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Abstract 

The unfolded protein response (UPR) is a highly conserved pathway that allows the 

cell to cope with endoplasmic reticulum (ER) stress imposed by the secretory 

demands associated with environmental forces. In this role, the UPR has 

increasingly been shown to have crucial functions in immunity and inflammation. In 

this Review, we discuss the importance of the UPR in the development and 

differentiation of immune cells, its role in immune cell function and its crucial role in 

the ability of immune cells to survive and thus meet the needs associated with an 

immune response.  In addition, we review current insights into how the UPR is 
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involved in complex chronic inflammatory diseases and, through its role in immune 

regulation, anti-tumour responses. 

 

Introduction 

The endoplasmic reticulum (ER) is an extensive tubular-reticular network, 

separated from the surrounding cytosol by a single lipid bilayer, the ER membrane. 

It is a crucial site involved in maintaining Ca2+ homeostasis and its major function is 

the synthesis and folding of secreted and transmembrane proteins, which constitute 

approximately one third of all proteins made in the cell.1,2 Following translation on 

ER membrane-associated ribosomes, proteins enter the ER lumen where 

chaperone-based folding occurs, together with complex protein modifications. 

These include N-linked glycosylation, disulfide bond formation and proline cis-trans 

isomerization, which are mediated by glycosyltransferases, oxido-reductases and 

peptidyl-prolyl cis-trans isomerases, respectively. 3-6 

Adequate folding and posttranslational modifications of proteins crucial for proper 

function; furthermore, in a dominant manner, misfolded and aggregated proteins 

can cause cellular stress and cell death, as exemplified by neurodegeneration and 

other protein misfolding diseases.7,8 It is therefore of crucial importance that 

protein folding is subject to stringent quality control systems to allow a cell to carry 

out its necessary secretory functions. As an example, ER-associated degradation 

(ERAD) [G] ensures that mis- and unfolded proteins are removed from the ER lumen 

to the cytosol for subsequent degradation by the ubiquitin–proteasome system.9 
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Numerous environmental conditions, both endogenous and exogenous, can disrupt 

the ER protein-folding environment, and when protein folding requirements exceed 

the processing capacity of the ER, mis- and unfolded proteins accumulate in the ER 

lumen, triggering the unfolded protein response (UPR) [G]. The UPR is a 

sophisticated collection of intracellular signaling pathways that have evolved to 

respond to protein misfolding in the ER. In addition, it has become increasingly clear 

that UPR signaling has an important role in immunity and inflammation. In this 

Review, we discuss the role of UPR activation in the development of immune cells 

and how the UPR is involved in building efficient immune responses. In addition, we 

highlight causes of UPR activation that are directly linked to inflammation and 

review current insights into the downstream pathways by which UPR activation 

induces inflammation. Lastly, we discuss how the UPR is involved in various 

prevalent diseases, including inflammatory bowel disease, metabolic disease and 

cancer. Due to the breadth of this Review, we do not provide significant detail for 

individual sections but have attempted to provide an overview of the most relevant 

and recent findings. 

 

[H1] The unfolded protein response pathway 

In metazoans, the UPR is activated by the coordinate action of three ER 

transmembrane stress sensors: inositol-requiring enzyme 1  (IRE1 ), PKR-like ER 

kinase (PERK) and activating transcription factor 6  (ATF6 ). Under homeostatic 

conditions, the luminal domains of these ER stress sensors are retained in an 

inactive state through association with binding immunoglobulin protein (BiP; also 
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known as GRP78 and HSPA5). However, due to its higher affinity for misfolded 

proteins, BiP dissociates from the ER stress sensors as misfolded proteins 

accumulate, thereby releasing the stress sensors to permit downstream signaling 

(Figure1).10 In addition, it has been elegantly shown that, at least in Saccharomyces 

cerevisiae, basic and hydrophobic residues on unfolded proteins can bind directly to 

a putative peptide groove of IRE1  and direct binding of unfolded proteins is 

sufficient to induce the UPR.11 At present it is unclear whether direct binding of 

unfolded proteins as a second mechanism of UPR activation is limited to IRE1, or 

can also be observed with PERK and ATF6 . These mechanisms require further 

characterization.  

The downstream transcriptional programmes of the UPR are primarily directed at 

restoring proteostasis, which is achieved by at least four different strategies. First, 

mRNA translation is transiently attenuated through PERK-dependent 

phosphorylation of the alpha subunit of eukaryotic translation initiation factor 

(eIF2 ) which inhibits assembly of the eIF2-GTP-Met-tRNA ternary complexes 

(eIF2-TC), and thereby reduces the quantity of proteins that enter the ER, Second, 

entry of newly translated proteins into the ER is decreased by degradation of ER 

membrane-associated mRNAs by regulated IRE1 -dependent decay (RIDD).12-14 

Third, processes that eliminate unfolded proteins from the ER are induced, by 

increasing the transcription of ERAD- and autophagy-related proteins (see also BOX 

1). Finally, genes are induced that increase protein folding capacity and expansion 

of the ER through increased biogenesis of ER and lipid components.1,15 
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However, when these attempts to restore proteostasis fail and ER stress is 

unabated, UPR signaling typically switches to a pro-apoptotic mode, a process that is 

also referred to as the terminal UPR [reviewed in REF 16].16 The terminal UPR may 

have evolved to eliminate excessively damaged or pathogen-infected cells, for 

example.  

 

[H3] IRE1 . 

The cytoplasmic tail of the type I transmembrane protein IRE1  possesses two 

enzymatic activities: a serine/threonine kinase domain and an endoribonuclease 

(RNase) domain.17 Upon release from BiP, dimerization of IRE1  elicits RNase 

activity to initiate the non-conventional splicing of a single mRNA encoding X-box 

binding protein 1 (XBP1) to produce a translational frameshift and create a potent 

transcriptional activator known as XBP1s (‘s’ for spliced). 18 19 XBP1s translocates to 

the nucleus where it induces the transcription of a wide variety of ER-resident 

molecular chaperones and protein-folding enzymes that together expand ER size 

and function (Figure 1A).15,20 In addition to its specific endoribonuclease activity 

that splices Xbp1, IRE1 -dependent activation of RIDD is proposed to degrade ER-

membrane-associated mRNAs to reduce the amount of protein entering the 

secretory pathway (Figure 1A).21 In addition, emerging evidence indicates that 

RIDD substrates encode proteins of diverse nature, which modulate cellular 

processes that are distinct from the control of ER homeostasis, including the 
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generation of inflammatory double-stranded RNA species through activation of 

intracellular nucleic acid sensors.22,23 

During prolonged ER stress, the beneficial effects of IRE1 activation through the 

activity of XBP1s may be temporally and quantitatively impeded, while the PERK 

pathway becomes dominant.24,25 In addition, chronic ER stress increases the 

oligomerization state of IRE1  to hyperactivate its cytosolic RNase domains, which 

leads to cleavage of many other RNAs besides Xbp1, including precursors of 

apoptosis-inhibitory microRNAs, which thus promotes apoptosis.26-28 Therefore, 

prolonged ER stress may tend to tip the properties of IRE1 from being adaptive to 

promoting inflammation and cell death. 

 

[H3] PERK. 

Similarly to IRE1 , dissociation of BiP from the ER luminal domain of PERK permits 

PERK homodimerization and autophosphorylation to activate the cytoplasmic 

kinase domain. In addition, it was shown that the lipid composition of the ER 

membrane can also activate PERK, which highlights the significance of lipid 

metabolism as a direct trigger of UPR activation.29,30 Activated PERK phosphorylates 

eIF2  which inhibits eIF2-TC formation and thereby transiently attenuates global 

mRNA translation, enabling the cell to cope with temporary ER stress (Figure 1B). 

Of note, eIF2  can be phosphorylated in mammals independently of ER stress, by 

three additional kinases: general control nonderepressible 2 (GCN2), which is 

induced by amino acid deprivation; the heme-regulated inhibitor kinase (HRI), 
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which is induced by oxidative stress or heme deprivation; and the protein kinase R 

(PKR), which is activated by double-stranded RNA as part of the interferon antiviral 

response.31   Together, these additional mechanisms of eIF2  phosphorylation form 

the integrated stress response (ISR) [G] system, which allows the cell to integrate 

multiple stress stimuli into one common node, that being the general control of 

protein synthesis through phosphorylation of eIF2 31 As an example, both 

epithelial cells and dendritic cells activate GCN2 to phosphorylate eIF2  in response 

to amino acid deprivation, to induce autophagy, reduce oxidative stress and inhibit 

inflammasome activation.32 

While translation of most RNAs is inhibited in ER stressed cells, translation of some 

species of mRNA is favoured under ER stress conditions, when eIF2 is 

phosphorylated and eIF2-TC availability is low (mechanisms reviewed in reference 

33).33.34 One important example is the mRNA encoding activating transcription 

factor 4 (ATF4; also known as CREB2), a crucial UPR mediator that transactivates 

genes involved in amino acid metabolism and oxidative stress resistance, as well as 

autophagy (Figure 1B).12 As a sustained translational block is not compatible with 

cell survival, ATF4 also induces Ppp1r15a expression, which encodes GADD34, a 

regulatory subunit of protein phosphatase 1 (PP1) that directs the 

dephosphorylation of eIF2  to restore mRNA translation (Figure 1B). However, 

ATF4 also activates transcription of C/EBP homologous protein (CHOP),12,35 which 

is involved in ER-stress-mediated apoptosis both in vitro and in vivo.36,37 To allow 

the cell a chance to cope with the ER stress, several mechanisms suppress CHOP at 
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early times after ER stress, such as PERK-dependent miR-211 expression, which 

represses CHOP transcription through histone methylation.38 In addition, CHOP is 

suppressed by Toll-like receptor (TLR) signaling during immune responses in 

macrophages by protein phosphatase 2A (PP2A)-mediated serine 

dephosphorylation of the eIF2Bε subunit.39 Indeed, only strong and chronic 

activation of PERK increase steady-state levels of CHOP, due to the short half-life of 

both ATF4 and CHOP mRNAs and proteins, so that only excessive ER stress will 

promote the terminal UPR.40 Studies of ATF4 and CHOP in cells experiencing chronic 

ER stress indicate that they function together as a heterodimer to induce apoptosis 

by increasing protein synthesis, thereby enhancing protein misfolding and oxidative 

stress and cell death.41 

 

[H3] ATF6. 

ATF6 is a type II transmembrane protein that contains a bZIP transcription factor 

within its cytosolic domain. Although there are two ATF6 genes in the mammalian 

genome (ATF6A and ATF6B), only ATF6  is required to activate UPR gene 

expression.42 Upon release from BiP, ATF6  transits to the Golgi compartment 

where it is processed by the Golgi enzymes site 1 protease (S1P) and S2P to produce 

a cytosolic p50 fragment that migrates to the nucleus. The p50 fragment activates 

expression of genes that encode functions to increase ER capacity and folding 

(including BiP, Grp94, P58IPK and Xbp1) and the ERAD pathway (Figure 1C).19,42-44 

 

[H1] The physiological UPR in immune cell differentiation and function 
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Cells that have a large secretory demand as part of their function are particularly 

dependent on a well-developed and large ER and, consequently, UPR signaling. It is 

therefore not surprising that highly secretory immune cells are highly susceptible to 

environmental conditions that impose ER stress, either by directly targeting ER 

folding capacity (for example, microbial toxins)45 or markedly increasing folding 

demand (for example, exposure to pathogens). Thus, inflammation per se is an 

important factor in ER stress induction, and UPR activation may be a sensitive 

hallmark of inflammation. In addition to the pathophysiological conditions that 

affect specific cell types, it is now well established that activation of the UPR has a 

role in a wide range of physiological events associated with immunologically 

important cell types.46 Furthermore, although they have not been well studied, 

germline polymorphisms or, potentially, somatically generated mutations may affect 

the ability of the host to determine whether an appropriate UPR level is achieved 

based upon the demand. Understanding how the UPR affects specific functions at 

the cellular level and the host-related factors that affect this are therefore of great 

importance, as considered below. 

