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This paper presents a supervised hierarchical remote sensing image segmentation tech-
nique using a committee of multi-scale convolutional neural networks. With existing
techniques, segmentation is achieved through fine-tuning a set of predefined feature
detectors. However, such a solution is not robust since the introduction of new sensors
or applications would require novel features and techniques to be developed. Con-
versely, the proposed method achieves segmentation through a set of learned feature
detectors. In order to learn feature detectors, the proposed method exploits a commit-
tee of convolutional neural networks that perform multi-scale analysis on each band
in order to derive individual probability maps on region boundaries. Probability maps
are then inter-fused in order to produce a fused probability map. Further, the fused
map is intra-fused using a morphological scheme into a hierarchical segmentation map.
The proposed method is quantitatively compared to baseline techniques on a publicly-
available dataset. Results, presented in this paper, highlight the improved accuracy of
the proposed method.

Keywords: image segmentation; artificial neural networks; multispectral imaging;
remote sensing)

1. Introduction

Image segmentation is one of the fundamental image processing techniques that
facilitates autonomous image understanding in a number of application areas such
as medical imaging, video surveillance, and remote sensing. Remote sensing image
segmentation has evolved as a distinct research field. This evolution is driven by
the complexities and distinctiveness of remote sensing data in terms of spatial,
radiometric, and spectral characteristics that are uncommon to other application
areas.
Despite the existence of an elaborate literature in image segmentation in gen-

eral, the field of remote sensing image segmentation continues to receive growing
research interest. This persistent interest stems from the continuous advancements
in sensor technologies in terms of spatial, spectral, and radiometric resolutions (Li
et al. 2008). Such advancements enable new applications which consequently re-
quire novel segmentation techniques in order to cope with the unprecedented re-
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quirements. Furthermore, remote sensing applications often require images to be
analysed at different scales (e.g., forest-level and tree-level). However, there are
three limitations that affect the general applicability of segmentation techniques:
1) the explicit set of homogeneity measures in the feature space that encode the
characteristics of the object of interest, 2) the selection of optimal parameters for
the segmentation process, and 3) single-scale analysis of imagery data. However,
most segmentation techniques address few of but not all of these limitations. For
example, the first limitation is addressed using a statistical analysis or machine
learning techniques such as iterative self-organizing data analysis (Jensen 2004),
self-organizing maps (Visa, Valkealahti, and Simula 1991), and pulse-coupled neu-
ral networks (Li, Ma, and Wen 2007). The second limitation is tackled using the
simplistic trial-and-error approach (Trias-Sanz, Stamon, and Louchet 2008; Kim
et al. 2011; Myint et al. 2011) or an optimization algorithm (Novack et al. 2011).
Finally, the third limitation is addressed producing a hierarchical segmentation
via processing the image at different scales (Guigues, Cocquerez, and Men 2006),
at different values of a homogeneity criterion (Salembier and Garrido 2000), at
different values of a dissimilarity criterion (Tilton et al. 2012), or following the
Markov random field (MRF) model (D’Elia, Poggi, and Scarpa 2003). As such,
the scale that fits a particular application can be set later and the segmentation
remains scale uncommitted (Guigues, Cocquerez, and Men 2006; Tarabalka et al.
2012; Hu et al. 2013). Therefore, there is a need for a segmentation method that
addresses all limitations for it to adapt to different requirements with minimum
user intervention.
In this paper, a novel structure of a committee of Multi-Scale Convolutional

Neural Networks (MSCNNs) is proposed for remote sensing image segmentation.
The proposed method can seamlessly integrate spectral and spatial information
while providing a hierarchical segmentation. In addition, it requires minimum user
intervention. The structure is novel in essence that it introduces multi-scale image
analysis within the framework of image segmentation that is based on Convolu-
tional Neural Networks (CNNs) with no increase in computational complexity of
the CNN compared to the single-scale counterpart and no redesigning burden in
terms of the CNN architecture. Moreover, the work described in this paper is one
among the first remote sensing image segmentation techniques that incorporate
CNNs.
The paper is organized as follows. In the following section, relevant background

information as well as related work in the literature are highlighted. In section 3, the
problem of image segmentation is mathematically formulated. It also describes the
proposed method in detail. Section 4 presents a quantitative comparison between
the proposed method and other baseline techniques in addition to the effect of
boosting on the performance of the proposed method. The last section concludes
with highlights on future directions.

