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Effect systems revisited—control-flow algebra

and semantics

Alan Mycroft1, Dominic Orchard2, and Tomas Petricek1

1 University of Cambridge, UK {firstname.lastname}@cl.cam.ac.uk
2 Imperial College London, UK d.orchard@imperial.ac.uk

Abstract. Effect systems were originally conceived as an inference-based
program analysis to capture program behaviour—as a set of (represen-
tations of) effects. Two orthogonal developments have since happened.
First, motivated by static analysis, effects were generalised to values in
an algebra, to better model control flow (e.g. for may/must analyses
and concurrency). Second, motivated by semantic questions, the syntac-
tic notion of set- (or semilattice-) based effect system was linked to the
semantic notion of monads and more recently to graded monads which
give a more precise semantic account of effects.
We give a lightweight tutorial explanation of the concepts involved in
these two threads and then unify them via the notion of an effect-directed
semantics for a control-flow algebra of effects. For the case of effectful
programming with sequencing, alternation and parallelism—illustrated
with music—we identify a form of graded joinads as the appropriate
structure for unifying effect analysis and semantics.

1 Introduction and musical homily

Instead of the usual introduction explaining effect systems and exemplifying
their various forms, we start with a musical example. This motivates a particular
algebraic approach to describing effects, including concurrency, based around the
development of Nielson and Nielson along with Amtoft [26, 2].

Section 2 again starts as tutorial, first relating set-based effect systems with
syntactic labelled monads (due to Wadler and Thiemann [39]) and later with
a semantic relationship to graded monads [16, 28]. This relationship is parallel
to that between types as syntax and types as semantic objects such as sets and
domains—or that of algebra as symbol-pushing versus algebraic models.

Section 3 is more novel and argues that (graded) monads alone are insufficient
to model effects representing parallelism, and even certain forms of conditional.
We identify the notion of control-flow effect operators, as opposed to ordinary
effect operators, to characterise the situation.

Section 4 continues by showing how the joinad structure [29, 32], which refines
monads, can be “graded” (indexed) to unite the above two orthogonal develop-
ments of effect systems—giving a particular control-flow algebra which provides
an algebraic-and-semantic model of effect systems including parallelism.

Anyway, enough of this chatter—the show must go on!

2 Author’s copy. Appears in Springer, LNCS Volume 9560



let happyBirthdayMelody() =
for line = 1 to 4 do

play(G, 0.75); play(G, 0.25);
if line = 3 then play(G2, 1); play(E2, 1); play(C2, 1); play(B, 1); play(A, 1);
else play(A, 1); play(G, 1);

if line = 2 then play(D2, 1); play(C2, 2); else play(C2, 1); play(B, 2);

Fig. 1. Happy Birthday to Hanne and Flemming

Motivation: richer effect systems. When writing about effect systems, many au-
thors still consider only set-based systems. However, as shown by Nielson and
Nielson [26], richer effect systems are useful. In addition to sequential composi-
tion, such systems also capture recursion (looping), choice (to model condition-
als), and spawning threads. We demonstrate the importance of such rich effect
structures in this section, albeit using parallel composition rather than spawning.

1.1 Effect systems for music

In our first example, we honour the celebratory nature of this paper and consider
an effect system for music. More specifically, we look at a program (Figure 1)
that plays the melody of the “Happy Birthday to You” song.3 We use a simple
imperative language4 with a primitive play(N, l) which plays the note N (drawn
from the usual CDEFGAB range, with suffix ‘2’ meaning an octave higher, along
with the silent note ‘rest’) for duration l (a rational number) and blocks until
l time has elapsed. The function iterates over four phrases of the song. Each
phrase starts with notes G G, so these are played always. The third phrase
(Happy birthday dear Hanne and Flemming) has a different melody, which is
handled using the first if. The first two phrases also differ (the second if).

Set-based effect system. The most basic effect system that we could add to the
language is shown in Figure 2. It annotates programs with effects Φ—here the
set of notes that are played. (We generally use F , G, H to range over effects,
but while discussing music—perhaps containing the note F—we use Φ instead.
Similarly the singleton type is written void rather than unit to avoid conflict with
the monad unit operator later.) The (play) rule annotates play with a singleton
set containing the played note, ignoring its duration. Sequential composition
(seq) and (if) simply union the sets of sub-expressions and (for) ignores the
repetition and just uses the annotation of the body. Thus, for the above program,
the simple effect systems reports the effect {G,A,B,C2,D2,E2,G2}.

This is a good start (we now know the range of notes that our piano needs
to have!), but it does not tell us very much about the structure of the song.

3 To slightly shorten the example, the melody of the last phrase repeats that of the
first. Musicians are invited to use the correct notes: F2;F2;E2;C2;D2;C2.

4 This easily maps to the λ-calculus-with-constants formulation used in later sections
by replacing the for statement with if and a tail-recursive call, and by treating e; e′

as shorthand for let x = e in e′ for some fresh variable x.
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(play)
Γ ⊢ play(N, l) : void, {N}

(if)
Γ ⊢ e0 : bool, Φ0 Γ ⊢ e1 : τ, Φ1 Γ ⊢ e2 : τ, Φ2

Γ ⊢ if e0 then e1 else e2 : τ, Φ0 ∪ Φ1 ∪ Φ2

(seq)
Γ ⊢ e1 : τ1, Φ1 Γ ⊢ e2 : τ2, Φ2

Γ ⊢ e1; e2 : τ2, Φ1 ∪ Φ2

(for)
Γ ⊢ e : void, Φ

Γ ⊢ for i = n1 to n2 do e : void, Φ

Fig. 2. Simple set-based effect system for music

(play)
Γ ⊢ play(N, l) : void, N

(if)
Γ ⊢ e0 : bool, Φ0 Γ ⊢ e1 : τ, Φ1 Γ ⊢ e2 : τ, Φ2

Γ ⊢ if e0 then e1 else e2 : τ, Φ0 • (Φ1 + Φ2)

(seq)
Γ ⊢ e1 : τ1, Φ1 Γ ⊢ e2 : τ2, Φ2

Γ ⊢ e1; e2 : τ2, Φ1 • Φ2

(for)
Γ ⊢ e : void, Φ

Γ ⊢ for i = n1 to n2 do e : void, Φ∗

Fig. 3. A richer effect system for music with Kleene star and choice

Adding Kleene star and choice. If we want to track the effects of our song more
precisely, we can follow Nielson and Nielson and use an effect system with a richer
structure [26]. For music, we might use annotations of the following structure:

Φ = C,D,E, . . . , rest (primitives: notes, including rest)
| Φ1 + Φ2 (choice)
| Φ1 • Φ2 (sequencing)
| Φ∗ (looping)

(where (∗) binds more tightly than (•) which binds more tightly than (+))
The effect system shown in Figure 3 uses the new structure of effect annota-

tions. Sequential composition (seq) annotates the expression e1; e2 with Φ1 •Φ2.
The for loop is annotated with Φ∗ meaning that the body is executed zero or
more times. The conditional if-then-else is annotated with Φ0•(Φ1+Φ2) meaning
that it evaluates the guard expression first, followed by one of the branches.

Using the revised effect system, the effect annotation of “Happy Birthday to
You” becomes: (G •G • (G2 • E2 •C2 •B •A+A •G • (D2 •C2+C2 •B)))∗. This
contains a lot more information about the song! It is still an approximation—we
only know there are zero or more repetitions, and not how the choices are made
or note durations. However we do know in which order the notes are played and
what variations there might be. Such an effect system could be used in a music
programming language as an interface to communicate higher-order function
(combinator) behaviour (see e.g., effect systems for music live coding [1]).

Why richer effects matter. Effect systems can inform optimisations, aid program
understanding, and help reject buggy programs. Richer effect systems therefore
let us specify valid transformations/programs more precisely.

The above effect system has two interesting properties. Firstly, in the revised
Nielson-Nielson-style system, each syntactic element is annotated with a distinct
operation in an abstract effect structure. This means that we are, in some sense,
describing the most powerful and general non-dependently-typed effect system
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for the language. For example, separating sequencing and alternation allows both
‘may’ and ‘must’ properties to be analysed. For the effects of if with Φ0•(Φ1+Φ2),
the usual set-based approach where • = + = ∪ gives a ‘may’ analysis. A ‘must’
analysis is obtained by instead taking + = ∩, i.e. each branch of a conditional
must satisfy the minimal requirements specified by the effect.

Secondly, the laws (equational theory) of the programming language imply
equations on the effect structure, and vice versa. For example, consider the
following program law (inspired by the introduction of Benton et al. [4]):

{if b then c else c′}; c′′ ≡ if b then {c; c′′} else {c′; c′′}

corresponding to effect algebra axiom (Φ+Φ′) •Φ′′ = (Φ •Φ′′)+ (Φ′ •Φ′′), where
sequential composition is right-distributive over alternation. Thus, axioms of the
effect algebra make language properties more explicit and easier to understand.

Adding parallelism. These •/+/(∗) operators often suffice to summarise program
behaviour—indeed they capture a range of classical dataflow analyses when ap-
propriately interpreted. However, languages for expressing music need an addi-
tional construct, namely parallel composition, to play multiple phrases at the
same time. For example, to accompany “Happy Birthday to You” with chords
C, G7 and F, we need a parallel-composition construct e1 par e2 and define:

let chord C(l) = play(C, l) par play(E, l) par play(G, l)
let chord G7(l) = play(G, l) par play(B, l) par play(D, l) par play(F, l)
let chord F(l) = play(F, l) par play(A, l) par play(C, l)

Following the methodology of the previous section, we now need a corresponding
extension of our effect system. We add a new operation for parallel composition
to the effect structure, written Φ1&Φ2, and supply the following typing rule:

(par)
Γ ⊢ e1 : τ1, Φ1 Γ ⊢ e2 : τ2, Φ2

Γ ⊢ e1 par e2 : τ1 × τ2, Φ1&Φ2

We can now write a program that accompanies the melody with the above chords
as harmony. For the last two lines, we play C and F chords for line 3 and then
C, G7, C for line 4, giving an effect that is the parallel composition & of the
melody program above and the effect of the chords (C&E&G) • ((F&A&C) +
((G&B&D&F) • (C&E&G))). Note that the effect structure above allows us to
capture the fact that one chord finishes before the next chord starts. However,
we would need to enrich effects with durations to be able to use effect-based
reasoning to argue that the melody and harmony synchronise as our ears expect.

