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Abstract—In this paper, a distributed proportional-integral
multilayer control strategy is proposed, for reaching consensus
in networks of heterogeneous first-order linear node dynamics.
The resulting closed-loop network can be seen as an instance of
multiplex networks currently studied in network science. The
strategy is able to guarantee consensus, even in the presence
of constant disturbances and heterogeneity. The proportional
and integral actions are deployed on two different layers across
the network, each with its own topology. Explicit expressions
for the consensus values are obtained together with sufficient
conditions guaranteeing convergence. The effectiveness of the
theoretical results are illustrated via numerical simulations
using a power network example.

I. INTRODUCTION

The problem of driving a group of interconnected agents
towards a common desired state has become fundamental
due to its potential application in many different areas of
Science and Engineering [1], [2], [3]. This problem can
be solved into two different manners via centralized or
distributed control actions. Distributed control is more apt
in all those situations where several constraints are present
and cannot be avoided such as limited resources and energy,
short wireless communication ranges, narrow bandwidths,
etc [4].

One problem of particular interest is consensus, where
the goal is for all agents in the network to asymptotically
converge towards each other [5]. A large number of no-
table applications have made this problem of relevance.
For instance, temperature regulation throughout an entire
building or environment (e.g. a mine) [6]; distributed for-
mation control in robotics [7], [8]; platooning of vehicles
in intelligent transportation systems [9], [10]; and frequency
synchronization [11], [12] in power grids and micro-grids.
(For a more exhaustive list of applications see [13], [5] and
references therein).

The existing literature on consensus is very rich and
many extensions and sophisticated techniques have been
studied. For example, solutions have been proposed where
the distributed controller is nonlinear, or it is affected by
switchings and delays [14], [15], [16], [5]; the network
graph is directed, and/or the node dynamics is nonlinear
(for a review see [17], [18]). As research on consensus has
matured, more complicated and realistic scenarios must be
addressed and analysed. Often, agents in a network do not

(a) (b)

Fig. 1. (a) Network with two types of links representing proportional (blue
line) and integral (yellow) distributed controllers, (b) Multiplex (Multilayer)
network representing proportional and integral distributed controllers.

necessarily have the same intrinsic dynamics [19], [20], [21],
[22], [23] and may be affected by noise and disturbances.

A pressing open problem is that of guaranteeing con-
sensus in groups of agents in the presence of heterogeneity
among their dynamics together with disturbances and noise.
In [24], a distributed PID control is proposed for solving
the consensus problem in the case where the nodes are
heterogeneous and are affected by constant disturbances.
Hence, the aim of this paper is to extend the result in
[24] where a proportional (P) plus integral (I) actions are
deployed for every link in the network, to the case where P
and I actions can be added on different links as can be seen
in Fig.1(a).

The resulting strategy is a multilayer distributed control
architecture where each layer represents the proportional
and integral control network respectively (see Fig.1(b)). The
main advantage of the multilayer strategy is that both the
control action and the convergence time can be substantially
reduced by properly choosing the network structure in the
proportional and integral layers.

Multiplex (or multilayer) networks are a collection of
networks (called layers) which may interact with each other.
They have been proposed as an effective modelling approach
for representing and investigating network problems in many
real and man-made networks where multiple types of inter-
connections are present [25]. In this paper we introduce the
concept of multilayer control networks to model the action of
different control layers with different structures. We focus
on a PI multiplex strategy proving that it can effectively
guarantee convergence in networks of linear systems despite
the presence of heterogeneity in the node dynamics and



constant disturbances. We find conditions for tuning the
gains of the distributed control actions in order to guarantee
convergence that depend on the node dynamics.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

We denote by IN the identity matrix of dimension N ×
N ; by 0M×N a matrix of zeros of dimension M×N , and by
1N a N×1 vector with unitary elements. A diagonal matrix,
say D, with diagonal elements d1, . . . , dN is indicated by
D = diag{d1, . . . , dN}. The Frobenius norm is denoted by
‖·‖ while the spectral norm by |||·|||. λN (.) denotes the N -th
eigenvalue of a matrix. Given two vectors ζ1, ζ2 ∈ R

n×1

and a matrix Q ∈ R
n×n, linear algebra implies

2ζT
1 Q

T ζT
2 ≤ εζT

1 Q
TQζ1 +

1

ε
ζT
2 ζ2, ∀ε > 0 (1)

An undirected graph G is a pair defined by G = (N , E)
where N = {1, 2, · · · , N} is a discrete set with N compo-
nents representing the index of a node (vertex), E ⊂ N ×N
is the edge set containing M edges between nodes. Fur-
thermore, we assume each edge has an associated weight
denoted by wij ∈ R

+ for all i, j ∈ N . The weighed
adjacency matrix A(G ) ∈ R

N×N with Aij entries, is
defined as Aij(G ) = wij if there is an edge from node
i to node j and zero otherwise.