2. Background and Related Work

At the core of the proposed method is the use of CNNs. A CNN is a machine
learning technique that consists of a hierarchy of layers of three different types,
namely, convolutional, pooling, and fully-connected layers. Convolutional layers
are the main layers in a CNN architecture. It consists of a set of filters that act
as feature detectors. Pooling layers perform sub-sampling of data and hence, force
subsequent layers in the network to focus on features at a coarser scale. In addition,
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pooling layers add a spatial-invariance property (Scherer, Mller, and Behnke 2010).
While sub-sampling is crucial, the importance of the spatial-invariance property
is application-dependent. Finally, fully-connected layers are usually the last few
layers in a CNN and they are the classification layers. The input of a CNN is a raw
image and the output is a classification.
CNN has been used in order to improve classification results in a number of

applications (Ciresan et al. 2012; Chen et al. 2014b; Collobert and Weston 2008;
Abdel-Hamid et al. 2012). In what follows, a few representative applications of
CNN in image classification and segmentation across different fields are highlighted.
One application is to use CNN in order to classify whole images into different
object classes as in (Krizhevsky, Sutskever, and Hinton 2012) and localize objects as
in (Schulz and Behnke 2012) and (Long, Shelhamer, and Darrell 2015). In medical
imaging, CNN is used as a pixel classifier for the purpose of detecting mitosis in
breast cancer histology images as demonstrated in (Ciresan et al. 2013). In addition,
they are used in order to classify gray matter, white matter, and cerebrospinal fluid
in infant brain tissue images as in (Zhang et al. 2015). In field of remote sensing,
CNN is proposed for the classification of roads and buildings in aerial images
in (Mnih 2013), the classification of different land covers in hyper-spectral remote
sensing data in (Chen et al. 2014b; Yue et al. 2015), and the detection of vehicles
in high-resolution satellite images in (Chen et al. 2014a). In (Penatti, Nogueira,
and dos Santos 2015), CNNs trained to classify generic images are used in order
to distinguish different land uses in remote sensing images. In (Zhao et al. 2015),
for the purpose of classifying hyper-spectral images, CNNs are used to extract
features at different scales from a pyramid image. Outputs of the CNNs are up-
sampled in order to match the size of the original image. Then, these outputs
(features) along with principal component analysis features are classified using the
logistic regression classifier.
The work presented in this paper is motivated by the work of Ciresan et al.

(2012). In (Ciresan et al. 2012), four CNNs are used in order to classify the pixels
in a single-band electron microscopy image into membrane and non-membrane
pixels. The input image is sliced into small patches using a sliding window. Each
CNN is configured with a different architecture. The reason behind changing the
architecture is to force different CNNs to extract different features and hence to
produce complementary outputs. Each CNN will produce a confidence map in
which each pixel represents the probability of being a membrane pixel. The final
classification map is obtained by applying a threshold on the average of all CNN
outputs.

3. Proposed Method

3.1. Problem Formulation

As illustrated in Figure 1, let I = {p(x, y) : 1 ≤ x ≤ X, 1 ≤ y ≤ Y } where p(x, y)
is the value of a pixel at the Cartesian position (x, y) in a single-band image, I, of
X × Y resolution. A segmentation can be achieved by, first, deducing a function,
ϕ : p → [0, 1] where ϕ(p(x, y)) is closer to 1 if (x, y) is a boundary pixel and closer
to 0 otherwise. Let S = {s1, s2, · · · , sM} represent a segmentation over an image
I such that ∪msm = I and ∀(m,n),m 6= n ⇒ sm ∩ sn = φ where ∪ and ∩ are the
union and intersection operators, respectively. In order to produce a hierarchical
segmentation, a partitioning function, Aλ, is applied as in Aλ : ϕ → S where λ
is the scale parameter. λ is called a scale parameter if and only if ∀(λ1, λ2) ∈

3
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Figure 1. A flow-diagram of different steps in segmentation from the input image towards producing a
segmentation map.
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Figure 2. An illustrative example of two different segmentation maps produced from a hierarchical seg-
mentation as a result of changing the scale parameter; the segmentation map on the left is considered finer
than the segmentation map on the right.
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Figure 3. The conceptual work flow of the proposed method.

R+2

, λ1 ≤ λ2 ⇒ S1 ≤ S 2, where S1 ≤ S 2 indicates that S 1 is finer than S 2 and
defined as ∀sm ∈ S1,∃sn ∈ S2 : sm ⊆ sn (refer to Figure 2).

3.2. Method Formulation

The conceptual work flow of the proposed method is shown in Figure 3. In order
to extend the single-band formulation (in Section 3.1) to multi-spectral bands, let
B = {Iz | 1 ≤ z ≤ Z} where B is a Z-band image and Iz represents a single
band in the image. Also, a patch, p(x, y), is defined as p(x, y) = {p(x−⌊w/2⌋, y −
⌊w/2⌋), . . . , p(x+⌊w/2⌋, y+⌊w/2⌋)} which denotes the w×w window surrounding
the pixel at the Cartesian coordinates (x, y) in a band. Also, w should be an odd
number for the window to have a centre pixel. This condition is necessary as the
proposed method classifies the centre pixel. First, each band, Iz, is divided into a
set of overlapping patches of different window sizes similar to a Gaussian pyramid
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Figure 4. The process of extracting multi-scale input patches from a spectral band.
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Figure 5. The effect of introducing multi-scale analysis in the segmentation framework; (a) an input
image, (b) single-scale CNNs, and (c) MSCNNs.

