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Abstract 
In this study, Acoustic Emission (AE) technique is concerned with an investigation of the 

delamination damage and time-to-failure mechanisms on this phenomenon in glass/epoxy 

composite laminates. Woven and unidirectional lay-ups were subjected to the Double 

Cantilever Beam (DCB), End Notch Flexure (ENF) and Mixed-Mode Bending (MMB) 

tests and the generated AE signals were captured. Discrimination of the AE events, caused 

by different types of the damage mechanisms, was performed using Wavelet Packet 

Transform (WPT) and Fuzzy Clustering Method (FCM) associated with a Principal 

Component Analysis (PCA). The FCM and WPT analyses showed that three dominant 

damage mechanisms are the origins of the AE signals in the tests. Furthermore, different 

interface lay-ups and different GII/GT modal ratio values indicate different time-to-failure 

mechanisms incidence. Additionally, scanning Electron Microscope (SEM) was employed 

to observe the damage mechanisms. The results showed that dominant damage mechanisms 

in all the specimens are matrix cracking and fiber-matrix debonding. Besides, some fiber 

breakage appeared during the tests, and the percentage of this damage mechanism in the 

unidirectional specimens and mode I condition was higher than those in the woven 

specimens and mode II. The comparison between the results of SEM observation and 
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obtained damage mechanisms using WPT and FCM showed an acceptable agreement. It 

was found that the presented methods can be established as an automated procedure in the 

classification process to improve the characterization and discrimination of damage 

mechanisms in the actual occurring modes of delamination in composite structures. 

Keywords: Damage mechanism, acoustic emission, laminated composite material, Fuzzy 

c-means clustering, wavelet packet transform.  

 

Introduction 

     Composite structures are extensively used as engineering structures which normally are 

subjected to complex loads. One of the main drawbacks of many advanced laminated 

composite structures is their susceptibility to delamination. Mode I, mode II and the 

combination of these pure modes are usually present in many real conditions of the 

delamination damage which may degrade the mechanical properties of laminated 

composites. Loading conditions and layup types are among effective factors in the 

delamination behavior. Consequently, a better understanding of the delamination in 

different loading conditions and lay-up variation is an essential research topic and could 

help to increase reliability and safety of the composite structures against initiation and 

growth of the delamination [1-2]. 

     Different non-destructive methods have been utilized to detect delamination damage in 

composite materials. AE is known as an in situ and promising non-destructive technique for 

investigation of microscopic behavior of fiber matrix interface during delamination. AE 
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signal is a transient wave resulting from real-time and continuous monitoring of micro 

failures (e.g. matrix cracking, debonding of matrix from fiber and fiber failure) during 

delamination phenomenon [3-6].  

     Until now, some researchers discriminated the AE signatures of damage mechanisms in 

composite materials [7-12]. Their results showed that AE technique is a capable tool for 

characterization of damage mechanisms in thermoplastic and thermoset laminated 

composite materials. Most of these studies exploited AE parameters such as amplitude, 

count and energy for characterizing the damage mechanisms. Obtained results showed that 

the AE signals are distributed into distinct clusters. Furthermore, three dominant damage 

mechanisms (matrix-cracking, fiber-matrix debonding and fiber breakage) take place 

during delamination while these different damage mechanisms generate different AE 

parameters. Additionally, the achieved results specified that higher frequencies and 

amplitudes emerging in the tests were related to fiber breakage while lower ranges 

contributed to matrix cracking and fiber-matrix debonding damages [2, 8, 9, 10]. 

     In order to obtain more reliable and accurate information for identification of damage 

mechanisms, pattern recognition algorithms and time frequency analyses were utilized as 

multivariable classification procedures of AE data. These methods made it possible to study 

the delamination damage mechanisms by simultaneous consideration of the various AE 
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features [13-16]. In another studies, [17-18] the combination of AE and mechanical 

information were used to recognize the behavior of damage mechanisms during 

delamination damage while notable results were achieved.  

     In this study, two powerful multivariable techniques of Fuzzy Clustering Method (FCM) 

and Wavelet Packet Transform (WPT) were utilized to investigate time to failure 

mechanisms generated during delamination damage. FCM is the combination of fuzzy 

concept and K-Mean method. This technique was used to classify AE signals by different 

researchers [19-22]. The results showed that this technique has good applicability for 

clustering the AE signals. Furthermore, this method can be applied to discriminate the AE 

events having high degree of overlapping in their parameters. WPT [23-26], one of the 

time–frequency distribution techniques, was employed in some studies to investigate the 

relationship between AE signals and damage sources. The results of this method clarified 

that this method and frequency analysis is efficient way for processing the AE signals of 

composite materials.  

