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ABSTRACT
We propose a new probabilistic extension to the event cal-
culus using the probabilistic logic programming (PLP) lan-
guage ProbLog, and a language construct called the anno-
tated disjunction. This is the first extension of the event cal-
culus capable of handling numerous sources of uncertainty
(e.g. from primitive event observations and from compos-
ite event definitions). It is also the first extension capa-
ble of handling multiple sources of event observations (e.g.
in multi-sensor environments). We describe characteristics
of this new extension (e.g. rationality of conclusions), and
prove some important properties (e.g. validity in ProbLog).
Our extension is directly implementable in ProbLog, and we
successfully apply it to the problem of activity recognition
under uncertainty in an event detection data set obtained
from vision analytics of bus surveillance video.

Keywords
The event calculus, event reasoning, probabilistic logic pro-
gramming, ProbLog, annotated disjunction

1. INTRODUCTION
The past decade has seen an increasing demand for so-

called security information and event management (SIEM)
platforms, such as IBM’s QRadar.1 SIEMs analyse secu-
rity alerts generated by network hardware and applications,
for the purpose of threat detection and prevention, decision
support, and forensic analysis. Similar themes are reflected
in vision-based activity recognition, e.g. for public trans-
port security [16]. In either case, the aim is to support au-
tonomous decision making and/or human decision support
by exploiting large quantities of rich temporal data. Often
this equates to inferring (composite) events of interest w.r.t.
(primitive) event observations. Increasingly, the impact of
uncertainty (e.g. in event observations, domain knowledge)
1http://www.ibm.com/software/products/qradar-siem
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is being recognised [36, 16]. Yet while SIEMs and activity
recognition systems generally rely on rule-based components
to reason about events, they are rarely founded on sound log-
ical semantics. This is especially true of approaches capable
of handling uncertainty (see [28] for a survey).
Reasoning about change (i.e. reasoning about events and

their effects) is an important topic in AI. Some of the most
influential logical approaches include the situation calcu-
lus [18], Allen’s interval algebra [1], the event calculus [13]
and action languages [9].2 Conceptually, the event calculus
is particularly suited for event reasoning orientated applica-
tions such as SIEM and activity recognition due to its use
of a linear timeline of actual events as well as its ability to
handle concurrent, incomplete and partially ordered events.
Perhaps for this reason, the event calculus has continued to
attract attention since its original proposal. However, the
issue of uncertainty has been largely overlooked in the event
calculus literature [19].
A notable exception is the work of Skarlatidis et al. In [30],

they modelled a variant of the event calculus with discrete
time using Markov logic networks (MLNs). This work han-
dles uncertainty over the definitions of composite events
but does not support uncertainty over event observations.
Strong restrictions to the event calculus were also required
to reduce the size of the ground MLN, resulting in the loss
of canonical features, e.g. domain-independent capturing of
events. In [29], they modelled a discrete-time variant of the
event calculus in the probabilistic logic programming (PLP)
language ProbLog [7]. This work (which is disjoint and
incompatible with the previous one) handles some uncer-
tainty over event observations but does not support uncer-
tainty over the definition of composite events. Uncertainty
over event observations also only relates to the occurrence
of events (not to the time they occur, nor their properties).
In this paper, we propose a new extension to a continuous-

time variant of the event calculus, using advances in PLP
not considered by existing work. Our work provides the
first formulation of the event calculus capable of handling
numerous sources of uncertainty. As far as we are aware,
it is also the first formulation capable of reasoning about
events from multiple sources (e.g. in multi-sensor environ-

2Although many of these approaches are used for automated
planning, it is not the subject of this paper.



ments). Thus, it is particularly suited for event reasoning
in SIEM and activity recognition systems. Our main con-
tributions are: (i) we propose a new probabilistic definition
for event observations, supporting uncertainty over their oc-
currence, the time at which they occur, and their associated
properties; (ii) we propose new probabilistic definitions for
effect clauses, initial beliefs, and composite events; (iii) we
propose a method to handle multiple sources of event ob-
servations; (iv) we prove some important properties of our
overall extension; and (v) we demonstrate an application of
our extension in vision-based activity recognition.
The remainder of this paper is organised as follows: in

Section 2 we recall some preliminaries; in Section 3 we pro-
pose our new extension; in Section 4 we examine properties
of our extension; in Section 5 we summarise results from a
case study on an event detection data set; in Section 6 we
discuss related work; and in Section 7 we conclude.

2. PRELIMINARIES
In this section, we recall some preliminaries on logic pro-

gramming (LP) and introduce an LP formulation of the
event calculus. We also recall some preliminaries on the
PLP language ProbLog which we will use to formalise our
probabilistic extension of the event calculus in Section 3.