as in:

wt =

{

wb, if t = T

2T−twb − 1, otherwise
(1)

where T denotes the total number of CNNs per band and wb is the base patch
size. In order to extract patches around the boundaries of the band, the size of the
band is increased by mirroring pixel values across its boundary, as illustrated in
Figure 4. Then, large patches are resized to the base patch size (wb×wb). Figure 4
demonstrates the process of extracting multi-scale patches from a spectral band.
Since all patches are resized to the same size, the same CNN structure can be
used across different scales. The importance of introducing multi-scale analysis
within the segmentation framework is demonstrated in Figure 5. In the centre of
the input image (Figure 5(a)), there is a smooth change from the land-class to the
water-class. While the single-scale CNNs managed to detect several boundaries,
the smooth change is difficult to detect. Incorporating multi-scale analysis, the
land-water boundary is easier to detect as a result of larger context.
The training set of a network is the set of patches {p(1, 1),p(1, 2), . . . ,p(X,Y )}

extracted from a particular band at a particular scale along with their correspond-
ing reference labels for the centre pixel being a boundary or a non-boundary pixel,
{l(1, 1), l(1, 2), . . . , l(X,Y )}. During testing, patches are extracted in a similar ap-
proach as with training and input into the committee of CNNs. Each network will
produce a confidence map Mc = {ϕc(p(x, y)) : ∀x ∈ X, y ∈ Y }, as illustrated in
Figure 3. All confidence maps are then inter-fused to produce a single confidence
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Figure 6. The architecture of the CNN in the proposed method.

 

(a)
 

(b) (c)

Figure 7. A boundary (positive) patch where the centre pixel is a boundary pixel – enlarged for visual-
ization purposes – extracted at different scales; (a) 59 × 59 downscaled to 15 × 15 (coarse), (b) 29 × 29
downscaled to 15× 15, (c) 15× 15 (fine).

map (refer to Figure 3) defined as:

Mf =

TZ
∑

c=1

αcMc (2)

where T denotes the total number of CNNs per band, Z is the total number of bands
in the multi-spectral image, and αc is a user-set fusion parameter. Further, the fused
confidence image is intra-fused using H-minima and the watershed transform. Intra-
fusion aims to thin boundaries, connect them into closed contours, and produce
a hierarchical segmentation map. First, H-minima transform is applied on Mf as
in (Jung and Kim 2010):

Hλ(Mf ) = Rε
Mf

(Mf + λ) (3)

where λ is a user-set depth parameter and acts as a scale parameter, R is the recon-
struction operator, and ε is the erosion operator. Further, the watershed transform
is applied in order to produce the final segmentation, S f , where watershed lines
would represent region boundaries.

3.3. Method Implementation

The first step is to set the CNN architecture. The proposed CNN architecture
can be visualized in Figure 6. In details, the CNN takes a patch of 15×15 pixels
as input, processes it through a convolution layer that consists of 8 filters each
of which is a 3×3 filters applied at a 2×2 stride, passes the results of the first

6
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Figure 8. A non-boundary (negative) patch where the centre pixel is not a boundary pixel – enlarged for
visualization purposes – extracted at different scales; (a) 59×59 downscaled to 15×15 (coarse), (b) 29×29
downscaled to 15× 15, (c) 15× 15 (fine).
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Figure 9. A walk through example of the inter-fusion and intra-fusion steps in the proposed method;
(a) the input image, (b) a confidence image produced by a single CNN, (c) the inter-fused confidence
image, (d) contour disappearance map produced by intra-fusion with different depth (scale) values, (e) the
segmentation map at the optimal scale parameter, and (f) is the final segmentation map after merging.

convolution layer to another convolution layer of 8 maps each of which is of 5×5
applied at a 2×2 stride, forwards the results to a fully connected layer of 6 hidden
units, and then forwards the results to another fully connected layer of two nodes
where each of which represents a class being boundary or non-boundary patch. For
the activation functions, a rectified linear function is used for convolution layers
whereas a softmax function is used for the fully connected layers. Following the
convention in the literature as in (Ciresan, Meier, and Schmidhuber 2012; Wu
and Gu 2015), the aforementioned architecture can be abbreviated as 1×15×15-
8C(2)3-8C(2)5-6F-2F. As with other work in the literature, the architecture is
set after a series of empirical tests through potential architectures following the
recommendations in (Simard, Steinkraus, and Platt 2003). As such, the base patch
size, wb, is set to 15 which is the input of the CNN. Since all multi-scale patches
are downsized to the same base size, all CNNs in the committee can share the same
architecture.
CNN training starts by separating bands of the remote sensing image. Then,

overlapping patches from each band in each image are extracted with three different
sizes (as defined in Eq. 1): 15×15, 29×29, and 59×59. Then, the two larger patches
are downsized to 15 × 15 using the bicubic transformation. As such, the resultant
patches are of the same size (15×15) but display different contexts. Figures 7 and 8
show a boundary (positive) patch where the centre pixel is a boundary pixel and
a non-boundary (negative) patch where the centre pixel is a non-boundary pixel,
respectively. The figures also demonstrate the different context that patches exhibit
across scales. Each network shall receive patches in a particular scale extracted from
a particular band. When training, however, the number of positive (boundary)
patches are far less than negative (non-boundary) patches. If trained with such
an unbalanced dataset, the network will be biased towards non-boundary patches
and fail to generalize. Therefore, negative samples are randomly selected with no
repetition in order to match the number of positive samples. Also, in order to avoid
edge pixels to be at the centre of the patch at the coarser scale, no negative sample
is extracted in the close proximity of positive samples. Then, both positive and