     Up to now, several AE based studies were conducted regarding failure modes during 

propagation of delamination. However, the previously referenced studies were mostly on 

mode I fracture analysis while there is lack of studies related to the failure study of 

delamination during mode II and mixed mode types. Therefore, in this work, evaluation of 



 5 

micro-cracking occurrence and identifying the type of damages are conducted when 

subjected to mode I, mode II and mixed-mode delamination tests. Two different types of 

glass/epoxy composite specimens including unidirectional and woven are chosen. In fact, 

the aim of this paper is to improve the investigation efficiency in discriminating various AE 

sources obtained during actual occurring modes of delamination damage. From this 

standpoint, WPT and FCM associated with Principal Component Analysis (PCA) were 

applied to identify the acoustic signatures of the damage mechanisms in real occurring 

modes of delamination. Six AE parameters including amplitude, frequency, etc. were used 

for the FCM based classification, while the energy criterion was utilized to analyze 

decomposed levels in WPT. The damage mechanisms were also observed using the SEM 

images for the purpose of verification. The procedure for damage recognition can clearly be 

seen in Figure 1.  
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Figure 1. The procedure for damage recognition. 

 

Experimental procedure 

Material and specimen preparation 

     The experimental work was carried out on the epoxy resin reinforced by the E-glass 

unidirectional and woven fiber with the density of 1.46 g/cm3, 500 g/m2, and 303 g/m2, 
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respectively. Two different interface types which were used for this study are specified in 

Table 1. The laminates were prepared by hand lay-up. The starter crack was formed by 

inserting a Teflon film with thickness of 20 μm at mid-plane during molding as an initial 

crack for delamination. As shown in figure 2, the laminated composite test specimens 

consist of a rectangular shape and uniform thickness (the fabrication tolerance for all the 

dimensional is about ± 0.1 mm). 

 

Figure 2. The specimen geometry and dimension. 

 

Table 1. Specification of the investigated lay-ups for sample U1-U4 and W1-W4. 

Name Mid-plan Lay up Loading condition 

U1 0, 0
 

[0º]18
 

Mode I 

U2 0, 0
 

[0º]18
 

GII/GT =18% 

U3 0, 0
 

[0º]18 GII/GT =30% 

U4 0, 0
 

[0º]18 Mode II 

W1 W-W Woven Mode I 
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Test procedure 

     DCB, ENF and MMB test apparatus, shown in Figure 3, were used to split the laminated 

specimens. In DCB setup, an upward force was applied to split end of the laminate to create 

mode I, whereas in ENF setup, a downward load was applied to the center of specimen to 

create Mode II. MMB is the combination of DCB and ENF in which the length of the lever 

arm can vary to change the GII/GT modal ratio values. In this paper, two different GII/GT 

modal ratio values were studied (see Table 1). Delamination tests were carried out at a 

temperature of 24°C at a constant displacement rate of 2mm/min. A properly calibrated 

universal tensile test machine was used while the load cell capacity of the test machine is 

5000 N. The load and displacement were continuously measured and the crack length was 

visually observed.  

 

W2 W-W Woven GII/GT =18% 

W3 W-W Woven GII/GT =30% 

W4 W-W Woven Mode II 
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Figure 3. Experimental setups for loading and the AE sensors. (a: mode I, b: mode II, and c: mixed-mode). 

 

AE device 

     AE events were recorded by using Acoustic emission software AEWin and a data 

acquisition system PAC PCI-2 with a maximum sampling rate of 40 MHz. PICO, a 

broadband, resonant-type, single-crystal piezoelectric transducer from PAC used as the AE 

sensor. The sensor has a resonance frequency of 453.12 kHz and an optimum operating 

range of 100–750 kHz. So as to provide good acoustic coupling between the specimen and 



 10 

the sensor, the surface of the sensor was covered with grease. The signal was detected by 

the sensor and enhanced by a 2/4/6-AST preamplifier. The gain selector of the preamplifier 

was set to 40 dB. The test sampling rate was 1 MHz with 16 bits of resolution between 10 

and 100 dB. Prior to the damage check, the data acquisition system was calibrated for each 

kind of the specimens, according to a pencil lead break procedure. This procedure enables 

the generation of the waves used for the device calibration at the specimen surface. At the 

same time, the velocity and attenuation of the AE waves were measured. The lead breakage 

operation was repeated several times at different locations between the sensors. After the 

calibration step, the AE signals were captured during mechanical testing. Signal 

descriptors, such as amplitude, duration, rise time, counts and energy, were calculated by 

the AE software (AEWin). 