 

[H3] B cells and plasma cells 

Over the past 15 years, the role of the transcription factor XBP1 in B cell and plasma 

cell differentiation has become increasingly clear and has served as a paradigm for 

numerous secretory systems and their relationships to immune function and 

inflammation. Plasma cell differentiation is regulated by the transcription factors 

interferon-regulatory factor 4 (IRF4) and B lymphocyte-induced maturation protein 
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1 (BLIMP1).47,48 In addition, induction of Xbp1, which is downstream of BLIMP1, is 

required for the marked expansion of the ER and increased protein synthesis that 

are necessary for high levels of antibody production and secretion during a 

physiological or pathological immune response (Figure 2A).49,50 Indeed, XBP1 

deficiency in B cells leads to an absence of plasma cells and markedly reduces 

circulating antibody levels, but has no effect on B cell maturation or isotype 

switching.51 Although it was initially assumed that XBP1 induction was caused by 

increased immunoglobulin synthesis and the accumulation of unfolded 

immunoglobulin heavy chains,52 subsequent studies have shown that ER expansion 

is evident before the onset of immunoglobulin synthesis53 and Xbp1 is similarly 

spliced when IgM secretion is genetically abrogated.54  This suggests that XBP1 

induction is a differentiation-dependent event in plasma cells, rather than a 

response to increased immunoglobulin secretion. The factors that drive UPR 

activation early during plasma cell development are incompletely understood. Of 

note, part of the decrease in immunoglobulin production in XBP1-deficient B cells 

was later explained by IRE1  hyperactivation leading to increased RIDD and the 

subsequent degradation of immunoglobulin  heavy-chain mRNAs.55 

In addition to plasma cells, IRE1  activation is also observed in pro-B cells.56 UPR 

activation in these early stages of B cell development might result from increased 

secretory demand caused by neo-expression of cell surface proteins associated with 

V(D)J antigen receptor rearrangements.57 Indeed, a recent study shows that IRE1  

and XBP1s are important during the pre-B cell stage when immunoglobulin heavy 
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chains are expressed for the first time and, importantly, that XBP1s in pre-B acute 

lymphoblastic leukemia (ALL) cells provides a survival benefit for tumour cells.58  

 

[H3] T cells 

Studies with XBP1s-GFP reporter mice have shown that IRE1  is activated in 

CD4+CD8+ thymic T cells and in CD8+ splenic T cells, although the precise role of the 

UPR in early T cell development is not clear.56 However, activation of the IRE1 –

XBP1 axis in effector CD8+ T cells was reported in response to acute infection with 

Listeria monocytogenes, which was associated with expression of high levels of killer 

cell lectin-like receptor G1 (KLRG1). This suggests that XBP1 is important for the 

terminal differentiation of effector CD8+ T cells.59 

 

[H3] Dendritic cells 

Xbp1 is constitutively spliced in dendritic cells (DCs), and loss of XBP1 leads to 

significantly reduced numbers of both conventional and plasmacytoid DCs. (Figure 

2B, left panel).60 In addition, XBP1-deficient DCs have increased rates of apoptosis 

and are resistant to survival signals associated with TLR engagement (Figure 2B, 

left panel). Interestingly, ectopic expression of XBP1s in XBP1-deficient FLT3+ 

hematopoietic progenitor cells can rescue this apoptotic phenotype.60 Taken 

together, this study shows that XBP1 is important for DC development and survival.  

Consistent with the findings above, constitutive activation of IRE1  is observed in 

DCs61 using ER stress-activated indicator (ERAI) reporter mice.62 Interestingly, 

although the highest levels of IRE1  activity are observed in CD8 + DCs, deletion of 
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XBP1 in DCs using CD11c-directed Cre does not result in developmental and 

phenotypic abnormalities of CD8 + DCs. This different result compared with the 

study of Iwakoshi et al.60 may be explained by low levels of expression of CD11c, and 

hence Cre recombinase activity, in DC progenitor cells. Interestingly, however, 

XBP1-deficient CD8 + DCs generated by CD11c-Cre-mediated deletion of Xbp1 have 

RIDD-dependent defects in cross-presentation to OT-I T cells, owing to degradation 

of components of the cross-presentation machinery such as tapasin.61 This study 

shows that the IRE1 –XBP1 arm of the UPR is crucially involved in DC function. 

(Figure 2B, right panel). 

Consistent with a role for ER stress in regulating antigen presentation, several other 

studies have shown that ER stress affects the surface expression of MHC class I 

molecules by mechanisms that are not fully elucidated as yet. 63,64 In ovarian cancer, 

impaired MHC class I-restricted antigen presentation to CD8+ T cells has been linked 

to reactive oxygen species (ROS)-induced ER stress and increased lipid metabolism 

in DCs induced by an unknown transmissible stress factor in the tumor 

microenvironment. While the concept of lipid accumulation-dependent dysfunction 

of DC antigen presentation had been described previously,65  this study links ER 

stress-induced Xbp1 splicing to lipid accumulation in DCs,  resulting in DC antigen 

presentation defects (Figure 2B, right panel).66. [Note: we felt that this pathway 

should also be stressed in Figure 2, as it shows that also increased XBP1s can 

result in cross presentation defects] In accordance with this, deletion of XBP1 in 

DCs abolished the accumulation of lipid in DCs and increased T cell anti-tumour 

immunity, resulting in decreased tumour burden and improved survival.66  
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[H3] Granulocytes 

Granulocytes are represented by neutrophils, basophils and eosinophils. Eosinophils 

are typically associated with type II immune responses, allergy and parasitic 

infections.67 Recently, it has also been shown that eosinophils might have a role in 

maintaining immune homeostasis in the intestine by promoting IgA class switching 

in Peyer’s patches and controlling the pool of CD103+ T cells and DCs.68 

Interestingly, amongst all types of granulocyte, eosinophils are uniquely dependent 

upon XBP1 in that haematopoietic deletion of Xbp1 (Xbp1Vav1 mice) leads to a loss of 

fully mature eosinophils. In addition, deletion of Xbp1 specifically in eosinophils 

using Epx-Cre-mediated Xbp1 deletion results in a significantly smaller bone 

marrow eosinophil pool, which indicates that XBP1 is also needed to sustain the 

viability of eosinophil-committed progenitor cells.69 

 

[H3] Macrophages 

In macrophages, TLR signaling induces ER stress, and ER stress, in turn, amplifies 

the response to TLR ligation. For example, TLR2 and TLR4 ligands Pam3CSK4 and 

lipopolysaccharide (LPS), respectively, induce IRE1  activation in mouse J774 

macrophages. Furthermore, treatment with TLR agonists increases Xbp1 splicing, 

which is dependent on TNF receptor-associated factor 6 (TRAF6) recruitment to 

IRE  and requires the NAPDH oxidase NOX2.70 Importantly, IRE1 -induced Xbp1 

splicing in response to TLR ligation has been shown to be crucial for cytokine 

production as macrophage-specific deficiency of XBP1 impairs the production of 
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interleukin-6 (IL-6), tumor necrosis factor (TNF) and interferon-  (IFN )(Figure 

3A).70  

TLR signaling also amplifies IRE1  signaling by modulating its phosphorylation 

status. In the absence of TLR signaling, phosphorylated IRE1  is dephosphorylated 

and thus inactivated by PP2A. Upon TLR ligation, however TRAF6, interaction with 

IRE1  catalyzes its ubiquitylation, which prevents the interaction of IRE1  with 

PP2A through its adaptor receptor for activated C kinase 1 (RACK1) to avoid IRE1  

dephosphorylation and inactivation (Figure 3B).71,72 By contrast, induction of ER 

stress in bone marrow-derived macrophages strongly potentiates LPS-induced pro-

inflammatory signaling, including the induction of genes encoding CXCL1, CXCL2, 

TNF, IL-1  and IL-6, in a pathway dependent on receptor-interacting 

serine/threonine-protein kinase 1 (RIPK1).73  

The IRE1 –XBP1 pathway has also been linked to increased IL-1  production 

through IRE1 -dependent activation of glycogen synthase kinase 3  (GSK3 ). In 

addition, GSK3  inhibits further Xbp1 slicing and thereby Tnf transcription, which 

modulates the inflammatory response to ER stress and potentially TLR signaling 

(Figure 3C).74  

The PERK pathway has been shown to induce inflammation through direct binding 

of ATF4 to the Il6 promotor.75 In macrophages, however, TLR signaling inhibits 

translation of Atf4 mRNA and thereby its downstream target CHOP.76 Similarly, 

CHOP is further suppressed by TLR–TRIF signaling in macrophages through PP2A-

mediated serine dephosphorylation of the eIF2Bε subunit.39 These mechanisms of 
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CHOP suppression are required for macrophage survival during an immune 

responses. This demonstrates that specific control of the different arms of the UPR 

is crucial for innate immune function (Figure 3A).70  

 

[H3] Paneth cells. 

Conditional deletion of Xbp1 in intestinal epithelial cells (IECs) has shown that 

Paneth cells [G], which are an important source of anti-microbial peptides and stem 

cell survival signals,77  and to a lesser extent goblet cells that are dedicated to mucus 

production, are highly dependent on this UPR transcription factor.78 Paneth cells in 

mice with specific deletion of XBP1 in IECs are severely hypomorphic. The resultant 

decreased antimicrobial function has been shown to be associated with attenuated 

killing of L. monocytogenes and increased bacterial translocation to the liver. In 

addition, IRE1  hyperactivation leading to phosphorylation of JNK is also observed 

in XBP1-deficient intestinal epithelium, resulting in spontaneous superficial small 

intestinal enteritis (Figure 4) .78 Moreover, deletion of Xbp1 specifically in Paneth 

cells is sufficient to induce small intestinal enteritis.79 As the spontaneous 

inflammation observed in the setting of IEC-specific deletion of Xbp1 is reversed 

under germ-free conditions, these studies indicate that the UPR in IECs and, 

particularly, in Paneth cells is crucial to the maintenance of intestinal homeostasis in 

the presence of microbial commensalism. Whether XBP1 has a crucial role in the 

development of Paneth cells, as in highly secretory haematopoietic cells, is not fully 

clear.  
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[H1] ‘Pathological’ causes of UPR activation 

It is clear that the UPR has a crucial function under physiological conditions, 

particularly during periods of high secretory demand, as shown by the loss of 

numerous haematopoietic cells (such as dendritic cells, eosinophils and plasma 

cells) and parenchymal cells (such as hepatocytes, pancreatic  cells, acinar cells of 

the salivary glands and Paneth cells) when critical elements of the UPR are absent.80  

In addition to this physiological UPR, ER stress can further result from various 

intrinsic and environmental factors, such as inadequate energy supply (as observed 

during hypoxia and nutrient deprivation) and increased secretory demand during 

exposure to pathogens and inflammatory stimuli.81  These environmental challenges 

induce UPR activation and thereby contribute to inflammation through various 

mechanisms.  

 

[H3] Hypoxia 

Hypoxia inhibits oxygen-dependent protein folding processes, which directly affects 

disulfide bond formation during post-translational folding of proteins or cis-trans 

prolyl isomerization in the ER,82 leading to ER stress. Hypoxia can occur in adipose 

tissue in the setting of obesity, probably as a result of the diffusion limit of oxygen 

imposed by the hypertrophic adipocytes. Adipocyte hypoxia has been shown to be 

associated with the induction of ER stress and increased expression of CHOP, which 

is at least partly responsible for the reduced expression of adipocytokines that 

provide important anti-inflammatory functions.83 This raises the possibility that 

hypoxia-induced ER stress may be linked to obesity-related metabolic diseases.  
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Hypoxia, due to inefficient vascularization, is also a hallmark of the tumour 

microenvironment and is one of the factors that accounts for UPR activation in solid 

tumours. UPR activation in tumours triggers protective responses that enable the 

tumour to cope with conditions of low oxygen and nutrient supply.84  Splicing of 

XBP1 mRNA was recently shown to provide a survival benefit for highly aggressive 

triple negative breast cancer cells. Inhibition of XBP1 in these tumour cells using 

RNA interference decreased tumour growth and particularly affected angiogenesis, 

which links XBP1 to tumour hypoxia. Moreover, it was shown that XBP1 directly 

interacts with the central mediator of the cellular response to hypoxia, hypoxia-

inducing factor 1  (HIF1 ), and assists in regulating the expression of HIF1  target 

genes.85 As HIF1 also has a prominent role in the anti-tumour immune response by 

inhibiting the effector functions of tumour-infiltrating lymphocytes,86 targeting the 

UPR and HIF1 as connected pathways in solid tumours might provide a therapeutic 

benefit in boosting anti-tumour immune responses. 

 

[H3] Reactive oxygen species 

The oxidizing environment of the ER is optimized for disulfide bond formation and 

the redox status of the ER is tightly regulated in mammalian cells.87 This 

environment is primarily derived from ROS generated by endoplasmic reticulum 

oxireductin 1 (ERO1), with protein disulfide isomerase being responsible for 

disulfide bond formation. However, cellular ROS production increases significantly 

and to supraphysiological levels under ER stress and inflammatory conditions. 