2.1 Logic programming
The language of logic programming (LP) is built from

symbols for variables, constants, functors and predicates.
By convention, variables start with uppercase letters and all
others start with lowercase letters. If V is a variable and c
is a constant, then V and c are terms. If f is a functor and
r1, . . . , rn are terms s.t. n ≥ 1, then f(r1, . . . , rn) is a term.
If p is a predicate and r1, . . . , rn are terms s.t. n ≥ 0, then
p(r1, . . . , rn) is an atom. If p is an atom, then p and not p are
(resp. positive and negative) literals. A (normal) clause is
a formula h :− b1, . . . , bn s.t. h is an atom (called the head),
b1, . . . , bn are literals (called the body), and all variables
are implicitly universally quantified. Informally, if each bi is
true, then hmust be true. If each bi is an atom, then a clause
is also called a definite clause. A clause h :− true is called
a fact and is simply written as h. An LP is a finite set of
clauses. An expression is a term, atom, clause, or LP. Given
an expression e and a substitution θ = {V1/r1, . . . ,Vn/rn},
then eθ denotes a new expression with each variable Vi in e
replaced with the term ri. Expressions are said to be ground
if they contain no variables.
Herbrand models define the semantics of LP. The Her-

brand base of an LP is the set of ground atoms w.r.t. the
set of all possible ground terms (the Herbrand universe).
A Herbrand interpretation is a mapping from the Herbrand
base to the set of truth values {true, false}. For convenience,
we will also refer a Herbrand interpretation ω by the set of
atoms {p ∈ B | ω(p) = true} where B is the Herbrand base.
A Herbrand interpretation is a Herbrand model of a definite
clause h :− b1, . . . , bn if for every substitution θ s.t. biθ is
a (set-theoretic) member of the interpretation, hθ is also a
member of the interpretation. A Herbrand interpretation is
a Herbrand model of a definite clause LP if it is a Herbrand
model of every clause in the LP.
Definite clause LPs are guaranteed to have a unique mini-

mal (by set inclusion) Herbrand model, called the least Her-
brand model. A definite clause LP R is said to entail an
atom p iff p is a member of the least Herbrand model of

Atom Description
initially(F) Fluent F holds at timepoint 0
happens(E,T) Event type E occurs at time-

point T
initiates(E,F,T) At timepoint T, event type

E initiates a period during
which fluent F holds

terminates(E,F,T) At timepoint T, event type
E terminates a period during
which fluent F holds

Table 1: Domain-dependent atoms in the SEC.

R. Thus, the least Herbrand model defines the semantics
of definite clause LPs. Conversely, normal clause LPs are
not guaranteed to have a least Herbrand model. For these
programs, various alternative semantics have been proposed.
As we will see later, ProbLog uses the well-founded seman-
tics [33]. In this case, the (unique) two-valued well-founded
model of an LP R is denoted WFM(R). An LP R is said to
entail an atom p iff p is a member of WFM(R). Importantly,
if R is a definite clause LP, then WFM(R) is identical to the
least Herbrand model of R. However, WFM(R) is only guar-
anteed to exist for some classes of LP, such as those which
are locally stratified [33].

2.2 The event calculus
The event calculus provides a mechanism to reason about

temporal information in classical logic using the common-
sense law of inertia, which says that properties (called flu-
ents) persist over time unless the occurrence of an event
triggers a change. As formalised in LP, the event calculus is
a kind of many-sorted LP, with sorts for event types, fluents,
and timepoints. A set of domain-independent axioms specify
which fluents hold at any given timepoint w.r.t. a timeline
(narrative) of event type occurrences and a set of domain-
dependent effect clauses. The frame problem, i.e. the ap-
parent need to explicitly model the non-effects of events,
is addressed in the event calculus through the use of non-
monotonic reasoning. First-order logic formulations rely on
circumscription [17], while LP formulations rely on some se-
mantics for negation by default (e.g. completion [6] or stable
models [14]). The well-founded semantics is an example of
the latter.
There is no definitive variant of the event calculus (see [27,

19] for surveys). Nonetheless, the simplified event calculus
(SEC) from [27] arguably represents the intersection of most
variants. The SEC is essentially a simplification of a revised
variant [12] of the original event calculus [13]. Throughout
this paper, we use E, F and T to denote variables for event
types, fluents and timepoints, respectively. We also assume
the existence of a partial order � over timepoints s.t. for
each timepoint T we have that 0 � T. The SEC is then
defined by the atoms in Table 1 and the following axioms:

holdsAt(F,T2) :−
happens(E,T1),
initiates(E,F,T1),
T1 ≺ T2,

not stoppedIn(T1,F,T2).

(SEC1)



stoppedIn(T1,F,T2) :−
happens(E,T),
terminates(E,F,T),
T1 ≺ T,T ≺ T2.

(SEC2a)

clipped(T1,F,T2) :−
happens(E,T),
terminates(E,F,T),
T1 � T,T ≺ T2.

(SEC2b)

holdsAt(F,T) :−
initially(F),
not clipped(0,F,T).

(SEC3)

In its original definition, the SEC was comprised of SEC1,
SEC2a (called SEC2) and SEC3, with the second literal in
SEC3 replaced with not stoppedIn(0,F,T). However, such
a definition means that if an event occurs at timepoint 0
and terminates a fluent f that holds initially, then that ef-
fect will be ignored since not stoppedIn(0, f, t) will hold for
any timepoint t � 0. To avoid this issue, we introduce
SEC2b and modify the second literal in SEC3, as was done
in later extensions [27, 19]. Notable features supported by
the SEC include: (i) continuous time; (ii) concurrent events;
(iii) partially ordered events; (iv) conditional and context-
dependent effects; and (v) inferred (i.e. conditional, com-
posite or hierarchical) events. Other features which can be
supported via extensions to the SEC include: events with
duration; cumulative and canceling effects; release of flu-
ents from the commonsense law of inertia; and continuous
change. Due to space considerations, we will focus on the
SEC but our conclusions extend to more elaborate variants.