Similarly, the Laplacian matrix L(G ) ∈ R
N×N is de-

fined as the matrix whose elements Lij(G ) =
∑N

j=1,j 6=i wij

if i = j and −wij otherwise. Thus, the Laplacian matrix
can be recast in compact form as L(G ) = diag{1T

NA(G )}−
A(G ), where the matrix diag{1T

NA(G )} is often called the
degree matrix of the graph G . Given two graphs sharing
the same set of nodes G1 = (N , E1) and G2 = (N , E2),
we define the projection graph as the graph proj(G1,G2) :=
(N , Ep) with associate adjacency matrix Ap := A(G1) +
A(G2).

Definition II.1. [26] We say that an n × n matrix A =
[Aij ], ∀i, j ∈ N belongs to the set Ω if it verifies the
following properties

1) Aij ≤ 0, i 6= j, and Aii = −
N
∑

j=1,j 6=i

Aij ,

2) its eigenvalues are such that λ1(A) = 0 while all
the others, λk(A), k ∈ {2, · · · , N}, are real and
positive.

Note that the Laplacian matrix L previously defined,
satisfy the conditions of Definition II.1 if its associated graph
G is connected [5].

Lemma II.1. [24] Let A ∈ Ω be the Laplacian matrix of a
generic undirected and connected graph G , then A can be
written in block form as A = RΛR−1, where

R =

[

1 NRT
21

1N−1 NRT
22

]

, R−1 =

[

r11 R12

R21 R22

]

(2)

with R21 ∈ R
(N−1)×1, R22 ∈ R

(N−1)×(N−1) being blocks
of appropriate dimensions, and

r11 =
1

N
, R12 =

1

N
1
T
N−1, (3)

Λ = diag {0, λ2(A), · · · , λN (A)} with 0 = λ1(A) <
λ2(A) ≤ · · · ≤ λN (A) being the eigenvalues of A.
Moreover, the blocks in R and R−1 must fulfill the following
conditions

r11 +R121N−1 = 1 (4)

R21 +R221N−1 = 0(N−1)×1 (5)

R21R
T
21 +R22R

T
22 =

1

N
IN−1 (6)

r11R
T
21 +R12R

T
22 = 01×(N−1) (7)

R21R
T
21 = R221N−11

T
N−1R

T
22 (8)

|||R22||| ≤
1√
N

(9)

‖R21‖ ≤
√
N − 1|||R22||| ≤

√

(N − 1)/N (10)

NRT
22 = (IN−1 + 1N−11

T
N−1)

−1R−1
22 (11)

Definition II.2. [27] A multiplex graph, is a pair M =
(G,D) where G is the set of M graphs G := {G1, · · · ,GM}
called layers of M , and D is the set of edges representing
interconnections between nodes of different layers.

III. PROBLEM STATEMENT

We consider the problem of achieving consensus in
a group of N agents (Multi-agent system), governed by
heterogeneous linear dynamics of the form

ẋi(t) = ρixi(t) + δi + ui(t), i ∈ N (12)

where xi(t) ∈ R represents the state of the i-th agent, ρi ∈ R

is the agent pole, δi ∈ R is some constant disturbance (or
constant external input) acting on each node, and ui(t) ∈ R

is the distributed control input. Note that, assuming a null
control input, the dynamics of the i-th node can be unstable
(ρi > 0) or stable (ρi < 0) with −δi/ρi as equilibrium point.
Moreover, δi can be used to represent different quantities in
applications; such as, constant power injections in power
grids [12] or a source of noise in minimal models of natural
flocks of birds [28].

The problem is to find bounded and distributed control
inputs ui(t), such that all states xi(t) converge asymptoti-
cally towards each other.