 

Wavelet-based Methodology 

The theory of Wavelet is well documented in textbooks concerning multivariable data 

analysis [23-26], where the wavelet transform is represented as a suitable method for 

analyzing AE signals. In this study, WPT is employed [27-28] in which each signal is 

split into high-frequency and low-frequency components as shown in Figure 4. The 

number of components for level i  is i2 . 
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Figure 4. WPT tree. Letter L refers to low frequency and letter H refers to high frequency. WPT: wavelet 
packet transform. 

 

The frequency ranges of the high and the low components are calculated from 

Equations (1a) and (1b), respectively, where sf  is the sampling rate and i  is the number 

of decomposition level. 
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In this study, relative energy distribution at each level ( )(tP j

i ) was exploited for 

characterization of failure modes which could be expressed in Equations 2-4 as follow: 
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Where 
j

ii EE ...1
 express the energy components at level i , ETotal is the total energy of 

signal, )(tf is an AE signal and 
j

ii ff ...1
are the components of i th level of the 

decomposed signal. 

 

Principal Component Analysis (PCA) 

The theory of PCA is well explained in textbooks expressing multivariable data 

analysis [19, 29]. Briefly introducing, PCA is a multivariate analysis tool commonly used 

for reducing dimensionality of a large dataset to enable better visualization and analysis 

of data [21]. Dimensional reduction is performed by transforming data to a new set of 

uncorrelated variables, i.e., the principal components. Indeed, PCA projects the data 

along the directions that describe maximum variance in the dataset.  
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The Fuzzy C-means clustering 

FCM is a clustering procedure in which each input data belongs to some clusters with 

a degree that is defined by a membership grade [29]. Input data with some 

multidimensional space could be classified as specific numbers of different clusters, using 

FCM method. According to Equation 5, input data (P) is signified as n×m matrix. 
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Equation 6 is the mathematical express of the objective function intended for FCM 

clustering. The basic concept of the objective function is to minimize the Euclidian 

distance between each data in its cluster and cluster center, and to maximize the Euclidian 

distance between other cluster centers.  
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In the Equations 6-11, J is a fuzzy partition matrix of input data (P), S is cluster centers 

vector, D is a squared inner-product distance norm,  1,    is a fuzziness parameter of 

the clusters and   is the membership value. 

Simple Picard iteration, using the first-order conditions for stationary points of 

Equation 6, is known as the FCM algorithm [30]. This iteration procedure is the most 

well-known technique for minimization of the c-means function. In fact, it could be 

observed that if  2 0, , 1 ,irAD i r and then U S  may minimize Equation 6 only if the 

Equations 12-13 are satisfied. 
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FCM procedures for classification of the AE data are stated bellow: 

The input parameters, including data set (P), weighting exponent (α>1), number of 

clusters (1< c < m), termination tolerance (ε>0)) and norm-inducing matrix A, are 

selected [30]. Initial value such as  0
U  is selected randomly, for the partition matrix (U). 

The following steps are reiterated for l= 1, 2, 3 … 

Step 1: Using Equation 13, the cluster centers (Si) are calculated.  

Step 2: Using Equation 8, the distances  2D  are evaluated. 

Step 3: The partition matrix is updated for 1 ≤ r ≤ m.   

If DirA > 0 for all i = 1, 2, 3 …  
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Results and discussion 

     The load and energy of the AE signals versus displacement for the specimens are shown 

in Figures 5 and 6. As can be seen, the plots trends are classified as 3 regions. This 

classification is because of the different delamination behavior in these regions. Region 1 is 

related to the free failure domain while regions 2 and 3 are associated with the initiation 

and propagation of the delamination. 
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Figure 5. The load/time curves and AE energy distribution for the unidirectional specimens. 