7
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negative samples are randomly left as is, rotated at ±90◦/180◦, or flipped across
the horizontal and vertical axes. This step aims to introduce invariance to such
changes in the network. Further, pixels at the same location across all patches
are normalized to zero mean and unit variance. After these pre-processing steps,
patches are input into the CNN for training.
After training, each of the CNNs in the committee will result in a confidence map

similar to the one in Figure 9(b). The confidence maps produced by the whole com-
mittee of CNNs are inter-fused with the mean fusion scheme: αc = 1/TZ in Eq. 2,
where T denotes the number of CNNs per band and Z denotes the total number of
bands, and would result in a fused confidence map as shown in Figure 9(c). Then,
the fused confidence map is intra-fused in order to produce a hierarchical segmen-
tation as the depth (scale) parameter is varied (refer to Figure 9(d) which shows
how the contours disappear as a result of increasing the value of the depth (scale)
parameter). The selection of the optimal scale, λ, is application-dependent. Here,
λ is set in order to produce the closest result to the reference segmentation. The
result is shown in Figure 9(e). In order to enhance results further, regions whose
sizes are below a threshold (called the merging threshold) are merged with a neigh-
bouring region with which it shares the longest boundary. The merging process is
repeated until no region has a size below the threshold. The merging process is not
critical and, for example, no merging is performed for the demonstrated case in
Figure 9. The final segmentation is depicted in Figure 9(f).
For the particular case in this paper, there are thirty CNNs in the committee

since images in the Prague texture dataset have ten bands, Z = 10, and each band
is assigned three CNNs, T = 3. The reason of assigning three CNNs per band is
to allow boosting in training as documented in further detail in Section 4.3. The
training set consists of all boundary patches in the reference segmentation map
of the 30 (75%) training images and an equal number of randomly selected non-
boundary patches (a total of approximately 150,000 patches). In order to assure a
proper configuration, none of the patches are extracted from the 10 (25%) testing
images. This number of samples is found to be sufficient for such a number of
layers as in other works in CNN documented in the literature (Chen et al. 2014a;
Lecun et al. 1998; Sermanet and LeCun 2011). Results generated show that fewer
number of training data (100,000 patches) did not affect the quality of the proposed
method in terms of the Correct Segmentation metric (CS) but a further reduction
(to 50,000 patches) degraded the segmentation quality by 10%.

4. Experiments and Results

4.1. Data Set

For the purpose of evaluation, the Prague texture dataset is used (Mikes, Haindl,
and Scarpa 2012). The dataset comprises of a set of synthetic mosaics of textures.
These textures are extracted from real remote sensing images captured using the
Advanced Land Imager (ALI) (please refer to Ungar et al. 2003, for further details
on ALI). The dataset consists of 40 images out of which 10 are reserved for testing.
In Figures 10(a)–,(e) and Figures 11(a)–,(e), the 10 test images from the dataset
are depicted. Each image is a 10-band image of 512 × 512 resolution. The dataset
provides a test bed to evaluate different segmentation techniques. Textures in the
dataset are natural but region boundaries are not.
Since boundaries in the Prague texture set are not natural, the dataset is comple-

mented with a set of real remote sensing images. There are 9 images in total in the
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Figure 10. Segmentation results on the Prague dataset (part I); (a)–,(e) input images, (f)–,(j) reference
segmentation, (k)–,(o) MSCNNs , (p)–,(t) eCognition, (u)–,(y) the Dynamic Hierarchical Classification
(DHC), (z)–,(dd) Recursive Texture Fragmentation and Reconstruction (R-TFR), (ee)–,(ii) ENVI Feature
Extraction (ENVI), and (jj)–,(nn) Neuralnet.

9



November 3, 2015 International Journal of Remote Sensing tRESguide

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

 

(f)

 

 

(g)

 

 

(h)

 

 

(i)

 

(j)

 

(k)

 

(l)

 

(m)

 

(n)

 

(o)

 

(p)

 

(q)

 

(r)

 

(s)

 

(t)

 

(u)

 

(v)

 

(w)

 

(x)

 

(y)

 

(z)

 

(aa)

 

(bb)

 

(cc)

 

(dd)

 

(ee)

 

(ff)

 

(gg)

 

 

(hh)

 

 

(ii)

 

(jj)

 

(kk)

 

(ll)

 

(mm)

 

(nn)

