein summation is used, therefore, the inner products
in equation (15) are the components of an N × N matrix, αj are the com-
ponents of an N × 1 vector and ω1 is the eigenvalue. This equation is defined
only in the N -fold degenerate subspace. In thermo-acoustics, degeneracy occurs
in rotationally symmetric annular combustors in which azimuthal modes have
2-fold degeneracy [42, 43, 44, 37]. The generalized eigenproblem (15) outputs
N first-order eigenvalue drifts and N unperturbed eigendirections. We select
the first-order eigenvalue drift, ω1, with greatest growth rate, which causes the
greatest change in the stability.

To demonstrate the adjoint-based eigenvalue sensitivity (14), we consider
the generic nonlinear eigenvalue problem represented by a 2× 2 matrix(

N11(ω) N12(ω)
N21(ω) N22(ω)

)(
q̂1
q̂2

)
=

(
0
0

)
. (16)

We solve for the characteristic equation

F(ω) = N11(ω)N22(ω)−N21(ω)N12(ω) = 0, (17)

and find ω0 such that F(ω0) = 0. We assume that this root is non degenerate.
The corresponding direct and adjoint eigenvectors are, respectively

q̂0 =

(
−N12(ω0)/N11(ω0)

1

)
q̂2, (18)

q̂+
0 =

(
−N21(ω0)∗/N11(ω0)∗

1

)
q̂+2 , (19)

where N11(ω0) is assumed 6= 0 and q̂2, q̂+2 are arbitrary non-trivial complex
numbers, which are set to 1. The dependency on ω0 is dropped for brevity
from now on. Assuming that the characteristic equation defines a continuously
differentiable manifold, the exact first-order eigenvalue sensitivity is calculated
by the implicit function theorem (also known as Dini’s theorem)

∂ω

∂p
= − ∂F/∂p

∂F/∂ω

= − N11∂N22/∂p+N22∂N11/∂p−N12∂N21/∂p−N21∂N12/∂p

N11∂N22/∂ω +N22∂N11/∂ω −N12∂N21/∂ω −N21∂N12/∂ω
. (20)

Using an Euclidean Hermitian inner product, the adjoint eigenvalue sensitivity
(14), for this algebraic problem, reads

δω

δp
= − q̂+H

0 (∂N/∂p)q̂0

q̂+H
0 (∂N/∂ω)q̂0

,

= −

(
−N ∗21/N ∗11 1

)∗(∂N11/∂p ∂N12/∂p
∂N21/∂p ∂N22/∂p

)(
−N12/N11

1

)
(
−N ∗21/N ∗11 1

)∗(∂N11/∂ω ∂N12/∂ω
∂N21/∂ω ∂N22/∂ω

)(
−N12/N11

1

) . (21)
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When the vector-matrix-vector multiplications are performed, the adjoint-based
sensitivity (21) coincides with the analytical sensitivity (20). This illustrates
that equation (14) is an exact representation of the first-order eigenvalue drift,
δω/δp.

2.2. Second-order eigenvalue sensitivity

The equation for the second-order is recast as

1

2
N {ω0,p0} q̂2 = −

(
∂N {ω,p0}

∂ω

∣∣∣
ω0

ω1q̂1 + δpN {ω0, εp1} q̂1

)
+

−
[

1

2

∂2N {ω,p0}
∂ω2

∣∣∣
ω0

ω2
1 +

1

2

∂N {ω,p0}
∂ω

∣∣∣
ω0

ω2

]
q̂0 = 0. (22)

The calculation of the second-order eigenvalue drift is obtained by projecting
equation (22) onto the adjoint eigenfunction, yielding

1

2

〈
q̂+
0 ,N {ω0,p0} q̂2

〉
=

〈
q̂+
0 ,−

(
∂N {ω,p0}

∂ω

∣∣∣
ω0

ω1q̂1 + δpN {ω0, εp1} q̂1

)〉
+〈

q̂+
0 ,−

[
1

2

∂2N {ω,p0}
∂ω2

∣∣∣
ω0

ω2
1 +

1

2

∂N {ω,p0}
∂ω

∣∣∣
ω0

ω2

]
q̂0

〉
. (23)

Using equations (5) and (4) yields an equation for the second-order eigenvalue
drift