Definition III.1. (Admissible consensus) [24]: The multi-
agent system (12) is said to achieve admissible consensus if
for any set of initial conditions xi(0) = xi0,

lim
t→∞

|xj(t)− xi(t)| = 0, |ui(t)| < +∞, ∀t ≥ 0, i, j ∈ N

To solve the problem of achieving admissible consensus
in a network of heterogeneous linear agents with distur-
bances, we propose the use of a distributed PI protocol,
obtained by setting:

ui(t) = −σP
N
∑

j=1,j 6=i

αij(xj(t)− xi(t)) + zi(t) (13a)

żi(t) = −σI
N
∑

j=1,j 6=i

βij (xj(t)− xi(t)) (13b)



where the constant weights αij , βij ∈ R
+ are local control

strengths of the distributed proportional and integral contri-
butions respectively. We consider undirected links, that is
αij = αji and βij = βji without self-links αii = βii = 0.
Note that these control actions allow the deployment of
proportional and integral actions on the network edges
independently from each other (αij = 0 or βij = 0 for
some i,j ∈ N , i 6= j). The constants σP , σI ∈ R

+ are
additional parameters modulating globally the contribution
of each control layer with respect to each other.

Equation (13) effectively defines two control layers each
represented by a different weighted graph GP := (N , EP )
for the proportional layer and GI := (N , EI) for the integral
layer, where EP and EI are the set of edges with associated
weights αij and βij respectively. As depicted in Fig. 1 the
resulting control strategy is therefore a multiplex distributed
control network, with a multiplex graph M = (G,D) where
G := {GP ,GI}, and since the layers do not interact between
them, D is an empty set. The closed-loop network is then
given by
[

ẋ(t)
ż(t)

]

=

[

P− σPP IN
−σII 0N×N

] [

x(t)
z(t)

]

+

[

∆
0N×1

]

(14)

where x(t) = [x1(t), . . . , xN (t)]
T

, and z(t) =
[z1(t), . . . , zN (t)]

T
are the stack vectors of the node and

integral states. Besides, P, I ∈ Ω are two different Lapla-
cian matrices associated to the graphs GP and GI that we
assume are connected. Thus, the problem then becomes that
of finding conditions on the global control gains σP , σI and
the local control gains αij and βij encoded by the matrices
P and I, so as to guarantee convergence of all nodes in the
closed-loop network (14) towards each other, i.e, admissible
consensus.

IV. STABILITY ANALYSIS

The stability problem is that of finding conditions for
the control gains σP , σI , and the Laplacians of the control
layers, P and I, so as to guarantee convergence of all node
states in the closed-loop network (14) towards each other.
First we prove that the collective dynamics of the closed-
loop network has a unique equilibrium which is a solution
of the admissible consensus problem.

Proposition IV.1. Network (14) has a unique equilibrium
given by x∗ := x∞1N , and z∗ := −(x∞P1N +∆) where

x∞ := −∑N

k=1 δk/
∑N

k=1 ρk.

Proof: From Definition II.1, we know that P1N =
I1N = 0N×1. Thus, setting the left-hand side of (14) to zero
one has that x∗ = a1N , ∀a ∈ R and z∗ = − (aP1 +∆).
By definition, we also have that 1

T
Nz(t) = 0, then 1

T
Nz∗ = 0

and we obtain

a = −1
T
N∆/1T

NP1N = −
∑N

k=1
δk/

∑N

k=1
ρk =: x∞

which completes the proof.

Remark IV.1. Note indeed that if controller (13) is able
to render this equilibrium stable it is also able to guar-
antee consensus of all node states x(t) to a constant

value x∞ using bounded control energy. Also, note that
the emergent behaviour from the collective dynamics of the
network, follows a generic first-order ”exo-system” given by

ṡ(t) = (
∑N

k=1 ρk)s(t)+
∑N

k=1 δk. This result for perturbed
heterogeneous agents establishes a connection with [19]
where internal models in networks are studied.

Now, shifting the origin via the further state transforma-
tion y(t) := z(t) +∆ one has

[

ẋ(t)
ẏ(t)

]

=

[

P− σPP IN
−σII 0N×N

] [

x(t)
y(t)

]

(15)

Networks with different structures are considered in the two
layers of the closed-loop network; therefore, we next provide
a Lemma which associate them.