Our modelling of music is inspired by Nielson and Nielson who considered
spawning processes in CML, in an effect system over what they termed be-
haviours. This included basic effects of channel allocation, sending and receiving
(similar to session types [11]), a τ action for internal communication, binary ef-
fect operators for sequencing and alternation, and unary effect operator SPAWN

to denote task spawning. We prefer to use a binary parallel-composition operator
instead of SPAWN as commutativity of parallelism is more easily expressed.
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Parallelism and other operators. How does the & operator relate to other ef-
fect operators? In CCS and the π-calculus, Milner’s interleaving-semantic view
identifies our (Φ1 &Φ2) with (Φ1 • Φ2) + (Φ2 • Φ1); two concurrent events are
equivalent to the same two events in some non-deterministic order [22]. In Mil-
ner’s work, this rests on his assumption that events are atomic and, indeed, the
model is sufficient for many purposes (e.g. when the primitive operations are
serialised into one-at-a-time interactions).

However, doing so is against our aim of providing a fully general system and it
excludes many effect systems we wish to consider. In music, events have duration
and so we need to distinguish three basic effect operators: assuming Φ1 and Φ2

are notes (or pieces of music) then Φ1 •Φ2 means play Φ1 then Φ2, and Φ1 +Φ2

means play Φ1 or Φ2, and Φ1&Φ2 means play Φ1 at the same time as Φ2. This
justifies the idea of having three separate effect operators which can, if desired,
be interpreted so as to satisfy interleaving, but not to build in interleaving.

1.2 Section conclusion and placement

“The methodology of annotated type and effect systems consists of: (i)
expressing a program analysis by means of an annotated type or effect
system, (ii) showing the semantic correctness of the analysis, (iii) de-
veloping an inference algorithm and proving it syntactically sound and
complete.” (Nielson et al. [25])

This paper addresses a particular subset of effect systems (i), ones express-
ible in terms of primitive effects composed with operations for sequential and
parallel composition along with alternation (and iteration, considered briefly in
Section 5). In Section 2, we overview some of the literature connecting effect sys-
tems to monads, first syntactically and then semantically, and we explain how
graded monads [16] provide an effect-directed semantics. This refines a usual
monadic semantics and aids correctness (ii) by unifying analysis and semantics.

Section 3 explores how (graded) monads have limited ability to express non-
sequential control flow (choice/parallelism); monads per se capture only sequen-
tial composition (corresponding to • in effect annotations). For the musical ex-
ample, we must also capture control flow corresponding to the + and & effect
operations. We propose that joinads [32] fill this role. Section 4 recalls joinads, in-
troducing a variant that we call conditional joinads; these are graded analogously
to monads. The resulting graded conditional joinads provide an effect-directed
denotational semantics for rich effect systems. Relevant work from the literature
is scattered throughout, but more is given along with discussion in Section 5.

This paper does not consider inference algorithms (iii), and indeed we do not
discuss polymorphism over type or effects, which are precursors to principality,
or near principality, of type and effect inference systems.

Whilst much of the material here is grounded in category theory, we aim at
a more accessible presentation, mostly in terms of set-theoretic or programming
concepts. Throughout we assume an underlying Cartesian-closed category for our
semantics and so use the λ-calculus as its internal language to aid readability.
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Paper outline. The following diagram summarises the big picture of the pa-
per, where ◭ indicates a richer structure to the right:

Types ◭
Effect monoids

& types
◭

Effect control-flow
algebras & types

>�� CCCs >�� Graded
monads

>��Graded joinads
Section 4

Sets/Domains ◭ Monads ◭ Joinads

The top line gives syntax of program analyses (types and effects); the bot-
tom gives the related semantic interpretations. The left-hand denotes the use of
Cartesian-closed categories to refine a set- or domain-based semantics with types
to give a type-directed semantics. In a similar way (in the middle part), graded
monads unify (refine) a monadic semantics with the information from a tradi-
tional monoidal effect system, giving effect-directed semantics. The right-hand
part expresses our analogous construction, relating the generalisation of monads
to joinads with the generalisation of monoidal effects to richer (semiring-like)
structures for control flow, by graded joinads.

2 Monads and effect systems

Effect systems are a class of static analyses for program side-effects [9, 37, 18].
They are typically inductively defined over the syntax (and types) of a program,
presented as augmented typing rules (rather than a flow-based analysis such
as dataflow), hence their full title: type-and-effect systems. (Another view is
that the effect annotations are types of a different kind). Effect systems have
been used for a variety of applications, including analysing memory access [9],
message passing [12], control side-effects and unstructured control primitives
(goto/comefrom) encoded as continuations [13], and atomicity in concurrency [7].

We overview effect systems briefly (Section 2.1) and relate these to seman-
tics in a gradual way: first syntactically to monadic typing (Section 2.2), then
semantically in a type-directed way (Section 2.3) and finally in an effect-directed
way using graded monads (Section 2.4) (from [16, 28]).

Our base language is the call-by-value simply-typed λ-calculus with con-
stants, conditionals, and parallel composition, with syntax:

e ::= x | kτ | λx.e | e1 e2 | letx = e1 in e2 | if e1 then e2 else e3 | e1 par e2

where kτ are constants of type τ (kτ of function type can produce effects).
Throughout x, y range over variables. The par construct is considered only in
Section 4; letx = e1 in e2 is treated as a simple abbreviation for (λx.e2) e1.

Semantics We mainly use a denotational-semantic framework: the meaning of
an expression e is a value JeK in a mathematical domain, defined inductively
over the structure of e. The meaning of an expression depends on both its free
variables and its type derivation, accordingly JΓ ⊢ e : τK is typically a value in the
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space of denotations JΓ K → JτK. Free-variable contexts Γ = x1 :τ1, ..., xn :τn are
interpreted as environments ranged over by γ. Conventionally these are products
Jτ1K × ...× JτnK indexed by positions but for our purposes we index by variable
names written 〈x1 : Jτ1K, ..., xn : JτnK〉. We write γ[x 7→ v] for the environment
γ with variable x updated to value v. Finally, the space of denotations is often
presented as a category. While this can be a unifying framework, it can impose
additional overhead (e.g. the need for ‘strength’ of monads, Appendix A) so here
we largely keep to a set-based special-case framework.

Correctness of denotational models is established here relative to an ax-
iomatic semantics (equational theory)—a congruence relation ≡ (on e), typically
derived from an operational semantics (rewrite rules). A denotational semantics
is sound when e ≡ e′ ⇒ JeK = Je′K, and complete if the converse holds. This
extends naturally to equalities Γ ⊢ e ≡ e′ : τ, F relative to a type (and effect)
derivation, and their interpretations JΓ ⊢ e : τ, F K = JΓ ⊢ e′ : τ, F K.

We assume the standard operational and axiomatic semantics of the call-
by-value λ-calculus for our base language (with β-reduction on syntactic values
(λx.e) v → e[v/x] and its corresponding β-equality). The axiomatic semantics
of if and par are given in Section 4.2 (p. 22). The denotational and axiomatic
semantics are specialised for particular notions of effect and effectful primitives.

2.1 Traditional effects

Type and effect judgements take the form: Γ ⊢ e : τ, F asserting that an expres-
sion e has a type τ and at most produces immediate effects F , in the context

Γ . Effects F are taken from a set F and types have the form: τ ::= τ1
F
−→ τ2 | ι

where ι ranges over primitive types (e.g. bool, int, void). Throughout τ ranges
over types and F over effects. Function types give an anchor for the latent effects
of a function, which arise when the function is applied. In Section 1, only imme-
diate effects appeared explicitly, but we can see happyBirthdayMelody as having
the latent effect of playing the music when called, but no immediate effects.

Early definitions of effect systems described a lattice structure on effects but
rely only on effects forming a join semi -lattice, where the least-upper-bound
(join) operation combines effect annotations and the least element annotates
pure computations [9, 18]. This was demonstrated for sets with union: (F =
P(S),∪, ∅). Originally, effects were considered for the polymorphic λ-calculus
with type and effect polymorphism. The discussion in this paper is monomorphic.
We use meta-variables for effects and types which may be instantiated, giving
meta-level polymorphism.

Figure 4 shows a type and effect system for our base language, following Gif-
ford and Lucassen’s approach. We generalise from sets to an arbitrary bounded
join semilattice (F ,⊔,⊥). Figure 5 shows additional rules for an instance of the
calculus which tracks memory accesses to memory regions ρ. This instance has
additional types ref ρ and effectful primitives read and write with their respective
effects rdρ and wrρ (note, these are derived rules, from (const) and (app)). Fig-
ure 6 gives the usual (sub) rule for sub-effecting, over-approximating effects with
respect to an ordering [37] and an alternative syntax-directed (coerce) rule.
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(var)
Γ, x :τ ⊢ x : τ, ⊥

(let)
Γ ⊢ e1 : τ, F Γ, x :τ ⊢ e2 : τ ′, G

Γ ⊢ letx = e1 in e2 : τ ′, F ⊔G

(const)
Γ ⊢ kτ : τ, ⊥

(if)
Γ ⊢ e0 : bool, F Γ ⊢ e1 : τ, G Γ ⊢ e2 : τ, H

Γ ⊢ if e0 then e1 else e2 : τ, F ⊔G ⊔H

(abs)
Γ, x :τ ⊢ e : τ ′, F

Γ ⊢ λx.e : τ
F
−→ τ ′, ⊥

(app)
Γ ⊢ e1 : τ

H
−→ τ ′, F Γ ⊢ e2 : τ, G

Γ ⊢ e1 e2 : τ ′, F ⊔G ⊔H

Fig. 4. Gifford-Lucassen effect system for an impure λ-calculus, using semilattice no-
tation (concretely they used sets of effects).