Figure 11. Segmentation results on the Prague dataset (part II); (a)–,(e) input images, (f)–,(j) reference
segmentation, (k)–,(o) MSCNNs , (p)–,(t) eCognition, (u)–,(y) the Dynamic Hierarchical Classification
(DHC), (z)–,(dd) Recursive Texture Fragmentation and Reconstruction (R-TFR), (ee)–,(ii) ENVI Feature
Extraction (ENVI), and (jj)–,(nn) Neuralnet.
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Table 1. Meta-data of images in the complementary dataset

Image label in Figure 14 Entity ID Location

(a) EO1A2160142008126110PP SGS 01 Eastern region, Iceland
(b) EO1A0120312001129111P1 PF1 01 Massachusetts, USA
(c) EO1A1600432003100110PZ PF1 01 Abu Dhabi, UAE
(d) EO1A0890792001252111PP AGS 01 Brisbane, Australia
(e) EO1A0070692008232110K1 SGS 01 Ica region, Peru
(f) EO1A0370232001128111PP SGS 01 Saskatchewan, Canada
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Figure 12. A list of images where the proposed method performs poorly on the cross-validated Prague
texture set; (a)–,(f) input images, (g)–,(l) reference segmentation maps, (m)–,(r) MSCNNs.

complementary dataset. Six images captured using ALI whereas the other three
are captured by WorldView-2 (shown in Figures 14(a)–,(f) and Figures 16(a)–,(c),
respectively). These sensors vary in their spectral, radiometric, and spatial char-
acteristics. The former is a sensor of a medium spatial resolution (30m) (Weng
and Hu 2008) whereas the latter is a sensor of a high spatial resolution (0.5m). It
is worth noting that WorldView-2 images that are used in this paper are limited
to 3 bands due to data availability. The complementary dataset would provide an
insight into the performance of the proposed method on curved region boundaries
as well as its applicability on images captured using other sensors. Since reference
segmentation maps are not available for the complementary dataset, the evaluation
shall be merely subjective. Images in the complementary dataset are publically-
available. For easy retrieval from Earth Explorer1, entity identification numbers of
images in the complementary dataset are listed in Table 1.

4.2. Comparative Analysis

A set of well-established metrics is used on the Prague texture set in order
to compare the proposed method with baseline techniques. The selected tech-
niques include top-rated commercial segmentation techniques (Marpu et al. 2010),
namely, Definiens Developer (a.k.a, eCognition) (Baatz and Schape 2000) and

1http://earthexplorer.usgs.gov/
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ENVI Feature Extraction Module (ENVI) (Xiaoying 2009). In addition, more re-
cent techniques in the literature such as the Dynamic Hierarchical Classification
(DHC) (Scarpa et al. 2013) and Recursive Texture Fragmentation and Reconstruc-
tion (R-TFR) segmentation techniques (Gaetano, Scarpa, and Poggi 2009) are
considered. All these methods are unsupervised but they act as important bench-
marks in the field of remote sensing image segmentation. Comparing against them
demonstrate the significance of the proposed method. Neuralnet method (Scarpa
et al. 2012) is a supervised method where it classifies the regions in order to derive
the segmentation. This method requires the number of classes as a priori knowl-
edge. The parameters of all methods are manually set in order to provide the best
segmentation for each individual image in the test dataset. The same applies for
the selection of the scale parameter, λ, in the proposed method whereas the merg-
ing threshold is set to a fixed value that is 300. In order to avoid any bias, results
of the proposed method documented in Table 2 are the average of five runs. Re-
sults show that the proposed method ranks the best among all baseline techniques.
Subjectively, results in Figures 10 and 11 confirm the accuracy of the proposed
method among other techniques. In addition, the proposed method has produced
a segmentation that is exactly the reference in at least one occasion whereas oth-
ers are highly similar. It is worth mentioning that results of the proposed method
reported in Figure 10 and 11 are of the one of median performance among the five
runs according to correct segmentation (CS) metric. This is to assure a fair visual
comparison to other techniques.
Furthermore, a 4-fold cross-validation is performed on the proposed method,

since it is a supervised segmentation method, using the Prague texture set. The
cross-validation test provides an insight into the performance of the proposed
method on an independent set. Test results indicate that the proposed method
has a consistent performance across all metrics (with a mean correct segmentation
(CS) of 92.63%). However, there are few examples where the proposed method
produces a segmentation that is dissimilar to the reference segmentation. These
worst cases (as per the Correct Segmentation (CS) metric) are presented in Fig-
ure 12. It can be noticed that the proposed method fails on particular regions such
as the cloudy region in Figures 12(a), (e), & (f) and the mountainous region in
Figures 12(b)–,(d). These regions are difficult to segment as they exhibit within
different land covers and shadow areas (shadows have a spectral response similar
to water (Basaeed, Bhaskar, and Al-Mualla 2013)). In addition, rivers can lead
to over-segmentation as observed in the top right region in Figure 12(d). This is
because the proposed method is an edge-based segmentation technique and rivers
would cause a strong response (boundary) of the trained CNNs.