Lemma IV.1. Let A = RΛ1R
−1 and B = QΛ2Q

−1 be
two Laplacian matrices belonging to the set Ω, where R
and Q are block matrices as in (2) and Λk, k ∈ {1, 2} are
diagonal matrices containing the eigenvalues of A and B
respectively. Then,

R−1BR =

[

0 01×(N−1)

0(N−1)×1 ΞΛ̄2Ξ
T

]

(16)

where Ξ = NR22(1N−11
T
N−1 + IN−1)Q

T
22 and Λ̄2 =

diag {λ2(B), · · · , λN (B)}. Moreover, ΞΛ̄2Ξ
T is a symmet-

ric matrix.

Proof: See Appendix A.

A. Error Dynamics

Assuming the graphs in both proportional and integral
layers are connected, using Lemma II.1 we can write P =
RΛ1R

−1 and I = QΛ2Q
−1. We next define the error dy-

namics given by the state transformation x⊥(t) = R−1x(t);
therefore, using the block representation of R−1 and letting

x̄⊥(t) =
[

x⊥2 (t), . . . , x
⊥
N (t)

]T
, x̄(t) = [x2(t), . . . , xN (t)]

T

we obtain
x⊥1 (t) = r11x1(t) +R12x̄(t) (17a)

x̄⊥(t) = R21x1(t) +R22x̄(t) (17b)

Note that by adding and subtracting the term R22x1(t)1N−1

to (17b) and using property (4) one has

x̄⊥(t) = R22 (x̄(t)− x1(t)1N−1) (18)

Hence, x̄⊥(t) = 0 if and only if x̄(t)− x1(t)1N−1 = 0

since R22 is full rank [24]. Then, admissible consensus is
achieved if limt→∞ x̄⊥(t) = 0 and ‖y(t)‖ < +∞, ∀t > 0.
[This also implies that, when consensus is achieved all nodes
must converge to x1(t).]

Now, recasting (15) in the new coordinates x⊥(t) and
y⊥(t) = R−1y(t), we get

ẋ⊥(t) =

(

Ψ−
[

0 0

0 σP Λ̄1

])

x⊥(t) +

[

0
ȳ⊥(t)

]

˙̄y
⊥
(t) = −σIΞΛ̄2Ξ

T x̄⊥(t)
(19)

where ȳ⊥(t) :=
[

y⊥2 (t), . . . , y
⊥
N (t)

]T
,

Λ̄1 := diag {λ2(P), · · · , λN (P)} and Λ̄2 :=



diag {λ2(I), · · · , λN (I)}. Note that the equation for
y⊥1 (t) can be neglected as it has trivial dynamics with
null initial conditions and represents an uncontrollable and
unobservable state. Moreover, it is important to note that
matrix Ξ was obtained using Lemma IV.1 for R−1IR.
Besides, Ψ is a block matrix defined as

Ψ := R−1PR =

[

ψ11 Ψ12

Ψ21 Ψ22

]

= R−1

[

ρ1 01×(N−1)

0(N−1)×1 P̄

]

R

(20)

with P̄ := diag {ρ2, · · · , ρN}. Now using properties (4)-(7)
we can write [24]

ψ11 := (1/N)
∑N

k=1
ρk (21)

Ψ12 := ρ̄TRT
22 (22)

Ψ21 := R22ρ̄ (23)

Ψ22 := NR22

(

P̄+ ρ11N−11
T
N−1

)

RT
22 (24)

where

ρ̄ := [ρ2 − ρ1, · · · , ρN − ρ1]
T

(25)

B. Distributed-PI Multiplex Control

Theorem IV.1. A group of N heterogeneous agents (12)
controlled by the distributed multilayer PI strategy (13),
achieves admissible consensus for any connected integral
network GI and σI > 0 if the following conditions hold

ψ11 = (1/N)
∑N

k=1
ρk < 0, (26a)

σPλ2(P) > max
i∈N

ρi +
ρ̄T ρ̄

N |ψ11|
(26b)

moreover, all node states converge to the equilibrium
(x∗, z∗) defined in Prop.IV.1.