(write)
Γ ⊢ e1 : refρ τ, F Γ ⊢ e2 : τ, G

Γ ⊢ write e1 e2 : void, F ⊔G ⊔ wrρ
(read)

Γ ⊢ e : refρ τ, F

Γ ⊢ read e : τ, F ⊔ rdρ

Fig. 5. Effect-specific (derived) rules instantiating kτ for memory access.

(sub)
Γ ⊢ e : τ, F

Γ ⊢ e : τ, G
if F ⊑ G (coerce)

Γ ⊢ e : τ, F

Γ ⊢ coerceF,Ge : τ, G
if F ⊑ G

Fig. 6. Implicit and explicit sub-effecting rules.

2.2 Effects and monads—syntactically

We summarise Wadler and Thiemann’s work which goes halfway towards a se-
mantic unification of monads and effects [39]. We distinguish the notion of syn-
tactic monads (basically a type constructor, written M here) from semantic
monads (written T following tradition) which model effectful computation.

Monads are a class of algebraic structure from category theory that have been
found to provide a useful model for the sequential composition of computations
that have various kinds of side effect, such as state, non-determinism, exceptions,
and continuations [23, 24]. The idea is that impure, call-by-value computations
can be modelled semantically by functions A → TB where A and B model
input and output types respectively and TB is a structure5 encoding the side
effects which occur during the computation of a B output value. The operations
and axioms of a monad provide an (associative) sequential composition ◦̂ such
that, given functions f : A → TB and g : B → TC, then g ◦̂ f : A → TC
with an identity (modelling a trivially pure computation) îd : A → TA. Usual
presentations of monads decompose the definition of ◦̂. A more formal definition
is delayed until Definition 1 (p. 10).

5 Mathematically, T is an endofunctor, but languages such as Haskell (and the Monad
language in this section) expose monads syntactically as parametric type constructors
M ; thus side-effecting functions have analogous types τ → Mτ ′. We try not to labour
either this distinction or that between types (often written A,B instead of τ, τ ′

above) and the categorical objects A,B which model them (more formally JτK, Jτ ′K).
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Wadler and Thiemann observed that (semilattice) effect systems and monads
are homomorphic: they have the same shape and carry related information [39].
They show this via two languages: Effect, a λ-calculus with an effect system,
recursion, and mutable references (for which Figures 4 and 5 give a similar
definition), and Monad, a typed λ-calculus for monadic programming without
an effect system. The standard monadic approach to programming (such as in
Haskell) introduces a parameterised data type M to encapsulate and encode
effects, where Mτ represents a computation that may perform some effects to
compute a value of type τ . In the Monad language, this type constructor M is
additionally labelled with a set of effects F denoting the (maximum) set of side
effects which may be performed by that computation, written MF .

TheMonad language adds the following constructs for manipulating monadic
computations, where (return) constructs a pure monadic computation and
(bind) provides composition of monadic computations.

(return)
Γ ⊢M e : τ

Γ ⊢M 〈e〉 : M∅τ
(bind)

Γ ⊢M e : MF τ Γ, x : τ ⊢ e′ : MGτ ′

Γ ⊢M letx ⇐ e in e′ : MF∪Gτ ′

Effectful operations in the language are given monadic types, with state-using
functions: read : ref τ → M{rd}τ and write : ref τ → τ → M{wr}τ , which are
composable with (bind). For example, the following increments location r:

r : ref int ⊢M let x ⇐ read r in write r (x+ 1) : M{rd,wr}int

Wadler and Thiemann show that all terms e in the Effect language can be
translated6 to terms [e] in the Monad language, with type-and-effect judgements
Γ ⊢ e : τ, F of Effect mapped to [Γ ] ⊢M [e] : MF [τ ] ofMonad where [τ ] is defined:

[τ
F
−→ τ ′] = [τ ] → MF [τ ′]

[int] = int (and similarly for other base types)

Contexts Γ are translated to [Γ ] by applying [τ ] pointwise. For expressions e,
we show (a simplified version of) Wadler and Thiemann’s encoding for variables,
abstraction, and application:

[x] = 〈x〉 [λx.e] = 〈λx.[e]〉 [e e′] = let f ⇐ [e] in let x ⇐ [e′] in f x

Variables are translated by wrapping them in the “return” construct 〈−〉, lifting
the computation to a trivially effectful monadic value of type M∅[τ ] to keep in
step with the type/effect translation. The translation of λ-abstraction translates
the body, places it within a (pure) λ-term in Monad, and finally wraps this in
an effectless 〈−〉 similarly to variables, thus having type M∅([τ ] → MF [τ ′]) for
effects F in the body of the function. For application, the function term e (say
with effect F and latent effect H) and argument term e′ (with effect G) are
translated and bound to f and x respectively using monadic binding, giving a
left-to-right call-by-value evaluation order of the effects. Thus, f : [τ ] → MH [τ ′]
and x : [τ ] by the typing of let and the overall term has type MF∪G∪H [τ ′].

6 We use [−] for translation into another language and reserve J−K for semantic inter-
pretation (denotation) as in the next section.
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2.3 Effects and monads—weakly semantically

So far, we discussed effect systems from a purely syntactic perspective. In this
section, we interpret families of labelled syntactic monadic types MF as a single
semantic monad T, ignoring the effect label. This gives a semantics that is syntax-
and type-directed. In Section 2.4, we show how graded monads provide a stronger
effect-directed semantics, where effect labels are part of the semantics—i.e. each
MF is separately interpreted as a semantic object TF .

The Monad language is based on a monadic denotational semantics (similar
to Moggi’s monadic meta language [24]). The translation from Effect to Monad,
coupled with a monadic semantics for Monad, provides a monadic semantics for
Effect (similar to a semantics for an impure λ-calculus [23]). The semantics of
Monad is given by mapping the monadic let (bind) and 〈−〉 (return) constructs
into the operations of a monad in the semantic domain. We first define monads,
balancing both the categorical and programming language viewpoints:

Definition 1. A monad T is an operator on spaces (here either categories,
e.g. semantic domains, or programming language types) along with a family of
constants unitA : A → TA and a family of operations extendA,B mapping from
space A → TB to space TA → TB satisfying the axioms:

extend unit x = x [M1] extend f (unit x) = f x [M2]

extend (extend g (f x)) = extend g (extend f x) [M3]

Given functions f : A → TB and g : B → TC, their composition, given by
g ◦̂ f = (extend g) ◦ f : A → TC, is associative (by axiom [M3]) and has unit as
identity (by [M1],[M2]). This definition is the Kleisli triple form of a monad.

Remark 1. Mathematically, monads are endofunctors on the category of spaces
of semantic values. On the other hand, programming-language monads are unary
type constructors with associated polymorphic unit and extend operations. In
Haskell, unit is written return, and extend is written ‘>>=’ (with its two argu-
ments reversed), called bind. These are presumed to follow the above equations.

Example 1 (State monad). Let StateA = S → (A × S) for some store type S,
modelling a mapping from a store S to a result value A paired with a new store.
State is a monad with the following operations:

extend f x = λs. let (a, s′) = x s in (f a) s′ unitx = λs. (x, s)

where extend f : A → (S → (B × S)) and x : S → (A × S). The extend

operation ‘threads’ state through a computation. An effectful function, of type
f : A → StateB, is a state transformer (by uncurrying A → (S → (B × S)) ∼=
A× S → B × S, cf. small-step operational semantics reductions 〈e, s〉 → 〈e′, s′〉
mapping terms paired with stores). The unit operation lifts a value to a pure
computation where the state is unchanged (a trivial state transformer).

Here we give a type-directed semantics for Monad, mapping type derivations
to denotations as functions (more generally, morphisms) from the interpretation
of the context Γ to that of the resulting type τ , i.e. JΓ ⊢M e : τK : JΓ K → JτK.
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Monadic denotational semantics For the monadic semantics of Monad, the
syntactic notion of a monad represented by the type constructors MF is mapped
to an abstract semantic monad T (note there is a single monad T capturing the
meaning of the family of type constructors). Thus, the interpretation of types is:

Jτ → τ ′K = JτK → Jτ ′K JMF τK = TJτK (1)

We assume some additional interpretation of base types ι into suitable sets in
the domain of the semantics (e.g., JintK = Z⊥).

The interpretation of type(-and-effect) derivations ending in (bind) and (re-

turn) rules are then (omitting the type subscripts on unit and extend):

JΓ ⊢M letx ⇐ e in e′ : MF∪Gτ ′K : JΓ K → TJτ ′K =

λγ . extend (λv. JΓ, x :τ ⊢M e′ : MGτ ′K γ[x 7→v]) (JΓ ⊢M e : MF τK γ)

JΓ ⊢M 〈e〉 : M∅τK : JΓ K → TJτK = unit ◦ JΓ ⊢M e : τK

The semantics for Monad resembles the desugaring of Haskell’s do-notation into
methods of the Monad type class. Seen categorically, the semantics requires some
additional structure: the monad Tmust be strong. This is implicit in the category
of sets and Cartesian-closed categories and is elided here (see Appendix A).

This monadic semantics for Monad (and thus for Effect via translation [−])
can be shown sound and complete with respect to the axiomatic semantics (due
to the strong monad axioms, see [23, 24] with semantics on similar calculi).

Wadler and Thiemann showed the syntactic correspondence between the
types-and-effects of Effect and (annotated) monadic typing ofMonad, and sound-
ness results on their operational semantics. However they did not give a deno-
tational semantics marrying effect annotations to monads—all labelled monadic
type constructors MF are interpreted within a single semantic monad T (Equa-
tion (1)) and hence lose the effect information F . While Wadler and Thiemann
conjectured that a general ‘coherent’ denotational semantics can be given to
unify effect systems with a monadic-style semantics, it was Katsumata who pro-
vided the missing piece—graded monads [16]. These allow each syntactic type
MF τ to be interpreted as a semantic object TF JτK in which only the effects rep-
resented by F are modelled. Thus Equation (1) is refined to JMF τK = TF JτK.