ω2 = −2

〈
q̂+
0 ,

(
∂N{ω,p0}

∂ω

∣∣∣
ω0

ω1q̂1 + δpN {ω0, εp1} q̂1

)〉
〈

q̂+
0 ,

∂N{ω,p0}
∂ω

∣∣∣
ω0

q̂0

〉 +

− 2

〈
q̂+
0 ,

(
1
2
∂2N{ω,p0}

∂ω2

∣∣∣
ω0

ω2
1

)
q̂0

〉
〈

q̂+
0 ,

∂N{ω,p0}
∂ω

∣∣∣
ω0

q̂0

〉 . (24)

The eigenvalue-drift equations (14),(15),(24) enable the calculation of the i-th
drift only by using eigenfunctions up to (i− 1)-th order. The calculation of the
perturbed eigenfunction q̂1, necessary for the calculation of the second-order
eigenvalue drift, is discussed in the next section.

2.3. Calculation of the perturbed eigenfunction

The calculation of the perturbed eigenfunction q̂1 in equation (12) requires
solving for a non-homogeneous singular linear system because the inversion op-
erator, N−1{ω0,p0}, does not exist. However, the compatibility condition en-
sures that this linear system has (infinite) solutions. For brevity, we define
dim(N ) = K and use matrices. In a non-defective degenerate system, a com-

plete eigenbasis is {q̂0, êi}, where i = 1, 2, . . . ,K − N and q̂0 =
∑N

j αj ê0,j
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and êi are the remaining non-degenerate eigenfunctions. (We are assuming
that only the 0-th eigenfunction is N -fold degenerate. The extension to other
eigenfunctions’ degeneracy is straightforward.) In general, the coefficients αj

are arbitrary, however, when working with perturbations, these coefficients are
uniquely determined by the first-order sensitivity (15). The perturbed eigen-
function is decomposed as

q̂1 = ẑ + β0q̂0, (25)

where β0 is in general a complex number. By substituting equation (25) into
(12), we obtain

N{ω0,p0}ẑ = Ψ, (26)

because N{ω0,p0}(ẑ + β0q̂0) = N{ω0,p0}ẑ for equation (3). Ψ is the right-
hand side of equation (12).

q̂1 is then calculated as follows.

• Decompose N = UΛ̃VH (Singular Value Decomposition, SVD), where

Λ̃ =

(
Λ 0
0 Θ

)
. (27)

The submatrix Λ is diagonal and contains the K −N non-trivial singular
values of N{ω0,p0}. The submatrix Θ is a N × N null matrix. The
columns of the unitary matrix U are the left singular vectors and the
columns of the unitary matrix V are the right singular vectors.

• Set Θ to any non-trivial diagonal matrix, for example, the identity matrix.

• Solve for (
Y1

Y2

)
= Λ̃−1U−1Ψ. (28)

• Set Y2 = 0 and find the solution

ẑ = V

(
Y1

0

)
. (29)

Another method for the calculation of q̂1 is presented in Appendix A.

In this study no normalization constraint is imposed and, therefore, β0 is
arbitrarily set to zero. This means that we are removing the non-uniqueness of
q̂1 by requiring it not to have a component along the unperturbed eigenfunction
q̂0 [36].
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3. Mathematical model of an annular combustor

Annular combustion chambers are commonly used in aircraft gas turbines
because of their compactness and ability for efficient light around [45, 39]. Such
configurations, however, suffer from combustion instabilities due to azimuthal
modes that often appear at low frequencies, where damping mechanisms are less
effective. We study an annular combustor configuration typical of modern ultra
Low-NOx combustion chambers, detailed in [46]. The network model devel-
oped by Bauerheim et al. [38], which was validated against a three-dimensional
Helmholtz solver to predict the stability of azimuthal modes, is therefore used
in the present study. This low-order model describes a combustion chamber
connected by longitudinal burners fed by a common annular plenum (Fig. 2).

Annular 
chamber 

Annular  
plenum 

N=19 burners 

N=19 compact flames 

Figure 2: Schematic of the annular combustor, which consists of a plenum and combustion
chamber connected by longitudinal burners [38, 46].