2.3 ProbLog
There are numerous PLP languages, each with subtle dif-

ferences in syntax, semantics and implementation [20, 22,
25, 35, 34]. For continuity with related work [29], we will
define our framework in the ProbLog language [7]. Nonethe-
less, it is likely that our framework will map to at least some
other PLP languages, and we will suggest some possibilities
in Section 7 when we mention future work.
A ProbLog program F∪R consists of a set of ground prob-

abilistic facts F and an LP R (including non-probabilistic
facts). Probabilistic facts are denoted p :: a s.t. a is an atom
(called a probabilistic atom) and p is a probability value.
As with most PLPs, a ProbLog program specifies a proba-
bility distribution over Herbrand interpretations via Sato’s
distribution semantics [24]. Intuitively, a ground probabilis-
tic fact p :: a corresponds to an independent atomic choice
about including a in a set of atoms C s.t. C ∪ R forms a
new LP. In particular, p :: a says that a should be included
in C with probability p and not included with probability
1−p. Thus, a set of probabilistic atoms C represents a total
choice over the inclusion of ground atoms from F in C ∪R.
Due to the independence assumption, the probability of a
total choice C is equal to the product of the probabilities of
atomic choices specified by C.
A Herbrand interpretation ω is a model of a ProbLog pro-

gram F∪R iff there exists a total choice C s.t. WFM(C∪R) =
ω. A probability distribution P over the set of Herbrand in-

terpretations Ω is defined for each ω ∈ Ω as:

P(ω) =
{

P(C), if ω = WFM(C ∪R),
0, otherwise.

If there exists a total choice C s.t. WFM(C ∪ R) does not
exist, F ∪R is not a valid ProbLog program. Otherwise, for
any total choices C and C′, it is guaranteed that WFM(C ∪
R) 6= WFM(C′ ∪ R). Thus, there exists a unique model for
each total choice, but this model may have a probability of
0 (i.e. if the total choice itself has a probability of 0).
The definition of a ProbLog program may appear restric-

tive at first. However, for ease of modelling, ProbLog pro-
vides some additional syntactic sugar. One example is the
annotated disjunction (AD) [7], which is a language con-
struct of the form:

p1 :: h1; . . . ; pn :: hn :− b1, . . . , bm

where n ≥ 1 and
∑n

i=1 pi ≤ 1. Intuitively, an AD says
that if each bi is true, then exactly one hi is true and this
hi is true with probability pi. Conversely, every hi is false
with probability 1−

∑n

i=1 pi. In a sense, the ground atoms
h1, . . . , hn represent the possible values of a multi-valued
random variable. In ProbLog, ADs are said to be syntactic
sugar because they are encoded as a set of probabilistic facts
and a set of (deterministic) normal clauses [35, 7].
Example 1. Consider the AD 1

3 :: red; 1
3 :: green; 1

3 :: blue.
This is encoded as the following ProbLog program [7]:

1
3 :: choice(g). 1

2 :: choice(r). 1 :: choice(b).
green :− choice(g). red :− not choice(g), choice(r).

blue :− not choice(g),not choice(r), choice(b).

In this encoding, independence between probabilistic facts
is still assumed, but dependencies are captured by normal
clauses after a suitable adaption of probability values. Con-
sider the following clause:

conjunction :− green, red, blue.

Then P(conjunction) = 0. Conversely, suppose the original
ProbLog program only contained the independent proba-
bilistic facts 1

3 :: red, 1
3 :: green and 1

3 :: blue, then we would
have P(conjunction) = 1

27 .
Different implementations of ProbLog use different meth-

ods to evaluate the probability distribution over Herbrand
interpretations. This paper is agnostic to the particular
method used and instead focuses on features of the language
that are useful to adapt the event calculus into PLP. How-
ever, as only ProbLog2 [8] supports ADs, our discussion will
assume the use of Problog2 in practice.

3. A PROBLOG EXTENSION OF THE SEC
In this section, we propose a ProbLog extension of the

simplified event calculus (SEC) and describe its character-
istics. The main aspects that we need to consider are: (i)
event narratives; (ii) event effects; (iii) initial beliefs; (iv)
inference rules; and (v) multiple sources of events.

3.1 Event narrative
In the SEC, the event narrative is a set of ground atoms

of the form happens(e, t). This was extended in [29] as a
set of ground probabilistic facts of the form p :: happens(e, t)



so as to model uncertainty over the occurrence of events.
However, given that probabilistic facts are independent, this
approach is not capable of modelling uncertainty over the
time at which an event occurs. We propose the following:

Definition 1. Let e be an event type and t1, . . . , tn be time-
points. A probabilistic occurrence of e is a ground annotated
disjunction (AD):

p1 :: happens(e, t1); . . . ; pn :: happens(e, tn).

This says that event type e occurs at timepoint ti (and
not at timepoint tj s.t. tj 6= ti) with probability pi and
does not occur (at any timepoint t1, . . . , tn) with probability
1 −

∑n

i=1 pi. Clearly, this form of uncertainty cannot be
expressed purely by probabilistic happens(E,T) facts since
they cannot enforce mutual exclusion between occurrences.
Another form of uncertainty in the event narrative re-

lates to event type definitions. In particular, the term e in
the atom happens(e, t) is generally assumed to provide suf-
ficient information to reason about the effects of an event.
However, as was noted in the original proposal of the event
calculus [13], event type definitions may be incomplete. The
solution proposed in their work is to refer to an event type
by an identifier and to describe it by a set of properties (at-
tributes). Effectively, these attributes construct a semantic
network where edges are specified by ground atoms of the
form h(e, r) s.t. r is the value of attribute h associated with
event type e. Given that event type definitions describe the
actual meaning of events, they must be capable of modelling
uncertainty. We propose the following:

Definition 2. Let h be a binary predicate symbol, e an event
type, and r1, . . . , rn be terms. A probabilistic h attribute for
e is a ground AD:

p1 :: h(e, r1); . . . ; pn :: h(e, rn).