2.4 Effects and monads—strongly semantically via gradedness

Graded monads provide a model of sequential composition for computational
effects similar to monads, but which carry, and can be refined by, effect infor-
mation. A graded monadic type T has two parameters, an effect (say F ) and
a type (say A as usual) written TFA. Note that we use superscripted effects
on syntactic monads representing effects MF but write the effects of graded
monads as subscripts. Effects F are drawn from a (partially) ordered7 monoid
(F , •, I,⊑) generalising a semilattice (F ,⊔,⊥,⊑). Here • represents sequential

7 Katsumata uses ‘pre-ordered’ but we simply consider (⊑)∩(⊑−1) equivalence classes.
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composition of effects and I the trivial, pure effect; (•) must be (⊑)-monotonic.
The ordering ⊑ can capture both sub-effecting (treating a smaller effect as a
larger one giving a ‘may’ analysis for if-then-else) and super-effecting (giving a
‘must’ analysis)—see Remark 2 (p. 17). For if-then-else it is often convenient that
⊑ has least upper bounds; we also return to this point later.

A graded monad structure on T provides (associative) sequential composition
◦̂ for all f : A → TFB and g : B → TGC such that g ◦̂ f : A → TF•GC with an
identity îd : A → TIA, constructing a pure computation.

Definition 2 (Graded monads [21, 16], without ordering). Let (F , •, I)
be a monoid. An (F-)graded monad T is a family of endofunctors TFA (or,
in the programming-language view, an effect-annotated unary type constructor)
along with two families of operations (polymorphic functions): unitIA : A → TIA

and extension operations extend
F,G
A,B which map functions g : A → TGB to

extend
F,G
A,B g : TFA → TF•GB, satisfying the following axioms (omitting type

subscripts) for all F,G,H ∈ F :

extendF,I unitI x = x [M1] extendI,F f (unitI x) = f x [M2]

extendF,G•H (extendG,H h (g x)) = extendF•G,H h (extendF,G g x) [M3]

A graded monad is a homomorphism (structure-preserving map) between a
monoidal algebra of effects F and a monoidal structure for effect semantics.
The axioms [M1-3] rely on the monoid axioms on F e.g. [M1–2] as diagrams are:

TFA
[M1]id ��

extend
F,I

unit
I

''

TFA TF•IA

A
f
��

unit
I

//

[M2]

TIA
extend

I,F f��

TFB TI•FB

(2)

The equality edges (double lines) explain the need for the monoid axioms of
graded monads: for [M1] that F = F • I for all F and for [M2] that F = I • F .
The diagram for [M3], not shown for brevity, needs the associativity axiom.

Definition 3 (Graded monads, with ordering). Katsumata’s definition of
graded monads includes the pre-ordering ⊑ and subsequently a family of mor-
phisms, which we call coerceF,G

A : TFA → TGA for every F ⊑ G satisfying:

coerce
F,F
A = idTFA (reflexivity) coerce

G,H
A ◦coerceF,G

A = coerce
F,H
A (transitivity)

coerce
F•X,G•Y
B ◦extendF,X

A,Bf = extend
G,Y
A,B(coerceX,Y

B ◦f)◦coerceF,G
A (monotonicity)

Example 2 (Graded state monad, appears in [27]). Example 1 showed the state
monad StateA = S → (A × S) in which all read and write operations are
represented. We now refine this to a graded monad StateF in which only read
and write operations expressed by F may be represented. Suppose S is the space
of functions from a set of locations Loc, ranged over by ρ, to Val (abusively, we
conflate the notions of ‘region’ and ‘location’ here.) Take effects F ∈ F to be sets
of tokens rd ρ and wr ρ, giving an ordered effect monoid (F ,∪, ∅,⊆). We refine
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State to StateF A = (RF → Val) → (A×(WF → Val)) where RF = {ρ | rd ρ ∈ F}
and WF = {ρ | wr ρ ∈ F} are respectively the subsets of Loc where StateF might
read and write. The effect-graded operations are then:

extendF,G f x = λs. let (a, s′)=x (s|RF
) in unit∅ x = λs. (x, s)

let (b, s′′)=(f a) ((s⊳ s′)|RG
) in (b, s′ ⊳ s′′)

The incoming store s of extend is restricted into substore s|RF
for the reads made

by x. Operator s ⊳ s′ merges stores preferring the right-hand-side mapping for
locations ρ ∈ dom (s) ∪ dom (s′), which is then restricted by |RG

to the substore
of locations read by f a. Locations read by f a use values in s′ in preference (⊳)
to those in s. Finally the resulting store prefers writes from s′′ over those in s′.

Note that unit∅ is isomorphic to the identity as R∅ = W∅ = ∅, and so s there
is the empty mapping. Hence any denotation in A → State∅B is necessarily a
pure function—useful for enabling various optimisations relating to purity.

Graded monadic semantics Graded monads enable effect-directed semantics,
where syntactic effect labels are incorporated as semantic objects; type-and-effect
judgements are mapped to denotations of the form JΓ ⊢ e : τ, F K : JΓ K → TF JτK.
This gives a monadic semantics for Wadler and Thiemann’s Monad language,
generalised to a monoidal effect system, where syntactic type constructors MF τ
are mapped to the (semantic) graded monad TF JτK. The semantics of Monad is
analogous to that of the previous section:

JΓ ⊢M letx ⇐ e in e′ : MF•Gτ ′K : JΓ K → TF•GJτ ′K =

λγ . extendF,G (λv. JΓ, x :τ ⊢M e′ : MGτ ′K γ[x 7→v]) (JΓ ⊢M e : MF τK γ)

JΓ ⊢M 〈e〉 : M∅τK : JΓ K → T∅JτK = unitI ◦ JΓ ⊢M e : τK

Via the translation from Effect to Monad, this also provides an effect-directed
semantics of the effectful simply-typed λ-calculus via graded monads.

The axioms of a (strong) graded monad provide a sound semantics, with
respect to a standard β-equational theory, as shown by Katsumata [16].

Grading for semantics-and-analysis co-design The correspondence be-
tween the effect annotations and the indices of a graded monad provides a kind of
co-design principle for defining semantics and effect systems: start with a graded
monad and follow the shape of a usual monadic semantics; an effect system for
the term language emerges from the indices and the inductive definition of the
semantics. Conversely, start with an effect system, say the one in the introduc-
tion for music. An effect-graded semantics then requires semantic operations
annotated by each of the effect operations used,8 with a structure that reflects
that of the effect system. In this way, graded approaches aid a kind of co-design
process between analysis and semantics.

8 Section 3 addresses the subtlety here that if-then-else is reflected with operation +
in the music effect while Katsumata’s graded monads use a relation ⊑.
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This relationship extends to the equational theory of a language and the
axioms of its underlying semantic structures. For example, consider the following
equation (relative to a type derivation) of the Monad language:

Γ ⊢M letx ⇐ e in 〈x〉 ≡ e : MF τ

This syntactic equality relies on the monoid axiom F • I = F to ensure that the
types of the left- and right-hand side (MF•I τ and MF τ respectively) are equal.
Soundness of the semantics, with respect to this equation, thus requires that
JΓ ⊢ letx ⇐ e in 〈x〉 : MF•I τK = JΓ ⊢ e : MF τK. The proof of this denotational
equality uses the graded monad axiom [M1], which itself uses the monoidal axiom
F • I = F (see diagram (2), p. 12). A proof search procedure (whether by-hand
or automatic) can be guided by the link between the syntax of effect annotations
and their corresponding indices (grades) in the semantics: the required semantic
axioms are those which witness the syntactic axioms.

Terminology Graded monads have been previously called parameterised effect
monads by Katsumata [16] (relating to the work of Mellies [20]) and indexed
monads [28]. We opt for the name graded monad here to avoid confusion with
the idea of indexed monads in topos theory and the parameterised monads of
Atkey [3] or parametricity. The graded terminology has recently become a pop-
ular name for this concept [36, 21].

2.5 Type-directed and effect-directed analysis and semantics

As noted earlier, the semantics of an expression may depend on its associated
type derivation. For example, in the presence of a derivation of ⊢ λx.x : int → int,
the term λx.x is interpreted as the identity function on Z. We call these type-
directed semantics or analyses (more precisely type-derivation-directed).

A type-directed semantics tends to simplify definitions and reasoning. For
example, consider an untyped denotational semantics on a Scott domain sat-
isfying D ∼= Z + (D → D) vs. a type-directed semantics where each type has
a distinct domain, e.g.,Dint = Z and Dσ→τ = Dσ → Dτ . The former has a
more complicated semantics, with injections on sum types and deconstructors
to identify semantically meaningful terms, which are unnecessary in the latter.

Our notion of type-and-effect-directed semantics (or just effect-directed for
brevity) naturally extends this idea to effect annotations. In such a language the
apply function λf.λx.f x has many effects and types, in particular every instance

of (τ
F
−→ τ ′) → τ

F
−→ τ ′ for types τ, τ ′ and effects F . Any expression e of this

type can be interpreted monadically as belonging to semantic domain (JτK →
TJτ ′K) → T(JτK → TJτ ′K) for some monad T. Via graded monads, an effect-
directed semantic domain refines this to (JτK → TF Jτ ′K) → TI(JτK → TF Jτ ′K).
So if we knew, for example, that F is the trivial pure effect I and the graded
monad is such that TIA = A then an effect-directed semantics could simply
interpret e as a value in (JτK → Jτ ′K) → JτK → Jτ ′K. This was seen with the State
graded monad in Example 2 (p. 13).
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3 Control-flow effects and monad limitations

Section 2 developed, in tutorial style, the theory for effects expressed monad-
ically, including grading (precise denotational models of types and effects)—
but limited to the situation where effect annotations form an ordered monoid
(F , I, •,⊑), expressing sequential composition. This leaves the additional effect
operators (+, &) for alternation (conditionals) and parallel composition (which
Section 1 argued were essential for modelling music) and the question of how to
incorporate them into an effect algebra and graded semantics. We defer treat-
ment of (&) to Section 4, and here focus on the rather interesting issues centred
around the question of how well can monads capture conditionals—both seman-
tically and in terms of relating an (+)-enriched effect algebra to monad grading.