Proof: Consider the Lyapunov candidate function (in
what follows we remove the time dependence of the state
variables and the symbol ⊥ to simplify the notation)

V =
1

2

(

x21 + xTx+
1

σI
yT

(

ΞΛ̄2Ξ
T
)−1

y

)

(27)

From Lemma IV.1 we know that ΞΛ̄2Ξ
T is an eigendecom-

position of a symmetric matrix with positive eigenvalues,
which are the diagonal entries of Λ̄2; therefore, its inverse
exist and it is also a positive definite matrix. Consequently,
(27) is a positive definite function and differentiating it along
the trajectories of (19) one has

V̇ = ψ11x1
2 + x1

(

Ψ12 +ΨT
21

)

x+ xT
(

Ψ22 − σP Λ̄1

)

x

from (22) and (23) we have that Ψ12=ΨT
21 = ρ̄TRT

22, then
one gets

V̇ = ψ11x
2
1 + xTΨ22x− σPx

T Λ̄1x+ 2x1x
TR22ρ̄ (28)

Now using relation (1) we can write the last term of (28) in
a quadratic form. This is, letting QT = R22, ζ1 = x and
ζ2 = x1ρ̄ one has

V̇ ≤ (ψ11 +
1

ε
ρ̄T ρ̄)x21 + xTΨ22x

− σPx
T Λ̄1x+ εxTR22R

T
22x

(29)

From linear algebra it is possible to obtain upper-bounds for
each term of (29). Thus, by definition we know that Ψ =
R−1PR is a symmetric matrix with eigenvalues ρi, ∀i ∈
N , and λmax(Ψ22) ≤ λmax(Ψ) = maxi ρi (see Theorem
8.4.5 in [29]). Furthermore, −σPxT Λ̄1x ≤ −σPλ2(P)xTx.
Therefore, one gets

V̇ ≤ (ψ11 +
1

ε
ρ̄T ρ̄)x21+

(

max
i
ρi + ε|||R22|||2 − σPλ2(P)

)

xTx
(30)

Now, using property (9) we have that V̇ is negative definite
if ξ1 := ψ11 + 1/ερ̄T ρ̄ < 0 and ξ2 := maxi ρi + ε/N −
σPλ2(P) < 0.

From the assumption, we have that ψ11 < 0, therefore
ξ1 < 0 is ensured if ε > ρ̄T ρ̄/|ψ11|. Also, ξ2 < 0 if
condition (26b) is fulfilled. Therefore, all agents in (12)
achieve admissible consensus to the equilibrium (x∗, z∗)
defined in Prop. IV.1.

C. Example

We consider a possible application of the distributed
multiplex PI strategy introduced in this paper, to a simplified
network inspired from the model of a power system intro-
duced in [30] (for further information regarding control of
power networks, we also encourage the reader to look up
[31], [32] and references therein.) Specifically, we consider
the problem of studying convergence in a network of N
buses (nodes) with identical inertia constants, linearized
around the synchronization manifold ω1(t) = · · · = ωN (t)
given by [30]:

ω̇i(t) = m (−diωi(t) + p∗i − pi(t) + vi(t)) (31a)

ṗi(t) =
N
∑

j=1,j 6=i

EiEj |Yij | (ωi − ωj), i ∈ N (31b)

where ωi(t) represent the frequency state of each bus, p∗i is
the power load at bus i, vi(t) is the mechanical input, di
is damping coefficient and m is the inverse of the inertia
parameter. Furthermore, Ei > 0 is the nodal voltage, Yij is
the admittance among buses i and j, and pi(t) represents
the active electrical power exchanged with the other buses.

We propose the use of the distributed control protocol
given by

vi(t) =
1

m

(

kiωi(t) + σP
∑N

k=1
Pijωi(t)

)

(32)

with ki being the local feedback gains, σP > 0 and P ∈ Ω
represents the Laplacian matrix of a certain graph GP in the
proportional layer with link weigths αij . From a practical
viewpoint, the control strategy corresponds to enhance the



coupling between the agents in the open-loop network via
proportional control network. This could be implemented via
appropriate digital devices feeding the control action to the
nodes.

Then, let βij := EiEj |Yij | be the weight on each edge
of the power network and I ∈ Ω the associated Laplacian
matrix describing the equivalent distributed integral action
(31b), and setting z(t) = −mpi(t), the problem becomes
that of proving convergence in the heterogeneous network
given by

ω̇(t) = (H− σPP)ω(t) + z(t) +∆ (33a)

ż(t) = −Iω(t) (33b)

where ω(t) := [ω1(t), · · · , ωN (t)], and z(t) :=
[z1(t), · · · , zN (t)] are the stack vectors of frequency and
rescaled electrical power respectively. Besides, H :=
diag{k1 −md1, · · · , kN −mdN}, ∆ := m · [p∗1, · · · , p∗N ]T .