Clearly Definition 2 generalises Definition 1, saying that
the value of attribute h for event type e is ri with probability
pi and is unknown with probability 1−

∑n

i=1 pi. Thus, pi can
be thought of as a degree of belief that the value of h is ri,
where 1−

∑n

i=1 pi is a degree of ignorance over the value of h.
Once again, probabilistic h(E,R) facts cannot express this
notion since they cannot enforce mutual exclusion over the
possible values of h. Notice that we do not allow ADs of the
form p1 :: happens(e1, t1); . . . ; pn :: happens(en, tn) in Defini-
tion 1. The reason being that e1, . . . , en can be equivalently
expressed by a single event type e and a set of probabilistic
attributes for e. Moreover, relying on a single event type
simplifies other aspects of this extension, e.g. when merging
event narratives.
In our extension, a set of probabilistic event type occur-

rences and a set of probabilistic event type attributes is
called a probabilistic event narrative. Given an event type
e, we refer to the set of probabilistic attributes for e and a
single probabilistic occurrence of e as a probabilistic event.
Thus, for any probabilistic event, we are capable of express-
ing uncertainty about whether the event actually occurred,
as in [29], but also about the time at which it occurred,
and about its attributes. In ProbLog, a probabilistic event
narrative actually specifies a probability distribution over
the set of total choices, corresponding to a set of (classical)
event narratives. If any such narrative contains more than
one value specified by a probabilistic event type attribute,
then that narrative will have a probability of 0.

e

drop0

alice bob glass plate

happens
0.8

subject

0.7 0.3

act
object

0.9 0.1

Figure 1: Semantic network for Example 2.

Example 2. Consider an event where one of two people (Al-
ice with probability 0.7, Bob with probability 0.3) is thought
to have dropped either a glass (with probability 0.9) or a
plate (with probability 0.1). The event is believed to have
occurred with probability 0.8. This could be modelled by
the following probabilistic event:

0.8 :: happens(e, 0).
0.7 :: subject(e, alice); 0.3 :: subject(e, bob).
act(e, drop).
0.9 :: object(e, glass); 0.1 :: object(e, plate).

In ProbLog, this induces the following probability distribu-
tion over total choices (we omit e and predicate symbols):

P({0, alice, glass}) = 0.504, P({alice, glass}) = 0.126,
P({0, alice, plate}) = 0.056, P({alice, plate}) = 0.014,

P({0, bob, glass}) = 0.216, P({bob, glass}) = 0.054,
P({0, bob, plate}) = 0.024, P({bob, plate}) = 0.006,

with P(C) = 0 for any other total choice C. Thus we can
infer from this probabilistic event e.g. that the glass was
dropped at timepoint 0 with probability 0.72.

3.2 Effect clauses
In the SEC, events are not of direct interest. Rather, their

interest lies in their effect on fluents w.r.t. domain-dependent
effect clauses with initiates(E,F,T) and terminates(E,F,T)
as the head. The event model outlined previously has in-
teresting consequences for such effect clauses and the flu-
ents that they initiate or terminate. Specifically, if p is the
probability of models specified by a probabilistic event (e.g.
0.72 in Example 2) and satisfying an effect clause, then this
will propagate to the specified fluent, causing it to be ini-
tiated or terminated with probability p. Thus, each fluent
will hold with some probability. This behaviour was recog-
nised in [29], where events had the effect of reinforcing pre-
viously held beliefs (i.e. increasing or decreasing previously
held probabilities). However, our approach is necessarily
different due to the use of ADs. Specifically, given some
domain of a probability distribution f1, . . . , fn, then for any
ground initiates(e, fi, t) clause there must also be ground
terminates(e, f1, t), . . . , terminates(e, fn, t) clauses. In effect,
this approach maintains a valid probability distribution over
f1, . . . , fn by terminating the previously held probabilities
each time that new probabilities are initialised. This is akin
to database updates as described in [12] and is imposed as
a syntactic restriction.
Example 3. Consider Example 4 from [15], which has six
belief update events describing the gender and/or orienta-
tion of a subject over six timepoints. For example, the first
event says that subject s1 is standing, and that their gender
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Figure 2: Probabilities of atoms in Example 3.

is male with probability 0.8 or female with probability 0.2.
These can be modelled by the following probabilistic events:

happens(e1, 0). subject(e1, s1). orientation(e1, standing).
0.8 :: gender(e1,male); 0.2 :: gender(e1, female).

happens(e2, 1). subject(e2, s1).
0.9 :: orientation(e2, standing); 0.1 :: orientation(e2, sitting).

happens(e3, 2). subject(e3, s1). gender(e3,male).

happens(e4, 3). subject(e4, s1).
0.85 :: gender(e4,male); 0.15 :: gender(e4, female).

happens(e5, 4). subject(e5, s1).
0.3 :: orientation(e5, standing); 0.7 :: orientation(e5, sitting).

happens(e6, 5). subject(e6, s1).
0.35 :: gender(e6,male); 0.65 :: gender(e6, female).