We explore three specific issues. Section 3.1 examines how well monads can
give a general semantics to if-then-else and similar control-flow operations; Sec-
tion 3.2 shows that while Wadler and Thiemann’s work only handles a semilat-
tice of effects, Katsumata’s graded monads use an ordered monoid of effects and
which can very nearly capture (+) as well as (•). These two issues turn out to
be two sides of the same coin. Finally, Section 3.3 argues that certain operations
augmenting the usual monad operations of unit and extend should be charac-
terised as control-flow operators and thus merit being operations on the aug-
mented effect monoid too. This all sets the scene for Section 4 where joinads (a
specific extension to monads), graded by a control-flow algebra dubbed joinoids
(augmenting monoids), complete the development.

3.1 (Graded) monadic semantics for conditionals

Consider a denotational interpretation for (type derivations over) conditionals
JΓ ⊢ if e then e′ else e′′ : τK where e, e′, e′′ may be effectful expressions (in a
simple system where effects do not form part of judgements). Following the
denotational tradition, the denotation of a compound expression is some function
of those of its sub-expressions, traditionally expressed for some COND as:

Jif e then e′ else e′′K = COND(JeK, Je′K, Je′′K)

Formally, our semantics interprets type derivations, hence is more accurately:

JΓ ⊢ if e then e′ else e′′ : τK = COND(JΓ ⊢ e : boolK, JΓ ⊢ e′ : τK, JΓ ⊢ e′′ : τK)

for some CONDX,A : (X → TB)×(X → TA)×(X → TA) → (X → TA) instan-
tiated at X = JΓ K, the space of environments, and A = JτK. Given that if-then-
else does not bind variables, this can be written λ(x, y, z).λγ.COND(x γ, y γ, z γ)
where CONDA : TB × TA × TA → TA. It is convenient to use the notation
COND on computations and COND in semantic rules to avoid the clutter of γ.

In categories which have coproducts (sum types), and hence booleans B, the
semantics of effectful if-then-else can be simply derived from existing monad
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operations. Such categories (including our set-based framework) have a para-
metric operation9 condA : B×A×A → A with axioms: cond(true, x, y) = x and
cond(false, x, y) = y. By instantiating cond at TA to get condTA : B×TA×TA →
TA, we obtain one possible definition for COND using sequential composition:

CONDA(x, y, z) = extendB,A (λb. condTA (b, y, z)) x

This derived semantics is dichotomous—it encodes the laws that if-then-else re-
turns one of its branches (i.e., if true then e else e′ ≡ e and if false then e else e′ ≡
e′)—and sequential—it encodes the axiom (assuming fresh variable x) that

if e then e′ else e′′ ≡ let x = e in if x then e′ else e′′

There are other reasonable non-dichotomous or non-sequential semantics we
may wish to model, thus the derived model above is quite limited. Prolog-style
backtracking provides a good example of a non-dichotomous if-then-else as both
branches are explored in some fixed order (leading to non-commutative + op-
erator on effects); we could even imagine a variant of if-then-else where the
boolean indicates whether the then branch is explored before or after the else

branch. Similar non-commutativity arises for case expressions with overlapping
patterns. Non-sequential if-then-else is exemplified in “parallel if ” which satisfies
the semantic property (for a system where non-termination is an effect):

Jif e then e′ else e′′K = Je′K if Je′K = Je′′K (and even if JeK = ⊥).

Speculative behaviour (with software-transactional memory for rolling-back ef-
fects) is a non-sequential if-then-else. Non-dichotomous variants may also give a
collecting semantics which captures computation trees instead of single traces—
the derived semantics using condA can only capture a dynamic trace.

In the music example, we used operators •, + and & to model the effects of
the sequencing, conditional and parallel language constructs. However, for full
generality, we should use a ternary operator ?+(F,G,H) to capture the effects of
conditionals. Nonetheless, sequential semantic variants of if-then-else require that
?+(F,G,H) = F • (G+H). The + operator can be defined G+H = ?+(I,G,H)
where I is the identity of •. Most interpretations of if-then-else in the rest of
the paper are sequential, but not all are dichotomous—Example 4 shows a non-
standard ‘synchronous’ semantics for conditionals in music, where duration of
if-then-else is the maximum of both branches. In short, we choose not to require
conditionals to have the monadic derived semantics.

A language with effects and parallelism similarly requires a semantic model
for how effectful computation are composed in parallel. While we noted one
interpretation of conditionals can be derived from coproducts in the domain,
there is no analogous derived structure to be found for parallelism since the
‘obvious’ operation parA,B : A × B → A × B can only be the identity function
(by parametricity). In contrast, an operation par′A,B : TA × TB → T(A × B)
(calledmerge in the next section) for some monad T can perform an effect-specific
implementation of parallelism, e.g., arbitrary effect interleaving.

9 Categorically, a natural transformation, derived from coproducts with B = 1 + 1.
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3.2 Effect operators for conditional

Until now, monads have been graded by an ordered effect monoid. But we now
want to model richer effect operators such as that of if-then-else as above, with
F • (G+H) or ?+(F,G,H) for non-sequential variants.

It turns out that a special case for + can nearly be derived from the order-
ing structure. Katsumata writes: “When giving an effect system, it is desirable
to have the join operator on effects (. . . [augmenting the] monoid structure),
because we can use it to unify the effects given to different branches of case
expressions.” [16] Suppose all joins (least upper bounds) of ⊑ exist (not an ex-
isting requirement for graded monads), then we can define + to be the join
operator—thus obtaining an effect algebra (F , I, •,+). Monotonicity of • (w.r.t.
⊑) becomes a distributive law x • (y + z) = (x • y) + (x • z).

A general effect-directed denotational semantics for if (with ternary ?+ on

effects) is then captured by a graded version of COND, to wit COND
F,G,H
A :

TFB× TGA× THA → T?+(F,G,H)A, lifted on environments JΓ K to COND
F,G,H

JΓ K,A

JΓ ⊢ if e then e′ else e′′ : τ, ?+(F,G,H)K

= COND
F,G,H

JΓ K,JτK (JΓ ⊢ e : bool, F K, JΓ ⊢ e′ : τ,GK, JΓ ⊢ e′′ : τ,HK)

We can then analogously construct a graded monadic version of the derived
(non-general) semantics of if-then-else. Assuming the effect ordered monoid ad-
ditionally has all least upper bounds (written + as above) we set ?+(F,G,H) =

F • (G+H) and define COND
F,G,H
A by:

COND
F,G,H
A (x, y, z) = extendF,G+H(λb. condTG+HA (b, coerceG,G+H y,

coerceH,G+H z)) x

Remark 2. Note that if we instantiate F to be sets of effects with (•) = (∪)
and I = { } then interpreting (+) = (∪) and (⊑) = (⊆) produces a traditional
‘may’ set-based effect system, while interpreting (+) = (∩) and (⊑) = (⊇) gives
a ‘must’ form of effect system. This does not appear to be generally appreciated,
and shows that Katsumata’s graded-monad-with-an-ordering approach to effect
systems captures both the (•) and (+) operators introduced by the Nielsons.

So, amusingly, monads provide one (derived) semantics for conditionals, and
semilattice-ordered-monoids provide one way of separating the effects for • and
+, but neither is fully general. Just as we argued that not all semantics for if-
then-else could be factored via parametric conditional, we also argue that not all
(+) operations on augmented effect monoids can be expressed as the least upper
bound of an ordering (⊑) originally envisaged as sub-effecting. The required
property is merely that F ⊑ F + G and G ⊑ F + G (we argued in Section 3.1
that + may not be commutative, and we also do not require its idempotency).
Multisets of effects provide an example: we may naturally define (+) to capture
addition on multiplicities, while (⊔) captures maximum on multiplicities.
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3.3 Control-flow operators

The semantics of Section 2 is abstract, using a (graded) monad to sequentially
compose effects. The semantics can then be specialised to a particular notion
of side effect (e.g., state, exceptions) by instantiating the monad and providing
effect-specific constants, such as with the state monad (Example 2) and the
read and write operations. The denotations of these additional operations are
necessarily of the form A → TB (a Kleisli morphism) so that they can be
composed via the monadic structure of the semantics. In a graded setting, these
denotations introduce members of F , e.g. JreadKτ,ρ : Jref τK → T{rdρ} JτK.

We observe that any function with negative occurrences of the computation
type TA (i.e., left of a function arrow) cannot be the denotation of an expression.
This is because the semantics generates only Kleisli morphisms and the interpre-
tation of types only introduces T on the right hand side of an arrow. Instead, such
operators are effect control-flow operators, e.g., CONDA : TB×TA×TA → TA.

From a different perspective, that of control-flow graphs, computation values
TA correspond to closed basic blocks and functions A → TB to open blocks
with incoming dataflow which are composed by extend; unit constructs an empty
block. By contrast, operations whose type has TA appearing to the left of a
function arrow (e.g. TA → . . .) correspond to control-flow operations. For ex-
ample, the type TA × TA → TA corresponds to an operator which merges
basic blocks for branching, and indeed bind (which is extend with its arguments
flipped) bind : TA → (A → TB) → TB is the primitive control-flow operator
for sequential composition which appends a closed basic block to an open basic
block, creating a new composite block.

It is clear from our definition that CONDA : TB × TA × TA → TA is a
control-flow operator. Similarly, condA : B×A×A → A is a control operator when
instantiated at A = TB but can also be a non-control operator: e.g., when A = Z

it is effectively a multiplexer. Due to parametricity, condTB cannot however do
any ‘interesting control flow’, it must either select one branch or another, while
a function cond′A : B × TA × TA → TA of the same type but parametric only
in A could combine effects from both branches. Similarly, parametricity means
instantiations of parA,B : A×B → A×B cannot exhibit observable parallelism—
this needs a function typed parA,B : TA× TB → T(A×B).