The Annular Network Reduction methodology [38] analytically derives the
dispersion relation det (N{ω,p}) = 0 of the annular system, where the operator
N is defined as

N{ω,p} =

Nb∏
i

Ri(ω)Ti (ω,p)− I, (30)

where I is the identity operator and Nb=19 is the number of burners. Ri ∈
R4×4 is the propagation operator that maps the acoustic waves in the uniform

12



components of the network, represented by the matrices

Ri =

(
R(kp∆xp) 0

0 R(kc∆xc)

)
, (31)

R(k∆x) =

(
cos(k∆x) − sin(k∆x)
sin(k∆x) cos(k∆x)

)
, (32)

where k is the wavenumber and ∆x is the annular abscissa. The subscripts p
and c stand for ‘plenum’ and ‘combustion chamber’, respectively. The vector of
the thermo-acoustic parameters is p = ({ni, τi}, α, Lp, Sp, Li, Si, ρp, ρc, cc,
cp), where i = 1, 2, . . . , N ; ni are the flame gains (or indices) and τi are the time
delays; α is the flame position within the burner, which is the same for all the
flames; Lp is the circumferential length of the combustion chamber and plenum;
Sp is the section of the combustion chamber and plenum; Li is the burner’s
length and Si its section; ρp, ρc and cc, cp are the mean-flow densities/speeds
of sound of the combustion chamber and plenum, respectively (Tables 1 and
2). The unsteady heat-release rate, Q̂, is related to the acoustic velocity at the
burner’s location, ûi, as a Flame Transfer Function [47, 48]

Q̂ =
p̄γ

γ − 1
Sini exp(iωτi)ûi, (33)

where γ is the unburnt-gas heat capacity ratio and p̄ is the static pressure.
As explained by Lieuwen [48], the velocity-coupled flame response model in
equation (33) is valid for low-frequency thermo-acoustic oscillations, where the
pressure-coupled response is negligible, especially in low-Mach number flows.
The response to equivalence ratio perturbations is assumed negligible. Although
beyond the scope of this paper, the sensitivity method proposed here can be
applied to pressure and equivalence ratio coupled flame response models without
substantial modification.

Li (m) Sp (m2) Si (m
2) ρp ( kg

m3 ) ρc ( kg
m3 ) cp (m

s
) cc (m

s
) α Lp (m) Burners

0.0551 0.00785 0.00028 10.93 4.7 519 832 0.862 0.54 19

Table 1: Geometric and flow parameters of the annular combustors analysed. Same parameters
as [46].

The transfer operator Ti ∈ C4×4 maps the acoustics in the H-connector
(Fig. 3), taking into account the cross-interaction of the annular plenum and
chamber via the burners and the flames

Ti = I + 2


0 0 0 0

Γi1 0 Γi2 0
0 0 0 0

Γi3 0 Γi4 0

 . (34)

The coupling factors Γij contain the flame transfer functions and depend on
geometric and flow properties. The detailed expressions are given by equations
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Figure 3: H-connector including the burner and the flame, which connects the annular plenum
to the combustion chamber. This element is analytically modelled with four coefficients Γik,
where k = 1, .., 4.

(16)–(21) in [38]. The eigenfunction is given by the state

q̂ =


p̂p

−iρpcpûp
p̂c

−iρcccûc

 , (35)

where i2 = −1; p̂ is the acoustic pressure and û is the acoustic velocity in the
two annular cavities at one particular azimuthal location. Note that knowing
the state q̂ at one location is sufficient to re-build the complete acoustic field in
the annular system through the propagation and transfer matrices, Ri and Ti.

4. Sensitivity analysis

The eigenvalue of interest is calculated by solving for the nonlinear charac-
teristic equation (2). We use a Levenberg-Marquardt algorithm with the initial
relevant parameter set to 0.01. (We found that trust-region-dogleg and trust-
region-reflective algorithms are less accurate for this problem.) The initial guess
of the frequency is the natural frequency of the combustion chamber. The nu-
merically converged eigenvalue is denoted ω0.

To calculate the first- and second-order sensitivities of the thermo-acoustic
nonlinear eigenproblem, we implemented the following algorithm.

1. We numerically evaluate the operator matrix N substituting ω0 into equa-
tion (30).

2. We solve for the eigenfunction q̂0 by Singular Value Decomposition of
(30). The kernel is given by the singular vector associated with the null
singular value. In the case of 2-fold degeneracy in rotationally symmetric
annular combustors, the non-trivial kernel consists of two vectors.