Suppose we have the following effect clauses:

initiates(E, gender(S,G),T) :−
subject(E,S), gender(E,G).

terminates(E, gender(S,G1),T) :−
subject(E,S), gender(E,G2).

with equivalent clauses defined for orientation(S,G).3 Then
the resulting holdsAt probabilities are as outlined in Fig-
ure 2, matching the desired behaviour in [15].
This example demonstrates that our probabilistic event

model allows us to derive rational probabilistic conclusions
via standard (deterministic) effect clauses. However, it is
commonly accepted in the literature (e.g. in planning under
uncertainty) that the effects of events may not be determin-
istic. Thus, there is a clear need to support the definition of
such effects in the SEC. We propose:

Definition 3. Let E be an event type, F1, . . . ,Fn be fluents
and T1, . . . ,Tn be timepoints. A probabilistic effect clause
for E is an AD:

p1 :: h(E,F1,T1); . . . ; pn :: h(E,Fn,Tn) :− b1, . . . , bm

where h ∈ {initiates, terminates}.

This says that, if each bi is true, then with probability pi

event type E initiates (resp. terminates) a period at time-
point Ti during which fluent Fi holds. Conversely, with
3While some properties (e.g. gender) are not fluents in prin-
ciple, what we are describing is beliefs about those properties
and this satisfies the intuition of a fluent.

probability 1−
∑n

i=1 pi, event type E does not initiate (resp.
terminate) this period. As with deterministic effect clauses,
the event probabilities are propagated to conclusions. In this
case, however, conclusions themselves are also uncertain.
Example 4 (Continuing Example 2). Suppose that, when
dropped, the glass may break with probability 0.9 and the
plate may break with probability 0.8. This can be repre-
sented by the following probabilistic effect clauses:

0.9 :: initiates(E, broken(glass),T) :−
act(E, drop), object(E, glass).

0.8 :: initiates(E, broken(plate),T) :−
act(E, drop), object(E, plate).

terminates(E, broken(O),T) :−
act(E, drop), object(E,O).

Thus, for any timepoint t � 0, we can infer that the glass is
broken with probability 0.648, and the plate is broken with
probability 0.064.

3.3 Initial beliefs
Aside from effect clauses, the SEC also allows us to specify

which fluents hold prior to the occurrence of events by means
of a set of ground atoms of the form initially(f), as indicated
in Table 1. We can propose a simple probabilistic extension:

Definition 4. Let f1, . . . , fn be fluents. Then an initial prob-
abilistic belief is a ground AD:

p1 :: initially(f1); . . . ; pn :: initially(fn).

This says that fluent fi holds with probability pi and that
fluents f1, . . . , fn do not hold with probability 1−

∑n

i=1 pi. In
practice, initial probabilistic beliefs define the initial context
for events (e.g. for determining conditional effects) and per-
sist over time until an event occurs with effects over the do-
main f1, . . . , fn. From this point, probabilities over f1, . . . , fn
will be determined by events and effect clauses. Note that
initial probabilistic beliefs do not impose any requirement
on complete knowledge. For example, omitting initial beliefs
that are unknown allows the SEC axioms to derive (or not
derive) conclusions as usual, while incomplete initial proba-
bilistic information is expressed when

∑n

i=1 pi < 1.
Example 5 (Continuing Example 4). Suppose instead that
the probability of the glass breaking is dependent on the
person’s orientation when they drop the glass (probability
0.9 if standing and 0.3 if sitting). This can be represented
by the following probabilistic effect clauses:

0.9 :: initiates(E, broken(glass),T) :−
subject(E,S), act(E, drop), object(E, glass),
holdsAt(orientation(S, standing),T).

0.3 :: initiates(E, broken(glass),T) :−
subject(E,S), act(E, drop), object(E, glass),
holdsAt(orientation(S, sitting),T).

Suppose our prior belief is that Alice is standing with prob-
ability 0.6 and sitting with probability 0.4, and that Bob is
standing (resp. sitting) with probability 0.5. This can be
modelled by the following initial probabilistic beliefs:

0.6 :: initially(orientation(alice, standing));
0.4 :: initially(orientation(alice, sitting)).



0.5 :: initially(orientation(bob, standing));
0.5 :: initially(orientation(bob, sitting)).

Thus, for any timepoint t � 0, we can infer that the glass is
broken with probability 0.462.

3.4 Inference rules
Composite events are closely related to other concepts,

such as conditional events. In [16], they refer to any event
which is derived through reasoning as an inferred event, i.e.
conditional, composite, and hierarchical events are all spe-
cial cases. We will use this term also. In the SEC, inferred
events can be defined by means of inference rules. As with
effect clauses, such rules may be uncertain. We propose:

Definition 5. Let E be an event type, T1, . . . ,Tx time-
points, and h1(E,V1), . . . , hy(E,Vy) event type attributes for
E. A probabilistic inference rule for E is an AD:

p1 :: infer(happens(E,T1), h1(E,V1), . . . , hy(E,Vy)); . . . ;
px :: infer(happens(E,Tx), h1(E,V1), . . . , hy(E,Vy)) :−

b1, . . . , bz.