4.3. Method Variations

It is anticipated that using boosting when training could improve the overall accu-
racy of the committee. Boosting is performed on the three CNNs that are assigned
for each band (i.e., across scales of the same band). In boosting, the full set of
patches and the corresponding reference values are passed to the first network dur-
ing training. The first network would receive the whole training set, P 1, learn the
function ϕ1, and produce a predicted label, E1(x, y), for each input patch, p(x, y),
using the following equation:

E1(x, y) =

{

1 if ϕ1(p(x, y)) ≥ 0.5
0 otherwise

(4)
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Table 2. Quantitative evaluation results of different baseline techniques on the Prague dataset

Evaluation metric MSCNNs eCognitiona DHCa Neuralneta R-TFRa ENVIa

Correct segmentation (%)(CS↑) 94.52 91.91 84.60 79.85 78.45 73.49
Over-segmentation (%)(OS↓) 25.16 10.54 6.78 3.38 10.39 24.01

Under-segmentation (%)(US↓) 0.00 1.11 8.73 13.52 14.33 16.74
Missed error (%)(ME↓) 0.00 1.20 4.70 2.82 2.90 5.46
Noise error (%)(NE↓) 0.00 0.98 5.33 3.21 1.28 4.71

Omission error (%)(O↓) 0.64 0.06 1.69 2.74 1.22 2.33
Commission error (%)(C↓) 5.23 0.52 0.70 3.27 3.11 80.45
Class accuracy (%)(CA↑) 95.80 94.13 89.69 84.36 84.74 81.53

Recall - correct assignment (%)(CO↑) 96.39 95.42 92.80 90.56 89.72 86.48
Precision - object accuracy (%)(CC↑) 99.39 98.16 92.78 88.37 88.98 88.25

Type I error (%)(I.↓) 3.61 4.58 7.20 9.44 10.28 13.52
Type II error (%)(II.↓) 0.13 0.24 0.90 1.89 1.25 1.67

Mean class accuracy estimate (%)(EA↑) 97.46 96.13 92.29 88.81 88.37 85.52
Mapping score (%)(MS↑) 96.08 94.40 89.59 85.84 85.45 81.87

RMS proportion estimation error (%)(RM↓) 0.89 1.62 1.94 3.34 3.46 2.79
Comparison index (%)(CI↑) 97.66 96.44 92.53 89.13 88.84 86.38

Global Consistency Error (%)(GCE↓) 1.22 2.67 4.38 7.23 4.34 5.76
Local Consistency Error (%)(LCE↓) 0.80 1.16 2.67 4.89 2.55 1.98

Van Dongen metric (%)(dD↓) 2.13 2.91 4.61 6.81 6.20 7.58
Mirkin metric (%)(dM↓) 0.94 1.24 2.17 4.61 3.06 4.13

Variation of information (dVI↓) 14.88 14.75 14.51 14.51 14.43 14.79

Note: the best results are highlighted in bold typeface.
aResults documented in this table are retrieved from: http://mosaic.utia.cas.cz/
bRoot mean square proportion estimation error.

Table 3. Quantitative evaluation results of different method variations on the Prague dataset

Evaluation metric MSCNNs Boosted MSCNNs CNNs Boosted CNNs
µ (σ) µ (σ) µ (σ) µ (σ)

Correct segmentation (%)(CS↑) 95.19 (0.92) 94.52 (1.58) 93.32 (2.32) 93.98 (1.71)
Over-segmentation (%)(OS↓) 24.70 (3.56) 25.16 (2.28) 14.06 (2.39) 12.38 (3.18)

Under-segmentation (%)(US↓) 0.0 (0.0) 0.0 (0.0) 0.75 (1.68) 0.0 (0.0)
Missed error (%)(ME↓) 0.19 (0.42) 0.0 (0.0) 0.81 (1.80) 2.19 (2.69)
Noise error (%)(NE↓) 0.07 (0.16) 0.0 (0.0) 0.80 (1.80) 1.91 (2.37)

Omission error (%)(O↓) 0.63 (0.06) 0.64 (0.07) 0.98 (1.16) 0.76 (0.42)
Commission error (%)(C↓) 7.80 (6.57) 5.23 (5.35) 17.29 (10.96) 9.64 (3.74)
Class accuracy (%)(CA↑) 96.40 (0.52) 95.80 (0.69) 95.62 (1.68) 95.97 (1.35)

Recall - correct assignment (%)(CO↑) 96.85 (0.44) 96.39 (0.67) 96.20 (1.50) 96.71 (0.96)
Precision - object accuracy (%)(CC↑) 99.53 (0.20) 99.39 (0.06) 99.20 (0.68) 99.24 (0.60)

Type I error (%)(I.↓) 3.15 (0.44) 3.61 (0.67) 3.80 (1.50) 3.29 (0.96)
Type II error (%)(II.↓) 0.13 (0.09) 0.13 (0.0) 0.18 (0.15) 0.26 (0.28)

Mean class accuracy estimate (%)(EA↑) 97.82 (0.30) 97.46 (0.44) 96.93 (1.37) 97.40 (0.93)
Mapping score (%)(MS↑) 96.61 (0.47) 96.08 (0.68) 95.84 (1.61) 96.26 (1.21)