 



 18 

 

Figure 6. The load/time curves and AE energy distribution for the woven specimens. 
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     There are some dissimilarity between the mechanical and AE behaviors in each region 

for the investigated specimens. As illustrated in Figures 5 and 6, the length of region 1 

varies by changing the lay-up type and GII/GT modal ratio value. It can be observed that 

the mode I condition is more sensitive to the strain causing the delamination onset appears 

sooner compared to the other loading conditions. The distribution of AE events is also 

different in the investigated specimens. There is almost uniform distribution of the AE 

energy after the initiation stage in mode I. In fact, for pure mode I, the load increases 

continually until the maximum load. The load is then almost constant, but increasing of the 

GII/GT modal ratio value causes the distribution of the AE energies to be burst type. After 

the onset of delamination, the crack growth in mode I condition is stable, whereas the crack 

growth in mode II condition and the GII/GT values near mode II is unstable. In the 

mentioned modes, the load increases in a single stage until the maximum load, 

subsequently there is an instability appearance after the maximum load. 

As previously discussed, there are different AE and mechanical behaviors in the 

investigated specimens. Variations in the AE events and mechanical behaviors reflect 

occurrence of different damage mechanisms. These differences are due to the different 

interface lay-ups and different loading conditions leading to the different damage 
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mechanisms. Waveforms of specimen U1 obtained from different regions along with the 

wave characteristics are shown in Figure 7.  

 

 

Figure 7. Waveforms of specimen U1 obtained from different regions. 

 

     Studying the recoded waveforms in time domain shows that the amplitude range of the 

detected waveforms varies as a result of different AE events in the introduced regions. The 
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reason for the generation of different types of waveforms could come from the different 

failure modes during propagation of delamination. A more extracted signatures description 

from the AE waveforms for identification of the damage mechanisms can be obtained by 

applying WPT and FCM associated with PCA methods.  

 

Multivariable analysis 

     Multivariable analysis techniques including WPT and FCM associated with PCA are 

applied to discriminate time to failure mechanisms according to their AE patterns.  

WPT results.  WPT and Daubechies' wavelet family [24] were employed to analyze the 

AE signals. Each obtained AE signal is decomposed into three different levels. Entropy 

criteria [25] were also applied for deciding if certain decomposition is adequate or more 

levels are needed. The relative energy distribution of the AE signals for all components of 

the third level is then calculated from Equations 2 and 3. The summary of the WPT results 

are illustrated in Figure 8 and Table 2.  



 22 

 

Figure 8. Energy percentage of each component of the third level in time domain calculated for different 
specimens. 

 

Table 2. Summary of wavelet packet analysis for dominant components. 

                specimen 
Frequency ranges (kHz) 

187.5-250 250-312.5 375-437.5 

E
n

er
g

y
 

P
er

ce
n

ta
g

e 
(%

) 

U1 25 20 26 

U2 30 26 19 

U3 40 18 18 

U4 47 26 7 

W1 35 29 8 
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W2 36 31 8 

W3 38 32 7 

W4 52 23 7 

 

As can be observed, the major portion of the AE energy is distributed in 3 dominant 

components (LHH3, HLL3 and HHL3) for the specimens. Approximately, more than 70% 

of the AE events are related to these three components. However, the energy distribution 

percentage at each one of these dominant components varies from one experimental 

condition to another (see Figure 8). Furthermore, it can be seen from Table 2 that the 

frequency range of components LHH3, HLL3 and HHL3 are 187.5-250 kHz, 250-312.5 

kHz and 375-437.5 kHz, respectively.  

FCM analysis. Six important features of the AE signals (amplitude, frequency, energy, 

count, rise time, duration) were employed for PCA analysis. The PCA results show that 

more than 80% of the total variance of the input data is related to the cumulative sum of the 

variances of the PCA (1) and PCA (2).  

The PCA visualization of the FCM on the AE signals is shown in Figures 9 and 10 for all 

the specimens. 
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Figure 9. PCA visualization of the fuzzy c-means clustering for the unidirectional specimens. PCA: principal 

component analysis. 
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Figure 10. PCA visualization of the fuzzy c-means clustering for the woven specimens. PCA: principal 
component analysis. 

 

     The FCM results show that the AE signals are well separated along the first principal 

direction and are clustered in three different classes. The number of clusters was chosen 

based on SEM observation from the fractured surfaces and was also verified by Davis-



 26 

Bouldin (DB) index validity criterion. It is also noticeable that the distribution of the 

classes does not overlap (see Table 3). 

Table 3. Average dependency percentage of the signals for three classes. 