These conditions are closely connected in a reciprocal manner such that they induce 
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self-reinforcing pathways that may further promote inflammation.4,88  ROS can be 

induced by a wide variety of immunological signals. These include, for example, TLR 

and TNF receptor signaling, which further trigger inflammatory responses by 

enhancing the phosphorylation of IB to induce nuclear factor- B (NF- B) 

signaling.89 Conversely, it has been shown that extracellular sources of ROS can 

induce ER stress, possibly by disrupting Ca2+ retention in the ER.90  Once they are 

produced, ROS can also promote NLRP3 inflammasome activation91 and regulate 

lymphocyte function89 and, as discussed above, NOX2-derived ROS in macrophages 

are required for XBP1-dependent cytokine production upon TLR2 and TLR4 

ligation.  

In mouse models of diabetes, ER stress and ROS production have recently been 

linked to inflammasome activation and pancreatic -cell death in a pathway 

involving the induction of thioredoxin-interacting protein (TXNIP). This protein 

interacts with thioredoxin and reduces its anti-oxidant effect. Two recent studies 

have shown that ER stress-induced inflammasome activation and pancreatic -cell 

apoptosis were preceded by increased Txnip mRNA expression through a pathway 

involving IRE1 27 and/or PERK.92 As a consequence, genetic deletion of TXNIP 

partly protects against diabetes progression.27 

 

[H3] Pathogens 

Many pathogens interfere with the function of host ER as part of their infectious life 

cycle, and therefore can activate distinct arms of the UPR. Pathogen-induced UPR 
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activation can be beneficial to the host by functioning to enable an innate immune 

response directed against invading pathogens. However, invading pathogens can 

selectively modulate UPR pathways to promote their own survival. 93 

Viral replication requires the host ER for the production of viral structural and non-

structural proteins and as such interferes with the host protein synthesis  

machinery.94 Unsurprisingly, viral infection can trigger the UPR (excellently 

reviewed in REF 95).95 The IRE1 -mediated arm of the UPR can block viral 

replication in the case of respiratory syncytial virus (RSV), probably through RIDD-

dependent viral RNA degradation, as XBP1 is not required for defence against RSV. 

96 However, some viruses, such as Japanese encephalitis virus, use RIDD to their 

advantage to degrade host RNAs without affecting viral RNA.97  Similarly, many 

viruses have evolved mechanisms to circumvent the disadvantageous consequences 

of the UPR; selective activation of the ATF6 - and IRE1 -mediated arms of the UPR 

sustains viral replication by increasing the production of ER chaperones, while at 

the same time viruses block PERK-mediated UPR activation to circumvent a 

translational block and/or ER stress-induced apoptosis. For example, herpes 

simplex virus type 1 selectively blocks activation of the PERK-mediated arm of the 

UPR by association of viral glycoprotein gB with the luminal domain of PERK.98  

Also, whereas hepatitis C virus (HCV) induces IRE1  and ATF6  activation, the virus 

suppresses the downstream effects of XBP1s to prevent activation of ERAD, which 

enables HCV replication and contributes to persistence of the virus in infected 

hepatocytes.99,100 
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An important example of how the UPR protects the host from bacterial infection 

comes from studies in Caenorhabditis elegans. In this nematode, infection with 

Pseudomonas aeruginosa induces a p38 MAPK-driven innate immune response, 

which in turn triggers the IRE1 –XBP1 pathway of the UPR. XBP1 activation is 

protective for the host as xbp1-mutant larvae exhibit ER disruption and increased 

lethality in response to infection. Interestingly, lethality could also be prevented by 

loss of p38 MAPK, which shows that it is not the infection itself but rather the innate 

immune response that is lethal in the absence of a simultaneous protective XBP1-

dependent UPR response.101 

A recent study in primary bronchial epithelial cells further supports the link 

between an innate immune response and the UPR by showing that virulence factors 

derived from P. aeruginosa strongly induce UPR activation in a p38 MAPK-

dependent manner, as evidenced by Xbp1 splicing and the induction of BiP and 

CHOP. However, induction of GADD34 occurred through activation of the ISR, which 

was associated with improved survival of host cells.102    

L. monocytogenes has a well-documented ability to induce the UPR, which was 

recently shown to occur without active infection of cells by secretion of the cytolysin 

listeriolysin O. This toxin induces all branches of the UPR, possibly by altering 

intracellular Ca2+ homeostasis, which leads ultimately to apoptosis.103   Similarly, the 

AB5 subtilase cytotoxin from Shiga-toxigenic Escherichia coli cleaves BiP, thus 

inducing all three arms of the UPR and resulting in ER stress-induced cell death.104 

Pathogen associated molecular patterns may also activate specific arms of the UPR. 

As an example, Streptomyces sp. produce a toxin (trierixin) that directly inhibits 
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Xbp1 splicing.45 By contrast, TLR2 and TLR4 ligands trigger the IRE1 –XBP1 arm of 

the UPR in macrophages while suppressing ATF4–CHOP signaling to promote 

macrophage survival during infections.70,76 Thus, pathogens can either subvert or 

induce the UPR during their life cycles, which in the latter case may alert the 

immune system to their presence. 

 

[H3] Cell damage and immunogenic cell death 

Dying cells can elicit inflammatory responses through the induction of cell surface 

receptors that are recognized by immune cells, such as the ER-resident protein 

calreticulin (CRT), or through secreted factors including high mobility group box 1 

(HMGB1) and ATP.105,106 HMGB1 activates all arms of the UPR in endothelial cells, 

resulting in increased expression of intercellular adhesion molecule 1 (ICAM1) and 

P-selectin, which probably function to attract immune cells to dying cells.107  In 

splenic DCs, HMGB1 exposure induces UPR activation with increased levels of BiP 

and Xbp1 splicing; this pathway seems to be important in mounting an immune 

response, as silencing Xbp1 is associated with downregulation of the costimulatory 

cell surface receptors CD80 and CD86, decreased MHC class II expression and, 

subsequently, impaired stimulation of T cells in co-culture systems.108   

Even before cells die and intracellular components such as HMGB1 are released to 

elicit inflammation, stressed cells induce immune responses; for example, the cell 

surface expression of CRT is a recognition signal for engulfment by antigen-

presenting cells. Human bladder carcinoma T24 cells exposed to photodynamic 

therapy, which causes ROS-mediated induction of ER stress, increase their cell 
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surface expression of CRT and secretion of ATP through PERK-orchestrated 

pathways.109 Interestingly, this was associated with increased engulfment of cancer 

cells by DCs and increased DC expression of CD80, CD86 and MHC class II, as well as 

increased IL-1  and nitric oxide production, all of which are important for an 

effective antitumor CD8+ T cell response.109 Increased cell surface expression of CRT 

also occurs in a PERK-dependent manner in cancer cells that have nonphysiological 

increases in chromosome content (known as ‘hyperploidy’, which occurs in the early 

stages of various cancers), and is an important immunosurveillance system against 

hyperploidy in cancers.110 

Whether UPR activation can drive the specific upregulation of ligands recognized by 

innate immune cells, including natural killer cells, requires further research. 

Interestingly, CHOP has been linked to cell death in HCT116 cells through 

upregulation of death receptor 5 (DR5), a receptor for TNF-related apoptosis-

inducing ligand (TRAIL). However in this setting, DR5 drives apoptosis in a ligand-

independent manner through activation of caspase-8..111 In addition, it is important 

to recognize that although UPR activation in tumour cells can sometimes increase 

their immunogenicity and is therefore beneficial for the host, some tumours also 

take advantage of the UPR to prevent anti-tumour immune responses. [BOX 2]. 

Elucidating the crosstalk between UPR activation in tumour cells, the release of 

damage-associated molecules, cell surface receptor expression and immune 

activation is of great importance to improve anti-tumour immune responses.  

 

[H1] The UPR as an inflammatory nidus 
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ER stress is implicated in various chronic pathological conditions involving 

inflammation (such as metabolic diseases, inflammatory bowel diseases, 

atherosclerosis and neurodegenerative diseases, amongst others). Investigation of 

the pathogenic mechanisms involved reveals a reciprocal regulation between ER 

stress and inflammation — whereby ER stress can directly initiate inflammatory 

pathways and, in turn, pro-inflammatory stimuli such as ROS, TLR ligands and 

cytokines trigger ER stress — such that the resulting UPR activation can further 

amplify inflammatory responses.112  

 

[H3] ER stress-induced inflammatory signaling 

NF-κB, a master transcriptional regulator of proinflammatory pathways, is activated 

by the interaction of IRE1α with TRAF2 in response to ER stress, which leads to the 

recruitment of IκB kinase (IKK) and the phosphorylation and subsequent 

degradation of IκB. This releases NF-κB for translocation to the nucleus (Figure 

5).113 The PERK–eIF2α- and ATF6-mediated branches of the UPR activate NF-κB 

through different mechanisms to IRE1α. Engaging the PERK–eIF2α signaling 

pathway in response to ER stress halts overall protein synthesis and increases the 

ratio of NF-κB to IκB, owing to the shorter half-life of IκB, thereby favoring NF-κB-

dependent transcription (Figure 5).114,115 ATF6  activation through exposure to the 

bacterial subtilase cytotoxin can induce phosphorylation of AKT to activate NF-κB 

(Figure 5).116,117 

JNK, together with p38 and ERK, is one of the stress-inducible MAPKs that mediate a 

wide variety of responses, including but not limited to proliferation, autophagy and 
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inflammation. The IRE1α–TRAF2 complex can, in addition to the activation of NF- B, 

recruit apoptosis signal-regulating kinase 1 and subsequently activate JNK, leading 

to the increased expression of proinflammatory genes through enhanced activator 

protein 1 activity (Figure 5).118,119Loss of XBP1 in small IECs results in 

hyperactivation of IRE1 , which drives inflammatory responses, including cytokine 

production, that are in part mediated by phosphorylation of JNK.78 ER stress in 

human cancer cell lines has also been shown to trigger ERK activation through PI3K, 

which was associated with increased resistance to ER stress-induced cell death120 

UPR activation in immune cells and various stromal cells leads to the induction and 

secretion of various cytokines, such as IL-6 and TNF.121,122 In macrophages, XBP1s 

directly binds the Tnf and Il6 promoters to regulate their expression,70  and ATF4, 

downstream of PERK activation, functions as a transcription factor for Il6 (Figure 

5).75 ER stress in pancreatic β cells can trigger activation of the NLRP3 

inflammasome and IL-1β secretion through IRE1α- and PERK-mediated induction of 

TXNIP (Figure 5).27 

Conversely, cytokines themselves can directly regulate the UPR. Interleukin 10, for 

example, can inhibit inflammation-induced ER stress by blocking shuttling of 

ATF6p50 to the nucleus in a pathway that involves p38 MAPK.123  However, 

circulating pro-inflammatory cytokines including IL-1, IL-6, CXCL8 (also known as 

IL-8) and TNF, can trigger UPR activation in the liver and thereby stimulate the 

release of products of the acute phase response (APR) [G], which amplify 

inflammatory responses to eliminate infection and restore tissue homeostasis. Upon 

ER stress in hepatocytes, ATF6  and CREBH traffic to the Golgi to undergo S1P- and 

https://en.wikipedia.org/wiki/Stromal_cell
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S2P-mediated cleavage; the cytosolic active transcription factors that are released 

induce expression of APR genes including C-reactive protein and serum amyloid P 

component (Figure 5).112 

 

[H1] The ‘pathological’ UPR in inflammatory disease 

UPR-associated inflammatory pathways are increasingly recognized to be involved 

in a variety of complex inflammatory diseases.  In the sections below, we discuss 

several examples of autoimmune, metabolic and neoplastic conditions in which the 

UPR may play a significant role. 

[H3] Inflammatory bowel disease 

Over the past decade, genome wide association studies (GWAS) have identified 

various susceptibility loci for Crohn disease [G] and ulcerative colitis [G], which are 

chronic inflammatory diseases of the gastrointestinal tract, collectively known as 

inflammatory bowel disease (IBD).124, 125 Many of these risk genes encode proteins 

that have an important role in proteostasis. Orosomucoid-like 3 (ORMDL3), a risk 

locus for both Crohn disease126 and ulcerative colitis127 (as well as interestingly 

asthma128), encodes an ER trans-membrane protein that in lung epithelial cells 

activates ATF6  and induces expression of SERCA2B (also known as ATP2A2), 

which might be associated with airway remodeling.128 In addition, ORMDL3 

represses serine palmitoyltransferase activity and thereby decreases ceramide 

levels, which might protect from apoptosis.129  However, the mechanism by which 

ORMDL3 is involved in IBD pathogenesis is unstudied. Candidate gene approaches 

have also identified anterior gradient 2 (AGR2)130 and XBP1 as risk loci for Crohn 
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disease and ulcerative colitis. AGR2 is a member of the protein disulfide isomerase 

family and is particularly highly expressed by secretory cells of the intestinal tract. 