3. We solve for the adjoint eigenfunction q̂+
0 by Singular Value Decomposi-

tion of the Hermitian of (30), in a similar way to the previous point.
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4. By choosing a small perturbation parameter ε, we numerically calcu-
late the perturbation matrices for each system’s parameter, pi, δpN =
N{ω0, (1 + ε)pi} − N{ω0, pi}.

5. The operator derivative ∂N/∂ω is approximated by finite difference. In
this problem, we choose a second-order central scheme but the derivative
can be evaluated analytically as well.

6. As for the first-order sensitivities, if the problem is degenerate, as in ro-
tationally symmetric annular combustors, we solve for the eigenproblem
(15). The solution consists of two eigenpairs {ω1, (α1, α2)}, which provide
the first-order eigenvalue drift and directions caused by the perturbation
to the thermo-acoustic parameters, p. The two directions (α1, α2)1 and
(α1, α2)2 correspond to the splitting of the eigenvalue due to symmetry
breaking, assuming that the perturbation is not rotationally symmetric
[46]. We select the greatest eigenvalue drift because we are interested in
the greatest change in stability. If the problem is non degenerate, we use
equation (14), which gives directly the first-order eigenvalue drift.

7. We calculate the eigenvector drift, q̂1, with the Singular Value Decompo-
sition detailed in Section 2.3.

8. We calculate the second-order sensitivities with equation (24) regardless
of the rotational symmetry.

9. For sake of comparison, the sensitivities are normalized as ω1,n = pi∂ω/∂pi
and ω2,n = 1/2p2i ∂

2ω/∂p2i where i denotes the i-th parameter. Hence, the
first- and second-order eigenvalue drifts are obtained by multiplying the
corresponding normalized sensitivities by ε and ε2, respectively.

4.1. Validation of the adjoint gradients

The first step is to validate the sensitivities obtained by the adjoint approach.
We study three different systems whose schematic is depicted in Fig. 2. Table
1 summarizes the common parameters and Table 2 summarizes the differences.

Case n τ (s)
Rotational symmetry

(degeneracy)
Re(ω0) (rad/s) Im(ω0) (1/s) ω1,AD

A 0.5 6.223×10−4 Yes 5.059×103 -1.392 Eq. (15)

B 1.75 7.35×10−4 Yes 4.272×103 +3.600×10−3 Eq. (15)

C 1.773 7.338×10−4 No 4.304×103 -4.529×10−4 Eq. (14)

Table 2: The three cases analysed with common parameters in Table 1. Flame index, n; flame
time delay, τ ; angular frequency, Re(ω0); growth rate, Im(ω0); first-order adjoint eigenvalue
drift, ω1. For Case C, n and τ are the mean values of the flame parameter distribution of Fig.
5. The second-order adjoint eigenvalue drift is given by equation (24) regardless of the case.
The flame parameters of Cases A and B are the same as ”Wcase” and ”Scase”, respectively,
in [46]. Here we used a slightly smaller τ for case A to have a stable configuration.

Case A belongs in the ‘weakly coupled region’ of Bauerheim et al. [38].
Physically, the thermo-acoustic mode occurs in the combustion chamber and is
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almost decoupled from the plenum dynamics (Fig. 4, top panels). Because of
rotational symmetry, the eigenvalue is 2-fold degenerate. By assuming that the
coupling factors are small, ‖Γik � 1‖, this case has an approximate analytical
solution for the eigenvalue [38].

Case B and C 

Case A 

Figure 4: Left column: Acoustic pressure along the azimuthal direction in the chamber (�)
and plenum (◦). Their relative amplitudes and phase lags, β, are highlighted. Middle and right
columns: pressure field in the combustion chamber and plenum. Top row: weakly coupled
Case A. Bottom row: strongly coupled Cases B and C.

Case B belongs in the ‘strongly coupled region’ of [38], where the thermo-
acoustic mode in the combustion chamber is coupled with the mode in the
plenum through longitudinal acoustic waves in the burners (Fig. 4, bottom
panels). As for Case A, because of rotational symmetry, the eigenvalue is 2-
fold degenerate. Case C corresponds to Case B but the symmetry is broken
by uniformly random flame parameters around their mean values (Fig. 5),
therefore, the eigenvalue is not degenerate.