Control-flow operators also provide a link to abstract interpretation [6]. Prim-
itive effectful operations in the concrete semantics are abstracted to effects in
an effect algebra. Control-flow operators compose these primitive effectful oper-
ations in the concrete semantics and are abstracted to operations of the effect
algebra. This yields effect monoids (or effect joinoids later in the paper). Effect-
graded semantics provide a form of concrete “correct by construction” semantic
models, corresponding to abstract effect algebras.

4 Joinads and rich effect systems for control flow

As discussed in the previous section, for richer languages (with parallelism, mu-
sic, or speculative evaluation) we need richer semantic structure to model effects,
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one that provides control combinators additional to sequential composition—
most importantly for branching and parallel composition. The structure of a
joinad does just this: extending monads with operations for modelling alterna-
tion (conditionals) and parallelism [29, 32].

This paper introduces a variant of joinads (Section 4.1), based on the COND
conditional operator of Section 3, instead of the classical formulation (Sec-
tion 4.3) based on choose and fail operations. We name these conditional joinads—
more fully “joinads with conditional instead of choose and fail”. The choose-and-
fail variant is convenient for capturing pattern matching (its original motivation)
but the conditional formulation is more flexible and convenient here.

We repeat the development of Section 2 showing how conditional joinads
provide a type-directed semantics for conditionals and parallel composition (Sec-
tion 4.2). We compare this with classical joinads (Section 4.3) which model con-
ditionals similarly to the derived model of Section 3. We then introduce graded
conditional joinads to give a more precise effect-directed semantics (Section 4.4).

4.1 Joinads and conditional joinads

Many monads are equipped with additional combinators that provide different
ways of composing computations compared to the standard sequential compo-
sition guaranteed by a monad. This is particularly so in source-level uses of
monads on data types in Haskell. The original motivation for joinads was to
capture common combinators for parallel, concurrent, and reactive program-
ming (and then develop a new notation for programming with joinads) [29, 32].
This is similar to our aim of capturing additional common ways of composing
effectful computations. To quote the original work:

“We identify joinads, an abstract notion of computation that is stronger
than monads and captures many [of their] ad-hoc extensions. In par-
ticular, joinads are monads with . . . additional operations: one of type
M a → M b → M (a× b) captures various forms of parallel composition
[and] one of type M a → M a → M a that is inspired by choice . . .
Algebraically, [these] operations form a near-semiring with commutative
multiplication.” (Petricek, Mycroft, Syme [29])

The meaning of the operations differs for various notions of computation. For
concurrency effects (the obvious interpretation), parallel composition means run-
ning tasks in parallel and choice is non-determinism. However, the operations
also make sense for parsers— parallel composition means that two parsers both
recognise an input, and choice means at least one parser recognises it [29].

The joinad structure appears in many libraries, for example, Mirage, a Li-
brary Operating System written in OCaml [19]. Mirage is effectively a large
parameterised module, which when applied to modules representing the under-
lying hardware abstraction, can execute equally well as an application under
Linux or as an entire OS on a bare-metal virtual machine. Its core is based on
the co-operative threading library Lwt [38], which exhibits the joinad structure.
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In Lwt, processes are expressed monadically (using return and extend as usual)
for their sequential parts; the <&> (called ‘merge’ here) and <?> (‘choose’ here)
provide parallelism and first-to-arrive alternation respectively.

4.2 Type-directed semantics using conditional joinads

As discussed in Section 3, the derived (graded) monadic semantics for condi-
tionals is restrictive. Instead, conditional joinads are more flexible, allowing the
semantics of conditionals to be parameterised. As an intermediate between mon-
ads and conditional joinads, we first extend monads with a conditional operation.

For brevity, we lift operations to environment-passing style, where for some
OP : A×B → C then OPX = λγ.OP(f γ, g γ) : (X → A)×(X → B) → (X → C).
Such X are implicitly instantiated to JΓ K to avoid clutter.

Definition 4 (Conditional monad). Given booleans B in the base category
C, a conditional monad extends a monad T on C with the parametric operation
(natural transformation) mcondA : TB × TA × TA → TA satisfying axioms of
associativity (3, 4), commutativity (5), units (6, 7), and right-distributivity (8):

mcondA(unitB b, x,mcondA(unitB b
′
, y, z)) (3)

≡ mcondA(unitB (b ∨ b
′),mcondA(unitB b, x, y), z)

mcondA(unitB b,mcondA(unitB b
′
, x, y), z) (4)

≡ mcondA(unitB (b ∧ b
′), x,mcondA(unitB b, y, z))

mcondA(unitB b, x, y) ≡ mcondA(unitB ¬b, y, x) (5)

mcondA(unitB true, x, unitA y) ≡ x (6)

mcondA(unitB false, unitAx, y) ≡ y (7)

extendA,B f mcondA(b, x, y) ≡ mcondB(b, extendA,B f x, extendA,B f y) (8)

The idea behind mcondA is that it generalises the standard conditional condA :
B × A × A → A to a true control-flow operator with respect to effects. The
two unit axioms (6, 7) are a restricted form of the standard (if-β) dichotomous
behaviour of cond (that is, condA(true, x, y) = x and condA(false, x, y) = y) when
the guard and the unselected branch are both pure (i.e., factor through unit).

The mcond operation provides a general operation for modelling the syntactic
if construct from the source language. Given a typing-derivation for the term
if e then e′ else e′′, a type-directed semantics is obtained by directly passing the
semantics of sub-expressions to the effect control-flow operator mcondA:

JΓ ⊢ if e then e′ else e′′ : τ, F • (G+H)K
= mcondJτK (JΓ ⊢ e : bool, F K, JΓ ⊢ e′ : τ,GK, JΓ ⊢ e′′ : τ,HK)

(9)

Proposition 1. A monad T on a category C with coproducts (providing booleans
B and the condA operation) is a conditional monad, where mcondA is defined:

mcondA(x, y, z) = extendB,A (λb. condTA (b, y, z)) x

The proof follows straightforwardly from the monad and condA axioms. This
gives the standard derived semantics for conditionals.
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Definition 5 (Conditional joinads). A conditional joinad extends a condi-
tional monad T with a parametric operation mergeA,B : TA×TB → T(A×B) sat-
isfying associativity (10), commutativity (11), unit (12), and distributivity (13):

mergeA×B,C(mergeA,B(x, y), z) ≡ map assoc mergeA,B×C(x,mergeB,C(y, z)) (10)

mergeA,B(x, y) ≡ map swap (mergeB,A(y, x)) (11)

mergeA,B(unitA x, y) ≡ map (λy′
.(x, y′)) y (12)

mergeA,B(mcondA(b, x, y), z) ≡ mcondA(b,mergeA,B(x, z),mergeA,B(y, z)) (13)

where map is the morphism-mapping of the functor T, i.e., given f : A → B then
map f : TA → TB, and assoc (a, (b, c)) = ((a, b), c) and swap (a, b) = (b, a).

Categorically, merge therefore witnesses that T is a symmetric monoidal functor
with additional right-distributivity with mcond.

We use the merge operation directly for the semantics of the par construct:

JΓ ⊢ e par e′ : τ × τ ′, F&GK = merge
JτK,Jτ ′K

(JΓ ⊢ e : τ, F K, JΓ ⊢ e′ : τ ′, GK) (14)

We now have a fully parameterised semantics for if-then-else and par via condi-
tional joinads. For music, notes can be played in parallel; for concurrency, two
tasks can be run in parallel (multiple threads) or using interleaved concurrency.

The axioms of a conditional joinad include the commutativity of merge (as
in the original joinad formulation); this has pros and cons. On the one hand,
commutativity provides a natural intuition for parallel execution (both true par-
allelism and non-deterministic interleaving). On the other hand, commutativity
forbids various kinds of static scheduling by sequencing, e.g., left-first or right-
first scheduling, since sequential composition is typically not commutative.

Theorem 1 (Soundness). Given a monadic semantics for the simply-effect-
and-typed λ-calculus with a conditional joinad semantics for if (Definition 4) and
par (Definition 5) then, for all e, e′, Γ, τ, F :

Γ ⊢ e ≡ e′ : τ, F ⇒ JΓ ⊢ e : τ, F K = JΓ ⊢ e′ : τ, F K

with respect to the following equational theory defined by ≡ (we omit the typing),
augmenting CBV β-equality:

(ifβ1’) if true then e elsex ≡ e

(ifβ2’) if false thenx else e′ ≡ e′

(if-dist-par) (if b then e else e′) par e′′ ≡ if b then (e par e′′) else (e′ par e′′)

(if-dist-seq) letx = (if e then e′ else e′′) in e′′′

≡ if e then (letx = e′ in e′′′) else (letx = e′′ in e′′′)

(par-pure) x par e ≡ (x, e)

(par-sym) e par e′ ≡ swap (e′ par e)

(par-assoc) e par (e′ par e′′) ≡ assoc ((e par e′) par e′′)
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where in (if-dist-par) b is pure i.e. Γ ⊢ b : bool, I. In (par-pure) the left-hand
side is a pure computation represented with a variable x thus Γ ⊢ x : τ, I.
Further, (if-β1′)(if-β2′) have pure terms (variables) in the unselected branches.

Proof. By induction on ≡ and following from the conditional joinad axioms.

4.3 Classical joinads

We introduced the conditional variant of joinads. The original joinad struc-
ture [29, 32] has instead of mcondA : TB×TA×TA → TA two operations called
choose and fail (also known as the MonadPlus type class in Haskell [10]) of type:

chooseA : TA× TA → TA failA : void → TA

The choose operation models a choice between two computations. The fail op-
eration creates a failing computation that is the unit element with respect to
choose and choose must be associative, i.e. these two operations form a monoid
on TA. Furthermore, merge must be right-distributive with chooseA and failA
absorbing with respect to extend and merge, that is, applying extend to a com-
putation that fails produces a computation equivalent to fail, and failure of one
parallel branch makes both fail. Algebraically, this means that operations form
a near-semiring with choose as addition and merge as multiplication [29]. Sim-
ilar structure is shown in the work of Rivas et al. [35]. This guarantees various
desirable syntactic equivalences when used for a language semantics.