In line with this, Agr2–/– mice have decreased expression of mucin 2 (MUC2) in 

goblet cells and abnormal localization of Paneth cells in the small intestine, which 

coincides with UPR activation and the development of spontaneous ileocolitis.131  

Conditional deletion of Xbp1 in IECs causes ER stress and results in spontaneous 

inflammation of the small intestine and increased susceptibility to dextran sodium 

sulfate (DSS)-induced colitis.78 As for AGR2 deficiency, deletion of XBP1 in IECs 

particularly affects secretory cells, as Xbp1IEC mice have decreased numbers of 

goblet cells and severely hypomorphic Paneth cells with decreased antimicrobial 

peptide production, which is associated with increased susceptibility to infection 

with L. monocytogenes.78 It is not fully clear exactly how UPR activation in the AGR2-

deficient and Xbp1IEC mice eventually causes intestinal inflammation. Xbp1IEC mice 

show signs of IRE1 -dependent JNK phosphorylation and NF- B activation, and 

blockade of NF- B activation or genetic deletion of IRE1  in IECs or systemic 

deletion of TNF receptor 1 protects Xbp1IEC mice from spontaneous enteritis.79,124 

Thus, IRE1 –NF- B signaling, in a pathway that is driven by TNF, has a crucial role 

in the development of inflammation upon deletion of XBP1 in IECs.  

As autophagy compensates for ER stress [BOX 1], genetic deficiency of autophagy in 

Xbp1IEC mice is associated with even more severe spontaneous enteritis that 

extends transmurally.79 Indeed, signs of ER stress have been detected in Paneth cells 

in patients with Crohn disease carrying the risk allele of autophagy-related 16-like 1 
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(ATG16L1T300A).132  Moreover, as the ATG16L1T300A risk allele encodes a protein that 

is otherwise functionally intact but has increased sensitivity to caspase 3-mediated 

cleavage,133,134 and as XBP1 deletion in IECs leads to caspase 3 activation,78 it is 

possible that in humans environmentally and/or genetically determined ER stress 

can reveal the phenotypic manifestations of this common risk variant.135 The 

epithelium of the small intestine may be particularly sensitive to ER stress-induced 

caspase 3 activation and ATG16L1T300A cleavage as there is evidence for ER stress 

even under baseline, non-inflammatory conditions.136 

In addition to IRE1 , the intestinal and lung epithelia express IRE1  (encoded by 

Ern2), particularly in goblet cells. Ern2–/– mice have increased basal levels of BiP in 

the intestinal epithelium, aberrant MUC2 accumulation in the ER of goblet cells137 

and increased sensitivity to DSS-induced colitis.138   

Various other perturbations in UPR signaling have been associated with intestinal 

inflammation. Mice lacking CREB3L1 (also known as OASIS),139,140 ATF6  or p58IPK 

(also known as DNAJC3) are more susceptible to DSS-induced colitis.138 

Furthermore, nonphosphorylatable Ser51Ala eIF2 -mutant mice have defective 

UPR signaling in IECs, leading to secretory dysfunction of Paneth cells and increased 

sensitivity to oral Salmonella infection and DSS-induced colitis.141  

Forward genetic approaches using N-ethyl-N-nitrosourea mutagenesis have yielded 

mouse strains (named Winnie and Eeyore) that carry single missense mutations in 

Muc2. These mutations cause misfolding of MUC2 protein, which results in strong 

UPR activation and spontaneous ulcerative colitis-like colitis, characterized by 
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inflammatory responses that involve both innate and adaptive immunity (including 

the IL-23–T helper 17 cell inflammatory axis).142,143 

Together, these studies show that the UPR is important in maintaining intestinal 

epithelial homeostasis in response to a highly complex intestinal luminal 

environment challenged by microrganisms and other external factors. However, 

intestinal inflammation can also be promoted by ER stress in the haematopoietic 

system of mucosal tissues, as shown by studies in HLA-B27 transgenic rats,144  and 

the contributions of UPR activation in distinct cell types to intestinal inflammation 

requires further research. 

 

[H3] Diabetes mellitus 

Pancreatic -cells rapidly increase protein synthesis during acute and chronic 

stimulation and are therefore dependent on a well-developed ER and protein quality 

control mechanisms. -cell-specific deletion of IRE1  or XBP1 results in impaired -

cell proliferation, defective proinsulin synthesis and processing, and decreased 

insulin secretion,145  Similarly, genetic deletion of PERK leads to ER stress-induced 

loss of pancreatic -cells and a progressive decline in endocrine (but also exocrine) 

pancreatic function, with hyperglycaemia developing within 4 weeks,146 which 

further emphasizes the central role of the UPR in pancreatic -cell survival and 

diabetes. In Akita mice, the oxidative folding of proinsulin by ER-resident 

oxireductases, which is required to obtain the native shape of proinsulin and allow 

its trafficking from the ER further down the secretory pathway, is impeded by the 
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expression of a mutant form of proinsulin (Ins2 C96Y). This results in the 

accumulation of misfolded proinsulin proteins in the ER, which triggers UPR 

activation, -cell inflammation and eventually -cell death, and leads to diabetes as 

early as 4 weeks of age,147,148 similarly to PERK-deficient mice.149 Importantly, 

IRE1α oligomer formation, which is indicative of high and chronic ER stress, is a 

crucial propagator of the phenotype of Akita mice, as pharmacological inhibition of 

IRE1α kinase activity alleviates the disease phenotype.26  

ER stress-induced JNK activation occurs in adipose and liver tissue of obese mice, 

whether induced by high fat diet or genetically through leptin deficiency (ob/ob 

mice). Obese mice develop insulin resistance through ER stress-mediated JNK-

induced phosphorylation of insulin receptor substrate 1, which impairs insulin 

action and causes insulin resistance. However, overexpression of spliced XBP1 

protected these mice from insulin resistance.150 Importantly, lower levels of spliced 

XBP1 in livers of obese mice were recently shown to result from inducible nitric 

oxide synthase (iNOS)-dependent — and thus inflammation-dependent — S-

nitrosylation of the RNase domain of IRE1 , while the kinase domain was 

unaffected; this resulted in decreased levels of protective XBP1s but maintained the 

levels of pro-inflammatory phosphorylated JNK. This study thereby demonstrates 

how obesity-induced inflammation can alter UPR signaling and provides a new link 

between inflammation, UPR activation and metabolic dysfunction.151 

ROS production secondary to ER stress can be another trigger for inflammation as it 

activates the NLRP3 inflammasome and IL-1β secretion in β-cells through increased 

levels of TXNIP, either as a result of RIDD-dependent decay of the Txnip-suppressing 
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microRNA miR-17 or through the PERK pathway, ultimately leading to β-cell 

apoptosis and diabetes.27,92 Indeed, suppression of JNK activity protects -cells from 

oxidative stress and ameliorates glucose tolerance.152 Although this is a field of 

extensive research, much still needs to be learned about the interplay between ER 

stress, inflammation and the development of metabolic diseases such as diabetes, as 

the UPR could be an attractive signaling pathway for therapeutic intervention. 

 

[H3] Non-alcoholic steatohepatitis 

The crucial role of the UPR in the liver was first discovered in 2000, when it was 

shown that XBP1 was required for liver development.153 In the liver, the ER and UPR 

are highly important for lipid synthesis and metabolism, in addition to their well-

known role in protein quality control.154  UPR activation in the liver has been 

extensively studied in light of the increasing prevalence of non-alcoholic fatty liver 

disease (NAFLD) [G], which is the foremost cause of non-alcoholic and non-viral 

liver–associated illness and death in the United States.155 Hepatic steatosis, the 

mildest form of NAFLD, can progress to non-alcoholic steatohepatitis (NASH), 

through a process that involves free fatty acid and lipid accumulation in hepatocytes 

followed by a series of innate immune responses in leukocytes including liver-

resident macrophages known as Kupffer cells.156 It has been shown that ER stress 

can induce liver steatosis through effects on lipid synthesis and inflammation, but 

high fat feeding-induced steatosis itself can also trigger ER stress, thereby providing 

a positive feedback loop that amplifies liver inflammation and injury.157 In turn, UPR 

activation can modulate inflammatory signaling to induce liver inflammation, in part 
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through JNK activation, and IkB phosphorylation leading to NF-kB activation,113,114 

which is an important mediator of methionine- and choline- deficient (MCD) diet-

dependent development of NASH.158 In addition, the accumulation of lipids in 

hepatocytes can lead to mitochondrial dysfunction with increased ROS levels, which 

further triggers downstream inflammatory responses. The importance of ROS in the 

development of NASH had specifically been shown in mice deficient in NRF2, a 

protein that is crucially involved in the antioxidant response and can be induced by 

PERK; Nrf2–/– mice develop NASH more rapidly than wild-type mice when fed high-

fat, high-cholesterol or MCD diets.159    

 

[H3] Cancer 

Activation of the UPR in cancers can initiate transcriptional programmes that allow 

them to combat harsh environmental conditions such as hypoxia, oxidative stress 

and low nutrient availability. In addition, these transcriptional programmes can 

actively shape a tumourigenic proinflammatory milieu. For example, UPR activation 

in prostate cancer cells results in transcriptional upregulation of IL6 and TNF,160 the 

promotors of which contain functional binding sites for XBP1s,70 proinflammatory 

mediators that may promote inflammation-induced malignancies.161,162 Moreover, 

both the PERK-163 and IRE1 164 arms of the UPR in tumour cells can 

increase transcription of genes encoding pro-angiogenic mediators such as vascular 

endothelial growth factor A, fibroblast growth factor 2 and IL-6.163-165 

Intriguingly, UPR activation in cancer cells can also affect the anti-tumour immune 

response. Soluble factors secreted by ER-stressed tumour cells, but not non-stressed 



 32 

tumour cells, can upregulate pro-inflammatory cytokine expression in macrophages, 

including the tumorigenic cytokines IL-6, IL-23p19 and TNF.166  These soluble 

factors are also involved in dampening the anti-tumour immune response by 

inhibiting antigen presentation by APCs to cytotoxic CD8+ T cells.66,167 The 

mechanism by which this occurs is only partly elucidated but may include ROS-

induced ER stress in DCs, transmitted through a yet to be defined factor, which 

increases lipid synthesis through XBP1 activation and thereby disrupts antigen 

presentation.66 

 

[H1] Conclusions  

Much has been learned about the functions of the UPR beyond being simply a means 

to cope with ER stress. The UPR has now also been recognized for its role in immune 

cell differentiation and function, and in regulating immune and inflammatory 

responses, including those associated with infections, tumours and autoimmune 

responses. It is clear that the UPR, and thus a certain level of ER stress, is crucial for 

cellular and consequently tissue homeostasis (the ‘eustress’ response). Therefore, 

understanding how the balance tips towards a pathophysiological UPR (the 

‘distress’ response) that is associated with disease, and how this balance can be 

manipulated to enable appropriate immune responses and restore homeostasis, are 

important future research directions. 

With the development of therapeutic agents that enhance proteostasis or interfere 

with specific components of the UPR [BOX 3], used either alone or together, the 

hope is that an improved understanding of the UPR in immunity and inflammation 
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will eventually lead to the development of novel therapeutic strategies for chronic 

immune-mediated diseases. 
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BOX 1 | Autophagy as a compensation strategy for ER stress 

In response to the challenge of misfolded proteins, autophagy has a crucial function 

as an adaptive, “self-eating” process in which cellular components are encapsulated 

within autophagosomes and degraded. Similarly to the unfolded protein response 

(UPR), autophagy can result in cell survival or cell death.168 169  The mechanisms by 

which the UPR induces autophagy are incompletely understood, but probably 

involve PERK–eIF2α and IRE1α signaling.170 

ATF4 and CHOP function both independently and together to induce a large array of 

autophagy genes.171 In addition, eIF2  phosphorylation, in response to polyQ72 

aggregate-induced ER stress, is associated with autophagosome formation and 

protection against neuronal cell death.43 In another example, using unfolded 

dysferlin as a model of muscular dystrophy, XBP1s was shown to be crucial for 

autophagy induction and protection from neurodegeneration.172 Furthermore, UPR 

pathways can activate AMPK, which attenuates AKT–mTOR signaling to enhance 

autophagy.173 

A direct demonstration that autophagy can compensate for ER stress derives from 

studies of ER stress-induced small intestinal inflammation,78  whereby concomitant 

deletion of epithelial XBP1 and of epithelial associated autophagy related protein 7 

(ATG7) or ATG16L1 results in increased ER stress and severe transmural Crohn 

disease-like enteritis, compared with deletion of XBP1 alone, which only induces 

mild superficial inflammation (Figure 4C). In this model, the induction of autophagy 

depends on phosphorylation of eIF2 .79 In the case of intestinal epithelial stress 

associated with inflammatory bowel disease, autophagy probably functions to 
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selectively remove inflammatory ER membranes (vide infra). In the setting of 

cancer, ER stress induces activation of the PERK–eIF2α–ATF4 signaling pathway to 

increase tumour cell survival through the induction of autophagy.174 175 The precise 

mechanism by which autophagy relaxes ER stress remains unclear. Autophagy was 

previously considered to be a non-specific process (bulk macro-autophagy), but 

selective autophagy processes that precisely target organelles such as mitochondria 

and peroxisomes into autophagosomes have now been described. Autophagy of the 

ER (ER-phagy) has been described in yeast,176  and more recently also in 

mammalian cells. In mammalian cells, ER-phagy depends on the FAM134 reticulon 

family of proteins, which function as ER transmembrane receptors binding LC3 and 

GABARAP, thereby initiating ER degradation by autophagy.177 It remains to be 

determined whether autophagy directly degrades stressed ER membranes 

containing misfolded proteins, and whether FAM134 proteins or the selective 

autophagy receptors NBR1, optineurin, p62 or NDP52 are involved. 