RMS proportion estimation errorb (%)(RM↓) 0.83 (0.15) 0.89 (0.24) 0.93 (0.35) 1.02 (0.29)
Comparison index (%)(CI↑) 98.00 (0.28) 97.66 (0.39) 97.28 (1.15) 97.67 (0.82)

Global Consistency Error (%)(GCE↓) 0.88 (0.24) 1.22 (0.12) 0.93 (0.65) 1.39 (0.89)
Local Consistency Error (%)(LCE↓) 0.60 (0.09) 0.80 (0.07) 0.61 (0.34) 0.83 (0.43)

Van Dongen metric (%)(dD↓) 1.80 (0.25) 2.13 (0.34) 2.18 (0.92) 2.07 (0.68)
Mirkin metric (%)(dM↓) 0.85 (0.24) 0.94 (0.19) 1.30 (0.50) 1.15 (0.54)

Variation of information (dVI↓) 14.81 (0.07) 14.88 (0.08) 14.90 (0.25) 14.75 (0.11)

Note: the best results are highlighted in bold typeface.
*µ and σ represent the mean and the standard deviation respectively.
bRoot mean square proportion estimation error.

The predicted labels, E1, are cross-checked with reference values, l, and then sep-
arated into two sets, namely, correctly classified R1 = {p(x, y) : p(x, y) ∈ P 1 |

E1(x, y) = l(x, y)} and misclassified datasets R∁
1 = {p(x, y) : p(x, y) ∈ P 1 |

E1(x, y) 6= l(x, y)}. The next network receives only the set of patches P 2 such
that card({p(x, y) : p(x, y) ∈ P 2 | p(x, y) ∈ R1}) = card({p(x, y) : p(x, y) ∈ P 2 |

p(x, y) ∈ R∁
1}) and card(P 2) = 2 ×min(card(R1), card(R

∁
1)) where card(S) is the

cardinality of a set S. The output of the second network is similarly assessed and
predicted labels are separated into correctly classified R2 and incorrectly classified

13



November 3, 2015 International Journal of Remote Sensing tRESguide

 

 

CNN (1)

CNN (2)

CNN (3)

Figure 13. An illustration of the process of boosting where the training dataset gets reduced from one
CNN to the next in order to allow the following CNN to focus on more difficult samples.

R∁
2 sets. The input of the third and final network is P 3 = (R1 ∩ R∁

2) ∪ (R2 ∩ R∁
1).

That is to say that boosting passes difficult patches at different scales from one
network to the other and the third network aims to resolve disagreement between
the first and the second networks. In all cases, the raining set should be balanced
where negative samples are equal to positive samples. Once trained, each network
shall independently estimate the function ϕc : p → [0, 1] where c indicates a par-
ticular network and ϕc(p(x, y)) would result in a high confidence value if (x, y) is
a boundary pixel and a low confidence value otherwise. The process is repeated in
a similar manner across all bands.
In this set of experiments, four versions of the proposed method are tested on

the Prague dataset: Multi-Scale CNNs (MSCNNs), single-scale CNNs (CNNs), and
each of which with and without boosting. The results, summarized in Table 2, show
that the MSCNNs (1.29) is the best among the different variations of the proposed
method followed by boosted MSCNNs (2.29), boosted CNNs (2.71), and CNNs
(3.52) according to the (average rank) across all metrics. However, the boosted
MSCNNs is the best in terms of stability since having the lowest average standard
deviation (σ) in metrics across the five runs. Boosted MSCNNs is followed by
MSCNNs, boosted CNNs, and CNNs, receptively. Thus, it can be said that multi-
scale analysis improves the performance whereas boosting improves the stability. In
addition, boosting reduces the computational complexity in subsequent CNNs as
a result of data reduction. However, boosting makes learning a sequential process
for each band. In other words, the proposed method with no boosting can run in
parallel using 30 CPU cores where each core will train a single CNN. On the other
hand, the proposed method with boosting can run in parallel using 10 CPU cores
where each core will train a committee of CNNs for a single band. Since a machine
with the latter parallel configuration is easier to find, boosting has an advantage
over no-boosting but with a slight degradation in performance.

4.4. Discussion

While the Prague texture dataset provides a methodology of comparing differ-
ent segmentation techniques, it is important to understand the performance on
curved region boundaries. Therefore, the proposed method, with no retraining, is
used to segment remote sensing images captured using ALI sensor, as presented
in Figures 14(a)–,(f). Before segmenting ALI images, they are pre-processed by
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Figure 14. Segmentation results of the proposed method on remote sensing images captured using ALI
sensor; (a)–,(f) input images, (g)–,(l) MSCNNs, and (m)–,(r) eCognition.
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Figure 15. Segmentation in images with fine details of interest; (a) input image, (b) MSCNNs, and (c)
eCognition.
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Figure 16. Segmentation results of the proposed method on remote sensing images captured using
WorldView-2 sensor; (a)–,(c) input images and (d)–,(f) MSCNNs.