The relative error, which is a complex quantity, is defined as

Err =
ωAD − ωFD

ε|ω0|
, (36)

where the superscript FD denotes ‘Finite Difference’, which is the benchmark
solution, and AD denotes ‘Adjoint’. The systems are perturbed by random
ε-perturbations to the flames’ indices, n, and time delays, τ . The symmetry-
breaking random ε-perturbation to the 19 n, τ parameters is inputted into equa-
tion (1) and the nonlinear eigenproblem is solved to find ωFD. The same per-
turbation is then inputted into the first- and second-order adjoint equations
(14),(15),(24). The first-order ωAD is given by ω0 + (εp1)ω1 and the second-
order by ω0 + (εp1)ω1 + 1

2 (εp1)2ω2 (Fig. 6). The real and imaginary parts of
the error for the three cases are correct up to first- and second-order because
the logarithmic slope is −1 and −2, respectively.
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Figure 5: (a) Flame indices and (b) flame time delays of the non-rotationally symmetric Case
C (non-degenerate case). The dotted lines denote the mean values.
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Figure 6: Relative error between finite-difference and first- and second-order adjoint sensi-
tivities. Case A in the first column; Case B in the second column and Case C in the last
column. Top panels: angular frequency relative error; bottom panels: growth-rate relative
error. Sensitivities calculated by randomly perturbing the flame parameters n and τ . The
benchmark solution is calculated by finite difference. The logarithmic slopes of −1 and −2
show that the adjoint sensitivities are correct up to first- (circles) and second-order (squares).

4.2. Eigenvalue sensitivity to thermo-acoustic design parameters

Because of their complexity, annular combustor network models usually
contain a large number of parameters, typically tens or hundreds. A rank-
ing of the parameters to which the eigenvalue is most sensitive informs the
designer/analyst about the most critical model assumptions/parameters that
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influence the stability. Previous studies calculated the first-order sensitivities
to flame parameters and external controller in single-flame longitudinal con-
figurations [see, e.g., 28]. Here, we calculate both first- and second-order ad-
joint sensitivities, which are computationally cheap, and compare them with
the finite-difference calculations, which involve numerous computations of non-
linear eigenproblems. All the sensitivities discussed are normalized as suggested
at point 9 in Section 4 to ease the comparison.

In Fig. 7 the first-order sensitivities are presented for the three cases. In
Cases A and B, only one flame (modelled with two parameters, the gain n and
the time-delay τ) is perturbed because the configuration is axi-symmetric. Con-
sequently, the FD method requires solving 5+1+1 = 7 nonlinear eigenproblems,
as many as the number of parameters under investigation, imposing a relative
perturbation of ε = 10−6. (This is sufficiently small to accurately estimate the
gradients by first-order forward finite difference. Other choices of ε were tested
and no significant difference was found). Via the adjoint approach, only one non-
linear eigenproblem and its adjoint have to be solved. In Case C, each flame is
perturbed independently because the configuration in not axi-symmetric. This
means that the FD approach requires solving for 5+19+19 = 43 nonlinear eigen-
problems, whereas the adjoint formulation still requires only one eigenproblem
and its adjoint to be calculated. Figure 8 shows the second-order sensitivities
for the same quantities. The adjoint predictions match the benchmark solutions
given by finite differences. The sensitivities are reported in Table 3.

Case Li Sp Si ρp α n τ

1
st
-o
rd
er

R
e(
ω
1
,n
) A xxx xx xxx xx xx xx x

B x x x x x x xxx

C xx x xx x xx x x

Im
(ω

1
,n
) A x x x x x x xxx

B xx x xx x xx xx xxx

C xxx xx xxx xx xxx x x

2
n
d
-o
rd
er

R
e(
ω
2
,n
) A x x x x x x xxx

B x x x x x x xxx

C xx x xx x xxx x x

Im
(ω

2
,n
) A x x x x x x xxx

B x x x x x x xxx

C xx x x x xxx x x

Table 3: Summary of the sensitivities of Figs. 7,8, 9 and 10. xxx=strong, xx=mild, x=weak.