 

BOX 2 | Transmission of ER stress 

Can immune cells sense ER stress in other cells? Intriguing studies have shown that 

activation of the unfolded protein response (UPR) in tumour cells can, through an 

unknown transmissible factor, induce ER stress in macrophages involving 

upregulation of BiP, Chop and Gadd34 mRNAs and increased splicing of Xbp1. This 

occurs in a TLR4-dependent manner, which suggests that a TLR4 ligand is the 

transmissible factor. Importantly, ER stress-induced cell death was not responsible 

for the observed transmissible ER stress, which indicates that there is active 
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secretion of the transmissible factor rather than passive leakage of damage-

associated molecules from dying cells.166 Macrophages that were stimulated by 

neighboring ER-stressed tumour cells had increased inflammatory responses, which 

is in keeping with previous observations that TLR4 ligation amplifies pro-

inflammatory cytokine signaling and may be the responsible signaling moiety.70 

Apart from macrophages, dendritic cells (DCs) are also susceptible to an ER stress-

transmissible factor secreted by tumour cells, which interferes with DC-mediated 

cross-presentation to CD8+ T cells and results in a less effective anti-tumor immune 

response.167 It was recently shown that XBP1s-induced increases in lipid 

metabolism in DCs could be the underlying mechanism of impaired MHC class I-

mediated antigen presentation to cytotoxic T cells.66   

It is not clear whether the unidentified transmissible factor is a byproduct of ER 

stress in tumour cells or is actively secreted by these cells to modulate the anti-

tumour response. Identification of the ER stress-transmissible factor would greatly 

enhance our understanding of how tissue-specific ER stress can become systemic in 

nature. In addition, this could provide possible new therapeutic targets to improve 

the anti-tumour immune response. 

 

BOX 3 | Therapeutic opportunities 

Tauro-ursodeoxycholic acid (TUDCA) and 4-phenyl butyrate (PBA) are small 

molecule chaperones that contribute to proper protein folding in the ER; they have 

proved successful in alleviating ER stress-induced hyperglycaemia, restoring insulin 

sensitivity and ameliorating fatty liver disease in obese mice.178 TUDCA and PBA 
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have also been shown to reduce ER stress in the intestinal epithelium and thereby 

decrease the severity of DSS-induced colitis.179 In addition, LPS-induced lung 

inflammation was reduced by PBA, through decreasing ER stress and modulating 

NF- B and HIF1  signaling pathways.180  

In haematological malignancies that produce large amounts of protein, such as 

multiple myeloma, blocking the 26S proteasome with bortezomib induces activation 

of the PERK-mediated unfolded protein response (UPR) pathway, which increases 

ATF4 and CHOP activity and sensitizes multiple myeloma cells to apoptosis.181  In 

addition, blockade of IRE1  endonuclease activity with the small molecule inhibitor 

MKC-3946 increases multiple myeloma cell toxicity in response to the proteasome 

inhibitor bortezomib.182  In line with this, CD138+ plasma cells from patients with 

multiple myeloma are highly prone to cell death after treatment with STF-083010, 

another specific IRE1  RNase domain inhibitor, which further illustrates the 

importance of XBP1 in plasma cells. In addition, STF-083010 has potent cytotoxic 

effects in multiple myeloma cell lines and xenograft models.183 

Sunitinib is a receptor tyrosine kinase inhibitor that targets the receptors for 

platelet-derived growth factor and vascular endothelial growth factor and thereby 

affects tumour angiogenesis and tumor cell proliferation. It has been FDA approved 

for the treatment of renal cell carcinoma and gastrointestinal stromal tumours. 

However, sunitinib also seems to influence the kinase activity of IRE1 184 and PKR-

dependent phosphorylation of eIF2 .185  Therefore, sunitinib is potentially beneficial 

for the treatment of UPR-prone cancers, but it has also been shown to have negative 
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effects on the anti-viral immune response, as measured by decreased levels of IFN-  

in response to infection with encephalomyocarditis virus, which was dependent on 

decreased RNase L activity.185 This study exemplifies that broadly targeting the UPR 

might have important side effects that must be considered.  

Lastly, given the recent reports showing that UPR activation in cancers can 

modulate the tumour immune microenvironment, antigen presentation by dendritic 

cells and thereby anti-tumour responses, targeting the UPR in cancers may improve 

tumour recognition by the immune system or, synergistically, improve the efficacy 

of immunotherapy in cancer.  

  



 39 

References 

 
1 Oakes, S. A. & Papa, F. R. The role of endoplasmic reticulum stress in human 

pathology. Annual review of pathology 10, 173-194, doi:10.1146/annurev-
pathol-012513-104649 (2015). 

2 Wang, M. & Kaufman, R. J. The impact of the endoplasmic reticulum protein-
folding environment on cancer development. Nature reviews. Cancer 14, 581-
597, doi:10.1038/nrc3800 (2014). 

3 Sevier, C. S. & Kaiser, C. A. Formation and transfer of disulphide bonds in 
living cells. Nature reviews. Molecular cell biology 3, 836-847, 
doi:10.1038/nrm954 (2002). 

4 Tu, B. P. & Weissman, J. S. Oxidative protein folding in eukaryotes: 
mechanisms and consequences. The Journal of cell biology 164, 341-346, 
doi:10.1083/jcb.200311055 (2004). 

5 Saibil, H. Chaperone machines for protein folding, unfolding and 
disaggregation. Nature reviews. Molecular cell biology 14, 630-642, 
doi:10.1038/nrm3658 (2013). 

6 Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. 
Annual review of biochemistry 74, 739-789, 
doi:10.1146/annurev.biochem.73.011303.074134 (2005). 

7 Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human 
disease. Annual review of biochemistry 75, 333-366, 
doi:10.1146/annurev.biochem.75.101304.123901 (2006). 

8 Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as 
a conduit to human disease. Nature 529, 326-335, doi:10.1038/nature17041 
(2016). 

9 Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins 
for degradation in the endoplasmic reticulum. Science 334, 1086-1090, 
doi:10.1126/science.1209235 (2011). 

10 Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the 
homeostatic behavior of the unfolded protein response. PLoS Biol 8, 
e1000415, doi:10.1371/journal.pbio.1000415 (2010). 

11 Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that 
directly induce the unfolded protein response. Science 333, 1891-1894, 
doi:10.1126/science.1209126 (2011). 

12 Harding, H. P. et al. Regulated translation initiation controls stress-induced 
gene expression in mammalian cells. Mol Cell 6, 1099-1108 (2000). 

13 Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled 
by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274, 
doi:10.1038/16729 (1999). 

14 Scheuner, D. et al. Translational control is required for the unfolded protein 
response and in vivo glucose homeostasis. Mol Cell 7, 1165-1176 (2001). 

15 Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of 
endoplasmic reticulum resident chaperone genes in the unfolded protein 
response. Molecular and cellular biology 23, 7448-7459 (2003). 



 40 

16 Hetz, C. The unfolded protein response: controlling cell fate decisions under 
ER stress and beyond. Nature reviews. Molecular cell biology 13, 89-102, 
doi:10.1038/nrm3270 (2012). 

17 Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway 
from the endoplasmic reticulum to the nucleus requires a novel bifunctional 
protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12, 
1812-1824 (1998). 

18 Korennykh, A. V. et al. The unfolded protein response signals through high-
order assembly of Ire1. Nature 457, 687-693, doi:10.1038/nature07661 
(2009). 

19 Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is 
induced by ATF6 and spliced by IRE1 in response to ER stress to produce a 
highly active transcription factor. Cell 107, 881-891 (2001). 

20 Hassler, J. R. et al. The IRE1alpha/XBP1s Pathway Is Essential for the Glucose 
Response and Protection of beta Cells. PLoS Biol 13, e1002277, 
doi:10.1371/journal.pbio.1002277 (2015). 

21 Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs 
during the unfolded protein response. Science 313, 104-107, 
doi:10.1126/science.1129631 (2006). 

22 Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in 
cell fate regulation. Trends in biochemical sciences 39, 245-254, 
doi:10.1016/j.tibs.2014.02.008 (2014). 

23 Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like 
receptors. Nature immunology 15, 839-845, doi:10.1038/ni.2948 (2014). 

24 Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein 
response. Science 318, 944-949, doi:10.1126/science.1146361 (2007). 

25 Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential 
stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 
4, e374, doi:10.1371/journal.pbio.0040374 (2006). 

26 Ghosh, R. et al. Allosteric inhibition of the IRE1alpha RNase preserves cell 
viability and function during endoplasmic reticulum stress. Cell 158, 534-
548, doi:10.1016/j.cell.2014.07.002 (2014). 

27 Lerner, A. G. et al. IRE1alpha induces thioredoxin-interacting protein to 
activate the NLRP3 inflammasome and promote programmed cell death 
under irremediable ER stress. Cell metabolism 16, 250-264, 
doi:10.1016/j.cmet.2012.07.007 (2012). 

28 Upton, J. P. et al. IRE1alpha cleaves select microRNAs during ER stress to 
derepress translation of proapoptotic Caspase-2. Science 338, 818-822, 
doi:10.1126/science.1226191 (2012). 

29 Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing 
liver endoplasmic reticulum stress in obesity. Nature 473, 528-531, 
doi:10.1038/nature09968 (2011). 

30 Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates 
endoplasmic reticulum unfolded protein response transducers through their 
transmembrane domains. Proc Natl Acad Sci U S A 110, 4628-4633, 
doi:10.1073/pnas.1217611110 (2013). 



 41 

31 Claudio, N., Dalet, A., Gatti, E. & Pierre, P. Mapping the crossroads of immune 
activation and cellular stress response pathways. The EMBO journal 32, 
1214-1224, doi:10.1038/emboj.2013.80 (2013). 

32 Ravindran, R. et al. The amino acid sensor GCN2 controls gut inflammation by 
inhibiting inflammasome activation. Nature 531, 523-527, 
doi:10.1038/nature17186 (2016). 

33 Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic 
translation initiation and principles of its regulation. Nature reviews. 
Molecular cell biology 11, 113-127, doi:10.1038/nrm2838 (2010). 

34 Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates 
ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101, 
11269-11274, doi:10.1073/pnas.0400541101 (2004). 

35 Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates 
ribosomal bypass of an inhibitory upstream ORF to enhance CHOP 
translation. J Biol Chem 286, 10939-10949, doi:10.1074/jbc.M110.216093 
(2011). 

36 Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and 
oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066-3077, 
doi:10.1101/gad.1250704 (2004). 

37 Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion 
reduces oxidative stress, improves beta cell function, and promotes cell 
survival in multiple mouse models of diabetes. J Clin Invest 118, 3378-3389, 
doi:10.1172/JCI34587 (2008). 

38 Chitnis, N. S. et al. miR-211 is a prosurvival microRNA that regulates chop 
expression in a PERK-dependent manner. Mol Cell 48, 353-364, 
doi:10.1016/j.molcel.2012.08.025 (2012). 

39 Woo, C. W., Kutzler, L., Kimball, S. R. & Tabas, I. Toll-like receptor activation 
suppresses ER stress factor CHOP and translation inhibition through 
activation of eIF2B. Nature cell biology 14, 192-200, doi:10.1038/ncb2408 
(2012). 

40 Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential 
stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 
4, e374, doi:10.1371/journal.pbio.0040374 (2006). 