converting pixel values to exoatmospheric Top-Of-Atmosphere (TOA) reflectance
as documented in (Chander, Markham, and Helder 2009). The conversion reduces
scene-to-scene variations. The depth (scale) parameter, λ, and the merging thresh-
old are set individually for each image in order to produce a subjectively appeal-
ing segmentation as reference segmentation do not exists. Results show that even
though the proposed method is trained on straight boundary lines, it provides a
good accuracy on curved region boundaries as depicted in Figures 14(g)–,(l). This
means that the CNN can be successfully trained using a synthetic dataset (with
curved boundaries if possible) and the time-consuming process of manual genera-
tion of training datasets can be avoided. In visual comparison to images segmented
using eCognition method, presented in Figures 14(m)–,(r), segmentation results
are comparable to the proposed method yet slightly better. However, the proposed
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method produced a better segmentation in the last case (Figure 14(f)) where crop
fields are uniformly segmented as rectangular regions. These results show that the
proposed method managed to learn features and produce results similar to methods
with an explicit set of features. Since regions in the Figure 14 are relatively large,
another test is conducted in order to subjectively evaluate the effectiveness of the
proposed method in segmenting small regions (demonstrated in Figure 15). In fact,
Figure 15(b) demonstrates that the proposed method is capable of segmenting small
regions (e.g., yellow-highlighted region in Figure 15(a)). It fails, however, to detect
thin regions such as those highlighted in blue in Figure 15(a). On the other hand,
eCongition is better in detecting such thin regions as demonstrated in Figure 15(c).
In the second test, the proposed method, with no retraining, is used to segment
images captured by WorldView-2 sensor. The aim here is to test the applicability
of the proposed method on other sensors. Since WorldView-2 images have three
bands only, the structure of the proposed method is reduced to contain bands of
similar characteristics and the rest are ignored. A subjective evaluation of results
in Figure 16 indicates that the proposed method has produced good segmentations
despite being trained on ALI images. It is to be noted, though, that the best seg-
mentation is expected when the proposed method is trained using WorldView-2
images.
The proposed method has several advantages over other techniques. The first

advantage is its ability to present a hierarchical segmentation with no parameters
to manually set. A segmentation in the hierarchy can be selected by fine-tuning two
parameters in order to fit a particular application: the scale parameter, λ, and the
merging threshold. The process of selecting these parameters is interactive yet fast
as these parameters are associated with post-processing steps and does not require
rerunning the algorithm (as in eCognition for example). One more advantage is
that the proposed method produces a hierarchical segmentation which allows to
segment large areas; forests, deserts, urban, water etc. or classify at a finer level such
as marina, different crop fields, etc. without rerunning the segmentation technique.
Also, unlike the work in (Ciresan et al. 2012), boundary pixels can be of zero pixels
and do not need to have a particular appearance (such as in membrane pixels).
Further, extracting patches at different scales and downscale them to a unified
size improves results due to multi-scale analysis without the need to redesign the
network or increase its computational complexity. Yet, it slightly increases the
computational complexity of the pre-processing step.
The limitation in any supervised machine learning technique, as the case here, is

the relatively long training time where it takes around 8.5 hours to train the whole
structure for 100 epochs on the training set of around 150,000 samples in a parallel
environment. However, the fast running time counterbalances it as it takes around
126 seconds to process a whole 512 × 512 image (a total of 262144 samples) in
the same environment. It is to be noted, though, that the current implementation
is a Matlab CPU implementation (Matlab 2014a running on 64-bit Windows 7
Professional on 2.40GHz CPU with 16 GB of RAM) which is not optimized for
speed. It is expected that a GPU implementation would significantly reduce the
time (Ciresan et al. 2012). Another limitation is the generation of a training dataset.
Results, presented in this paper, suggest that a synthetic generation of training
data could be sufficient and, hence, the inconvenient manual generation can be
avoided. The third limitation is the selection of network parameters in terms of
number and types of layers, number of filters at each layer, etc. This limitation is
true for almost all supervised machine learning techniques such as Artificial Neural
Network (ANN) and Support Vector Machine (SVM). The exhaustive search is a
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widely used strategy in the field and CNN is no exception. However, once these
parameters are set, they can be fixed for the particular application.

5. Conclusion

In this paper, a novel segmentation method for remote sensing images is presented.
The proposed method exploits a committee of CNNs in order to detect region
boundaries across scales. This is achieved through resizing input patches in a pyra-
mid structure. Resizing the patches and not the original band serves two purposes.
First, it assures one-to-one correspondence across all scales. Moreover, it allows all
CNNs to share the same architecture thus eliminating the need to design different
architectures for the different patch sizes. The improvement of adding multi-scale
analysis is evident in the series of tests presented.
In order to overcome the limitations of the proposed method, a future direction

is to implement the proposed method on parallel GPU implementation in order
to reduce the training time. In addition, the incorporation of spectral and shape
information within the framework can be used to improve the robustness of the
proposed method.
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