System (33) has the same structure as (14) with,
σI = 1. Thus for suitable control parameters we have
from Prop. IV.1 that (33) reaches consensus to ω∞ :=
−m∑N

i=1 p
∗
i /
∑N

i=1 (ki −mdi). It is important to highlight
that the consensus value can be controlled varying the
control gains ki. As an illustration and without loss of
generality, consider the network of six buses shown in Fig.
2(a), we assume m = 1 and the following power loads in
each node

∆ = [δ1, · · · , δ6] = [100, 160, 200, 110, 100, 98]

with control and damping constants such that

H = diag {0.2,−0.86,−0.8,−0.9,−7,−9}

Note that local feedback actions are only added to nodes
{1, 5, 6} (self red-links in Fig. 2(a), all the other ki are
zeros). Then, Theorem IV.1 can be used to tune the control
gains and guarantee convergence in the case of a fixed
network structure. It follows that ψ11 = −3.06 and then
condition (26a) is fulfilled. Moreover, ρ̄T ρ̄ = 139.8136, and

max
i∈N

{ki − di} = max
i∈N

{Hii} = 0.2

then, consensus is guaranteed if σPλ2(P) > 7.8151. Thus,
considering the network control layer of proportional links
shown in Fig.2(b) we have that λ2(P) = 3.3470; therefore,
σP > 2.3350. The resulting evolution of the node states
and electrical power for σP = 2.34 are shown in Fig. 2(c),
where admissible consensus is reached as expected to the
predicted value x∞ = 50Hz. Note that the structure and
distributed gains of the control layer can be changed so as to
vary the threshold value of the gains above which consensus
is attained. Indeed by varying λ2(P) we can vary the value
of the threshold value for σP . Also when compared to the
approach in [24], the number of distributed proportional (or
integral) actions used here is much smaller as it suffices
for GP to be connected while in [24], a proportional (or
integral) action had to be added for every link consider in
the network.
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0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

ω
i(
t)

 

 

0 10 20 30 40 50 60 70 80 90 100
−300

−200

−100

0

100

200

p
i(
t)

t[s]

node 1 node 2 node 3 node 4 node 5 node 6

(c)

Fig. 2. (a) Schematic of the power network composed by six buses
(nodes) with different damping coefficients. The red self-links represent
local controllers acting on each node. (b) network architecture representing
the proportional layer. (c) time response of the controlled power network.
The blue dash-dot line represent the convergence point ω∞.

V. EXTENSION TO MORE GENERAL NODE DYNAMICS

Here we consider n-dimensional node dynamics of the
form

ẋi(t) = Aixi(t) + δi + ui(t), i ∈ N (34)

where xi(t) ∈ R
n×1 represents the state of the i-th agent,

Ai ∈ R
n×n is the intrinsic node dynamic matrix, δi ∈ R

n×1

is some constant disturbance (or constant external input)
acting on each node, and ui(t) ∈ R

n×1 is the distributed
multilayer-PI controller given by

ui(t) = −σP
N
∑

j=1

αij(xj(t)− xi(t))

− σI

N
∑

j=1

βij

t
∫

0

(xj(τ)− xi(τ))dτ

(35)

The main difference of this control strategy with the one
reported in our previous work [24], is that the network
structure of the proportional and integral layers, are not
necessarily the same. Then, it is natural to wonder if this
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Fig. 3. Different network topologies with unitary weights: (a) all-to-all,
(b) star, (c) ring, and (d) Tree. (e) time response of the consensus index ∆x

when the network structure in each layer is varied. The R label denotes a
ring topology, while T and S denote ring and star one.

extra degree of freedom can be exploited to improve the per-
formance of the closed-loop network. In the next example,
we explore the influence on the network behaviour, when
the network topology of each layer GP and GI is varied.