41 Han, J. et al. ER-stress-induced transcriptional regulation increases protein 
synthesis leading to cell death. Nature cell biology 15, 481-490, 
doi:10.1038/ncb2738 (2013). 

42 Wu, J. et al. ATF6alpha optimizes long-term endoplasmic reticulum function 
to protect cells from chronic stress. Dev Cell 13, 351-364, 
doi:10.1016/j.devcel.2007.07.005 (2007). 

43 Kouroku, Y. et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the 
polyglutamine-induced LC3 conversion, an essential step for autophagy 
formation. Cell death and differentiation 14, 230-239, 
doi:10.1038/sj.cdd.4401984 (2007). 

44 Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by 
the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 99, 190-195, 
doi:10.1073/pnas.012485299 (2002). 



 42 

45 Tashiro, E. et al. Trierixin, a novel Inhibitor of ER stress-induced XBP1 
activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and 
biological activities. J Antibiot (Tokyo) 60, 547-553, doi:10.1038/ja.2007.69 
(2007). 

46 Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the 
homeostatic unfolded protein response. The Journal of cell biology 189, 783-
794, doi:10.1083/jcb.201003138 (2010). 

47 Turner, C. A., Jr., Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-
containing protein that can drive the maturation of B lymphocytes into 
immunoglobulin-secreting cells. Cell 77, 297-306 (1994). 

48 Sciammas, R. et al. Graded expression of interferon regulatory factor-4 
coordinates isotype switching with plasma cell differentiation. Immunity 25, 
225-236, doi:10.1016/j.immuni.2006.07.009 (2006). 

49 Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory 
apparatus and other organelles, and increases protein synthesis in plasma 
cell differentiation. Immunity 21, 81-93, doi:10.1016/j.immuni.2004.06.010 
(2004). 

50 Reimold, A. M. et al. Plasma cell differentiation requires the transcription 
factor XBP-1. Nature 412, 300-307, doi:10.1038/35085509 (2001). 

51 Todd, D. J. et al. XBP1 governs late events in plasma cell differentiation and is 
not required for antigen-specific memory B cell development. The Journal of 
experimental medicine 206, 2151-2159, doi:10.1084/jem.20090738 (2009). 

52 Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein 
response intersect at the transcription factor XBP-1. Nature immunology 4, 
321-329, doi:10.1038/ni907 (2003). 

53 van Anken, E. et al. Sequential waves of functionally related proteins are 
expressed when B cells prepare for antibody secretion. Immunity 18, 243-
253 (2003). 

54 Hu, C. C., Dougan, S. K., McGehee, A. M., Love, J. C. & Ploegh, H. L. XBP-1 
regulates signal transduction, transcription factors and bone marrow 
colonization in B cells. The EMBO journal 28, 1624-1636, 
doi:10.1038/emboj.2009.117 (2009). 

55 Benhamron, S. et al. Regulated IRE1-dependent decay participates in 
curtailing immunoglobulin secretion from plasma cells. European journal of 
immunology 44, 867-876, doi:10.1002/eji.201343953 (2014). 

56 Brunsing, R. et al. B- and T-cell development both involve activity of the 
unfolded protein response pathway. J Biol Chem 283, 17954-17961, 
doi:10.1074/jbc.M801395200 (2008). 

57 Zhang, K. et al. The unfolded protein response sensor IRE1alpha is required 
at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 115, 268-281, 
doi:10.1172/JCI21848 (2005). 

58 Kharabi Masouleh, B. et al. Mechanistic rationale for targeting the unfolded 
protein response in pre-B acute lymphoblastic leukemia. Proc Natl Acad Sci U 
S A 111, E2219-2228, doi:10.1073/pnas.1400958111 (2014). 



 43 

59 Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 
contributes to effector CD8+ T cell differentiation during acute infection. 
Journal of immunology 181, 5433-5441 (2008). 

60 Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 
is essential for the development and survival of dendritic cells. The Journal of 
experimental medicine 204, 2267-2275, doi:10.1084/jem.20070525 (2007). 

61 Osorio, F. et al. The unfolded-protein-response sensor IRE-1alpha regulates 
the function of CD8alpha+ dendritic cells. Nature immunology 15, 248-257, 
doi:10.1038/ni.2808 (2014). 

62 Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for 
monitoring endoplasmic reticulum stress. Nat Med 10, 98-102, 
doi:10.1038/nm970 (2004). 

63 Granados, D. P. et al. ER stress affects processing of MHC class I-associated 
peptides. BMC Immunol 10, 10, doi:10.1186/1471-2172-10-10 (2009). 

64 Qian, S. B. et al. Tight linkage between translation and MHC class I peptide 
ligand generation implies specialized antigen processing for defective 
ribosomal products. Journal of immunology 177, 227-233 (2006). 

65 Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in 
cancer. Nat Med 16, 880-886, doi:10.1038/nm.2172 (2010). 

66 Cubillos-Ruiz, J. R. et al. ER Stress Sensor XBP1 Controls Anti-tumor 
Immunity by Disrupting Dendritic Cell Homeostasis. Cell 161, 1527-1538, 
doi:10.1016/j.cell.2015.05.025 (2015). 

67 Furuta, G. T., Atkins, F. D., Lee, N. A. & Lee, J. J. Changing roles of eosinophils in 
health and disease. Annals of allergy, asthma & immunology : official 
publication of the American College of Allergy, Asthma, & Immunology 113, 3-
8, doi:10.1016/j.anai.2014.04.002 (2014). 

68 Chu, V. T. et al. Eosinophils promote generation and maintenance of 
immunoglobulin-A-expressing plasma cells and contribute to gut immune 
homeostasis. Immunity 40, 582-593, doi:10.1016/j.immuni.2014.02.014 
(2014). 

69 Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for 
eosinophil differentiation. Nature immunology 16, 829-837, 
doi:10.1038/ni.3225 (2015). 

70 Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the 
transcription factor XBP1 regulates innate immune responses in 
macrophages. Nature immunology 11, 411-418, doi:10.1038/ni.1857 (2010). 

71 Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated 
IRE1alpha activation in pancreatic beta cells. Science signaling 3, ra7, 
doi:10.1126/scisignal.2000514 (2010). 

72 Qiu, Q. et al. Toll-like receptor-mediated IRE1alpha activation as a 
therapeutic target for inflammatory arthritis. The EMBO journal 32, 2477-
2490, doi:10.1038/emboj.2013.183 (2013). 

73 Zhao, C. et al. Cellular stress amplifies TLR3/4-induced CXCL1/2 gene 
transcription in mononuclear phagocytes via RIPK1. Journal of immunology 
193, 879-888, doi:10.4049/jimmunol.1303396 (2014). 



 44 

74 Kim, S. et al. Endoplasmic reticulum stress-induced IRE1alpha activation 
mediates cross-talk of GSK-3beta and XBP-1 to regulate inflammatory 
cytokine production. Journal of immunology 194, 4498-4506, 
doi:10.4049/jimmunol.1401399 (2015). 

75 Iwasaki, Y. et al. Activating transcription factor 4 links metabolic stress to 
interleukin-6 expression in macrophages. Diabetes 63, 152-161, 
doi:10.2337/db13-0757 (2014). 

76 Woo, C. W. et al. Adaptive suppression of the ATF4-CHOP branch of the 
unfolded protein response by toll-like receptor signalling. Nature cell biology 
11, 1473-1480, doi:10.1038/ncb1996 (2009). 

77 Clevers, H. C. & Bevins, C. L. Paneth cells: maestros of the small intestinal 
crypts. Annu Rev Physiol 75, 289-311, doi:10.1146/annurev-physiol-030212-
183744 (2013). 

78 Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers 
genetic risk for human inflammatory bowel disease. Cell 134, 743-756, 
doi:10.1016/j.cell.2008.07.021 (2008). 

79 Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. 
Nature 503, 272-276, doi:nature12599 [pii] 

10.1038/nature12599 (2013). 
80 Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. 

Annu Rev Immunol 33, 107-138, doi:10.1146/annurev-immunol-032414-
112116 (2015). 

81 Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the 
unfolded protein response in cancer. Nature reviews. Cancer 8, 851-864, 
doi:10.1038/nrc2501 (2008). 

82 Koritzinsky, M. et al. Two phases of disulfide bond formation have differing 
requirements for oxygen. The Journal of cell biology 203, 615-627, 
doi:10.1083/jcb.201307185 (2013). 

83 Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on 
adipocytokine dysregulation. Diabetes 56, 901-911, doi:10.2337/db06-0911 
(2007). 

84 Wang, G., Yang, Z. Q. & Zhang, K. Endoplasmic reticulum stress response in 
cancer: molecular mechanism and therapeutic potential. American journal of 
translational research 2, 65-74 (2010). 

85 Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the 
HIF1alpha pathway. Nature 508, 103-107, doi:10.1038/nature13119 (2014). 

86 Kumar, V. & Gabrilovich, D. I. Hypoxia-inducible factors in regulation of 
immune responses in tumour microenvironment. Immunology 143, 512-519, 
doi:10.1111/imm.12380 (2014). 

87 Tsunoda, S. et al. Intact protein folding in the glutathione-depleted 
endoplasmic reticulum implicates alternative protein thiol reductants. Elife 
3, e03421, doi:10.7554/eLife.03421 (2014). 

88 Malhotra, J. D. et al. Antioxidants reduce endoplasmic reticulum stress and 
improve protein secretion. Proc Natl Acad Sci U S A 105, 18525-18530, 
doi:10.1073/pnas.0809677105 (2008). 



 45 

89 Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an 
immunologist's guide to reactive oxygen species. Nat Rev Immunol 13, 349-
361, doi:10.1038/nri3423 (2013). 

90 Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative 
stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9, 
2277-2293 (2007). 

91 Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 
inflammasome activation. Nature 469, 221-225, doi:10.1038/nature09663 
(2011). 

92 Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-
induced beta cell death through initiation of the inflammasome. Cell 
metabolism 16, 265-273, doi:10.1016/j.cmet.2012.07.005 (2012). 

93 Celli, J. & Tsolis, R. M. Bacteria, the endoplasmic reticulum and the unfolded 
protein response: friends or foes? Nat Rev Microbiol 13, 71-82, 
doi:10.1038/nrmicro3393 (2015). 

94 Walsh, D. & Mohr, I. Viral subversion of the host protein synthesis machinery. 
Nat Rev Microbiol 9, 860-875, doi:10.1038/nrmicro2655 (2011). 

95 Li, S., Kong, L. & Yu, X. The expanding roles of endoplasmic reticulum stress in 
virus replication and pathogenesis. Crit Rev Microbiol 41, 150-164, 
doi:10.3109/1040841X.2013.813899 (2015). 

96 Hassan, I. et al. Inositol-requiring enzyme 1 inhibits respiratory syncytial 
virus replication. J Biol Chem 289, 7537-7546, doi:10.1074/jbc.M113.510594 
(2014). 

97 Bhattacharyya, S., Sen, U. & Vrati, S. Regulated IRE1-dependent decay 
pathway is activated during Japanese encephalitis virus-induced unfolded 
protein response and benefits viral replication. J Gen Virol 95, 71-79, 
doi:10.1099/vir.0.057265-0 (2014). 

98 Mulvey, M., Arias, C. & Mohr, I. Maintenance of endoplasmic reticulum (ER) 
homeostasis in herpes simplex virus type 1-infected cells through the 
association of a viral glycoprotein with PERK, a cellular ER stress sensor. J 
Virol 81, 3377-3390, doi:10.1128/JVI.02191-06 (2007). 

99 Tardif, K. D., Mori, K., Kaufman, R. J. & Siddiqui, A. Hepatitis C virus 
suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol 
Chem 279, 17158-17164, doi:10.1074/jbc.M312144200 (2004). 

100 Zheng, Y. et al. Hepatitis C virus non-structural protein NS4B can modulate an 
unfolded protein response. J Microbiol 43, 529-536 (2005). 

101 Richardson, C. E., Kooistra, T. & Kim, D. H. An essential role for XBP-1 in host 
protection against immune activation in C. elegans. Nature 463, 1092-1095, 
doi:10.1038/nature08762 (2010). 

102 van 't Wout, E. F. et al. Virulence Factors of Pseudomonas aeruginosa Induce 
Both the Unfolded Protein and Integrated Stress Responses in Airway 
Epithelial Cells. PLoS Pathog 11, e1004946, 
doi:10.1371/journal.ppat.1004946 (2015). 

103 Pillich, H., Loose, M., Zimmer, K. P. & Chakraborty, T. Activation of the 
unfolded protein response by Listeria monocytogenes. Cell Microbiol 14, 949-
964, doi:10.1111/j.1462-5822.2012.01769.x (2012). 