These operations (together with their axioms) let us encode conditionals as:

mcondA(x, y, z) = chooseA (extendB,A (λb. condA(b, y, failA)
(extendB,A (λb. condA(b, z, failA)) x)

Here, both branches are turned into computations that fail if they should not
be executed (and succeed otherwise). This definition of joinads was inspired by
ML-style pattern matching and so the fail operation represents a commit point.
Given suitable definitions for choose and fail, the above definition of mcond can
capture the derived (from extend and cond) monadic semantics, but is also rather
more general in that it can also use a free joinad (and hence a non-dichotomous
conditional semantics)—leading to a trace containing a (free version of) choice

at each conditional branch, but where one of the branches is trivially fail.

Remark 3. For atomic/independent computations, parallelism can be modelled
as a choice between the two ways of sequencing the computations (see Section 1,
also Milner [22]) e.g. merge (for par) can be defined in terms of choose and extend:

mergeA,B(x, y) = chooseA×B (extend (λa. extend (λb. unit (a, b)) y) x)
(extend (λb. extend (λa. unit (a, b)) x) y)

We might consider this as a candidate for modelling parallel composition, thus
requiring fewer semantic primitives for a language with conditionals and paral-
lelism. However, the above does not capture the semantics for our music lan-
guage (where playing notes in parallel produces a different sound than that of
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any sequencing) or for languages with parallelism based on multiple threads.
More flexibility is therefore provided by making parallelism a separate semantic
notion via the joinad (or conditional joinad) merge operation.

The next section generalises conditional joinads to a graded form to allow
effect systems to refine the semantics of conditionals and parallelism.

4.4 Control-flow algebras and graded joinads

Traditional set-based ‘may’ effect systems use a semilattice of effects, which we
see as a special case of effect monoids. Effect monoids are a simple control-
flow algebra, capturing just sequential control flow. Monads can be seen as an
instance of effect monoids, but over endofunctors (type constructors) encoding
effects. These syntactic and semantic descriptions of effects are unified via graded
monads to give an effect-directed semantics (Section 2).

Section 1 defined effect systems capable of capturing choice and parallelism
via a rich control-flow algebra of effects, as suggested by Nielson and Nielson. We
formalise this class of control-flow algebra below, calling it a joinoid. Both the
effect systems of Section 1 and conditional joinads (Section 4.1) are instances of
this control-flow algebra: at the level of syntax (analysis/types) and semantics
respectively. However, the link between a joinoid-based effect system and its
semantics (via conditional joinads) has only been loosely coupled and intuitive
so far. This section introduces the graded conditional joinad structure (the joinad
analogue of graded monads) to make this correspondence concrete, providing an
effect-directed semantics for effect systems over a joinoid control-flow algebra.

Definition 6 (Joinoid). Let F be a set with I ∈ F , binary operations • and
&, a ternary operator ?+ and a binary relation ⊑. Then (F , •, I,&, ?+,⊑) is a
joinoid control-flow algebra ( joinoid for short) if, letting F +G = ?+(I, F,G):

– (F , •, I) is a monoid, representing sequential composition and purity;
– (F ,&, I) is a commutative monoid, representing parallel composition;
– (F ,+) is a semigroup, representing choice between two conditional; branches
– with right-distributivity axioms:

(F +G) •H = (F •H) + (G •H) (F +G)&H = (F &H) + (G&H)

– all operations are monotonic with respect to ⊑.

Definition 7 (Graded conditional joinads). Given a joinoid on F , a graded
conditional joinad is a graded monad T for the ordered monoid (F , •, I,⊑) to-
gether with the following two parametric operations:

merge
F,G
A,B : TFA× TGB → TF&G(A×B)

mcond
F,G,H
A : TFB× TGA× THA → T?+(F,G,H)A

which satisfy analogous equations to a conditional joinad (Definition 4, p. 20,

and Definition 5, p. 21) but with the presence of the grades and where coerce
F,G
A

commutes with merge and mcond to witness monotonicity.
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Remark 4. Graded monads are a lax10 homomorphism between a monoids of
effects (F , •, I) and monoidal structure over C (of composing type constructors
on C). Similarly, graded joinads are a lax homomorphism, given by T and wit-
nessed by the graded conditional joinad operations, between a joinoid of effects
(F , •, I,&, ?+,⊑) and a joinoid structure over C. Thus, the joinoid axioms are
preserved by T. For example, &-commutativity F&G = G&F is preserved by T

as witnessed by the axiom: (where x : TFA and y : TGB)

merge
F,G
A,B(x, y) : TF&G(A×B) ≡ map swap merge

G,F
B,A(y, x) : TG&F (A×B)

Example 3 (Graded non-determinism joinad). Non-deterministic computations
can be modelled as computations that return a list of possible results. The
standard monadic model is to use List A = void+ (A× List A). Using a graded
joinad, we can be more precise—and add an annotation that captures an upper
bound on the length of the list resulting from a computation. Thus our graded
type is Listn A =

∑
m≤n A

m which represents a list that has at most n elements.
The associated joinoid control-flow algebra is (N, ∗, 1, ∗, λ(x, y, z).x∗(ymax z)).

Sequential composition multiplies the degrees of non-determinism of the two
computations as does parallel composition. For conditionals (?+) multiplies the
degree of the guard with the maximum of the two branches. These annotations
are consistent (sound) with the following graded joinad operations. We write
[v1, ..., vn] for lists of length n, with :: for cons and @ for concatenation:

mcondn,m,p([], x, y) = [] mcondn,m,p(true :: g, x, y) = x@mcondn−1,m,p(g, x, y)

mcondn,m,p(false :: g, x, y) = y@mcondn−1,m,p(g, x, y)
unit x = [x]
mergen,m([u1, ..., un], [v1, ..., vm]) = [(u1, v1), ..., (u1, vm), (u2, v1), ...(un, vm)]
extend f [u1, ..., un] = f(u1)@...@f(un)

The unit operation returns a singleton list and extend concatenates lists produced
by applying f to all possible inputs (indeed, n ∗ 1 = n). The merge operation
takes the cross product and mcond concatenates the results of either the left or
right branch depending on each possible guard. Note that merge is commutative
up-to isomorphism, or commutative where equality is order-agnostic.

The key point of this example is that the graded conditional joinad structure
itself captures the essence of effect annotations. The definition is consistent with
respect to the lengths specified in the effect grades. In some way, the semantics
already entails the effect system for the language. This is made explicit next.

Effect-directed semantics using graded joinads. The previous graded
monadic semantics connected the structure and axioms of an effect system to
a semantics for sequential composition, but did not capture parallelism or all

10 Laxity means that the homomorphic map T : F → [C, C] from effects to type-
constructors (endofunctors) on C has functions witnessing the mapping between
structure on F and on [C, C], e.g., merge

F,G
A,B : TFA× TGB → TF&G(A×B), rather

than equalities, e.g., TFA× TGB = TF&G(A×B)
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possible forms of alternation. Graded joinads provide the opportunity for more
fine-grained semantics and reasoning above conditionals and parallel composi-
tion. The following gives the graded conditional joinad effect-directed semantics:

JΓ ⊢ e par e′ : τ × τ ′, F&GK = merge
F,G

JτK,Jτ ′K (JΓ ⊢ e : τ, F K, JΓ ⊢ e′ : τ ′, GK)

JΓ ⊢ if e0 then e1 else e2 : τ, ?+(F,G,H)K =

mcond
F,G,H

JτK (JΓ ⊢ e0 : bool, F K, JΓ ⊢ e1 : τ,GK, JΓ ⊢ e2 : τ,HK)

As before, the semantics is defined over derivations, hence the left-hand side of
each interpretation ends in the (par) and (if) type-and-effect rules respectively.
Effect annotations in the judgements correspond to the grades on the operations.

Theorem 2 (Syntactic soundness). For all judgements Γ ⊢ e : τ, F then:

JΓ ⊢ e : τ, F K : JΓ K → TF JτK where Jτ
F
−→ τ ′K = JτK → TF Jτ ′K and there is an

interpretation for all base types.

Proof. A straightforward analysis of the definition of J−K.

Theorem 3 (Soundness). Given a graded conditional joinad semantics for the
simply-effect-and-typed λ-calculus with if then, for all e, e′, Γ, τ, F :

Γ ⊢ e ≡ e′ : τ, F ⇒ JΓ ⊢ e : τ, F K = JΓ ⊢ e′ : τ, F K

with respect to the equational theory for our language, in Theorem 1 (p. 22).

The syntactic soundness theorem (essentially that J−K preserves the typing struc-
ture and the semantics has corresponding grades) closes the gap between richer
type-and-effect systems and semantics based on graded conditional joinads. It
demonstrates the usefulness of the general approach advocated in this paper—
a language with semantics based on graded conditional joinads comes equipped
with an effect systems based on a joinoid control-flow algebra. Conversely, if we
start with a joinoid effect system, the annotations can be used to determine the
right structure of our semantics.

Example 4 (Graded music joinad). We tie the graded joinad discussion back to
our motivating musical example with a simple graded conditional joinad model.
As in Section 1, we use a joinad control-flow algebra to capture possible notes
but not to capture their timing. Recall that music effects were drawn from terms
defined by Φ = N | Φ1 + Φ2 | Φ1 • Φ2 | Φ1&Φ2 where N is the set of all possible
notes and rests, e.g. N = {C,D,E, . . . , rest}. We adjoin an additional effect ǫ
representing a zero-length rest to be the identity for •. Equality on Φ terms is
defined such that the joinoid axioms hold.

Musical computations are modelled by tuples of a value, a duration d drawn
from R, and a soundtrack—a function g mapping from time within interval
[0, d] ∈ R to sets of notes to be played at that time, returning ∅ outside that
interval. This is given by the data type MusicF A = A × R × (R → P(N )|F )
where sets of notes drawn from P(N ) are restricted to the notes appearing in

25



effect annotation F , written |F . Soundtracks g and g′ are combined with a time
offset d for g′ using the operator g + g′@d = λt.if t ≤ d then g(t) else g′(t− d)).