In the rotationally symmetric Case A (Fig. 7a), the dominant parameters
governing the first-order frequency sensitivity are geometric, being the burner
length, Li, and the burner cross-sectional area, Si. On the other hand, the first-
order growth-rate sensitivity is highest in the flames’ time delays τ (Fig. 7b).
This high time-delay sensitivity was already shown in previous adjoint-based
studies in simpler geometries [28]. The flame index n plays a minor role in the
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Figure 7: Normalized first-order eigenvalue sensitivities. Calculation with Finite Difference
(FD) and Adjoint methods (AD). The angular frequency sensitivity is shown in the left panels,
the growth-rate sensitivity is shown in the right panels. Case A in the top row; Case B in the
middle row and Case C in the bottom row. The adjoint sensitivity matches the benchmark
solution given by finite differences. In Case C, the sensitivity of n and τ is the mean value of
the single-burner sensitivities of Figs. 9 and 10. The first-order eigenvalue drift is obtained
by multiplying these sensitivities by ε.

stability sensitivity in configuration A. Whereas the system is still most sensi-
tive to second-order perturbations in the time delay (Fig. 8b), the frequency is
less affected by perturbations in the geometry (Fig. 8a). On the other hand,
Case B displays similar sensitivities to second-order perturbations, with a more
pronounced dependence on the flame index (Fig. 8d). For both rotationally-
symmetric cases, the second-order sensitivities are highest in the time delay.
However, the strongly coupled system B is markedly more sensitive to the flame
parameters than system A (Figs. 7,8a,b,c,d). The difference between the sensi-
tivity of Cases A and B suggests that when the plenum resonance is not coupled
with the combustion chamber modes through the longitudinal modes (Case A),
the overall stability is more susceptible to small changes in the geometry rather
than the flame parameters.

The non-rotationally symmetric strongly coupled case (Case C) shows a dif-
ferent behaviour. The system is significantly less affected by perturbations in
the flame parameters, as shown in Fig. 7e,f and Fig. 8e,f. (Here, the sensitivi-
ties of n and τ are the mean values of the single-burner sensitivities of Figs. 9
and 10). The system is sensitive to changes in the geometry, especially in the
burner section and flame position. These observations hold for both first- and
second-order sensitivities of the frequency and growth rate. Because Case C has
different flames, the flame sensitivity changes from burner to burner, as shown in
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sensitivities are higher than the first-order sensitivities of Fig. 7. The second-order eigenvalue
drift is, however, smaller because it is obtained by multiplying these sensitivities by ε2.
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Figure 9: First- (top row) and second-order (bottom row) sensitivities to the flame index,
n, in Case C. The sensitivities vary because the configuration is non-rotationally symmetric
(Fig. 5). Angular frequency sensitivity in the left panels, growth-rate sensitivity in the right
panels. The adjoint sensitivity matches the benchmark solution given by finite differences.
The first-order eigenvalue drift is obtained by multiplying these sensitivities by ε.

Figs. 9 and 10. (Their mean values are shown in Fig. 7e,f and Fig. 8e,f.) The
thermo-acoustic system has drastically different behaviours depending on the
burner being perturbed. The first-order sensitivities oscillate in the azimuthal
direction and can be negative or positive. This 2−periodic pattern is physically
related to the eigenvalue splitting caused by symmetry breaking [49, 7], which
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Figure 10: Same as Fig. 9 as for the sensitivity to the time delay, τ . The second-order
eigenvalue drift is obtained by multiplying these sensitivities by ε2.

is due to the 2-nd Fourier coefficient of the flame parameters’ spatial distribu-
tion (C2n in [49]). From Figs. 9c,d and 10c,d, we note that the second-order
sensitivity patterns are 4−periodic. This oscillation might be due to the 4-th
Fourier coefficient of the flame distribution. This analysis, however, is beyond
the scope of this paper and is left for a follow-on study. By inspection, we
find an accurate match between the finite difference calculations and the ad-
joint predictions. The growth rate is overall most sensitive to the time delays τ ,
but the value is about twenty times smaller than the corresponding rotationally
symmetric Case B of Fig. 7d. Moreover, although configuration C is similar to
the corresponding rotationally symmetric Case B, the parameters to which it
is most sensitive are different. This might indicate that modelling an annular
combustor as a rotationally symmetric configuration might overestimate and
poorly predict the sensitivities.