 46 

104 Paton, A. W. et al. AB5 subtilase cytotoxin inactivates the endoplasmic 
reticulum chaperone BiP. Nature 443, 548-552, doi:10.1038/nature05124 
(2006). 

105 Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. 
Nat Rev Immunol 8, 279-289, doi:10.1038/nri2215 (2008). 

106 Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in 
inflammation and immunity. Cell 140, 798-804, 
doi:10.1016/j.cell.2010.02.015 (2010). 

107 Luo, Y., Li, S. J., Yang, J., Qiu, Y. Z. & Chen, F. P. HMGB1 induces an 
inflammatory response in endothelial cells via the RAGE-dependent 
endoplasmic reticulum stress pathway. Biochemical and biophysical research 
communications 438, 732-738, doi:10.1016/j.bbrc.2013.07.098 (2013). 

108 Zhu, X. M. et al. Endoplasmic reticulum stress and its regulator XBP-1 
contributes to dendritic cell maturation and activation induced by high 
mobility group box-1 protein. Int J Biochem Cell Biol 44, 1097-1105, 
doi:10.1016/j.biocel.2012.03.018 (2012). 

109 Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP 
secretion in immunogenic cancer cell death. The EMBO journal 31, 1062-
1079, doi:10.1038/emboj.2011.497 (2012). 

110 Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell 
ploidy. Science 337, 1678-1684, doi:10.1126/science.1224922 (2012). 

111 Lu, M. et al. Opposing unfolded-protein-response signals converge on death 
receptor 5 to control apoptosis. Science 345, 98-101, 
doi:10.1126/science.1254312 (2014). 

112 Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to 
induce a systemic inflammatory response. Cell 124, 587-599, 
doi:10.1016/j.cell.2005.11.040 (2006). 

113 Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor 
necrosis factor alpha links endoplasmic reticulum stress to the membrane 
death receptor pathway through IRE1alpha-mediated NF-kappaB activation 
and down-regulation of TRAF2 expression. Molecular and cellular biology 26, 
3071-3084, doi:10.1128/MCB.26.8.3071-3084.2006 (2006). 

114 Deng, J. et al. Translational repression mediates activation of nuclear factor 
kappa B by phosphorylated translation initiation factor 2. Molecular and 
cellular biology 24, 10161-10168, doi:10.1128/MCB.24.23.10161-
10168.2004 (2004). 

115 Tam, A. B., Mercado, E. L., Hoffmann, A. & Niwa, M. ER stress activates NF-
kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PloS 
one 7, e45078, doi:10.1371/journal.pone.0045078 (2012). 

116 Nakajima, S. et al. Selective abrogation of BiP/GRP78 blunts activation of NF-
kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and 
mTOR-dependent dephosphorylation of Akt. Molecular and cellular biology 
31, 1710-1718, doi:10.1128/MCB.00939-10 (2011). 

117 Yamazaki, H. et al. Activation of the Akt-NF-kappaB pathway by subtilase 
cytotoxin through the ATF6 branch of the unfolded protein response. Journal 
of immunology 183, 1480-1487, doi:10.4049/jimmunol.0900017 (2009). 



 47 

118 Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nature 
reviews. Cancer 3, 859-868, doi:10.1038/nrc1209 (2003). 

119 Urano, F. et al. Coupling of stress in the ER to activation of JNK protein 
kinases by transmembrane protein kinase IRE1. Science 287, 664-666 
(2000). 

120 Hu, P., Han, Z., Couvillon, A. D. & Exton, J. H. Critical role of endogenous 
Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum 
stress-induced cell death. J Biol Chem 279, 49420-49429, 
doi:10.1074/jbc.M407700200 (2004). 

121 Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of 
tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and 
map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 
280, 21763-21772, doi:10.1074/jbc.M501759200 (2005). 

122 Meares, G. P. et al. PERK-dependent activation of JAK1 and STAT3 
contributes to endoplasmic reticulum stress-induced inflammation. 
Molecular and cellular biology 34, 3911-3925, doi:10.1128/MCB.00980-14 
(2014). 

123 Shkoda, A. et al. Interleukin-10 blocked endoplasmic reticulum stress in 
intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 
132, 190-207, doi:10.1053/j.gastro.2006.10.030 (2007). 

124 Kaser, A., Zeissig, S. & Blumberg, R. S. Inflammatory bowel disease. Annu Rev 
Immunol 28, 573-621, doi:10.1146/annurev-immunol-030409-101225 
(2010). 

125 Van Limbergen, J., Wilson, D. C. & Satsangi, J. The genetics of Crohn's disease. 
Annu Rev Genomics Hum Genet 10, 89-116, doi:10.1146/annurev-genom-
082908-150013 (2009). 

126 Barrett, J. C. et al. Genome-wide association defines more than 30 distinct 
susceptibility loci for Crohn's disease. Nat Genet 40, 955-962 (2008). 

127 McGovern, D. P. et al. Genome-wide association identifies multiple ulcerative 
colitis susceptibility loci. Nat Genet 42, 332-337 (2010). 

128 Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression 
contribute to the risk of childhood asthma. Nature 448, 470-473, 
doi:10.1038/nature06014 (2007). 

129 Kiefer, K. et al. Coordinated regulation of the orosomucoid-like gene family 
expression controls de novo ceramide synthesis in mammalian cells. J Biol 
Chem 290, 2822-2830, doi:10.1074/jbc.M114.595116 (2015). 

130 Zheng, W. et al. Evaluation of AGR2 and AGR3 as candidate genes for 
inflammatory bowel disease. Genes Immun 7, 11-18, doi:6364263 [pii] 

10.1038/sj.gene.6364263 (2006). 
131 Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased 

endoplasmic reticulum stress in Agr2-/- mice. Dev Biol 338, 270-279, 
doi:10.1016/j.ydbio.2009.12.008 (2010). 

132 Deuring, J. J. et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER 
stress in quiescent Crohn's disease. Gut 63, 1081-1091, doi:10.1136/gutjnl-
2012-303527 (2013). 



 48 

133 Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy 
resulting in altered cytokine signaling and decreased antibacterial defense. 
Proc Natl Acad Sci U S A 111, 7741-7746, doi:10.1073/pnas.1407001111 
(2014). 

134 Murthy, A. et al. A Crohn's disease variant in Atg16l1 enhances its 
degradation by caspase 3. Nature 506, 456-462, doi:10.1038/nature13044 
(2014). 

135 Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs 
identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 
39, 207-211, doi:10.1038/ng1954 (2007). 

136 Bogaert, S. et al. Involvement of endoplasmic reticulum stress in 
inflammatory bowel disease: a different implication for colonic and ileal 
disease? PloS one 6, e25589, doi:10.1371/journal.pone.0025589 (2011). 

137 Tsuru, A. et al. Negative feedback by IRE1beta optimizes mucin production in 
goblet cells. Proc Natl Acad Sci U S A 110, 2864-2869 (2013). 

138 Bertolotti, a. et al. Increased sensitivity to dextran sodium sulfate colitis in 
IRE1beta-deficient mice. The Journal of clinical investigation 107, 585-593, 
doi:10.1172/JCI11476 (2001). 

139 Asada, R. et al. The endoplasmic reticulum stress transducer OASIS is 
involved in the terminal differentiation of goblet cells in the large intestine. J 
Biol Chem 287, 8144-8153 (2008). 

140 Hino, K., Saito, A., Asada, R., Kanemoto, S. & Imaizumi, K. Increased 
susceptibility to dextran sulfate sodium-induced colitis in the endoplasmic 
reticulum stress transducer OASIS deficient mice. PloS one 9, e88048 (2014). 

141 Cao, S. S. et al. Phosphorylation of eIF2alpha is dispensable for differentiation 
but required at a posttranscriptional level for paneth cell function and 
intestinal homeostasis in mice. Inflammatory bowel diseases 20, 712-722 
(2014). 

142 Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic 
reticulum stress and spontaneous inflammation resembling ulcerative colitis. 
PLoS medicine 5, e54, doi:10.1371/journal.pmed.0050054 (2008). 

143 Eri, R. D. et al. An intestinal epithelial defect conferring ER stress results in 
inflammation involving both innate and adaptive immunity. Mucosal 
immunology 4, 354-364, doi:10.1038/mi.2010.74 (2011). 

144 Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. 
Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 
and human beta 2m: an animal model of HLA-B27-associated human 
disorders. Cell 63, 1099-1112 (1990). 

145 Lee, A. H., Heidtman, K., Hotamisligil, G. S. & Glimcher, L. H. Dual and 
opposing roles of the unfolded protein response regulated by IRE1alpha and 
XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A 
108, 8885-8890, doi:10.1073/pnas.1105564108 (2011). 

146 Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in 
perk-/- mice reveals a role for translational control in secretory cell survival. 
Mol Cell 7, 1153-1163 (2001). 



 49 

147 Ron, D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita 
diabetic mouse. J Clin Invest 109, 443-445, doi:10.1172/JCI15020 (2002). 

148 Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe 
pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103, 27-37, 
doi:10.1172/JCI4431 (1999). 

149 Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic 
reticulum stress-mediated diabetes. J Clin Invest 109, 525-532, 
doi:10.1172/JCI14550 (2002). 

150 Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and 
type 2 diabetes. Science 306, 457-461, doi:306/5695/457 [pii] 

10.1126/science.1103160 (2004). 
151 Yang, L. et al. METABOLISM. S-Nitrosylation links obesity-associated 

inflammation to endoplasmic reticulum dysfunction. Science 349, 500-506, 
doi:10.1126/science.aaa0079 (2015). 

152 Kaneto, H. et al. Oxidative stress and the JNK pathway in diabetes. Curr 
Diabetes Rev 1, 65-72 (2005). 

153 Reimold, A. M. et al. An essential role in liver development for transcription 
factor XBP-1. Genes Dev 14, 152-157 (2000). 

154 Zhang, K. et al. The unfolded protein response transducer IRE1alpha 
prevents ER stress-induced hepatic steatosis. The EMBO journal 30, 1357-
1375, doi:10.1038/emboj.2011.52 (2011). 

155 Milic, S. & Stimac, D. Nonalcoholic fatty liver disease/steatohepatitis: 
epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis 30, 
158-162, doi:10.1159/000336669 (2012). 

156 Wenfeng, Z. et al. Kupffer cells: increasingly significant role in nonalcoholic 
fatty liver disease. Ann Hepatol 13, 489-495 (2014). 

157 Malhi, H. & Kaufman, R. J. Endoplasmic reticulum stress in liver disease. J 
Hepatol 54, 795-809, doi:10.1016/j.jhep.2010.11.005 (2011). 

158 Dela Pena, A. et al. NF-kappaB activation, rather than TNF, mediates hepatic 
inflammation in a murine dietary model of steatohepatitis. Gastroenterology 
129, 1663-1674, doi:10.1053/j.gastro.2005.09.004 (2005). 

159 Gupte, A. A., Lyon, C. J. & Hsueh, W. A. Nuclear factor (erythroid-derived 2)-
like-2 factor (Nrf2), a key regulator of the antioxidant response to protect 
against atherosclerosis and nonalcoholic steatohepatitis. Curr Diab Rep 13, 
362-371, doi:10.1007/s11892-013-0372-1 (2013). 

160 Mahadevan, N. R., Fernandez, A., Rodvold, J. J., Almanza, G. & Zanetti, M. 
Prostate cancer cells undergoing ER stress in vitro and in vivo activate 
transcription of pro-inflammatory cytokines. J Inflamm Res 3, 99-103, 
doi:10.2147/JIR.S11190 (2010). 

161 Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in 
inflammation-associated cancer. Nature 431, 461-466, 
doi:10.1038/nature02924 (2004). 

162 Clarke, H. J., Chambers, J. E., Liniker, E. & Marciniak, S. J. Endoplasmic 
reticulum stress in malignancy. Cancer Cell 25, 563-573, 
doi:10.1016/j.ccr.2014.03.015 (2014). 



 50 

163 Blais, J. D. et al. Perk-dependent translational regulation promotes tumor cell 
adaptation and angiogenesis in response to hypoxic stress. Molecular and 
cellular biology 26, 9517-9532, doi:10.1128/MCB.01145-06 (2006). 

164 Auf, G. et al. Inositol-requiring enzyme 1alpha is a key regulator of 
angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A 107, 
15553-15558, doi:10.1073/pnas.0914072107 (2010). 

165 Wang, Y. et al. The unfolded protein response induces the angiogenic switch 
in human tumor cells through the PERK/ATF4 pathway. Cancer Res 72, 5396-
5406, doi:10.1158/0008-5472.CAN-12-0474 (2012). 

166 Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and 
pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A 
108, 6561-6566, doi:10.1073/pnas.1008942108 (2011). 