Ground terms in the head of a probabilistic inference rule
can be interpreted as the definition of a new probabilistic
event (called a probabilistic inferred event) of the form:

p1 :: happens(E,T1); . . . ; px :: happens(E,Tx).
h1(E,V1). . . . hy(E,Vy).

A probabilistic inference rule is able to derive a new event
with uncertainty over its occurrence and over the time at
which it occurred, but not over its attributes. However, to
ensure that our extension satisfies the well-founded seman-
tics (as will be explained in Section 4), we do not support
hierarchical events, i.e. inferred events derived from other
inferred events. In this sense, inferred events are an out-
put of our extension. That said, it is possible to support a
kind of hierarchical event by inserting inferred events into
the event narrative as new (primitive) event observations,
although this requires a revision strategy to maintain the
set of inferred events.
Example 6 (Continuing Example 3). Suppose we want to
recognise an event in which a subject sits down. Given that
we have temporal beliefs about the subject’s orientations,
we can infer such an event via changes from the standing
to sitting orientations. Assume this recognition is accurate
with probability 0.9. This can be modelled by the following
probabilistic inference rule:

0.9 :: infer(happens(e(S, sit),T),
subject(e(S, sit),S), act(e(S, sit), sit)) :−

happens(E,T), subject(E,S), orientation(E, sitting),
holdsAt(orientation(S, standing),T).

The resulting (inferred) event narrative is as follows:

0.09 :: happens(e(s1, sit), 1). 0.567 :: happens(e(s1, sit), 4).
subject(e(s1, sit), s1). act(e(s1, sit), sit).

Thus, subject s1 sits down at timepoint 1 with probability
0.09, and at timepoint 4 with probability 0.567.
In [15], a similar scenario was suggested where sudden

changes to the gender assessment could be used as an indica-
tion of attempts to obfuscate the gender classifier. However,

subject(e,X)θ P1 P2 P3 ⊕(P1,P2,P3)
θ = {X/alice} 0.7 0.8 0.4 0.67
θ = {X/bob} 0.3 0 0.1 0.17
θ = null 0 0.2 0.5 0.16

Table 2: Linear opinion pool for Example 7.

the authors did not provide a formal mechanism to detect
such an event. Example 6, on the other hand, demonstrates
that our framework is capable of implementing this feature.

3.5 Merging event narratives
In real-world applications, event reasoning systems usu-

ally operate in multi-sensor environments, e.g. SIEMs aggre-
gate events obtained separately from log files and network
traffic. Clearly, different sources may provide conflicting ob-
servations of the same event. As implied previously, a prob-
abilistic event type attribute p1 :: h(e, r1); . . . ; pn :: h(e, rn)
expresses a probability distribution P over the set of val-
ues Ω = {r1, . . . , rn, unknown} for h s.t. P(ri) = pi and
P(unknown) = 1 −

∑n

i=1 pi. In this sense, the problem of
merging event narratives reduces to the problem of merging
(aggregating) subjective probabilities. A standard approach
to this problem is the linear opinion pool [31], which is a lin-
ear weighted average defined for each ω ∈ Ω as follows:

⊕(P1, . . . ,Pn)(ω) =
n∑

i=1

wiPi(ω)

where wi is a weight associated with source si s.t. 0 ≤ wi ≤ 1
and

∑n

i=1 wi = 1. When there is no confusion, we will use
P to denote a probabilistic h attribute for e.

Definition 6. Let P1, . . . ,Pn be probabilistic h attributes for
e obtained from sources s1, . . . , sn. Then the merged proba-
bilistic h attribute for e is defined as ⊕(P1, . . . ,Pn).

Example 7. Consider the probabilistic subject attributes for
e provided by sources s1, s2 and s3 as outlined in Table 2 s.t.
w1 = 0.5, w2 = 0.3 and w3 = 0.2. We obtain the following
merged probabilistic subject attribute for e:

0.67 :: subject(e, alice); 0.17 :: subject(e, bob).

Suppose there exists a unique event type for each real-
world event, the event narrative from each source is defined
over the same set of event types, and each event narrative
has the same probabilisitic h attributes for each event type
(e.g. assume P(unknown) = 1 for missing attributes). We
can thus obtain a merged event narrative by merging each
probabilistic h attribute w.r.t. each event type e. Note that
the choice of the linear opinion pool is merely to illustrate
the principle that combining event narratives reduces to the
problem of combining subjective probabilities, i.e. any other
valid merging operator could be used instead.

4. PROPERTIES
We now examine properties of our new extension. Firstly,

we define an SEC ProbLog program as a ProbLog program
N ∪E ∪ I ∪C ∪{SEC1, . . . , SEC3} where N is a probabilis-
tic event narrative, E is a set of probabilistic effect clauses,
I is a set of initial probabilistic beliefs, and C is a set of
probabilistic inference rules. The clauses with p as the head



are called the definition of p and are denoted simply by p it-
self. We must clarify some assumptions: A1 SEC1–3 are the
exhaustive definitions of holdsAt(F,T), stoppedIn(T1,F,T2)
and clipped(T1,F,T2); A2 with the exceptions of SEC1 and
SEC3, stoppedIn(T1,F,T2) and clipped(T1,F,T2) do not oc-
cur as positive/negative literals in the body of any clause;
and A3 infer(H1, . . . ,Hn) does not occur as a positive/neg-
ative literal in the body of any clause. Without loss of gen-
erality, we assume all ADs are subsequently translated to
probabilistic facts and normal clauses.