 

 

     Moreover, it can be observed from Table 3 that the AE signals distribution percentage at 

each cluster varies from one experimental condition to another. By considering the AE 

parameters of the obtained classes, the frequency parameter was best distinguished. The 

frequency range for each cluster is obtained confirming that the proposed method is useful 

for data clustering and damage mechanism detection. The distributions of the clustered AE 

events and the order of the AE events appearance are shown in Figures 11 and 12 for 

specimens U1 and W1, respectively. These Figures highlight three separate frequency 

Name 
Dependency percentage 

on the first class 

Dependency percentage 

on the second class 

Dependency percentage 

on the third class 

U1 34 30 36 

U2 40 35 25 

U3 55 23 22 

U4 60 30 10 

W1 49 38 13 

W2 51 37 12 

W3 53 37 10 

W4 65 27 8 
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ranges for these specimens. The lower band frequency class (class1) is the earliest damage 

mode that appears in the tests.  

 

Figure 11. Frequency distribution and sequence of the classified signals versus load–displacement belonging 
to specimen U1. 
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Figure 12. Frequency distribution and sequence of the classified signals versus load–displacement belonging 
to specimen W1. 
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Assigning AE features to the damage mechanisms 

     According to the previous referenced studies, matrix cracking, fiber-matrix debonding 

and fiber breakage are three prevalent damage mechanisms in delamination of glass/epoxy 

composite laminates. These different failure mechanisms are related to the crack tip 

condition. Different loading conditions and layup variation are the main cause of diversity 

in the form and radius of the crack tip area, resulting in different stress concentrations in 

each test condition. Consequently, dissimilar viscoelastic stress relaxation processes appear 

in the specimens. These dissimilar processes are the cause for diversity of frequency range 

in different fracture mechanisms. Bohse [31] expressed that intrinsic frequencies ( if ) are 

related to elastic acoustic velocity ( ic ), relaxation time ( i ), elastic module ( iE ) and 

density ( i ) according to Equation 14. 

1
~ ~ ~ i

i i

i i

E
f c

 
                                                                             (14) 

 

     The relaxation time in the matrix/fiber interface differs for various damage mechanisms. 

Some studies showed that matrix cracking generates lower wide-band frequencies than 

fiber/matrix debonding and fiber breakage while the frequency range of fiber breakage is 

the highest. Furthemore, the frequency ranges of pure epoxy resin and glass fiber bundle 
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under tensile load were investigated and the results indicated that the dominant frequency 

ranges of the matrix cracking, debonding and fiber breakage are at 140–250 kHz, 250– 350 

kHz and 350–450 kHz, respectively [9, 28, 32, 33]. 

     Therefore, owing to the results of FCM clustering and WPT decomposition, the AE 

events and damage mechanisms could be related to each other. As a result, it can be 

concluded that the AE signals of the LHH3 component and the first FCM class are 

associated with matrix cracking damage, while the AE signals of the HLL3 component and 

second FCM class are representatives of fiber-matrix debonding damage. The AE signals of 

the HHL3 component and third FCM class are also related to the fiber breakage damage.  

In the case of specimen U1, U2 and U3, fiber bridging event and resistance of the fibers 

against crack opening occurs after initiation of the delamination (see Figure 13). However, 

in specimen U4 and the woven specimens, fiber bridging event is not observed by visual 

inspection.  
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Figure 13. Fiber bridging event in the unidirectional specimen–the woven specimen without fiber bridging. 

 

     According to the FCM and WPT results, the percentage of the fiber breakage in the 

unidirectional specimens and mode I condition is higher than the woven specimens.  

     By increasing contribution of mode II, the percentage of fiber breakage diminishes in 

specimens U2, U3, W2 and W3 (see Tables 2 and 3). In these loading conditions, matrix 

cracking and fiber-matrix debonding are the most significant damage mechanisms in the 

specimens, whereas fiber breakage is not significant. It is also found that matrix cracking is 

the earliest damage mode that appears from the beginning of the tests, while debonding and 

fiber breakage take place later. 

     It should be mentioned that there are some AE events in the WPT and PCA results with 

frequency ranges unrelated to the frequency ranges of matrix cracking, debonding and fiber 
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breakage. These AE events should be associated with some other phenomena. The 

percentage of these AE events is small compared to the dominant damage mechanisms. In 

addition, other conditions like crack jumping from one layer to another one and other 

factors such as imperfections in the specimens and inappropriate teflon insert are the main 

factors affecting the obtained results.  