167 Mahadevan, N. R. et al. Cell-extrinsic effects of tumor ER stress imprint 
myeloid dendritic cells and impair CD8(+) T cell priming. PloS one 7, e51845, 
doi:10.1371/journal.pone.0051845 (2012). 

168 Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-
consumption: the interplay of autophagy and apoptosis. Nature reviews. 
Molecular cell biology 15, 81-94, doi:10.1038/nrm3735 (2014). 

169 Suh, D. H., Kim, M. K., Kim, H. S., Chung, H. H. & Song, Y. S. Unfolded protein 
response to autophagy as a promising druggable target for anticancer 
therapy. Annals of the New York Academy of Sciences 1271, 20-32, 
doi:10.1111/j.1749-6632.2012.06739.x (2012). 

170 Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress 
response. Mol Cell 40, 280-293, doi:10.1016/j.molcel.2010.09.023 (2010). 

171 B'Chir, W. et al. The eIF2alpha/ATF4 pathway is essential for stress-induced 
autophagy gene expression. Nucleic acids research 41, 7683-7699, 
doi:10.1093/nar/gkt563 (2013). 

172 Hetz, C. et al. XBP-1 deficiency in the nervous system protects against 
amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23, 2294-
2306, doi:10.1101/gad.1830709 (2009). 

173 Qin, L., Wang, Z., Tao, L. & Wang, Y. ER stress negatively regulates 
AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239-247 
(2010). 

174 Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent 
transformation and tumor growth. J Clin Invest 122, 4621-4634, 
doi:10.1172/JCI62973 (2012). 

175 Rouschop, K. M. et al. The unfolded protein response protects human tumor 
cells during hypoxia through regulation of the autophagy genes MAP1LC3B 
and ATG5. J Clin Invest 120, 127-141 (2010). 

176 Bernales, S., Schuck, S. & Walter, P. ER-phagy: selective autophagy of the 
endoplasmic reticulum. Autophagy 3, 285-287 (2007). 

177 Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by 
selective autophagy. Nature 522, 354-358, doi:10.1038/nature14498 (2015). 

178 Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose 
homeostasis in a mouse model of type 2 diabetes. Science 313, 1137-1140, 
doi:10.1126/science.1128294 (2006). 



 51 

179 Cao, S. S. et al. The unfolded protein response and chemical chaperones 
reduce protein misfolding and colitis in mice. Gastroenterology 144, 989-
1000 e1006, doi:10.1053/j.gastro.2013.01.023 (2013). 

180 Kim, H. J. et al. Inhibition of endoplasmic reticulum stress alleviates 
lipopolysaccharide-induced lung inflammation through modulation of NF-
kappaB/HIF-1alpha signaling pathway. Sci Rep 3, 1142, 
doi:10.1038/srep01142 (2013). 

181 Mujtaba, T. & Dou, Q. P. Advances in the understanding of mechanisms and 
therapeutic use of bortezomib. Discov Med 12, 471-480 (2011). 

182 Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a 
promising therapeutic option in multiple myeloma. Blood 119, 5772-5781, 
doi:10.1182/blood-2011-07-366633 (2012). 

183 Papandreou, I. et al. Identification of an Ire1alpha endonuclease specific 
inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 
1311-1314, doi:10.1182/blood-2010-08-303099 (2011). 

184 Ali, M. M. et al. Structure of the Ire1 autophosphorylation complex and 
implications for the unfolded protein response. The EMBO journal 30, 894-
905, doi:10.1038/emboj.2011.18 (2011). 

185 Jha, B. K. et al. Inhibition of RNase L and RNA-dependent protein kinase 
(PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem 286, 
26319-26326, doi:10.1074/jbc.M111.253443 (2011). 

 
  



 52 

  

   



 53 

Figure legends 

Figure 1: Accumulation of unfolded proteins in the ER lumen induces the three 

arms of the UPR. A) Dissociation of BiP from IRE1 , or direct binding of misfolded 

proteins to IRE1 , activates the endoribonuclease domain of IRE1 , which non-

conventionally splices Xbp1u mRNA to produce a translational frameshift and create 

a potent transcriptional activator XBP1s. XBP1s activates the transcription of genes 

encoding proteins that are important for increasing the protein folding capacity of 

the ER and for the degradation of misfolded proteins via ERAD (see inset box). In 

addition, the entry of newly synthesized proteins into the ER is limited by the 

degradation of mRNA through regulated IRE1 -dependent decay of mRNA (RIDD). 

B) PERK-dependent phosphorylation of eIF2  inhibits ribosome assembly, which 

results in a translational block and allows the cell to cope with temporary ER stress. 

ATF4 escapes translation inhibition and induces the transcription of genes involved 

in downstream pro-survival pathways, including compensatory autophagy. Once ER 

stress is resolved, eIF2  is dephosphorylated by GADD34–PP1 to restore protein 

translation. However, if ER stress-induced damage is irreversible, the terminal UPR 

is activated to induce apoptosis, mainly through CHOP. C) Upon BiP dissociation 

from ATF6  during ER stress, ATF6  travels to the Golgi compartment where it is 

processed by the Golgi enzymes S1P and S2P to produce a cytosolic p50 fragment. 

ATF6p50 functions as a transcription factor that activates transcriptional 

programmes that increase ER capacity and protein folding, and that remove 

misfolded proteins from the ER for degradation (ERAD; see inset box). 



 54 

 

Figure 2: XBP1 has a crucial role in plasma cell differentiation and dendritic 

cell differentiation and function. A: B cell receptor (BCR) ligation induces 

phosphorylation of B cell lymphoma 6 (BCL6) and its subsequent ubiquitylation and 

degradation. BCL6 degradation de-represses Blimp1 in naïve B cells to activate 

cellular programmes that are crucial for the development of plasma cells. These 

include activation of the unfolded protein response (UPR) and Xbp1 splicing, which 

is required for the expansion of the ER and increased protein (immunoglobulin) 

synthesis involved in plasma cell differentiation. B: Left panel: XBP1 is crucial for 

the differentiation of conventional DCs and plasmacytoid DCs from immature 

progenitors. Loss of XBP1 in progenitor cells abrogates maturation and decreases 

DC survival. Right panel, top: XBP1 deletion in mature CD11c-expressing DCs results 

in IRE1 hyperactivation leading to RIDD-dependent degradation of components of 

the MHC class I-mediated antigen cross-presentation machinery and, as such, ER 

stress in DCs interferes with their function. Right panel, bottom: In addition, 

increased XBP1s in response to ROS production in tumour DCs leads to augmented 

lipid biogenesis which is associated with disruption of MHC class I-mediated cross-

presentation. 

 

Figure 3: TLR signaling and the UPR coordinate immune responses in 

macrophages. A: Upon TLR ligation, the IRE1 –XBP1 arm of the unfolded protein 

response (UPR) is activated through a mechanism that requires TRAF6 recruitment 

to the TLR and ROS production by the NADPH oxidase NOX2. XBP1s functions as a 
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transcription factor to induce the transcription of pro-inflammatory cytokines Il6 

and Tnf . In a separate pathway, translation of Atf4 mRNA is inhibited by TLR4 

ligation, which decreases CHOP levels and apoptosis in activated macrophages and 

thereby facilitates the immune response by favoring macrophage survival. B: In the 

absence of TLR signaling, phosphorylated IRE1  is subject to protein phosphatase 

2A (PP2A)-mediated dephosphorylation and inactivation (left panel). Upon TLR 

ligation however, TRAF6 interacts with IRE1  and catalyzes the ubiquitylation of 

IRE1 , which prevents PP2A-mediated dephosphorylation and inactivation of 

IRE1 , thereby amplifying inflammation (right panel). C: IRE1  activation can 

induce Il1  transcription through GSK3 , which at the same time inhibits Xbp1 

splicing and thereby transcription of XBP1s target genes including Tnf. 

 

Figure 4: A) Intestinal epithelial cells, particularly Paneth cells, have a well 

developed ER to cope with the high secretory demands, including production of 

antimicrobial proteins such as lysozyme and defensins. B) Deletion of XBP1 in the 

small intestinal epithelium (Xbp1IEC mice) induces ER stress, resulting in 

hypomorphic Paneth cells that have signs of IRE1  hyperactivation and downstream 

activation of NF- B and JNK. Induction of autophagy through the PERK–eIF2 –ATF4 

axis of the UPR alleviates ER stress. C) Simultaneous deletion of XBP1 and ATG16L1 

in the small intestinal epithelium therefore further increases ER stress and ER 

stress-induced inflammation. Hypothetically, ER stress, which induces caspase 3, 

could be an important pathway responsible for the degradation of ATG16L1 in 



 56 

patients carrying the Crohn disease risk allele Atg16L1T300A which is prone to 

caspase 3-mediated cleavage. 

 

Figure 5: the UPR as an inflammatory nidus. A) IRE1  activation and subsequent 

splicing of Xbp1 produces the transcription factor XBP1s that directly binds the 

promoters of Tnf and Il6. B) RIDD-dependent degradation of miR-17, which in 

unstressed conditions represses Txnip, allows for increased TXNIP levels and NRLP3 

inflammasome activation with upregulation of IL-1 . In addition, Txnip can be 

induced through the PERK–ATF5 pathway to induce inflammasome activation. C) 

Activated IRE1  forms a complex with TRAF2 to induce phosphorylation of JNK and 

upregulation of pro-inflammatory genes through AP1-activated transcription. D) In 

addition, the IRE1 –TRAF2 complex recruits IKK and subsequent phosphorylation 

of I B leads to its degradation, thereby freeing NF- B for nuclear translocation. E) 

Translation attenuation by PERK-dependent phosphorylation of eIF2  results in 

decreased I B and NF B translation. However, owing to the shorter half-life of I B, 

the result is an increased NF B to I B ratio, which promotes inflammation. F) ATF4 

directly binds the Il6 promotor. G) ATF6 induces NF B signaling via AKT 

phosphorylation. H,I) S1P- and S2P-mediated cleavage of ATF6  and CREBH allows 

their cleavage fragments to translocate to the nucleus and induce genes of the acute 

phase response (APR).  
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Glossary 

ER-associated degradation 

(ERAD). A pathway that removes terminally misfolded proteins from the ER through 

their retrotranslocation to the cytosol and that targets them for degradation by the 

ubiquitin–proteasome system. 

Unfolded protein response 

(UPR). A highly conserved pathway that regulates the balance between folding 

capacity of the endoplasmic reticulum (ER) and protein synthesis.  

Integrated stress response 

(ISR). An ancient stress response that modulates protein biosynthesis by integrating 

various types of stress signal, including ER stress, amino acid deprivation, virus 

infection and oxidative stress. 

Paneth cells 

Highly specialized small intestinal epithelial cells that shape the composition of the 

microbiota by the secretion of antimicrobial proteins and that sustain and modulate 

epithelial stem cells by the secretion of niche factors. 

Acute phase response 

(APR). A group of systemic and innate physiological processes in the early response 

to infection or injury.  

Crohn disease 

An inflammatory disease of the small and large intestines that is thought to arise 

from an inappropriate immune response towards the intestinal microbiota in a 

genetically susceptible host. 
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Ulcerative colitis 

A chronic disease of the colon with unknown aetiology, characterized by 

inflammation and ulceration of the colon. 

Non-alcoholic fatty liver disease 

(NAFLD). Liver disease characterized by the accumulation of fat (steatosis) in the 

liver, which is often associated with obesity. Although NAFLD is benign, it can 

progress towards steatohepatitis and even cirrhosis.  

 

Key points 

1. The unfolded protein response (UPR) has an important role in the 

differentiation and maturation of various immune cells and is crucial for 

immune cell function, such as cytokine production by macrophages and 

cross-presentation of dendritic cells, for example.  

2. Innate immune signaling differentially affects the three arms of the UPR to 

optimize inflammatory responses, while at the same time inhibiting the 

activation of the terminal UPR, which is associated with cell death. This 

allows the cell to survive and cope with temporary increases in protein 

production during immune responses to pathogens. 

3. In complex autoimmune diseases, chronic activation of the UPR can function 

as the nidus for the development of inflammation. 

4. UPR activation triggers inflammatory responses mainly through NF-kB 

activation, phosphorylation of JNK, activation of the inflammasome or direct 
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interaction of downstream UPR targets with the promoters of inflammatory 

cytokine genes. 

5. UPR activation in cancer cells may interfere with anti-tumour immunity, 

which indicates that manipulating UPR signaling could boost anti-tumor 

immune responses. 

6. The UPR is amenable to therapeutic manipulation to either promote its 

beneficial homeostasis-inducing properties and/or inhibit its inflammation-

inducing activities in the setting of unresolved ER stress. 
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