Proposition 1. Let F ∪R be an SEC ProbLog program in
which bodies of clauses in the definitions of initiates(E,F,T)
and terminates(E,F,T) do not contain literals of the form
holdsAt(F,T), not holdsAt(F,T), not initiates(E,F,T) or
not terminates(E,F,T). Then, for each total choice C, we
have that C ∪R is a stratified LP.

Proof. An LP R is stratified if there exists a partition R =
R0 ∪ · · · ∪Rn, s.t. Ri ∩Rj = ∅ for any i 6= j, satisfying: (i)
for each atom p, the definition of p is a subset of some Ri;
(ii) for each 1 ≤ i ≤ n, if a literal p is in the body of a clause
in Ri, then the definition of p is a subset of some Rj s.t.
j ≤ i; and (iii) for each 1 ≤ i ≤ n, if a literal not p is in the
body of a clause in Ri, then the definition of p is a subset of
some Rj s.t. j < i. Let {p1 :: c1(H), . . . , px :: cx(H)} ⊆ F be
new probabilistic facts after translation of ADs. Given as-
sumptions A1–3 and the fact that probabilistic event type
attributes have empty bodies by Definition 2, then the fol-
lowing is a valid stratification of C ∪R:

(C ∪R)0 ={�, c1(H), . . . , cx(H)},
(C ∪R)1 ={initially(F), happens(E,T),

h1(E,V), . . . , hy(E,V)},
(C ∪R)2 ={initiates(E,F,T), terminates(E,F,T),

stoppedIn(T1,F,T2), clipped(T1,F,T2)},
(C ∪R)3 ={holdsAt(F,T)},
(C ∪R)4 ={infer(H1, . . . ,Hz)}.

Therefore, C ∪R is a stratified LP.

Corollary 1. Let F ∪R be an SEC ProbLog program satis-
fying Proposition 1. Then F ∪R is a valid ProbLog program.

The restrictions imposed in Corollary 1 are somewhat lim-
iting in practice. For example, literals holdsAt(F,T) and
not holdsAt(F,T) are prohibited, even though they are re-
quired to define context-dependent effects. Fortunately, th-
ese restrictions are stronger than is actually necessary, since
we only need to ensure that an SEC ProbLog program is
locally stratified.

Proposition 2. Let F ∪ R be an SEC ProbLog program
which does not contain looping through ground definitions of
initiates(e, f, t), terminates(e, f, t) and holdsAt(f, t). Then,
for each total choice C, we have that C ∪ R is a locally
stratified LP.

Proof. Given Proposition 1, it remains to be shown that (C∪
R)2∪ (C∪R)3 is locally stratified. An LP R is said to be lo-
cally stratified if there exists a grounding Rθ s.t. Rθ is strat-
ified. Let the ground definition of atom holdsAt(f1, t1) be in
strata k. Then the ground definitions of stoppedIn(e1, f1, t1)

and clipped(e1, f1, t1) can be in some strata j < k. More-
over, the ground definitions of atoms initiates(e1, f1, t1) and
terminates(e1, f1, t1) can be in some strata i < j. Let the
body of some clause in the ground definitions of either atom
initiates(e1, f1, t1) or terminates(e1, f1, t1) contain a positive/
negative literal of the form holdsAt(f2, t2), initiates(e2, f2, t2)
or terminates(e2, f2, t2). Then the ground definition of atom
holdsAt(f2, t2) can be in some strata h < i. If there is
no looping through ground definitions of initiates(e1, f1, t1),
terminates(e1, f1, t1) and holdsAt(f1, t1), then there exists
some total stratification in this manner. Therefore, C ∪ R
is a locally stratified LP.

Corollary 2. Let F ∪R be an SEC ProbLog program satis-
fying Proposition 2. Then F ∪R is a valid ProbLog program.

This proves that the semantics of our extension to the
SEC are indeed well-defined under natural conditions, i.e.
we only require that an SEC ProbLog program does not
contain (infinite) looping through effect clauses.

5. CASE STUDY
The aim of [11] was to augment vision analytics with com-

posite event detection for the purpose of high-level activ-
ity recognition. To evaluate this work, 8 video sequences
were captured in a controlled environment on a bus via two
cameras, recording both the interior of the bus (covering 20
seats) and the door exterior. Actors were used to simulate
passenger behaviour. Each sequence thus captures the ac-
tivity of a number of passengers as they board the bus, move
around the interior, sit down, stand up, and exit the bus.
The vision analytics include classifiers for gender and ori-
entation (sitting/standing), and a spatial location tracker.
The uncertainty associated with detected events was mod-
elled using Dempster-Shafer theory [26], similar to the event
model in [16]. To evaluate our own framework, the authors
provided us with the set of detected events for Sequence 1,
as described in Appendix C of [11]. This video sequence in-
volves two passengers who board the bus, sit down at a se-
ries of different seats, and then exit the bus. Although these
events are referred to as composite events in their work, they
represent primitive event observations in our case study.
The original data set and a complete SEC ProbLog imple-

mentation are available online,4 along with full details about
how the data set was translated. It suffices to say that trans-
lating the data set results in a probabilistic event narrative
containing 62 probabilistic events, the first of which occurs
at timepoint 53 and the last of which occurs at timepoint
2440. Each probabilistic event is comprised of a determin-
istic event type occurrence and a (ground) subset of the
following probabilistic event type attributes:

subject(E,S). act(E, board). p :: act(E, exit).
p1 :: gender(E,male); p2 :: gender(E, female).
p1 :: location(E, door); p2 :: location(E, gangway);
p3 :: location(E, seat(1)); . . . ; p22 :: location(E, seat(20)).
p1 :: orientation(E, sitting); p2 :: orientation(E, standing).