 

Fractography 

     Figures 14 to 17 show delaminated surfaces of specimens U1, W1, U4 and W4. The 

SEM observations show that fracture mechanisms of the investigated specimens are a 

mixture of matrix cracking, fiber matrix debonding and fiber breakage. The quantities of 

these damage mechanisms are different from one specimen to another. Different interface 

lay-ups and different GII/GT modal ratio values are the main reason for this diversity. In 

the unidirectional specimens and near mode I conditions, the fibers being pulled away, 

resist against crack opening, until they broke (fiber bridging event). Therefore, as can be 

clearly observed from Figure 17, the highest fraction of fiber breakage appears in the case 

of specimen U1.  

     By increasing modal ratio value in the unidirectional and woven specimens, few fiber 

breakages were detected and the most damage mechanisms were observed in the resin and 
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at the interface of the fiber and matrix. The highest fraction of matrix cracking and 

fiber/matrix debonding occurs in the woven specimens and mode II condition. In addition, 

in the woven lay-ups, fiber breakage damage is rarely observed in all the loading conditions 

which may be related to the lack of fiber bridging event.  

 

Figure 14. SEM observations for specimen U1. SEM: scanning electron microscopy. 
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Figure 15. SEM observations for specimen U4. SEM: scanning electron microscopy. 

 

 

Figure 16. SEM observations for specimen W1. SEM: scanning electron microscopy. 

 

 

Figure 17. SEM observations for specimen W4. SEM: scanning electron microscopy. 
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Concluding remarks 

     In this work, multivariable analysis is applied to discriminate the damage mechanisms of 

glass/epoxy composites in actual occurring modes of delamination damage according to 

their AE patterns. Discrimination of the AE events was accomplished using WPT and FCM 

associated with a PCA. In WPT, the AE signals were decomposed into three levels and the 

energy distribution criterion was then employed to find the dominant components from the 

energy criterion point of view. By performing PCA clustering analysis on the AE data, 

three clusters with separate frequency ranges were obtained. The frequency range of the 

resulting clusters and components were then correlated to the damage mechanisms. Based 

on the different visco-elastic relaxation processes and the obtained results, the dominant 

frequency range of the signals for matrix cracking is at a lower level than the dominant 

frequency range of fiber bundle breakage. The frequency range for debonding is also 

considered between the fiber and matrix interfaces. Therefore, it was found that the AE 

signals of the three clusters and the dominant components were representative of the matrix 

cracking, fiber-matrix debonding and fiber breakage, respectively.  

     According to the distribution of the AE signals in different clusters, different AE 

signatures were noted between the different interface types and different GII/GT modal 

ratio values. The results showed that the percentage of the fiber breakage in the 
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unidirectional specimens and mode I condition is higher than those in the woven specimens 

and mode II. Additionally, matrix cracking and fiber-matrix debonding are the dominant 

damage mechanisms in all the specimens. The SEM observations revealed that the damage 

mechanisms of matrix cracking, debonding and fiber breakage were the sources of the AE 

signals. Therefore, it was concluded that the presented methods were successful in the 

classification process to improve the characterization of the damage mechanisms in actual 

occurring modes of delamination, i.e. mode I, mode II and the combination of these pure 

modes.  
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Figure 1. The procedure for damage recognition. 

Figure 2. The specimen geometry and dimension. 

Figure 3. Experimental setups for loading and the AE sensors. (a: mode I, b: Mode II and c:Mixed-mode). 

Figure 4. WPT tree. Letter L refers to Low frequency and letter H refers to High frequency. 

Figure 5. The load/time curves and AE energy distribution for the unidirectional specimens. 



 40 

Figure 6. The load/time curves and AE energy distribution for the woven specimens. 

Figure 7. Waveforms of specimen U1 obtained from different regions. 

Figure 8. Energy percentage of each component of the 3rd level in time domain calculated for different 

specimens. 

Figure 9. PCA visualization of the fuzzy c-means clustering for the unidirectional specimens. 

Figure 10. PCA visualization of the fuzzy c-means clustering for the woven specimens. 

Figure 11. Frequency distribution and sequence of the classified signals versus load-displacement belonging 

to specimen U1. 

Figure 12. Frequency distribution and sequence of the classified signals versus load-displacement belonging 

to specimen W1. 

Figure 13. Fiber bridging event in the unidirectional specimen- the Woven specimen without fiber bridging. 

Figure 14. SEM observations for specimen U1. 

Figure 15. SEM observations for specimen U4. 

Figure 16. SEM observations for specimen W1. 

Figure 17. SEM observations for specimen W4. 
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 Table 1. specification of the investigated lay-ups. 

Table 2. Summary of wavelet packet analysis for dominant components. 

Table 3. Average dependency percentage of the signals for three classes. 

 

 