We provide the following graded conditional joinad definition, with additional
effect-specific operation play for modelling note-playing.

mcondm,n,p (true, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′, d+max(d′, d′′), g + g′@d)

mcondm,n,p (false, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′′, d+max(d′, d′′), g + g′′@d)

mergem,n (v, d, g) (v′, d′, g′) = ((v, v′), max(d, d′), λt. g(t) ∪ g′(t))

unitǫ v = (v, 0, λt. ∅)

extendm,n f (v, d, g) = let (v′, d′, g′) = f v in (v′, d+ d′, g + g′@d)

playn (n, d) = ((), d, λt. if 0 ≤ t ≤ d ∧ n 6= rest then {n} else ∅)

For example, play(C, 0.75) : MusicC JvoidK which is modelled by the unit value ()
of type void, the duration 0.75, and the constant function λt.{C}.

As discussed earlier, there is an important design decision regarding mcond.
Consider the expression if b then play(D, 0.5) else play(E, 1). In our semantics, the
expression always takes time 1: if b is true, it plays D for 0.5 and then rests for 0.5.
This is because our mcond operation implicitly synchronises the branches. This
is only possible because we interpret conditionals using the joinad control-flow
operator mcond that has access to computations of both of the branches.

Now consider the derived semantics for conditionals obtained via extend

along with condA : B → A → A → A instantiated at computation types
A = MusicF JvoidK. This leads to quite a different semantics in that we have:

mcond (true, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′, d+ d′, g + g′@d)

mcond (false, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′′, d+ d′′, g + g′′@d)

Here, the total time of the if operation is the total time of the executed branch,
meaning that the conditional, now being dichotomous, does not perform implicit
synchronisation. By turning mcond into a to-be-specified control-flow operator
instead of requiring the monad-derived semantics, we get additional flexibility
and can choose between the two behaviours. (This example provides another
practical use for non-dichotomous semantics for if-then-else.)

4.5 Classical joinads—grading and control-flow algebra

Classical joinads (with choose and fail instead of mcond) can similarly be formu-
lated as a control-flow algebra [29]. We briefly give the definitions here.

Definition 8 (Joinad control-flow algebra). (F , •,+,&, 0, I) is a joinad
control-flow algebra if (F , •, I) is a monoid, (F ,+, 0, •) is a near-semiring and
(F ,+, 0,&) is a near-semiring with commutative &. This can be extended with
an ordering ⊑ on F w.r.t. which operations •,+,& are required to be monotonic.

This definition captures the structure and axioms of a joinad. The first near-
semiring requirement means that (F ,+, 0) is a monoid, that 0 is the •-absorbing
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element (0•F = 0), and (F +G)•H = (F •H)+(G•H) (sequencing distributes
over alternation). The second near-semiring requirement implies that (F ,&) is
a semigroup, 0&F = 0, and & distributes over alternation.

Definition 9 (Graded classical joinads). Given (F , •,+,&, 0, I,⊑)—a joinad
control-flow algebra—then a graded joinad is an ordered graded monad for the
ordered monoid (F , •, I,⊑) together with the following three operations:

choose
F,G
A : TFA× TGA → TF+GA failA : void → T0A

merge
F,G
A,B : TFA× TGB → TF&G(A×B)

The operations are required to satisfy the joinad control-flow algebra laws (Defi-
nition 8), which are syntactically the same as standard joinad laws, but annotated
with corresponding effects. We omit these for brevity.

This structure provides a useful effected-directed model for effectful pat-
tern matching, in contrast to standard if-then-else conditionals. All examples of
joinads [32, 29] can be turned into graded joinads via the trivial (single element)
joinoid control-flow algebra or by adding some suitable effect algebra which re-
fines the existing semantics. For parsers, annotations may capture the degree of
non-determinism (how many choices there are) and the length of the required
input. In parallel programming, the annotations on graded joinads can estimate
the maximal evaluation time (with • as addition; + and & taking the maximum)
or the minimal evaluation time (same, with + as minimum).

5 Discussion

Kleene algebras and recursion In our musical introduction, we introduced
iteration (for loops) and modelled this in the effect system by a Kleene-star-
like unary operator Φ∗. Recursion, or iteration, is another useful control-flow
operator that we may wish to distinguish in an effect system and its semantics.

Similarly to conditionals, we can give a derived semantics for effectful recur-
sion in terms of underlying operations in the semantic domain. Given fix which
maps every f : A → A to fixAf : A, we can derive an effectful fixed-point:
mfixA = fixTA (extendA,A f) operator mapping f : A → TA to mfixA f : TA
(i.e., a fixed point is taken over the monadic extension of f , i.e., mfixA f =
(extendA,A f) ◦ (extendA,A f) ◦ ...). This is similar to the approach of Kleene
monads [10]. Interestingly, replacing extend with the graded monad version in
the above fixed-point definition forces an additional requirement on the effect
algebra, that • is idempotent; that is, f : A → TFA is mapped to mfixFAf : TFA

where mfixFAf = fixTFA(extend
F,F
A,Af) where extend

F,F
A,A : TFA → TF•FA and thus

F • F = F . For some effect systems this would suffice, but for others we may
want to introduce an effect element ω (‘repeat forever’) or traces via regular
languages. We see this as a maxim: give a semantic operator for every effect
operator; sometimes these can be derived from existing operators but we should
avoid building in this as a requirement.
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Following the philosophy of this paper, an abstract effect-directed semantics
for recursion is best served by a control-flow algebra for effect annotations with
F ∗ and a graded operation mfixFA which maps f : A → TFA to mfixFA f : TF∗A.
This provides a more general model for static analysis and semantics.

Other related work Benton et al. previously defined an effect-directed se-
mantics for state, similar in motivation to the work on graded monads but spe-
cialised [4]. This is used for precise semantic reasoning based on refinements
from effect analysis. They show various effect-driven transformations, which are
proven sound in their semantics. Their work gives a deep treatment to some of
the themes we have touched on here more broadly. We focused more on the idea
of generalising the treatment of control-flow operators in the presence of effects.

The work on algebraic effects and handlers provides an alternative approach,
connecting effect systems and monads [15, 34]. This approach focuses on effectful
operations (read/write/etc.) and equations between them. This is a change of
perspective to monads, which consider first an encoding of effects rather than
the effectful operations. The work of Power and Plotkin starts with the effectful
operations and generates an encoding as the free structure arising from the
operations quotiented by their equational theory [33]. Recent work by Kammar
et al. has used these approaches to give effect-dependent optimisations with a
sound semantics [14, 15]. That work can be similarly described as effect-directed
semantics, but from a different perspective to that laid down by the line of
work of Wadler-Thiemann, Katsumata, and this paper. The work on algebraic
effects largely focuses on the building blocks of effects: the effectful operations and
their algebraic theories. We have instead focused on the scaffolding : control-flow
structures which compose effectful computations.

Coeffects, the dual of effects, which track how a program depends on its con-
text or how it consumes resources have been similarly given a coeffect-directed
categorical denotational semantics [31, 30, 5]. Coeffect structures tend to com-
prise some form of resource semiring with a semiring-graded comonad in the
semantics [8].

Conclusions and further work The semantic understanding of effect systems
and their use for static analysis has rather diverged. Nielson and Nielson devel-
oped richer effect algebras, but left the proof of correctness (with respect to se-
mantics) to users of these algebras. By contrast, Wadler, Thiemann, Katsumata
et al., (and Atkey via parameterised monads [3]) have developed models which
link (semilattice-based) effects directly to semantic models, so that a model of a
computation only includes elements consistent with their effect annotations.

We showed that monads and graded monads do not capture richer control
flow (in particularly parallelism and some forms of conditional). We argued that
certain operators in extensions of monads are control-flow operators distinguish-
able by their type, and provided a link between such types and control-flow
graphs. We showed that joinads (monads extended with operations for alter-
nation and parallelism, on top of the existing monadic sequential composition)
provide a practical example of these control-flow algebras, and that they express
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concepts similar to those of Nielson and Nielson. Joinads can also be graded in
a similar manner to Katsumata’s graded monads, thus providing a framework
where semantic models can only express values appropriate to syntactic effects.

Further work might explore other control-flow algebras that could be simi-
larly “graded”, beyond those discussed here, such as backtracking [17]. Another
avenue is to establish the conditions under which the graded connection between
syntax and semantics induces soundness, or even goes as far as completeness.
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A Issues surrounding monadic strength

A monadic semantics for an effectful simply-typed λ-calculus requires that mon-
ads are strong. This captures the idea (implicit in the category of sets, but not
in all categories) that a free variable may be captured by an outer λ-binding.
Strong monads have an additional operation: strA,B : A × TB → T(A × B)
satisfying various axioms (see [23, 24]) which amount to saying that the effects
encoded in the result of str are the effects encoded by the second argument.

The monadic semantics for (bind) in Monad (shown in Section 2.3, p. 11),
omitting the type subscripts on extend and str, is then:

JΓ ⊢M letx ⇐ e in e′ : MF•Gτ ′K : JΓ K → TJτ ′K

= λγ . extend JΓ, x :τ ⊢M e′ : MGτ ′K (str (γ, JΓ ⊢M e : MF τK γ))

The str operation turns an environment γ : JΓ K and a result TJτK into T(JΓ K ×
JτK) for composition with extend JΓ, x :τ ⊢M . . .K : T(JΓ K × JτK) → TJτ ′K.

Graded monads can be similarly strong with operation strFA,B : A× TFB →
TF (A×B), satisfying analogous axioms to the usual strong monad axioms [16].
The graded semantics is then the analogous one to the above.

We might consider adding an effect operation S : F → F corresponding to
use of strength in the semantics e.g., strFA,B : A×TFB → TSF (A×B). However,
an axiom of (non-graded) strong monads is that for all x ∈ A, y ∈ TB then
map fst (strA,B(x, y)) = y which for graded strength would imply that SF = F .
We accordingly exclude S from the effect algebra since it is necessarily identity.
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