Thus, the subject attribute and boarding event are both
deterministic, while all other attributes are probabilistic.
In order to reason about the probabilistic event narra-

tive, we completed the SEC ProbLog program by adding 12
4https://github.com/kevinmcareavey/secproblog
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Figure 3: Probabilities of inferences in Section 5.

(deterministic) effect clauses and 2 probabilistic inference
rules, along with axioms SEC1–3. Of the 12 effect clauses,
4 are taken directly from Example 2, with another 2 equiv-
alent effect clauses used to initiate and terminate fluents of
the form location(S,L). The 6 remaining effect clauses de-
scribe the effect that boarding and exiting events have on
the location and orientation fluents. In particular, boarding
events are assumed to initiate the fluents location(S, door)
and orientation(S, standing), i.e. passengers board the bus
at the door in standing orientation. Similarly, boarding and
exiting events are assumed to terminate fluents of the form
location(S,L) and orientation(S,O), i.e. beliefs about a pas-
senger’s location and orientation are terminated when they
exit the bus. For the inference rules, one was taken directly
from Example 6, and the other was defined equivalently for
stand events (and with the same probability).
Given the probabilistic event narrative, these effect clauses

thus allow us to derive temporal probabilistic information
about the gender, location, and orientation of each passen-
ger for the duration of the sequence. The corresponding re-
sults for these fluents are equivalent to those already shown
in Figure 2, so we do not repeat them here. For the two
inference rules, results are summarised in Figure 3. From
this figure we might conclude that passenger s1 sits down at
up to 6 different seats, while passenger s2 sits down at up
to 4 different seats. Note that there is no overlap between
the sequence of inferred events associated with each passen-
ger, although the data set suggests that both passengers are
onboard between timepoints 1170 and 1395. While these re-
sults are fairly trivial (due to the limited data set), they serve
to illustrate the ease with which SEC ProbLog programs can
be used to formally reason about complex spatio-temporal
information under uncertainty.

6. RELATED WORK
The closest work to ours is of course that of [29]. The

relationship between the two frameworks can be stated as
follows: the model in [29] is limited to the special case of
Definition 1 where n = 1 and p1 ≤ 1. As such, their ap-
proach is effectively subsumed by ours. In comparison, our
framework enhances expressivity and thus has broader ap-
plicability (e.g. [29] is not sufficiently expressive to model
the real data set from Section 5). In Propositions 1 and 2,
we also prove that the semantics of our approach are well-
defined (i.e. valid in ProbLog) and this was not done in [29].
Although we have already mentioned the relative merits

of the event calculus for event reasoning applications [19],
there has also been some work in the broad area of PLPs on
supporting uncertainty in similar frameworks. For example,

hybrid PLPs with answer set semantics were used for prob-
abilistic planning in [23]. Similarly, a probabilistic variant
of action languages (which are closely related to LP) was
proposed in [3]. As far as we are aware, no such approach
uses annotated disjunctions or a similar PLP language con-
struct. There has also been work in PLP on the more general
problem of modelling time and dynamics. For example, dy-
namic variants of the PLP languages Causal Probabilistic
Logic (CP-logic) [34] and Distributional Clauses (DCs) [10]
were proposed in [32] and [21], respectively. Although these
works do not relate directly to event reasoning, they may
offer computational benefits for our extension of the SEC
due to their specialised treatment of time.

7. CONCLUSION
Compared to the state-of-the-art literature on the event

calculus, our extension is the first able to reason about un-
certain event observations, uncertain effects, and uncertain
composite event definitions. It is also the first able to reason
about event observations from multiple sources. In addition
to the case study in Section 5, we can find many suitable
applications in the literature. For example, some uncertain
event models from the literature can be trivially formulated
as SEC ProbLog programs, such as [36] and [16]5. If these
existing frameworks rely on ad-hoc approaches to temporal
reasoning (as is the case in [36, 16]), then SEC ProbLog
programs offer a viable means to formalise their reasoning
capabilities in a general way.
As mentioned previously, it is likely that our framework

can generalise to at least some other PLPs. For exam-
ple, the annotated disjunction plays a pivotal role in our
framework definition, and this language construct is sup-
ported by at least one other PLP, namely Logic Programs
with Annotated Disjunctions (LPADs) [35]. However, it is
known [7] that other PLPs support similar language con-
structs. For example, the probabilistic clause from Stochas-
tic Logic Programs (SLPs) [20], the probabilistic alternative
from Independent Choice Logic (ICL) [22], the multi-ary
random switch from Programming in Statistical Modelling
(PRISM) [25], the CP-event from CP-logic [34], and the dis-
tributional clause from DCs [10]. For future work, we will
investigate whether such a generalisation is possible, and if
any PLP language is particularly suited to our framework.
It is worth noting that the ProbLog implementation of our

framework operates in an offline fashion. However, there has
already been some work on adapting the (classical) event
calculus for real-time environments, e.g. in the cached event
calculus [5], the reactive event calculus [4], and the runtime
event calculus [2]. For future work, we also plan to study
how our framework can be adapted for real-time environ-
ments in a similar way.
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