5. Conclusions

We present first- and second-order sensitivities of eigenvalues in nonlinear
non-self-adjoint eigenproblems with/without degeneracy via an adjoint method.
This is the first application of adjoint sensitivity analysis to nonlinear eigenprob-
lems as applied to design-parameter sensitivity studies in thermo-acoustics. The
adjoint sensitivities are calculated in an elaborate annular combustor thermo-
acoustic network. Two cases are studied as representative cases of plenum-
combustion-chamber dynamics: the weakly coupled case, in which the combustion-
chamber mode is unstable, and the strongly coupled case, in which the plenum
mode is coupled with the combustion-chamber mode through the burners.

We show how to use the adjoint framework to study the sensitivity to the
system’s parameters reducing the number of computations by a factor equal to
the number of the system’s parameters. This is particularly attractive to annular
combustors, where the number of flames, thus parameters, is large. We find the
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strongly coupled case is overall more sensitive and the symmetry breaking makes
the system less sensitive. This suggests that perfect rotational symmetry might
be an exceedingly sensitive model. Moreover, the adjoint sensitivities are not
prone to numerical cancellation errors, in contrast to finite differences, because
they do not depend on the size of the perturbation.

The sensitivity analysis showed that the eigenvalue can be most sensitive
to geometric parameters (see cases A and C in Table 3). However, the man-
ufacturing tolerances on the geometry are usually small, i.e., the uncertainty
on the physical dimensions of the annular combustor is small. On the other
hand, the uncertainty on the flame parameters and/or damping is larger [39].
In order to evaluate the probability that a thermo-acoustic mode is unstable,
the adjoint method proposed is extended to uncertainty quantification of the
eigenvalue calculation in the second part of this paper [40].

The adjoint framework is a promising method for design to obtain quick
estimates of the thermo-acoustic sensitivities at very cheap computational cost.
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Appendix A. Restricted matrix inversion for the calculation of the
perturbed eigenfunction

The aim is to find the square submatrix of N{ω0,p0} with rank = K −N ,
in the subspace of which the matrix is invertible. First, we partition N q̂0 as

N{ω0,p0}q̂0 =

N11 N1k N13

Nk1 Nkk Nk3

N31 N3k N33

q̂0,1

q̂0,k

q̂0,3

 , (37)

where N1k, N3k are K ×N submatrices; Nk1, Nk3 are N ×K submatrices and
Nkk is an N ×N submatrix. q̂0,1, q̂0,k, q̂0,3 are subvectors. The subvector q̂0,k

is chosen to have non-trivial components. Hence, the system can be recast as

N{ω0,p0}q̂0 =

N11 N13

Nk1 Nk3

N31 N33

(q̂0,1

q̂0,3

)
= −

N1k

Nkk

N3k

 q̂0,k. (38)

The matrix on the left-hand side has rank = K − N because all its columns
are independent since the N values of q̂0,k are non-trivial and the right-hand
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side is a linear combination of the left-hand side. Therefore, the columns of
N corresponding to q̂0,k on the left hand-side can be removed from the matrix
without affecting its rank. To reduce the row space to a subspace in which
the matrix has full rank, we use the same argument as before with the adjoint
eigenvector q̂+

0 . The N components q̂+
0,k are chosen to be non-trivial. Hence,

the N rows corresponding to q̂+
0,k can be removed and the final linear system

becomes invertible in this subspace, as follows(
N11 N13

N31 N33

)(
q̂0,1

q̂0,3

)
= −

(
N1k

N3k

)
q̂0,k. (39)

Now, the square matrix on the left-hand side is invertible because it has rank =
K −N and the subspace dimension is K −N . Using this observation, we can
solve for the perturbed eigenvector substituting equation (25) into (39)(

N11 N13

N31 N33

)(
ẑ1
ẑ3

)
= −

(
N1k

N3k

)
q̂0,k +

(
Ψ1k

Ψ3k

)
. (40)

Setting the eigenvector to zero because it is already known, ẑ can be easily found
by solving the linear system, the final solution of which is

q̂1 =

ẑ1
0
ẑ3

+ β0q̂0, (41)

where 0 is a null N × 1 vector. This extends the method proposed by [50] to
degenerate nonlinear eigenproblems.
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