A. Example

We first consider eight agents governed by (34), with
three types of node dynamics; stable E1 := diag{−1,−1.3},
unstable E2 := diag{1, 0.5}, and oscillatory

E3 :=

[

0 5
−5 0

]

Then, the agents are described by Ak = E1, k ∈ {1, 2, 5, 6},
Ak = E2, k ∈ {4, 8}, and Ak = E3, k ∈ {3, 7} and
the disturbances δi ∈ R

2×1 are given by δi = [0, 10]T

for i={5,6} and δi = [0, 0]T otherwise. Furthermore, four
different network topologies with unitary weights as those
shown in Fig. 3 are considered for each layer. Hence, setting
α = β = 2, we plot the evolution of the consensus
index dx(t) :=

∥

∥x(t)− (1/N)
(

1N1
T
N ⊗ I2

)

x(t)
∥

∥, where
d(t) = 0 indicates that the closed-loop network has reached
admissible consensus.

We consider six scenarios: a ring and tree topologies
for the proportional and integral layers respectively (R-T),
then a tree and a ring (T-R), ring and ring (R-R), tree
and star (T-S), ring and star (R-S), and finally star-star
configuration. Note that when the topologies are the same
R-R and S-S, the network reaches consensus at t ≈ 58s.
While it is considerably reduced to 30s by changing the
topology to R-S star configuration. Surprisingly, the rate of
convergence is not inversely proportional to the algebraic
connectivity λ2 of each network.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel control approach for con-
trolling networks of heterogeneous nodes in the presence
of constant disturbances. In particular, we proposed the

use of network control layers deploying different actions
in a network, implementing a distributed proportional and
integral multiplex strategy. We proved convergence of the
strategy and derived conditions to select the control gains as
a function of the open loop and control network structures
and the node dynamics. Via numerical simulations on a
representative example, we showed the effectiveness of the
proposed strategy.

Several open problems are left for further study. First and
foremost the effect of varying the structure of the network
control layers should be studied in more details as prelimi-
nary results show the performance of the network evolution
towards consensus can be affected by such variations. Also,
it remains to be investigated if the additional degrees of
freedom represented by the gains of the distributed P and I
actions can be exploited to improve the performance of the
closed-loop network, possibly in an optimal manner.
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APPENDIX

Proof of Lemma IV.1 Multiplying both sides of
B = QΛ2Q

−1 by R−1 and R, yields R−1BR =
R−1QΛ2Q

−1R. Now using the block form of R and Q as

shown in Lemma II.1 one gets

R−1WR =

[

r11 R12

R21 R22

]

·
[

1 NQT
21

1N−1 NQT
22

]

·
[

0 01×(N−1)

0(N−1)×1 Λ̄2

]

·
[

q11 Q12

Q21 Q22

]

·
[

1 NRT
21

1N−1 NRT
22

]

where Λ̄2 = diag {λ2(B), · · · , λN (B)}. By definition q11 =
r11 and Q12 = R12, and then applying matrix multiplica-
tions we have

R−1BR =

[

r11 +R121N−1 N(q11Q
T
21 +Q12Q

T
22)

R21 +R221N−1 N(R21Q
T
21 +R22Q

T
22)

]

[

0 01×(N−1)

0(N−1)×1 Λ̄2

]

[

q11 +Q121N−1 N(r11R
T
21 +R12R

T
22)

Q21 +Q221N−1 N(Q21R
T
21 +Q22R

T
22)

]

(36)

We next simplify each block of all matrices. Then, from
(4) we have that r11 +R121N−1 = q11 +Q121N−1 = 1.
While, from (5)

N(q11Q
T
21 +Q12Q

T
22) = N(r11R

T
21 +R12R

T
22) = 0

and using (6)

R21 +R221N−1 = Q21 +Q221N−1 = 0(N−1)×1

Note also that R21 = −R221N−1 and Q21 = −Q221N−1.
Thus, the blocks

Ξ := N(R21Q
T
21 +R22Q

T
22)

= NR22(1N−11
T
N−1 + IN−1)Q

T
22

(37)

and,

ΞT := N(Q21R
T
21 +Q22R

T
22)

= NQ22(1N−11
T
N−1 + IN−1)R

T
22

(38)

Consequently we can rewrite (36) as in (16). Finally, to prove
that ΞΛ̄2Ξ

T is a symmetric matrix we have to show that
ΞT is an orthonormal matrix. Then, from (37) we have that

Ξ−1 =
1

N
(QT

22)
−1(1N−11

T
N−1 + IN−1)

−1R−1
22

and using property (11) we obtain

Ξ−1 = NQ22(1N−11
T
N−1 + IN−1)R

T
22 = ΞT

which completes the proof.


